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Abstract 

 

This thesis presents the design and implementation of a Chatbot that is able to answer 

questions about an entity it is learning about. This Chatbot is capable of automatically 

generating multiple genres using a unique technique to populate its SQL database from 

the Web. Our Online Feedable Chatbot can hold a conversation with the user regarding 

the information it has extracted from the Web. Our Online Feedable Chatbot attempts 

to create Question Answer pairs (QAPs) and acquire imperative sentences specially 

targeted at the entity it gives information about. A method to select the best response 

for a Chatbot query among a set of sentences using hybrid terms, syntactic, and 

semantic extracted features is developed as a response search system of our Online 

Feedable Chatbot. This tutor Chatbot can expand its training knowledge base by 

automatically extracting more QAPs and imperative sentences from the Web 

whenever the user needs to learn about a new entity and without any instructor's 

supervision, amendments, or control. 
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     Chapter One 

1 Introduction 
 

 

1.1 Introduction 
 

Commercial conversational agents have given a boost to the research area of 

Conversational Agents. Computer based chat systems have become one of the most 

common communication models used in the modern world [1]. Therefore, there are 

numerous chat systems available worldwide [1, 2]. Chatbots have been used in various 

scenarios for getting people interested in different subject areas for decades [2]. 

However, their ability to teach basic concepts and their engaging effect have not been 

measured [3, 4].  

The World Wide Web (WWW) has developed into a rich information repository in a 

distributed manner. It is a good trade-off for the information revolution that eventual 

users are finding it challenging to find relevant information and services easily and 

quickly [5, 6].  

A better compromise is needed among the conversational agents, tutor Chatbots, 

exploiting the huge information source on the internet and one of these main sources 

is the WWW. The artificial intelligence Chatbot, which is a category of spoken 

dialogue systems, is a technology that makes interaction between humans and 

machines using natural language processing [7] [8]. A general block diagram of a 

spoken dialogue system is shown in Fig.1.1. A Chatbot is basically structured in a 

database or knowledge base, a dialogue strategy, Automatic Speech Recognition 

(ASR) for input speech, and Text To Speech (TTS) conversion for output [9]. 

Researchers in the area of conversational systems mainly concentrate on improvement 

of the database and the dialogue strategy [10] [11] [12]. 
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The main idea presented in this thesis is basically to create a Chatbot that can answer 

questions about the personality of a figure or the characteristics of an object. This 

Chatbot has the ability to answer questions in order to present the information it 

contains about the figure or object i.e. it acts as a tutor to provide the user with 

information about the figure or object without any instructor control or access to its 

information. This Chatbot has the capability to populate itself any time and its 

knowledge base is fillable from the web. The database of the proposed Chatbot can be 

empty when the user chooses the figure or the object they need to learn about. When 

the user chooses the figure (any figure randomly) or the object they desire, the Chatbot 

starts to populate its (SQL) database from the web using, mainly, the Wikipedia page 

related to that figure or object. After a few hours, the Chatbot Question Answer Pairs 

(QAPs) database is full of information about the desired person or object. Notice that 

the Chatbot’s database was empty before choosing the property the user needs to learn, 

then the person or the object is initialised as a Chatbot after a while. Therefore, the 

Chatbot can be initialised any time the user switches to another object. The database 

of our Chatbot is accumulative and extendable as the user keeps choosing more entities 

to learn. 

This thesis mainly focuses on how to find out new automatic techniques or methods to 

populate the knowledge base of the Online Feedable Chatbot from the web. Question 

Answer Pairs are one of the popular data types to fill in Chatbot’s database. The first 

novel idea is generating factual question answer pairs from factual sentences gathered 

by a web spider; the raw text sentences are extracted from the HTML and pre-

processed. Named Entity (Proper Name) Recognition (NER) is used in addition to verb 

tense recognition in order to identify the factual sentence category. Specific rules are 

built to categorize the sentences and then to generate questions based upon them. 

   Database 

Dialogue 

strategy 

TTS 

ASR 

 

User  

Fig. 1. 1: A general block diagram of a spoken dialogue system. 
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Subjective assessment is used to evaluate the Question Answer Generation (QAG) 

system, and a comparison with other approaches is made. We did not extract questions; 

we generated questions. There is a measure of error in the generated questions and 

they are evaluated and given a score. We do not have 100% correct questions and this 

is explained in Source of Error in section 3.5.  

The second idea is to use hybrid (Term, Syntactic, and Semantic) features to design a 

Question Answer (QA) system that uses multiple feature extraction to filter and 

quantify the response sentences to a Chatbot query before selecting the best answer for 

that query. The response sentences are extracted from the same source as in the first 

idea, which is Wikipedia. The system is evaluated and compared to other comparative 

systems. The third novel idea is to automatically extract imperative sentences using 

POS tags and verb tense type from the same source of text as in the first and the second 

ideas in order for them to be used in future work in actionable activities and added to 

the designed Chatbot. The footballer David Beckham is used as an example and the 

data used is acquired from a page about him on Wikipedia. The Chatbot is 

implemented and comparative systems are chosen and adapted to the data sets of 

Online Feedable Chatbot (OFC) and implemented for the purpose of comparison to 

our systems. Subjective assessments are used to evaluate our systems’ outputs as well 

as the comparative systems’. The results of the subjective assessments report that our 

system performance was better than the comparative systems.  

 

1.2 Motivation 
 

The following questions motivated us to address the problem: 

1. Can a Chatbot be a tutor to answer questions and give information about the 

personality of a figure or characteristics of an object? 

2. How can the information about that figure or that object be collected? 

3. Can Wikipedia be an information repository to extract adequate and reliable 

information? 

4. What kind of information can the database be populated with? 
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5. How can we model appropriate methods to populate the database of our 

Chatbot? 

6. What are the best methods to validate our outputs and evaluate our system?  

The first step was to research previous studies about Chatbots in order to investigate 

the recent developments in the area of conversational system research. We also 

investigated information retrieval studies to track the recent improvements. 

Furthermore, we looked into the recent methods of Question Generation (QG) and QA 

systems. After these investigations, we created the idea of designing a tutor Chatbot 

that can answer questions and give information about the entity that the user selects 

randomly. Then we found the idea of populating the knowledge base of this Chatbot 

from the World Wide Web and specifically Wikipedia. Then we started to think about 

the type of information that can be inserted into our Chatbot database and we found 

the idea of automatically generating question answer pairs to be considered as part of 

the knowledge base of our Chatbot. In the meantime, we found a way to extract another 

type of information to populate the database and this was imperative sentences. 

Moreover, we thought of a method to find the best match for a question among a group 

of sentences as a response to a Chatbot query. Furthermore, our invented QA data set 

and Stanford data set (Stanford Question Answer Dataset) SQuAD was used to test 

our QA system in chapter 4. 

In order to evaluate the outcomes of the system, we have chosen the idea of using 

subjective assessment, since the main interaction of the conversational agents is with 

people and their task is to talk to humans [13]. Therefore, we needed to evaluate our 

system by examining human satisfaction as humans are the eventual users for any 

Chatbot. We used human assessment for three of our methods: the QG system (Chapter 

3), the Imperative sentence extraction system (Chapter 5), and the implementation of 

our Chatbot (Chapter 6). Other evaluation metrics were chosen for the QA system 

(Chapter 4) such as Precision, Recall, Mean Average Precision (MAP), and Mean 

Reciprocal Rank (MRR) [14]. Precision is also used to evaluate the results of the 

subjective assessments in the QG system, and Imperative sentence extraction system. 

In order to implement the Chatbot, a plan for an algorithm has been derived and an 

analysis of the conversation form has also been written. The plan is divided into stages 
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and the first stage of implementing our Online Feedable Chatbot (OFC) is presented 

in Chapter 6 and the other implementation stages are explained in section 7.3 in 

Chapter 7. 

 

1.3 Research Objectives 
 

1.3.1 Online Feedable Chatbot 

 

The first main objective of this thesis is to design and implement a Chatbot that has 

information about the personality of a figure or the characteristics of an object. This 

Chatbot should: 

1. Populate its database automatically from the internet. We found an idea to populate 

our Chatbot’s database from the Wikipedia page of the target figure or the object [15].  

2. Hold a simple conversation with the user like greetings and asking about name. 

3. Answer questions on the entity it has information about. 

4. Use Wikipedia to extract information about the figure or the object it answers 

questions about. 

5. Update its database when a user needs information about a new entity. This means 

adding to the already available information (accumulative database). 

 

1.3.2 Automatic Question Generation 

 

The second main objective is to find the best methods to design and populate the 

database of the proposed Chatbot.  The idea is to develop a QG system to produce 

QAPs for the proposed Chatbot database. This system should: 

1. Extract plain text from the Wikipedia page of the figure or the object that a user desire 

using a web crawler. 

2. Filter the extracted text from HTML and undesired codes using natural language 

processing (NLP) like POS tagging. 

3. Acquire factual sentences from the text that was extracted from the Wikipedia page 

associated to the user selected entity. 
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4. Detect the proper names at the beginning of each factual sentence and the verb tense 

in order to use them for question generation.  

5. Select the factual sentences with proper name subject and simple present and simple 

past verb tenses. 

6. Generate Wh factual questions from the selected sentences. 

7. Pair the generated questions with the selected factual sentences to make QAPs then 

put the QAPs into an SQL database. 

 

1.3.3 Question Answer System 

 

The third main objective of this thesis is to develop a model of response answer 

selection for a query from a database. This model investigates the best ways to extract 

features from the query and the response answers. We needed to find a method to 

obtain the best match between a query and a response answer and we designed a system 

for this purpose. This answer selection system should: 

1. Extract raw text from the Wikipedia page of the desired entity using a web crawler. 

2. Filter the extracted text using NLP. 

3. Split the text into sentences using NLP word tokenizing and then POS tag each word. 

4. After posing a question, Split the query sentence using NLP word tokenizing then 

POS tag the tokenized words. 

5. Use POS tags to find syntactic match, Jaccard’s coefficient or cosine similarity to find 

term match, and named entity or semantic cosine similarity to find semantic similarity 

between the query and the response sentences then aggregate the matching scores for 

each response sentence. 

The highest scored sentence should be the best to match the query sentence. 

 

1.3.4 Imperative Sentence Extraction 

 

The fourth main objective of this thesis is to find a method to extract imperative 

sentences. A system is designed to support this method and this system should: 
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1. Do the same steps of text extraction, filtering, sentence then word tokenization, and 

POS tagging done in the previous two sections which are all named pre-processing. 

2. Detect the verb tense in the beginning of each sentence. 

3. Select the sentences that begin with simple present verbs and put them into the SQL 

database. 

 

1.4 Contributions 
 

The work presented in this thesis contributes to designing and building a Chatbot that 

depends mainly on its knowledge from data acquired from the Web. It also contributes 

to proposing a new method of automatic question generation, a new method to extract 

multiple features for a QA system, and a new method to automatically extract 

imperative sentences from the Web. 

The main contributions are listed as follows: 

 Online Feedable Chatbot (OFC).  Proposing and building a tutor Chatbot that 

can feed its knowledge base from the Web. This Chatbot has the ability to: 

1. Make conversational chat with the user using the chatting database. 

2. Answer definition, information, and new queries about the figure or 

object. 

3. Populate its knowledge base with information from the web about a 

figure or an object whenever a user chooses. After a few hours of 

running, its SQL database is populated by QAPs about the user 

selected figure or object. 

4. Extend its database and categorise it into genres depending on the 

subjects added according to user request.  

The database of this Chatbot is built using SQL. New approaches are used 

to extract text from the web and generate QAPs as chat information for the 

OFC in addition to imperative sentences. The OFC is implemented and 

tested using human assessment. 
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 Automatic Question Generation System for OFC.  We built a new automatic 

system to generate questions from factual sentences, which are extracted from 

the web using a web crawler and filtered using part of speech information. 

Specific hypotheses and rules are built for selecting the factual sentences and 

to produce questions from these sentences. We used named entity and verb 

tense features to carefully select the corresponding sentences and the generated 

questions have been categorised according to verb tense type. This part was 

published in [16]. We have run an experiment to implement the system and 

evaluated the resultant QAPs. We adapted a comparative system to our QG 

system and data set in order to compare it with our system. A subjective 

assessment has been used to validate and evaluate our system’s output as well 

as the comparative system’s. The evaluation results show that our QG system 

outperforms the comparative system by 5 percentage points. Moreover, our 

questions are more answerable than the comparative systems’ according to the 

QA match scores. The resultant QAPs are stored in an SQL database as part of 

the knowledge base of OFC.  

 

 Question Answer System for the OFC. We built a QA system for the OFC 

that uses hybrid features to select the best response for a query in a Chatbot. 

Multiple terms, syntactic, and semantic features are used to find the similarity 

between a query and a set of sentences extracted from the web, and filtered 

using part of speech POS tags. We used cosine similarity and Jaccard’s 

Coefficient for the term similarity, POS tag for syntactic features, and named 

entity and semantic cosine similarity for semantic features. Four hybrid 

formulas are produced from these similarity features and compared to each 

other. The resultant selected sentences are re-ranked according to the obtained 

similarity scores from the highest to the lowest. We assume that the highest 

scored sentences are the best responses to the query. A comparative system has 

been adapted to our system and our data set so as to compare it with our four 

produced equations. Our produced QA data set and Stanford data set SQuAD 

were used to test our system. Precision, recall, mean average precision, and 

mean reciprocal rank have been calculated and graphs were produced so as to 
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compare the five comparative systems (our four combinations and the 

comparative system). We found that the best combination to find the best 

response for a Chatbot query is; cosine similarity for term, POS tag for 

syntactic, and semantic cosine similarity for semantic and this part was 

published in [17]. It is planned to use this QA system as the response selection 

system for our Chatbot OFC from the SQL database or from the Web. 

 

 Automatic Imperative sentence extraction System for the OFC. We built 

an automatic system to extract imperative sentences from the web. Verb tense 

type and a POS tag are used to extract direct imperative sentences from a group 

of sentences extracted from the Wikipedia page of the English footballer David 

Beckham using a web crawler and filtered using a part of speech tag. A 

comparative system was chosen and adapted to the data set of the OFC and 

implemented for the purpose of comparison to our system. A subjective 

assessment was implemented using human assessors to evaluate our system’s 

output as well as the comparative system’s. The subjective test result reports 

that our system outperforms the comparative system. The resultant imperative 

sentences are saved in an SQL database as part of the OFC database. 

 

1.5 Thesis Outlines 
 

The remainder of this thesis is structured as follows: 

 Chapter 2 gives a background for some important terminologies, introduces a 

literature review of the state of the art regarding the problem domain, 

concentrating on the Online Feedable Chatbot, Tutor Chatbots, Automatic 

Question Generation, Question Answer Systems, and Extracting Imperative 

sentences. This provides a motivation for the subsequent chapters where we 

present the detailed theories and hypotheses, justifications, experimental work 

and evaluation results and analysis. 
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 Chapter 3 presents the QAG system’s rules and hypothesis. It explains a 

generalised abstract design of the proposed system. It gives details about the 

experiment conducted to implement and evaluate the proposed system. It also 

demonstrates the evaluation results in comparison to the comparative system. 

 

 Chapter 4 describes feature extraction methods used in term, syntactic, and 

semantic similarities. It proposes a method for a QA system to be used in the 

OFC. Moreover, it presents the proposed system and its implementation. It also 

provides the experimental results and how they are evaluated and compared to 

other systems. 

 

 Chapter 5 explains the rules and the hypothesis to extract imperative sentences 

from the web. It also describes the proposed system to apply the corresponding 

hypothesis. Furthermore, it presents the experimental results and the evaluation 

way to assess the proposed system and to compare it with other studies. 

 

 Chapter 6 gathers all the methods presented in the former chapters to design 

the OFC by implementing this Chatbot. The chapter provides diagrams and an 

explanation for the structure of the Chatbot and the discourse analysis. In 

addition, it reports the evaluation results using human assessors. 

 

 Chapter 7 summarises the additive conclusions of the earlier chapters and 

identifies the challenges which can be faced through further development of 

our Chatbot in the future. 

The next section is included to clarify which sections of this thesis have been 

published. 
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   Chapter Two 

2 Background 
 

(Part of this chapter is published [18]) 

2.1 Introduction 
 

Speech is one of the most powerful forms of communication between humans; hence, 

it is the ambition of the researchers in the field of human computer interaction to 

improve speech interaction between humans and computers. Speech interaction with 

modern networked computing devices has received increasing interest in the past few 

years with contributions from Google, Android and IOS. Spoken dialogue systems are 

becoming the primary interaction method with a machine because they are more 

natural than graphic-based interfaces [19]. Therefore, speech interaction will play a 

significant role in humanising machines in the near future [20].  

Much research work has focused on improving recognition rates of the human voice 

and the technology is now approaching viability for speech based human computer 

interaction. Speech interaction splits into more than one area [21], including speech 

recognition, speech parsing, NLP (Natural Language Processing), keyword 

identification, Chatbot design/personality, artificial intelligence and so on.  

Chatbots have been the new trend of the information technology world in the past few 

years because of the convenience and ease of their usage. A Chatbot is a computer 

program that has the ability to hold a conversation with humans using Natural 

Language Speech [18]. It can interact with humans and perform different tasks such 

as booking trains or flights, ordering food, dialling a person’s number, telling the 

weather forecast, and teaching foreign languages. Commercial examples of such types 

of Chatbots are MS Cortana, Siri, and Google Assistant. 

This chapter presents definitions and identification for the important terminologies 

used in this thesis. Then, a literature review categorised into detailed topics is 

presented.  
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2.2 Important Concepts 
 

In order to know the fundamental Chatbot characteristics and strategies, we need to 

figure out some preliminary terminologies related to the area of Chatbots or 

conversational systems. Some of these terms are explained in the following 

subsections. Each section is explained separately and independently from the other as 

a title related to the work in this thesis. 

 

2.2.1 Human Computer Speech Interaction 

 

Speech recognition is one of the most natural and sought-after techniques in 

computers, and networked device interaction have only recently become possible (in 

the last two decades) with the advent of fast computing. 

Speech is a sophisticated signal and happens at different levels: “semantic, linguistic, 

articulatory, and acoustic”  [22]. Speech is considered to be the most natural among 

the aspects of human communication, owing to copious information implicitly existing 

beyond the meaning of the spoken words. One of the speech information extraction 

stages is converting speech to text via Automatic Speech Recognition (ASR) and 

mining speech information [23, 24]; then, the resulting text can be treated to extract 

the meaning of the words. 

Speech recognition is widely accepted as the future of interaction with computers and 

mobile applications; there is no need to use traditional input devices such as the mouse, 

keyboard or touch sensitive screen and it is especially useful for users who do not have 

the ability to use these traditional devices [25, 26]. It can help disabled people with 

paralysis, for example, to interact with modern devices easily by voice only without 

moving their hands. This part is not going to be adopted in this thesis, but we found it 

important to explain it as a technique used to input user queries into a Chatbot. 
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Speech analysis can be divided into three stages: (i) voice recognition and conversion 

to text, (ii) text processing, and (iii) response and action taking. These stages are 

explained as follows: 

Firstly, speaker independent speech passes through a microphone to a digital signal 

processing package built in the computer to convert it into a stream of pulses that 

contain speech information. Specific instructions are used to read input speech then to 

convert it into text [27]. This stage provides speech text for processing in the next 

stage. The diagram, which illustrates this stage, is shown in fig.2.3. 

 

 

Secondly, the resulting text is split into separate words for tagging with part of speech 

labels according to their positions and neighbours in the sentence. Different types of 

grammar can be used in this stage to chunk the individual tagged words in order to 

form phrases [18]. Keywords can be extracted from these phrases by eliminating 

unwanted words in chinking operations. These keywords can be checked and corrected 

if they are not right. The phases of the text processing stage are shown in fig.2.4. 

 

 

2. Tagging the 

Words by 

Speech Parts 

1. Splitting 

Text into 

Individual 

Words 

3. Chunking 

the Text into 

Phrases 

4. Omitting 

Redundant 

Words 

5. Checking 

Keywords 

6. Correcting 

Existing Errors 

Fig. 2. 2: The stage of text processing. 

Speech to 

Text 

Speech 

Input 

Digital 

Signal 

Processing 

Microphone 

Fig. 2. 1: The stage of speech recognition and 

converting to text. 
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Finally, a Chatbot can be built to give the desired intelligent response to a natural 

language speech conversation. The input to this Chatbot is keywords released from the 

speech text processing; the output is the programmed response, which will be, for 

example, an application running or any other text or speech response. Fig.2.5 shows a 

brief diagram of the third stage [28]. 

 

Conversation techniques between a human and a computer can be either chatting by 

typing text or speech dialogue using the voice. The processing of the information in 

both techniques is the same after converting speech to text in the case of speech 

dialogue. A diagram showing the main steps of analysis and processing required to 

perform human computer conversation is shown in fig.2.6 [18]. 

Conversation 

Keywords 

Response 

(Speech or 

action) 

Chatbot 

Fig. 2. 3: The stage of response and 

action taking 
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2.2.2 Chatbot Strategies 

 

To give suitable answers to keywords or phrases extracted from speech and to keep 

conversation continuous, there is a need to build a dialogue system (programme) called 

a Chatbot (Chatter-Bot). Chatbots can assist in human computer interaction and they 

have the ability to examine and influence the behaviour of the user [29] by asking 

questions and responding to the user's questions. The Chatbot is a computer 

programme that mimics intelligent conversation. The input to this programme is 

Choosing a phrase 

(keywords)  

A Chatbot built using 

any technique 

Speech to text  

Splitting text to words and 

tagging the words 

Chunking and chinking 

into phrases (grammar 

parts) 

Making a response  

 

Speech  

Fig. 2. 4: The main steps of analysis and processing 

to perform human computer conversation. 
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natural language text, and the application should give an answer that is the best 

intelligent response to the input sentence.  This process is repeated as the conversation 

continues [30] and the response is either text or speech.  

Writing a perfect Chatbot is very difficult because it needs a very large database and 

must give reasonable answers to all interactions. There are a number of approaches to 

create a knowledge base for a Chatbot and these include writing by hand and learning 

from a language corpus. Learning here means saving new phrases and then using them 

later to give appropriate answers for similar phrases [31].   

Designing a Chatbot software package requires the identification of the constituent 

parts. A Chatbot can be divided into three parts: Responder, Classifier and 

Graphmaster (as shown in fig. 2.1) [32], which are described as follows:  

1. Responder: the part that plays the interfacing role between the bot’s main 

routines and the user. The tasks of the responder are: transferring the data from 

the user to the Classifier and controlling the input and output. 

2. Classifier: this is the part between the Responder and the Graphmaster. This 

layer’s functions are filtering and normalising the input, segmenting the input 

entered by the user into logical components, transferring the normalised 

sentence into the Graphmaster, processing the output from the Graphmaster, 

and handling the instructions of the database syntax (e.g. AIML). 

3. Graphmaster: this is the part for pattern matching that does the following tasks: 

organising the Chatbot’s storage and holding the pattern matching algorithms. 

 

Responder 

 

 

Chatbot 

 

Classifier Graphmaster 
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Fig. 2. 5: Components of Chatbot. 
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2.2.3 Chatbot as Part of Dialogue Systems 

 

In the field of Artificial Intelligence, Turing was the first to pose the question, “Can a 

machine think?” [33], where thinking is defined as the ability held by humans. 

According to this question and this definition, Turing suggests the “imitation game” 

as a method to directly avoid the question and to specify a measurement of 

achievement for researchers in Artificial Intelligence [34] if the machine appears to be 

human. The imitation game is played between three people: (A) which is a man, (B) 

which is a woman, and (C) which is the interrogator and can be either a man or a 

woman. The aim of the interrogator here is to determine who the woman is and who 

the man is (A and B). The interrogator knows the two as labels X and Y and has to 

decide at the end of the game either “X is B and Y is A” or “X is A and Y is B”. The 

interrogator also has the right to direct questions to A and B. Turing then questions 

what will happen if A is replaced with a machine; can the interrogator differentiate 

between the two? The original question “Can machines think?” can make the new 

question explicit  [33, 35]. In this imitation game, the Chatbot represents the machine 

and it tries to mislead the interrogator into thinking that it is the human, or the designers 

who try to programme it to do so [36]. 

In 1990 an agreement was made between Hugh Loebner and The Cambridge Centre 

for Behavioural Studies to establish a competition based on implementing the Turing 

Test. A Gold Medal and $100,000 were offered by Hugh Loebner as a Grand Prize for 

the first computer that makes responses which cannot be distinguished from humans 

[18]. The important thing in this competition is to design a Chatbot that has the ability 

to drive a conversation. During the chat session, the interrogator tries to guess whether 

they are talking to a programme or a human. After a ten-minute conversation between 

the judge and a Chatbot on one side and the judge and a confederate independently on 

the other side, the judge has to nominate which one was the human. The scale of non-

human to human is from 1 to 4 and the judge must evaluate the Chatbot in this range 

[36]. According to this judgement, the more human Chatbot is the winner. No Chatbot 

has ever achieved the gold medal and passed the test to win the Loebner Prize. 

However, some Chatbots have scored as highly as 3 out of the 12 judges believing they 

were human [18]. 
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A Chatbot is a software system that is capable of interacting (chatting) with real people 

in natural language [37]. Chatbots can receive natural language input that is text or 

speech interpreted using speech recognition software, and can execute appropriate 

commands to engage in a desired behaviour. As intelligent agents, they are normally 

reactive, autonomous, social, and proactive. Chatbot is a category of conversational 

agents, which are software programs that mimic conversations with humans. They are 

typically not embodied in the forms of animals, avatars, humans, or humanoid robots 

(those programs are considered as “embodied conversational agents”). Conversational 

agents are a class of dialogue system and have been an interest of research in 

communications for decades. Interactive Voice Response (IVR) systems are dialogue 

systems as well. However, they are not considered as conversational agents because 

they implement decision trees [38, 39]. Types of dialogue system and their relations 

to each other are shown in fig.2.2 [40].  

 

Our implemented Chatbot in this research is a Chatbot system that is part of 

conversational agents from the category of dialogue systems. 

To build a dialogue system (Chatbot) program, one of the most essential requirements 

is to design a sufficiently detailed database for that system. As the Chatbot bases its 

knowledge on statements or sentences and uses them to hold a conversation, it needs 

Fig. 2. 6: Dialogue systems types and their relations to each other. 
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a large but not overlapping knowledge base. Chatbots can assist in human computer 

interaction and they have the ability to examine and influence the behaviour of the user 

by asking questions and responding to the user's questions. The Chatbot is a computer 

programme that mimics an intelligent conversation. The input to this program is 

natural language text, and the application should give an answer that is the most 

relevant intelligent response to the input sentence.  This process is repeated as the 

conversation continues and the response is either text or speech [18] 

Trying to build a Chatbot is a big challenge. The challenge is collecting and processing 

the data that is used to populate the Chatbot database because the only knowledge the 

Chatbot has access to is the information it has learnt itself. Therefore, the data fed into 

the Chatbot should be selected and filtered carefully using statistical and numerical 

means. 

A Chatbot can learn general facts but is often focused towards a specific figure or 

object and its database can be updated from the web according to a user request (i.e. 

the user can choose the figure or the object they need). 

 

2.2.4 Chatbot Fundamental Design Techniques and Approaches 

 

To design any Chatbot, the designer must be familiar with a number of techniques [41] 

these techniques are listed below: 

1. Parsing: this technique includes analysing the input text and manipulating it 

by using a number of NLP functions, for example, trees in Python NLTK. This 

technique is not used in this research. 

2. Pattern matching: this is the technique that is used in most Chatbots and it is 

quite common in QA systems, depending on matching types, such as natural 

language enquiries, simple statements, or the semantic meaning of enquiries 

[42]. This technique is used in this work to select a suitable answer to a Chatbot 

query. 

3. AIML: this is one of the core techniques that is commonly used in Chatbot 

design. More details about this technique and the language used are explained 

in Section 2.2.6 below. This technique is not employed in our work.  
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4. Chat Script: this is the technique that helps when no matches occur in AIML. 

It concentrates on the best syntax to build a sensible default answer. It gives a 

set of functionalities such as variable concepts, facts, and logical AND/OR 

[43]. We do not use Chat Script in this work. 

5. SQL and relational database: this is a technique used recently in Chatbot 

design in order to make the Chatbot remember previous conversations. More 

details and explanation are provided in Section 2.2.7 below. This database type 

is used to build our Chatbot’s database. 

6. Markov Chain: this is used in Chatbots to build responses that are more 

applicable probabilistically and, consequently, are more correct. The idea of 

Markov Chains is that there is a fixed probability of occurrences for each letter 

or word in the same textual data set  [44].  We do not use Markov Chain in our 

work. 

7. Language tricks: these are sentences, phrases, or even paragraphs available in 

Chatbots in order to add variety to the knowledge base and make it more 

convincing. The types of language tricks are:  

 Canned responses; 

 Typing errors and simulating key strokes; 

 Model of personal history; 

 Non-Sequitur (not a logical conclusion). 

Each of these language tricks is used to satisfy a specific purpose and to 

provide alternative answers to questions [44]. We use the first two techniques 

(Canned responses and typing errors and simulating key strokes) in our 

Chatbot. 

8. Ontologies: these are also named semantic networks and are a set of concepts 

that are interconnected relationally and hierarchically. The aim of using 

ontologies in a Chatbot is to compute the relation between these concepts, such 

as synonyms, hyponyms and other relations which are natural language 

concept names. The interconnection between these concepts can be represented 

in a graph enabling the computer to search by using particular rules for 

reasoning [44]. Ontologies are not used in this work. 
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2.2.5 SQL 

 

A relational data base (RDB) is one of the database types used to build Chatbot 

knowledge bases. The technique has been used to build a database for a Chatbot, i.e. 

to enable the Chatbot to remember previous conversations and to make the 

conversation more continuous and meaningful. The most familiar RDB language is 

SQL (Structured Query Language), which can be used for this purpose.  

SQL, or MYSQL has gained a high recognition in RDB because it is the most popular 

open source database system for nonprocedural data. Query blocks nesting to arbitrary 

depths is one of the most interesting features, and the SQL query is divided into five 

basic kinds of nesting. Algorithms are developed to change queries that include these 

basic nesting types into "semantically equivalent queries". Semantically equivalent 

queries are adjustable to achieve effective processing via existing query processing 

subsystems. SQL as a data language is implemented in ZETA; also as a calculus-based 

and block-structured language, it is implemented in System R, ORACLE, as well as 

SEQUEL [45, 46]. Some researchers, as can be seen in the next sections, have recently 

used SQL to generate a database that saves the conversation history in order to make 

a search for any word or phrase match easier. This technique gives continuity and 

accuracy to the dialogue because it enables the dialogue system to retrieve some 

previous information history. 

 

2.2.6 Named Entity 

 

One of the main elements in the QA is Named Entity Recognition to extract 

information from text. The NER consists of three groups: 

1. Entity names. 

2. Number expressions. 

3. Temporal expressions. 

Temporal expressions identify time entities, such as date, and time, and number 

expressions identify number entities like monetary values [47]. Numbered and 
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temporal expressions are not the interest of this work. Entity names can annotate 

unique identifiers for the proper nouns that they represent: PERSON, 

ORGANIZATION, LOCATION (GPE), and FACILITY names in the text (see fig. 

2.7 below) as in the NER.  

The NER system normally recognize the string that represents the entity name then 

identifies it as the named entity specifying the type as in the example below:  

The sentence:  

      “Rami Eid is studying at Stony Brook University in NY” 

contains entities of proper names. Applying NER operation gives the following: 

[[('Rami', 'PERSON'), ('Eid', 'PERSON')], [('Stony', 'ORGANIZATION'), ('Brook', 

'ORGANIZATION'), ('University', 'ORGANIZATION')], [('NY', 'LOCATION')]]. 

The noticeable issue here is that we have two main entity names: ‘Rami Eid’ and 

‘Stony Brook University in NY’. This chained type of entity name is called a Cascaded 

Entity Name and the existing (Python) kinds of NER recognise one word entities [48]. 

Therefore, the cascaded names are separated during the NER application because of 

the limitations in the Stanford and NLTK NER modules. Hard code is needed in the 

implementation part to re-join the same name’s separated words and obtain the 

following form of output: 

    [('Rami Eid', ' PERSON '), ('Stony Brook University', ' ORGANIZATION ')] 

In this work, NER is used to detect the proper name subjects at the beginning of the 

sentences because we need to ask questions about the subject of the sentence; and 

identify their classes in order to determine question-words during the question 

generation process. NER is also used in this work as a feature extracted to examine the 

semantic similarity between a query and a group of response answers. 
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2.2.7 Question Answering 

 

Question answering is a topic of Information Retrieval and an NLP domain interest. 

The authors in [49] think that it needs more cooperation between the communities of 

Knowledge Representation and NLP [49]. The Question Answering system is 

normally a mechanism embedded within sophisticated search engines that has featured 

in TREC 8 (Text Retrieval Conference 8) [50]. A QA system normally retrieves a 

particular piece of information from the web to select the optimum answer to a user 

query. The concepts and rules of TREC developed over a number of years to expand 

the range of question sets and to choose answers that are more accurate. The rules 

proposed in this thesis reverse the concept of putting or setting the question, analysing 

it, and then finding the best answer for it. It is proposed to retrieve the piece of 

information, classify the sentences after extracting, analyse the sentences, and then 

generate questions from the existing statement to give an answer. The analysis 

techniques used in both cases (Question lead to Answer or Answer lead to Question) 

are the same: part of speech tag, ngrams, and NER. 

There are three levels of questions we will use when creating or answering questions 

from a piece of text [51] [52] . 

1. Factual: In this level, the questions are answered explicitly by facts contained 

in the text. The answers to these questions are clear in the text. These questions 

Entity Names 
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FACILITY 

LOCATION 

(GPE) 
ORGANISAT

ION 

PERSON 

Fig. 2. 7: Entity Name classes as in the NLTK_NE library. 
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are really basic and literal. For example if we have the following text from the 

Cinderella story [51] [52]: 

“Cinderella’s mother died while she was a very little child, leaving her to the 

care of her father and her two step-sisters, who were very much older than 

herself, for Cinderella’s father had been twice married, and her mother was his 

second wife. It happened, when Cinderella was about seventeen years old, that 

the King of that country gave a ball, to which all the ladies of the land, and 

among the rest, the young girl’s sisters, were invited. And they made her dress 

them for the ball, but never thought of allowing her to go there. When they 

were gone, Cinderella, whose heart was very sad, sat down and cried bitterly; 

but as she sat sorrowful, thinking of the unkindness of her sisters, a voice called 

to her from the garden, and she went out to see who was there. It was her 

godmother, a good old Fairy [53]” 

The factual questions are: 

 Who died when Cinderella was little? 

 How many step-sisters does Cinderella have? 

 Who did the King invite to the ball?  

2. Interpretive: this type of question is textually implicit, needing analysis and 

interpretation of specific parts of the text. The reader needs to apply their 

knowledge to the text. The reader has to read between the lines (infer) the 

answer to the questions on this level. For example, for the same piece of text 

above, the questions would be [51] [52]: 

 Why doesn’t Cinderella’s step-family want her to attend the ball?  

 Do you think the prince would have fallen in love with Cinderella even 

if she hadn’t received a makeover?  

 In what ways does the Fairy Godmother assist Cinderella?  

 How do you think Cinderella feels about her step-family? 

 

3. Evaluative: are more open-ended and go beyond the text. They are intended to 

stimulate a discussion of an abstract idea or issue. These questions ask So 

what? Why does it matter? For example from the text above the evaluation 

questions would be [51] [52]: 
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 Why do step-parents often have difficulty getting along with their step-

children? 

 Do you believe in love-at-first-sight? 

 Has anyone ever given you help when you least expected it? 

In this work, straightforward factual type questions are generated from the text 

extracted from the web and pre-processed using part-of-speech tag. Moreover, ‘Wh’ 

question words are specifically used to generate questions in this work. 

Wh questions are the type of questions that usually start with a word beginning with 

‘wh’ such as what, who, where, etc. but ‘how’ is also included. This type of question 

is used to ask for information [54] [55]. For example: 

 Who are you talking to? 

 What is it? 

 Where do you live? 

 

2.2.8 Part of Speech Tags 

 

A large number of language processing systems use a part of speech tagger for pre-

processing [56]. In corpus linguistics, part of speech tagging (POS tagging or PoS 

tagging or POST) is the process of labelling a word in a text according to a 

particular part of speech [57] depending on both its definition and its context (meaning 

the relationship of such a word with adjacent and related words in a phrase, sentence, 

or paragraph). The simplest form of this is commonly taught to school-age children, 

in the identification of words as nouns, verbs, adjectives, adverbs, and so on [58]. It 

was done by hand in the past, whereas POS tagging is now performed in the context 

of computational linguistics, using algorithms which relate to discrete terms, and 

hidden parts of speech, in accordance with a collection of descriptive tags [58].  

The tagger works by automatically recognising and treating its own weaknesses, by 

incrementally improving its performance. The tagger initially tags by allocating each 

word its most likely tag, estimated by inspecting a large tagged corpus, without 

reference to context [57]. POS tagging is used in this work for question answer 

https://en.wikipedia.org/wiki/Corpus_linguistics
https://en.wikipedia.org/wiki/Parts_of_speech
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https://en.wikipedia.org/wiki/Paragraph
https://en.wikipedia.org/wiki/Noun
https://en.wikipedia.org/wiki/Verb
https://en.wikipedia.org/wiki/Adjective
https://en.wikipedia.org/wiki/Adverb
https://en.wikipedia.org/wiki/Computational_linguistics
https://en.wikipedia.org/wiki/Algorithms
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comparison to find the similarity between them (Chapter 3 and Chapter 4) and for 

imperative sentence extraction (Chapter 5). 

 

2.2.9 Semantic Role Labels 

 

In the field of artificial intelligence, semantic role labelling, sometimes also called 

shallow semantic parsing, is a process in natural language processing that allocates 

labels to words or phrases in a sentence that specifies their semantic role in the 

sentence, like that of an agent, goal, or result [59]. It includes the detection of the 

semantic arguments related to the predicate or the verb of a sentence and their 

classification according to their specific roles. For example, given a sentence like 

"Layan sold the book to Mustafa", the task is to recognize the verb "to sell" as 

representing the predicate, "Layan" as representing the seller (agent), "the book" as 

representing the goods (theme), and "Mustafa" as representing the recipient [60]. A 

semantic analysis of this kind is at a lower level of abstraction than a syntactic analysis 

because it has more categories and groups with fewer clauses in each category. For 

instance, "the book belongs to Layan" would need two labels such as "possessed" and 

"possessor" whereas "the book was sold to Mustafa" need two other labels such as 

"goal" (or "theme") and "receiver" (or "recipient") in spite of that, these two clauses 

would be very similar as long as "subject" and "object" functions are examined [59]. 

A form of semantic role labels (WordNet) is used in this work to detect the similarity 

in meaning between a query and an answer (Chapter 4). 

 

2.2.10 Word Embedding  

 

This is the common name for a collection of feature learning and language modelling 

techniques in NLP where words or phrases from the lexicon are mapped onto real 

number vectors. Basically it includes a mathematical embedding from a space with 

one dimension for each word to a continuous vector space with a lower dimension [61] 

[62] [63]. 

Word and phrase embedding are used as the underlying input representation to boost 

the performance in NLP tasks such as sentiment analysis and syntactic parsing  [64]. 
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2.2.11 Natural Language ToolKit (NLTK) 

 

In this work, we need to split words in a string of text and separate the text into parts 

of speech by tagging word labels according to their positions and functions in the 

sentence. The resulting tagged words are then processed to extract the meaning and 

produce a response as speech or action as required. Different grammar rules are used 

to categorise the tagged words in the text into groups or phrases relating to their 

neighbours and positions. This type of grouping is called chunking into phrases, such 

as noun phrases and verb phrases. 

In this thesis, NLP pre-processing operations like tokenization and POS tagging are 

needed for our extracted text manipulation. These NLP operations are done using the 

NLTK. 

 

2.2.12 Machine Learning  

 

This is a field of computer science that employs statistical techniques to give the ability 

to computer systems to learn with data, without being clearly programmed [65]. The 

name machine learning evolved from the study of computational learning theory and 

pattern recognition in artificial intelligence [65]. It explores the study and the building 

of algorithms that can learn from and make predictions on data [66].  

Machine learning is related to, or overlaps with, computational statistics that also focus 

on prediction-making via the use of computers. It also has relations with mathematical 

optimization, which provides methods, theory and application domains to the field 

[66]. 

Machine learning tasks are classified into two main categories, according to their 

learning "signal" or "feedback" availability to a learning system [67]: 

 Supervised learning: the computer is provided with example inputs and their 

expected outputs, given by a "teacher", and the aim is to learn a general rule 

that maps inputs to outputs. The input signal can be partially available, or 

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Map_(mathematics)
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restricted to special feedback. Semi-supervised learning, active  learning, 

reinforcement learning are branches of supervised learning [68]. 

 Unsupervised learning: in this category of machine learning, no labels are 

given to the learning algorithm, it is left on its own to structure its input. 

Unsupervised learning is a goal in itself to discover hidden patterns in data or 

a way towards an end as in feature learning [69]. 

 

Machine learning applications is another categorization for machine learning tasks 

which emerges when considering the desired output of a machine-learned system. 

Some machine learning applications are [70]:  

 Classification.   

 Regression. 

 Clustering.  

 Density estimation.  

 Dimensionality reduction.  

 

2.2.13 Artificial Neural Networks (ANNs)  

 

These are also named connectionist systems or neural intelligent systems which are 

computing systems that are inspired by the biological neural networks that constitute 

animal brains [71]. These systems learn to do tasks by considering examples, without 

being programmed with any task-specific rules. For example, in image recognition, 

they could learn to identify images that contain cats by analysing example images that 

have been manually labelled as "cat" or "no cat" then using the results to recognise 

cats in other images [72]. They do this without any previous knowledge about cats, for 

example that they have cat-like faces, tails, and whiskers. They automatically create 

identifying characteristics from the learning material that they process [73]. 

An ANN idea depends on a group of connected units or nodes called artificial 

neurons which model the neurons in a biological brain. Each connection, like 

the synapses in a biological brain, transmits a signal from one artificial neuron to 
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https://en.wikipedia.org/wiki/Image_recognition
https://en.wikipedia.org/wiki/Labeled_data
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Brain
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another. The artificial neuron that receives a signal, processes it, and then stimulates 

additional artificial neurons connected to it [73].  

The original aim of ANNs was to solve problems in the same way that a human 

brain does. However, attention has recently moved to performing specific tasks and 

this lead to deviations from biology. Artificial neural networks are used in a variety of 

tasks, such as speech recognition, computer vision, machine translation, playing board 

and video games, social network filtering, and medical diagnosis [72]. 

 

2.3 Literature Review 
 

Designing an Online Feedable Chatbot and populating it from the web is a new area 

of research. Few researchers have investigated the possibility of educating a new 

Chatbot that embodies an artificial figure. Some authors suggest extracting Chatbot 

knowledge from the discussion forums available online [74, 75]. Others  start database 

population from the web or plain text depending on a particular object or person [15]. 

The data extracted from web pages needs significant processing before it is ready for 

conversational systems, especially if the text is unstructured like that in Wikipedia. 

Filtering and analysis are required for some text in the database to have meaning. One 

of the popular forms of data in Chatbot knowledge bases is QAPs. The majority of 

QAPs are either written manually or acquired from existing online discussion forums 

[75]. Generating QAPs for a Chatbot requires much processing and filtering of the 

sentences to generate the corresponding questions. Some kind of hypothesis is 

necessary to build a framework to derive questions from sentences [76]. The 

hypothesis then needs to be converted to specific rules and processes to mechanically 

populate the database. Validation is also applied to the QAPs and compared with other 

question generation systems. The following categorised literature review demonstrates 

the details of the development of question generation and question answering in the 

field of online feedable and tutoring Chatbots and how their databases are populated 

with information. 
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2.3.1 Online Feedable Chatbot 

 

Since the first Chatbot, Eliza, was presented, Chatbot knowledge has been manually 

scripted or learning knowledge has been added using user responses [77]. Different 

Chatbots or dialogue systems have been developed utilising speech or text 

communication and applied to a variety of domains such as language education, 

linguistic research, website help, customer service, and fun. However, the majority of 

the  Chatbots have been restricted to knowledge that is hand coded in their files, and 

to specific natural languages that are written or spoken [77, 78].  

Some agents employ user responses to reply to other users; authors explore the notion 

of self-agency in developing agent-based systems that support human-to-human 

communication. They refer to the fact that a challenge in developing an agent-based 

system is the transfer of conversational experiences that agents gain to their users. Self-

agency is presented as a key to address this challenge. An experimental system is also 

presented to inspect the sense of self-agency impact on the successful conversational 

experiences transferred from agents to their users [79]. However, this is a form of 

managing conversations rather than creating them. Other type of Chatbots are used to 

gather information from chatting to users. A Chatbot is used as a question answer 

interface. To automatically retrain the Chatbot knowledge-base, the TRE09 QA track 

is used. The aim is to improve the algorithm for building the database [80]. However, 

this keeps the Chatbot knowledge restricted to user’s knowledge. 

Chatbots use databases of responses often chosen from a corpus of text created for a 

different purpose; for instance, film scripts or interviews [81]. Existing corpora are 

converted to Chatbot style as a trial to extend Chatbot knowledge. A software is 

presented to convert a corpus to a specific Chatbot format, which is used after that to 

re-train a Chatbot and create a chat closer to human language. Different corpora are 

used such as dialogue corpora, like the British National Corpus of English (BNC), the 

holy Quran, which is a monologue corpus, and the FAQ where questions and answers 

are pairs. The aim of this automation is to generate different Chatbot prototypes that 

speak multiple languages depending on the corpus [77]. In addition, an approach is 

presented to use crowdsourced data to increase the response database from an existing 
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corpus focusing on responses which people judge to be inappropriate. The goal is to 

create a data set of more suitable chat responses. Researchers found that the version 

with the expanded database was rated better with regard to response level 

appropriateness and the ability to engage users [81]. Updating information in this case 

will remain frozen until an updating process is created for the existing corpora as this 

depends on experts’ work. 

The internet gives more updatable, extendable, and at any time accessible information 

[82] that is more useful in Chatbot knowledge enrichment. A number of works used 

the internet as a source to acquire information for the Chatbot knowledge base. Using 

Wikipedia, an idea is presented to identify significant facts in the text representing the 

life of a historical figure to build a Chatbot. This Chatbot should be able to learn from 

previous experiences in order to act more realistically. A generic form of sentence is 

proposed to solve the problem of learning to enable the Chatbot to acquire as much 

information as possible relating to the personality and life of the person that the 

Chatbot teaches about. The source of information to feed this Chatbot is websites such 

as Wikipedia for unstructured data and DBpedia for structured data. NLP techniques 

are used to convert plain text to structured text and then restructure them into a generic 

form of a sentence [15]. Using a child-care forum, an automatic Chatbot knowledge 

acquisition method from online forums is presented. It contains a combination of a 

classification model based on rough set theory, and the theory of ensemble learning to 

make a decision. Multiple rough set classifiers are built and trained first. After that all 

replies are classified with those classifiers. The final results are drawn by selecting the 

output of these classifiers. The corresponding replies are selected as Chatbot 

knowledge. As the authors state, relevant experiments on a child-care forum prove that 

the method based on rough set theory has high recognition efficiency of related replies 

and the combination of ensemble learning improves the results [75]. Also, using 

discussion forums, extracting thread-title reply pairs from online discussion forums is 

presented to populate Chatbot knowledge base. These pairs are extracted in a cascade 

framework and then ranked using a ranking depending on their content quality. The 

top N ranked pairs are selected as part of Chatbot knowledge [74]. 

Moreover, multi-purpose algorithms are introduced to design a Chatbot that can hold 

a conversation on any topic. This Chatbot employs snippets of internet search results 



33 
 

to continue within a context. This Chatbot also detects a possibility of replying with a 

pun via analysing the input sentence and generating a new one when the timing is 

adequate [83]. However, none of the current studies have investigated reformulation 

of` the extracted information to QAPs.  

The idea in [15] motivated us to extract our chatbot information from the web. The 

authors in [15] bring the information from Wikipedia and put it in Chatbot knowledge 

format but as chapters under certain topics. Our idea is to retrieve the information of 

our chatbot from Wikipedia and to convert the extracted text into QA pairs. 

 

2.3.2 Tutor Chatbots 

 

There is an extensive body of studies and researches in the field of online tutoring [84]. 

Chatbots can play a good role for educational purposes since they have an interactive 

mechanism in comparison to traditional learning systems. Students can continuously 

interact with the Chatbot by asking questions regarding a certain field. In spite of the 

presence of Chatbots since the middle 1960’s, only a few of them are used for 

educational purposes    [85] . The studies mostly focus on dialogue systems or Chatbots 

that depend mainly on the subject instructor to place and modify the database.  

In recent years, approaches have used conversational systems to deal with the learners. 

Some studies focused on Chatbot engagement in the pedagogical field.  

Some authors discuss the development of conversational agents and Intelligent 

Tutoring Systems, especially Open Learner Modelling. They describe a Wizard-of-Oz 

experiment so as to examine the feasibility of using a Chatbot to uphold negotiation. 

They conclude that a combination of the two fields (Conversational agents and 

Intelligent Tutoring Systems) can be a reason for developing Chatbot negotiation 

techniques and Open Learner Model enhancement. This technology could have 

applications in schools, universities and other training scenarios [84]. 

A software platform named Chatbot is presented [3] and designed to foster engagement 

while teaching basic Computer Science concepts. Two experiences are continued 

using Chatbot and the known Chatbot Alice. These experiences are an online nation-
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wide competition and an in-class 15-lesson pilot course in high schools. Moreover, a 

Chatbot to teach an undergraduate class in Sweden is provided [85] and the possibility 

of using learning analytics is explored to predict the design of an intelligent language 

tutor, Chatbot Lucy. This Chatbot focuses on using student-created data to understand 

the design of Lucy such as to assist English language learning designers to improve 

second language acquisition. The chatting log architecture is also presented  in addition 

to students’ learning journey and data trails [86]. Also an architecture that facilitates 

building pedagogical Chatbots is proposed  [87] to interact with students in natural 

language. The proposal provides a modular and scalable framework to develop such 

systems efficiently. Geranium, another system is also presented to help children to 

appreciate and protect their environment with an interactive Chatbot developed 

following their scheme. 

The role that an educational Chatbot could provide in improving the learning process 

of a student is explored [88]. A virtual agent is presented, as part of an e-Learning 

platform capable of guiding and answering questions related to a studied subject. An 

automated question answering system is introduced for a Chatbot system [89]. This 

proposed system answers the queries posted by the student in a more interactive way, 

like a virtual teacher (Chatbot system). The QA knowledge base can be accessed and 

modified by the instructor. That instructor could also know the areas where the 

students are more prone to doubts, thus helping the student as well as the instructor. 

A prototype of MOOCs conversational agent is developed in [90] and integrated into 

MOOCs website to respond to the learner’s enquiries using text or speech input. 

MOOC-bot is using the commonly used AIML to develop its knowledge base. The 

system architecture of MOOC-bot consists of the knowledge base of AIML interpreter, 

chat interface, MOOCs website and Web Speech API to provide speech synthesis 

capability. The initial MOOC-bot prototype has the general knowledge from the Alice 

Chatbot, a course’s frequently asked questions, and a course’s content offered by the 

University Technical Malaysia Melaka. The advantages of MOOC-bot lie in the fact 

that it has the ability to provide a 24-hour service and have knowledge in different 

domains, and can be shared by multiple sites simultaneously. In [6], a Chatbot is 

especially built to provide the FAQBot system with the object of being an 

undergraduate student advisor. The Chatbot accepts natural language input, navigates 
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through the knowledge base, then responds with student information in natural 

language. The design semantics contain an AIML specification language for authoring 

the information repository. An intelligent web-based computer aided instruction 

system is also presented in [91] for learning a foreign language. The system is 

Computer Simulator in Educational Communication (CSIEC). Such a system can 

grammatically understand the sentences in English given by the users through the 

internet in addition to speaking with the users. Important notations of English grammar 

are used. 

However, all the current studies rely completely on instructors in preparing the taught 

material. The instructor has supervision and control over the Chatbot and any change 

in material is basically made by the instructor. The following work tries to reduce the 

restriction of material modification by making the Chatbot learn from the student’s 

feedback: The authors in [92] developed a Chatbot that focuses on engineering 

education.  The purpose of this engineering Chatbot is to build an online artificial 

intelligence called "Anne G. Neering" which is useful to students in their courses. 

Students are encouraged to pop some personality into the responses remembering that 

other students learn from the responses.  The Chatbot gives students the chance to 

explore course content in their own words and from the student’s point of view [92].  

In the next scenario, learning takes a completely new dimension. Internet usage as a 

source of learning material has emerged. The work in [93] focuses on the main 

advantages of an open and modular e-learning software platform to give a boost to 

cognitive tasks completed by the main actors of the learning process. The authors in 

[93] present the integration inside the platform of two conversational agents devoted 

to chatting to the student and acquiring new information sources on the web. The 

process is sent off as a reply to the system’s perception that the student feels disaffected 

with the presented contents [93]. However, this study uses two agents, one to manage 

the conversation and one for the content. The content agent updates its knowledge 

from the web but not in a form of QAPs, in order to simplify the material understanding 

and to prevent visiting the internet for every information piece needed. In addition, it 

allows teachers and tutors to make the educational interventions explicit and to 

customise the learning process. 
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The idea in [93] motivated us to propose a tutor dialogue system whose database can 

be populated and updated automatically from the web and the user can decide the 

information they need. Our tutor Chatbot works without any interventions from an 

instructor and learns new information as the user requests a new learning subject. 

 

2.3.3 Question Answer Systems 

 

Answer selection is the most complicated phase of a question answering (QA) system 

[94] because the answer determines the success of a QA system. The common 

approach is to acquire the candidate answers from an information source and then 

select the most frequent answers as the best answers [95]. To solve this task, many 

approaches have been presented using different models to find the best match between 

a question and an item among a number of items. Some researchers presented surveys 

like the survey in [95] that describes the state of the art for a QA answering task in 

three different lines of research: a number of works that focus on candidate answers 

are presented; then, the idea of a cooperative answer that is correct, useful, and non-

misleading is recovered; after that, attempts to address cooperative answering are 

presented [95]. 

The issue of answer selection is investigated in information retrieval systems that have 

typically been concerned with retrieving a set of documents that are relevant to a user's 

query [96]; for example, in [94] the authors supervised discriminative models are 

studied to learn to rank answers using examples of QAPs. The pair representation is 

provided implicitly by kernel combinations. Exploiting the application of structural 

kernels to syntactic/semantic structures, the authors represent QAPs by generalization 

methods in order to reduce the burden of large amounts of manual annotation  [94]. In 

addition, the use of linguistic features is investigated to improve the search for ranking 

answers to non-factoid questions. The possibility of utilising existing large collections 

of QAPs from online social Question Answering sites is shown so as to extract those 

features and then to train ranking models which combine them effectively. A range of 

feature types using natural language processing are investigated, such as named-entity, 

coarse word sense disambiguation, identification, semantic role labelling, and 

syntactic parsing [97]. Additionally, a system is described to retrieve a smaller section 
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of text as a direct answer to a user question. The SMART IR system is employed to 

extract a ranked set of relevant passages to the query. Entities are extracted from the 

targeted passages as possible answers to the question then ranked for plausibility 

according to their match score to the query, and according to their position and 

frequency in the passages [96]. With their system QALC (Question Answering 

program of the Language and Cognition), the authors in [50] contributed to the 

Question Answering track of the evaluations for TREC8, TREC9 and TREC10. QALC 

analyses documents using multi-word term search and linguistic variation to minimize 

the number of selected documents and to provide additional clues during question 

comparison and sentence representation. This comparison also uses the results of 

syntactic parsing for the questions and functionalities of Named Entity Recognition. 

Answer extraction depends on syntactic patterns application according to the kind of 

information that is searched for, and is categorised based on the question syntactic 

form [50]. In the same area, a Turkish factoid, which is a shallow type of questions 

QA system is presented to utilise surface level patterns, named answer patterns, to 

extract the answers from documents retrieved from the web. The approaches of named 

entity tagged answer patterns extraction, and factor assignment, increased the 

performance of the presented QA system.  A new query expansion technique is also 

described to enhance the performance [98]. Maximum Entropy methods are exploited 

to combine various lexical, syntactic and semantic features extracted from the text. 

The focus is on the relation extraction component of the Automatic Content Extraction 

(ACE) system [99]; however, no application is mentioned in the conversational area.  

The evaluation of a number of machine learning techniques is presented for a ranking 

answers task to Why questions. TF-IDF and a set of 36 linguistic features are used to 

characterise questions and answers. A number of machine learning techniques are 

experimented with for the purpose of finding out how the different machine learning 

methods can adapt with their highly imbalanced binary relevance data regardless of 

hyper parameter tuning [100]. Distributional Semantic Models’ (DSMs) role in 

Question Answering (QA) systems is investigated. The aim is to employ DSMs for re-

ranking of answers in Question Cube which is a framework for QA system building. 

DSMs shape words to look like points in a geometric space which is known as 

semantic space. If words are close in that space, they are similar. The idea is that DSMs 
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models can help to compute the relation between user questions and candidate answers 

using paradigmatic relations among words, which leads to providing better re-ranking 

for answers [101]. 

To improve existing search engines, an architecture was developed to enhance existing 

search engines in order to make them boost natural language question answering. The 

task involves, in sequence: query modulation, document retrieval, passage extraction, 

phrase extraction and answer ranking. A number of probabilistic approaches for the 

last three of the five stages is investigated. The proposed technique is applied to a 

number of existing search engines. The proposed algorithm, Probabilistic Phrase Re-

ranking (PPR), employs proximity and question type features to achieve a total 

document reciprocal rank of 20 on the TREC8 corpus [102].  

To improve the existing datasets, researchers discuss the WIKIQA dataset which has 

a publicly available QAPs set, collected for research on open domain question 

answering. WIKIQA is built using a natural process and is of an order of size larger 

than the previous datasets. The WIKIQA dataset includes questions with no correct 

sentences, so as to enable researchers to put an effort  into answer triggering [103]. 

Also, an end-to-end neural architecture for a task is proposed to solve the problem of 

the large set and variable lengths of candidate answers in the Stanford QA dataset 

(SQuAD) [104]. 

Depending on the information on the web, researchers evaluate two entity 

normalization methods in [105] which depend on Wikipedia in the context of passage 

and document extraction for question answering. It is found that a simple 

normalisation method causes improvements of early precision for both document and 

passage retrieval. Other researchers introduce Aranea (named after the Brazilian armed 

spider Phoneutria nigriventer) [106] which is a question answer system that uses 

knowledge annotation and knowledge mining techniques to extract answers from the 

World Wide Web. Knowledge annotation utilises semi-structured database techniques 

and knowledge mining utilises statistical techniques. Aranea combines these two 

different question answering models into a single framework [106]. An idea is also 

proposed to find QAPs from the web by detecting the question in a thread of an 

extracted forum. A method of graph-based propagation is used to detect the answer 
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from the same thread. An Open Instructor based on Wikipedia is presented to extract 

unstructured text and transfer it to corresponding sentences without mentioning the 

Chatbot as an application for their idea [74, 75, 107, 108]. Another idea of an automatic 

generating mechanism is proposed by the authors in [109] to give expressive opinion 

sentences from numerous reviews extracted from the web. The authors in [109] base 

the analysis on the frequency of adjectives, sentence length, and contextual relevance 

to rank the reviews.  

For pedagogical purposes, gated self-matching networks are presented for question 

answering of reading comprehension style that is used to test the reading of English 

language learners. The question is first matched with the passage with gated attention 

based on recurrent networks to produce question-aware passage representation. Then 

a self-matching attention technique is proposed to process the representation by 

matching the passage with itself. The pointer networks are also used to assign the 

answers’ positions from the passages [5], and the advantage of surface text patterns is 

explored in open-domain question answer systems.  In order to obtain an optimal set 

of patterns, a method to learn the targeted patterns automatically is developed. A 

tagged corpus is constructed from the internet in a bootstrapping procedure by 

supplying a few handcrafted examples for each question type to AltaVista. Then, 

patterns are automatically acquired and standardized from the returned documents 

[110]. 

For conversational purposes, the relation between question answering and constraint 

relaxation in dialogue systems is explored in [111] for developing dialogue strategies 

for selecting and concisely presenting information. Methods are described to deal with 

database query results in information seeking dialogues. The aim is to build the 

dialogue in a way that the user does not become confused. Using existing 

conversational material, the authors in [112] propose a system that finds good answers 

in a community forum for SemEval-2016, Task 3 on Community Question Answering 

system. The approach used is based on semantic similarity features that rely on fine-

tuned word embedding and topics similarities [112]. Then, [113] presents 

SemEval2017 Task 3 for Community Question Answering by rerunning the four 

subtasks of SemEval2016. The authors added a new subtask to the approach in [112] 

to enable experimentation with Detection of Multi-domain Question Duplication in a 



40 
 

larger-scale scenario, utilising Stack Exchange sub forums [113]. To add more 

interaction, researchers report design and implementation of YourQA, the open-

domain, interactive QA system. YourQA depends on a Web search engine to find 

answers to fact-based and complex questions like descriptions and definitions. They 

describe the discourse moves and management model to make YourQA interactive. 

They discuss the new model’s chat-based dialogue interface architecture, 

implementation and evaluation [114]. However, the studies in the conversational area 

did not use multiple features to find the best answer to a question. 

The idea in [99] motivated us to design a QA system that exploits multiple Term, 

Syntactic, and Semantic features extraction to find the similarity scores between a 

query and a set of candidate answers extracted from the web and filtered using part of 

speech tagging. The similarity scores of the sentences are re-ranked so as to select the 

best answer for a Chatbot query. This QA system is planned to be the search engine in 

our proposed Chatbot to find the best response for a user query in the Chatbot SQL 

database or even online. 

 

2.3.4 Automatic Question Generation System 

 

Question Generation (QG) is one of the key challenges facing interactional systems 

with natural languages. The potential advantages of using automated question 

generation help shrink the dependency on humans to generate questions [115]. In the 

educational area, the instructors frequently involve accompanying questions when 

they prepare learning materials for students in order to guide learning [13]. 

Researchers have discussed different strategies for generating questions for general 

and pedagogical purposes. Prior question generation methods focused fundamentally 

on generating factoid questions that are not often pedagogically important questions 

for the learners. [116]. 

Some researchers presented multiple choice question answering for the purpose of 

teaching. An unsupervised method is investigated to apply Relation Extraction to 

automatically generate multiple-choice questions (MCQs). Semantic relations in a 

document are identified without allocating explicit labels to relations to ensure broad 



41 
 

coverage predefined relations. Three types of surface pattern are investigated, each 

implements different hypotheses about linguistic expression of semantic relations 

among named entities. The application for this method is in e-Learning systems and 

other NLP scenarios [117]. However, no internet is used in this approach.  Also results 

of a study that is seeking to find similarity measures are reported to generate better 

quality multiple-choice test distractors. The similarity measures utilised in the 

procedure of distractors selection are collocation patterns. Four different WordNet 

based semantic similarity methods are used in [118] and  a computer aided approach 

to generate multiple choice test questions from electronic documents is described. The 

system employs language resources such as corpora and ontologies in addition to using 

different NLP techniques, such as computing of semantic distance, shallow parsing, 

sentence transformation, and automatic term extraction to analyse the sentences that 

are used to generate questions [119]. An existing corpus is also used as well to describe 

a computer-aided procedure to generate multiple choice tests from electronic 

instructional documents. The program uses language resources such as a corpus and 

WordNet, in addition to the use of various NLP techniques like term extraction and 

shallow parsing. The approach generates test questions and distractors, allowing the 

user to edit the test items later [120].  

Using Wikipedia, automatically built multiple choice test generators that have two 

main components are proposed. The first is for the generation of QAPs, the second for 

the generation of distractors. Two approaches are followed: the first is using word 

features to return QAPs and distractors respectively; the second approach uses the web 

for automatic generation of syntactic patterns. A set of syntactic patterns are generated 

and used to create multiple choice tests. An interface for the automated system was 

developed and both approaches were evaluated in a newspapers corpus and Wikipedia 

texts [121]. However, multiple choice questions are not very suitable for 

conversational formats like Chatbots. Attempts resulted in short or shallow questions 

to present an approach to automatically generate short answer questions for reading 

comprehension assessment. Lexical Functional Grammar (LFG) is introduced as a 

linguistic framework for question generation, which enables systematic utilisation of 

semantic and syntactic information. The approach can generate questions of better 

quality and uses paraphrasing and sentence selection in order to improve the cognitive 
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complexity and effectiveness of questions [122]. However, this system generates short 

answer questions and there is no evidence whether it works with factual questions or 

not. Two algorithms are also developed in order to supply biology instructors with 

questions for students in introductory classes of biology. One of the algorithms 

generates questions from photosynthesis knowledge. The other retrieves biology 

questions from the web and human students validate questions. The exact pattern of 

results shows a little improvement in the pedagogical benefits of each class. This 

suggests that the generated questions may work well helping students to learn [123]. 

However, the authors in [123] stated that the questions generated may be shallower 

than questions written by professionals. 

Generating different types of questions automatically has been investigated. The work 

in [13] introduces a sophisticated template based approach which incorporates 

semantic role labels into a question generation system. This system generates natural 

language questions automatically to support online learning. The authors state that they 

have not yet integrated a learning context completely into their approach [13]. Also, 

in this approach, questions are not answerable from the sentences they are generated 

from because a question is generated from a part of a sentence, so the rest of the 

sentence is not related to the generated question. Another template-based approach is 

introduced to generate questions that incorporate semantic roles with a method that 

generates general and domain-specific questions. The evaluation shows that the 

approach is effective in generating pedagogical questions [116]. An automatic question 

generator is described to utilise semantic pattern recognition to create questions of 

various depths and kinds for self-study. Source sentences’ semantic role labels are 

employed in a domain independent way to generate questions and answers in relation 

to the source sentence [124]. Considering that each topic is related to a piece of text 

containing useful information about that topic, questions are generated using named 

entity information and the predicate argument formats of the sentences in the body of 

texts. Syntactic tree kernels are also used to automatically judge the syntactic 

correctness of the questions. The questions are ranked by their importance and 

syntactic correctness [125]. 

Taking all possibilities into consideration, a system is presented to automate the 

generation of all possible questions from a sentence which contains these questions 
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and answers. The system generates elementary sentences from the input complex 

sentences using a syntactic parser. Depending on subject, verb, object, and 

prepositional phrase, the sentence is classified to determine possible question types 

that can be generated from a sentence [115]. To generate even deeper and subjective 

questions, an extension is presented to a state-of-the-art question generation system 

that makes it possible to produce deep and subjective questions appropriate for group 

discussion. Generating questions from paragraphs and sentences provides the First 

Shared Task Evaluation Challenge detailed account on Question Generation which 

took place in 2010. The operation included two tasks that take text as input and produce 

questions as output: Task A, which generates Questions from Paragraphs, and Task B 

for Question Generation from Sentences. [126].  

Two automatic Question Generation Systems are described in [127] to generate 

questions of various types and scopes for the user from natural language text input. 

The aim is to generate assessment questions for the content knowledge that a student 

has acquired through reading a text.  The systems are not concerned with grammar or 

vocabulary assessment or language learning. Both these systems factor the QG process 

into several stages, enabling more or less independent development of particular stages 

[127]. However, these systems use user input text to generate the questions, which 

restricts the questions to limited knowledge.  

Although all the works above use documents or sentences or both to generate one or 

different types or levels of questions, none of them generated questions from 

automatically extracted information from online sources. Furthermore, we have not 

found a study that automatically generates questions from information extracted from 

the web and for a Chatbot knowledge base. We generate factual or definition questions 

in order to support the pedagogical aspect of our proposed Chatbot. Factual and 

definition questions can be classified as cognitive pedagogical questions [128]. 

Based on the discussion above we propose a QG system for generating factual and 

definition questions for pedagogical purposes. These questions are generated from the 

sentences that are extracted from the plain text, which is acquired from Wikipedia. The 

resultant QAPs are part of our tutor Chatbot database. 
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2.3.5 Extracting Imperative Sentences 

 

Few researchers have discussed extracting sentences or phrases that involve 

commanding meanings. Actionable or advice revealing sentences have been 

investigated; for instance, an approach to automatically extract human activity 

knowledge from web articles is presented to describe performing task methods in 

different domains. The corresponding knowledge base consists of ingredients, activity 

goals, and actions, which are extracted using syntactic pattern-based and probabilistic 

machine learning based methods [129]. In addition, a new approach is presented for 

automatically detecting actionable clauses in how-to instructions. The focus is on 

processing non-imperative clauses to extract implicit commands or instructions. 

Depending on some predominant linguistic pattern in how-to instructions, actionable 

clauses detection is formulated using linguistic features, such as syntactic, and modal 

characteristics. The presented algorithm makes it possible to acquire complete 

sequences of action and convert them to a structural form for problem solving tasks 

[130]. To detect advice regarding travel in web forums, a methodology for advice-

revealing sentences extraction from the web forums is provided, especially in the travel 

domain. It is defined as a sequence-labelling problem using various features instead of 

viewing the problem as a simple classification. Three types of features are identified: 

syntactic, context features, and sentence informativeness. A new method using the 

Hidden Markov Model (HMM) is also proposed for sequential sentence labelling 

[131].  

For the searching purpose in the database, a system is proposed to translate natural 

Arabic Quran DBs users’ requests like questions or imperative sentences into SQL 

commands in order to retrieve answers from a Quran DB. The proposed system in 

[132] performs parsing and morphological processes depending on a subset of Arabic 

context-free grammar rules so as to act as an interface layer between Quran DB and 

its users [132]. And for solving problems in object oriented programming, [133] it 

addresses the concern of not understanding innovative programming techniques like 

object-oriented programming in the context of reverse engineering. It discusses the 

development of a method to recognize objects in an imperative code, specifically in 
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FORTRAN-77. The proposed algorithm that uses an approach to object extraction is 

presented. The imperative code is analysed using the concepts of graph theory [133]. 

The studies from [129] to [133] have not used the information from the web to extract 

imperative sentences for conversational agent purposes. We propose an approach that 

uses verb tense and POS tags to extract imperative sentences from a set of candidate 

sentences that are extracted from plain text acquired from Wikipedia. The resultant 

imperative sentences are planned to be used for more actionable activities in our 

Chatbot. 

 

2.3.6 Implementation of the OFC 

 

In this section we focus on the works that focus on implementing Chatbots as we 

needed to base some of Chatbot evaluation metrics used in these studies. Below is a 

review of these studies. 

The authors in  [6] explain the design of a Chatbot that was especially built to provide 

a FAQBot system with the object of being an undergraduate student advisor. The 

Chatbot accepts natural language input, navigates through the knowledge base, then 

responds with student information in natural language. The authors in [6] model the 

knowledge base using a connected graph where nodes containing information and 

links interrelate the information nodes. The design semantics contain the AIML 

specification language for authoring the information repository [6]. 

The authors in [40] present a literature review of quality issues and attributes related 

to the current issues of Chatbot development and implementation. The focus in [40] is 

on the text-based conversational agents available online and on the Internet of Things 

(IoT) devices. This contrasts with voice-activated conversational agents such as 

Cortana, Siri, Samsung S Voice, and Google Now that are not considered Chatbots 

[40]. 

The work in [134] presents a hybrid method where conversational trees are developed 

for particular types of conversations. Then, using a bespoke scripting language called 

OwlLang, domain knowledge is acquired from semantic web ontologies. New 
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knowledge that is obtained from the conversations is also stored in the ontologies 

creating a developed knowledge base. The evaluation involves using a learning 

management system experience and the experience of students with an intelligent tutor 

system [134]. 

The authors in [2] report on the Sinhala Chatbot System design and implementation. 

Sinhala Chatbot can communicate with a user using Sinhala language and it is the first 

ever Sinhala Chatbot. Sinhala Chatbot can be asked about operating system related 

concepts such as date and time, identifies individuals, and greets appropriately.  

Sinhala Chatbot has been built as an extension of a Sinhala parser and it is an to catch 

verbal syntax and semantics in Sinhala language to a machine translation [2]. 

The focus of [135] is to evaluate the use of a neural network-based approach to create 

an end-to-end trainable Chatbot, which has the capability to automate a restaurant 

booking service. A sequence-to-sequence prototype is implemented and trained on 

dialogue data [135]. 

The authors in [37] investigate methods to adapt and train a Chatbot to a particular 

user language or application, using a user supplied training corpus. They utilise open-

ended trials via real users. Examples like Afrikaans Chatbot for Afrikaans speaking 

researchers and students in South Africa are used. [37]. 
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   Chapter Three 

3 Automatic Web-based Question Answer 

Database Generation for Online 

Feedable Chatbot 

 

 

3.1 Introduction 
 

The idea proposed in this chapter carries through the ideas presented in [15]. The main 

purpose of this chapter is to generate factual questions from existing factual sentences, 

i.e. reverse engineering. These sentences are extracted from plain text retrieved from 

the web and pre-processed using a part of speech tag. Entity Name (proper name) 

recognition and verb tense recognition are used to determine factual sentence type. 

Then, specific rules are used to classify the factual sentences and then generate and 

categorise the questions. The second purpose of this chapter is to generate the OFC 

database by putting the resultant QAPs into an SQLite database that is built in a number 

of tables to contain different question and answer categories. A Chatbot database is 

automatically populated with QAPs from the web pages associated with a desired 

figure or object. This enables the user to chat with a Chatbot that emulates the 

behaviour of the object they would like. The example figure used is the footballer 

David Beckham and his Wikipedia page was used to retrieve the associated data and 

to produce our data set. We present results for our unranked QAPs produced by our 

rule-based QA generator. The approach in [13] has been adapted to our system and the 

produced data set is used to generate QAPs which are compared with our system. 

Subjective assessment is used to evaluate both our and the comparative systems, and 

conclusions are then drawn. 
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3.2 Sentence Hypothesis 
 

There are several kinds of sentences in the English language. The simplest form of 

sentences have been chosen for question generation in order to simplify the procedure 

of acquisition. The sentence intended is a factual or definition sentence. The hypothesis 

of active factual and definition sentences is formulated to generic forms as follows: 

Simple past sentence is supposed to have the format: 

 

                   
ompletionsentence cobject or 

 +mple  pasterb  in sihe first vSubject +T
                                                     3.1 

For example: 

Example 1  

David Beckham played football. 

Auxiliary verbs are excluded from the form above since their rules are different from 

the simple past tense. Auxiliary verbs was and were as the main verb sentence 

hypothesis is: 

           
 ompletion sentence c

+ as or werehe verbs wSubject +t
                                                       3. 2 

For example: 

Example 2 

David Beckham was a footballer. 

The simple present sentence hypothesis is similar to the simple past form except the 

main verb: 

         
ompletion sentence cobject or 

t+ ple presenerb in simhe first vSubject +T
                                          3. 3 

For example: 

Example 3 
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David announces his retirement. 

and the hypothesis of the verbs is and are is similar to the one for was and were: 

       ompletionsentence cs or are+ he verbs iSubject +t                                  3. 4 

For example: 

Example 4 

England is in Europe. 

The subject type chosen here is just the proper name according to the connection 

between the fact and definition associated with these types of nouns. 

The hypothesis of the verb tense for the main verb of the sentence is: 

i. Should be the first verb after the subject. 

ii. The auxiliary verb should not be followed by a past participle because this makes 

it passive which is not included in the proposal in this paper. 

iii. The auxiliary verb should not be followed by a present participle since this make 

it present continuous which is not needed in our hypothesis. 

 

3.2.1 Syntactic Analysis for the Sentence 

 

The normal steps performed in QA systems start with syntactic analysis for the 

question based on the hypothesis set for the question, followed by extracting the 

information that enables the system to detect the best answer. The procedure proposed 

in this chapter is to analyse the sentence (answer) according to the built rules, then 

generate the question depending on the question hypothesis set in advance. Part of 

speech tags and NER are used to analyse the sentences to filter them and acquire the 

desired sentences according to the hypothesis stated above. Verb tense recognition 

exists and is quite straightforward to perform in NLP, but differentiation between the 

verbs to filter them needs hard coding. The POS tags are mainly used to recognise the 

main verb tense and then processing needs to separate the required verbs from the 

eliminated ones. The diagram in fig.3.1 shows sentence analysis with regard to the 

three hypotheses built above and NLP analysis concepts. 
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3.3 Question Hypothesis 
 

Question type ‘Wh’ is generated from each hypothesis based on selected answers. 

Factual or definition questions are generated according to verb tense and Entity Name 

class. So, the hypothesis is as illustrated below: 

The generic form of the question in the case of simple past tense is:  

                  form+' ?' e present b in simplNE+the verWhat+did+                            3. 5 

The sentence in example 1 can be used to generate the following question: 

Example 5 

What did David Beckham play? 

The question format of was and were auxiliary verb tense is different from the simple 

past form: 

 

 

 

 

 

Active Tense 

 

Past 

 

Present 

 

was, were 

 

Simple Past 

 

Simple present 

 

is, are 

 

NE + Verb +  Object 

 

NE   +   was, were    +    sentence  

                                      completion 

NE + Verb + Object 

 

NE  +     is, are     +    sentence  

                                   completion 

Fig. 3. 1: Factual sentence analysis relating to verb tense. 
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                          '?' NE
were

was

Where

What

Who



























                                                         3. 6 

where the question word ‘who’ is used if the Entity Name (EN) type is PERSON or 

ORGANIZATION, ‘What’ is used in the case of EN type is FACILITY, and the word 

‘Where’ is used for asking about LOCATION or GPE. 

The question that can be generated from example 2 is: 

Example 6 

Who was David Beckham? 

The question hypothesis for the simple present tense is similar to the one for simple 

past except the auxiliary verb did; it is does here:  

?'nt form+' mple preseverb in si + NE+the What +does                              3. 7 

The sentence in example 3 can be used to generate the following question: 

Example 7 

What does David announce? 

Is and are questions are the same format as was and were:  

              '?' NE
Are

Is

Where

What

Who



























                                                                3. 8 

 

Example 8 

Where is England? 

The answer for each type of question must be the same type considered in the sentence 

hypothesis stated above. The detailed diagram of question analysis according to verb 

tense is shown in fig.3.2. 
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3.4 Source of Error 
 

The assumptions and hypothesis considered in the theoretical part are not overly 

complicated. The rules are simplified to minimize the errors that may result from over 

complexity. Errors have been found in the results and the sources of these errors are 

not the theoretical propositions. The errors are mainly due to the implementation where 

tools are used to analyse the text or the sentences. The modules of NLTK and NLTK-

NE in the Python library are very useful tools to analyse the sentences syntactically 

and to identify the NEs, but both have errors in their library; for instance, NLTK-NE 

recognizes the word ‘please’ in the beginning of the sentence as a named entity and 

the NLTK library considers the verb ‘saw’ as the present and the past of the verb ‘see’. 

These types of defects in the tools cause many of the observed errors in the results. 

 

(Wh) Questions 

 

Past 

 

Present 

 

was, were 

 

Simple Past 

 

Simple present 

 

is, are 

 

What   +    did  +   NE  +     the verb 

in simple                                                                            

present  form? 

 

Who           was                                

Where  +  were  +  NE ?                                                         

What           

What  +  does  +   NE  +       the verb 

in   simple                                                                            

present  form? 

 

Who             is                                          

Where    +  are  +  NE ?                                                         

What            

Fig. 3. 2: The analysis of 'Wh' factual questions with regard to verb tense and named 

entity type. 
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3.5 The Proposed System 
 

The proposed system begins with a web crawler which is capable of accessing web 

pages and it retrieves plain text from the web starting with a desired URL called the 

start/seed URL. Buffering has been used in order to avoid storage limitation problems. 

The buffer enables the crawler to keep the number of pages within the limits of 

computer memory by controlling the generation of new pages. Pre-processing is 

applied to the HTML code to extract the plain text. Then, further manipulation is 

applied to the resultant text to filter the redundant symbols such as stop words, non-

English letters and words, and punctuation.  

NLP operations are applied to split (tokenize) the text into sentences in separate lines 

and each sentence is then tokenized into a group of words. The split words are then 

tagged by speech parts. Named Entity Recognition (NER) is used to identify the 

sentences with proper name subjects and the verb tense is identified in order to set the 

verb form. The QAPs are produced and then the results are loaded into an SQLite 

database. The diagram of the proposed system is shown in fig.3.3. The system is 

implemented in the Python programming language and the implementation details are 

presented below. 

The web crawler for the proposed system begins with a seed URL of a page associated 

with a desired figure or the object. The seed URL is used to make a request to the 

associated web page and then to store the HTML document with the page data in a 

file. URLs are extracted to be saved in a (To Visit) file by parsing the HTML document. 

A Try and Catch programming mechanism is used to track the saved URLs in order to 

check the availability of each of them and then to visit the associated new web pages.  
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Plain text is extracted from the web pages of existing URLs and saved into a text file 

which is processed in the next stage. The process carries on up to the last URL in the 

(To Visit) file. The diagram in fig.3.4 shows the flow of the web crawler operation. 

The text extracted from the web is read from the (To Visit) file. The plain text could 

contain different undesired codes after filtering from the HTML. For example: u 

appears before each word in the text and it is called UNICODE. Therefore, the text is 

encoded to ASCII so as to make it easier to deal with. The text after that is broken 

down into sentences using the NLTK sentence tokenizing operation. The resultant 

sentences are then filtered to remove redundant English symbols, and punctuation, in 

addition to non-English letters and symbols. The filtered sentences are split into words 

by the word tokenizing NLTK operation and each word is POS tagged with a part of 

speech label (POS). Sentences with fewer than three words are not useful in this system 

because two words do not make a complete sentence. Therefore, too short (fewer than 

two or three words) and too long sentences (more than 20 words) are filtered after POS 

tagging. The main idea we rely on to identify the subject is detecting the named entity 

Fig. 3. 3: The main diagram of proposed QA production system. 
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at the beginning of the sentence as the subject. Depending on this concept, the 

sentences that begin with a named entity are only used to extract question forms. 

Hence, the proper name named entity is determined for each sentence using NLTK 

named entity recognition (NLTK-NE). NLTK-NE normally identifies only one word 

named entity and does not recognize multiple word named entities as a single entity; 

to deal with this problem, a function has been written to detect and obtain a continuous 

chain named entity from the multiple entities that NLTK-NE nominated. To generate 

the proposed form of the questions, named entity (subject) and the verb tense should 

be known. The verb tense is determined in the same stage of finding the named entity 

subject to prepare both together for the stage of question generation. Based on the verb 

tense, the sentence is manipulated in one of the four question manufacturing functions 

in the implemented software. If the verb tense is past and was or were, it goes to the 

function that generates the specified category questions. If it is not was and were, it is 

simple past and goes to the function that produces simple past category questions. The 

present tense is also divided into two categories: is and are and simple present. Each 

present tense category also has a function that extracts the question from the sentence. 

The resultant QAPs are then placed in an SQLite database that is designed to maintain 

the database of a Chatbot. Cosine similarity is calculated for each QAP so as to know 

the similarity distance between the generated question and the original sentence, which 

is the answer. 
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Yes 

 

Start 

Enter URL 

 

Send Request for URL page 

 

Receive HTML Document from the 

URL page 

Extract URLS by parsing HTML 

document 

Save URLs in To Visit file 

 

Use try and catch for To Visit URL list 

in the file 

Extract the plain text 

 

Does the URL 

exist? 

Add the plain text into a file 

 

Is it the last 

URL in the file? 

End 

NO 

 

Yes 

 

NO 

 

Fig. 3. 4: The implemented web crawler. 
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The Python modules used in the implemented program are: re (regular expressions), 

urllib (for web URLs), BeautifulSoup (for HTML filtering), ngram (for term 

similarity), sqlite3 (database) in addition to NLTK. The flow diagram in fig.3.5 

demonstrates the sequence of operations to treat plain text and generate questions from 

sentences and to produce QAPs. 
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Fig. 3. 5: The implemented steps to treat plain text to generate questions from sentences and 

produce QA pairs. 
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3.6 SQLite Database 
 

The data resulting from the processing needs to be saved into a database for storage 

and for later evaluation. An SQLite database has been built to contain the resultant 

QAPs.  

 

3.7 Evaluation 
 

Each designed system needs an evaluation stage to assess whether the work is 

successful and competitive or not. An experiment of two parts has been done to 

measure the validity of our questions and answers and to compare our work with other 

systems. The experiment was divided into two parts: the first part was to design and 

build our automatic question generation system and then evaluate it by human 

participants, and the second part was to adapt a comparative question generation 

system and use the same evaluation method to assess it in order to compare the two 

systems to each other. A subjective assessment was used in order to evaluate the 

validity of the questions, the answers, and both of them as a pair. Thirty-four 

participants were included in the experiment and divided into two groups: one to assess 

our system and the other to evaluate the comparative system. 

A questionnaire was prepared to ask the user to assess the relevance of the questions, 

the answers, and the QAPs according to the subject area (football) or the figure (David 

Beckham). The questionnaire included four tables of the four main QA categories. 

Each table contains a number of rows equal to the number of QAPs and the columns 

represent Question, Answer, Question Relevance, Answer Relevance, and QA pair 

matching relevance. The example figure in this experiment was the footballer David 

Beckham and we used his page on Wikipedia as a source to prepare the data set. The 

questionnaire scores range between 1, which means totally unacceptable, and 4, which 

means fully acceptable. The questionnaire was applied to both our and the comparative 

system’s experimental results. 
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3.7.1  Evaluation Metrics 

 

There are no specific evaluation metrics for question generation and “There remains 

no standard set of evaluation metrics for assessing the quality of question generation 

output. Some present no evaluation at all” [13]. Also “Among those who do perform 

an evaluation, there does appear to be a consensus that some form of human evaluation 

is necessary” [13]. Therefore, we used a subjective assessment that depends on human 

participants’ opinions.  

After searching in references [14] and comparative studies [13] we found that 

Precision is the best measurement metric for unranked retrieved data or information, 

as our work is. In addition, Precision is used as an evaluation metric in the subjective 

assessment measurements that we used to produce our evaluation results. Thus, 

Precision was applied to the subjective assessment results of both parts of the 

experiment in order to assess the accuracy we achieved and compare it with the 

comparative system. The results of applying the former evaluation metrics are 

discussed in the following sections. Precision is calculated according to the following 

relation [136]:  

 

            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠} ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}
                           3. 9 

The same evaluation metrics are used for the subjective assessment results for the two 

parts of the experiment in order to measure the enhancement that could be achieved 

by our QG system. In order to justify the subjective evaluation results, average score, 

standard deviation, t-test, and p value were calculated for both our and comparative 

systems. 

 

3.7.2 Experiment1 

 

The experiment starts with using the rules and the hypotheses to select particular 

sentences extracted from the text retrieved from Wikipedia and pre-processed, then to 

generate questions from these carefully selected sentences. After that, the resultant 
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QAPs are compared with the other QG system’s after adapting this system to our 

system. The results of both systems were assessed by a subjective assessment. The 

experiment has been conducted with a set of participants who are PhD students in 

different research areas to assess the performance of our system.  

The evaluation data was collected depending by the following steps: 

1. Meeting each participant, explaining the questionnaire to them, and giving 

them the questionnaire. 

2. Collecting the completed questionnaire from the participants. 

3. Calculating the aggregate scores provided by the participants in the 

questionnaire. 

4. Inputting the aggregate scores to a program we prepared to calculate and 

classify the results. 

 

3.7.3 Aim of Experiment 

 

The aim of the experiment was to assess our Question Generation System that was 

generated for the OFC in comparison with the other approach in [13] when applying 

the hypotheses we put for generating QAPs. In addition, we determined the precision 

level of improvement added to the question generation area by relying on human 

assessment as the eventual user for any designed conversational system. 

 

3.7.4 Experiment Participants 

 

This experiment was conducted with PhD students from the University of Essex. These 

students are specialised in different fields of PhD study, such as computer science, 

electronic engineering, linguistics, and mathematics. Approximately 35% of the 

judges were native English speakers and the rest (65%) were non-native English 

speakers.      

The study included 34 participants of both genders (male and female) distributed into 

two equal groups. The participants were chosen and split into groups using the theory 
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of within and in between [137] which resulted in dividing the judgers into two groups, 

one to evaluate the performance of our system and the other to evaluate the 

comparative system’s work.. The questionnaire was completed by each participant to 

allow us to measure the level of accuracy that was achieved by our Question 

Generation system. The results of this questionnaire were calculated by aggregating 

the participants’ responses. 

 

3.7.5 Experiment Steps 

 

The experiment was run through the following steps: 

1. A programming language was used to implement our Automatic Question 

Generation System and the program worked in different stages for one single 

execution. These stages are: 

i. Information collection from the web: this information was collected as 

text extracted using a web crawler (fig.3.4).  

ii. After collecting the plain text from Wikipedia, the text was pre-

processed.  

iii. In the third stage the desired sentences were selected from the set of 

extracted sentences according to the hypothesis set described in section 

3.3 above. The selection operation involved Named Entity Recognition 

as the first word or words in the sentence, and verb tense identification 

to classify the sentences to groups as shown in fig.3.1 above. 

iv. Questions were generated from the selected sentences from the 

previous stage and the resultant QAPs were stored in a database pre-

prepared specially for this purpose. 

2. The QAPs stored in the database were collected and sorted into tables to put them in 

an evaluation form. 

3. A questionnaire was prepared for a subjective evaluation that included an 

explanation about the idea and the experiment and the tables of experimental 

results. 

4. Human participants were chosen to do the subjective evaluation. The 

participants were kind of experts selected carefully and the vast majority of 
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them were PhD research students from the University of Essex in different 

research areas. The participants were aware of the famous footballer David 

Beckham, Football, and Sports.  

5. The questionnaire was distributed to the participants and the idea of the 

experiment was explained briefly to each of them, then the completed 

questionnaire was collected from the participants. 

6. Precision was calculated, prepared, and stored for comparison with the 

comparative system. 

7. The same steps above were applied to the comparative system in [13] and the 

results were for comparison with our system. 

8. A program was written to draw the bar graphs of precision values for our and 

comparative systems. The graphs are shown and discussed in the following 

sections. 

9. Average score, standard deviation, t-test, and p value for both our and 

comparative systems were calculated using a program in order to justify the 

subjective evaluation results. 

 

3.7.6 Outputs of Our System  

 

Results of our system  (AWQDG) are presented in four tables in a database. The tables 

present QAPs for four categories of factual or definition sentence classes. The text 

extracted from a 100 web pages or URLs was treated to produce 12 QAPs in the is and 

are category (examples are shown in Table 3.1). 

Table 3. 1: Is and are QA group examples of AWQDG. 

 Question Answer 

1. Who is Elton John? Elton John is godfather to Brooklyn and Romeo Beckham 

their godmother is Elizabeth Hurley. 

2. Where is Beckham? Beckham is currently playing Major League Soccer for LA 

Galaxy. 

 

In the simple past category, 36 QAPs were generated and examples are shown in Table 

3.2. 
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Table 3. 2: Simple past QA group examples AWQDG. 

 Question Answer 

1. What did Beckham choose? Beckham chose to wear number. 

2. What did Beckham become? Beckham became only the fifth Englishman to win caps. 

3. What did David help? David helped launch our Philippines Typhoon children’s 

appeal which raised in the UK alone. 

 

Only two QAPs appear to belong to the category of simple present as demonstrated in 

Table 3.3. 

Table 3. 3: Simple present QA group examples AWQDG. 

 Question Answer 

1. What does Greatest Britons award? Greatest Britons awards The Celebrity number. 

2. What does Man Utd play? Man Utd play down Arsenal rift. 

 

Thirteen pairs of QA are created within the was and were category and examples of 

the results are shown in Table 3.4. 

Table 3. 4: Was and were group examples AWQDG. 

 Question Answer 

1. Who was Beckham? Beckham was a Manchester United mascot for a match against West 

Ham United in. 

2. Who was Tottenham 

Hotspur? 

Tottenham Hotspur was the first club he played for. 

3. Who was Ryan Giggs? Ryan Giggs The 39-year-old was the first of Fergie s Fledglings. 

 

The example QAPs include the mistaken ones. The resultant QAPs that are produced 

by our QAPs generator are put into an SQL database in order to use them as part of 

the Chatbot OFC. 
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3.8 Comparative System 
 

We will give the comparative system in [13] the abbreviation GNLQ (Generating 

Natural Language Questions) and our system the abbreviation AWQDG. These 

abbreviations are extracted from the titles of the comparative work and the work in 

this chapter. The approach in [13] has been selected to be considered as a comparative 

system to assess our hypothesis for the following reasons: 

i. The approach in GNLQ uses single sentences to generate questions from 

sentences, which is quite similar to our system. 

ii. GNLQ considers target identification by determining specific words or 

phrases to ask about, which is similar to our narrowing for the selection of 

a specific subject type (True Noun Named Entity) and specific verb tense.  

iii. GNLQ generates template-based questions and to some extent uses 

syntactic or/and semantic information to select the sentences or generate 

questions. Our approach uses semantic features and verb tense types to 

select the sentences and generate questions in a form similar to the 

template-based category. 

iv. GNLQ generates questions to support learning online and our system 

generates questions for a conversational agent that can be a tutor about a 

figure or an object it contains information about. This gives us another 

justification for the comparison. 

v. GNLQ does not simplify the selected sentences to generate the questions 

from; i.e. it does not cut words or phrases from the selected sentence. It 

uses predicates of a sentence to generate a question. 

vi. GNLQ focuses on generating specific kinds of questions and it selects only 

the sentence targets appropriate for those kinds of questions. Although the 

kinds of questions generated in our approach are fundamentally different, 

similar comparisons can still be made. 

GNLQ is briefly described as follows: 

 It extracts sentences from online documents and filters the sentences for 

redundancy. GNLQ does not simplify the sentences or cut words or phrases 
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from the selected sentences to generate questions because the authors believe 

that simplification of a sentence will eliminate useful semantic content. 

 The authors of GNLQ produced templates for each predicate type to generate 

one or more questions from that predicate. 

 GNLQ could generate more than one question from a sentence depending on 

the number of predicates. 

 GNLQ templates depend on assuming copula auxiliary verb in a predicate to 

generate a question and the authors of GNLQ think that non-copula predicates 

are not meaningful. GNLQ also filters by auxiliary copulas. We do not filter 

by auxiliary verbs in our system and we kept them when applying the GNLQ 

approach to see what the results would be.  

 GNLQ does not extract the questions from the whole sentence but uses 

predicate frames rather than the whole sentence. 

 It develops a template based QG framework. It combines the benefit of 

semantic and syntactic categories of QG with a template-based QG.  

 The questions in GNLQ are not answerable from the sentences they are 

generated from, whereas they are answerable from the documents the sentences 

are extracted from [13]. 

We adapted the comparative system to our system by selecting specific templates 

designed by the comparative system’s authors that match our sentence filtering, subject 

type, and verb tense then we programmed the selected templates. Our data set was 

used to produce QAPs from the comparative templates in GNLQ and the results are 

shown in the following sections. A block diagram of GNLQ templates adapted to our 

system for comparison is shown in fig.3.6. The results are evaluated using a subjective 

questionnaire given to human judges for assessment and then compared to our system.  
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3.8.1 Comparative System’s Experimental Results 

 

Experimental results of GNLQ are also presented in four tables in an SQLite database. 

The tables present QAPs of four categories. The text extracted from a 100 web pages 

or URLs was treated to produce 13 QAPs in the is and are category (examples are 

shown in Table 3.5).  

Table 3. 5: Is and are QA group examples of GNLQ. 

 Question Answer 

1.  Where can we find Messi?   Messi is very authentic to his sport.  

2.  Who would Roy Keane be?   Roy Keane is among those who like Ferguson disapproves 

of Beckham 's extravagant lifestyle.  

 

Fig. 3. 6: The analysis of GNLQ question templates adapted to our system for comparison. 
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In the simple past category, 33 QAPs were generated and examples are shown in Table 

3.6. 

Table 3. 6: Simple past QA group examples of GNLQ. 

 Question Answer 

1. Can you summarize what 

Brooklyn Beckham set?  

 Brooklyn Beckham set to be released by Arsenal already.  

2.  What can Beckham make?   Beckham made you want to believe that right feet could be 

described as educated too.  

 

Four QAPs appear in the category of simple present, as demonstrated in Table 3.7. 

Table 3. 7: Simple present QA group examples of GNLQ. 

 Question Answer 

1.  Would you explain what 

Shell say?  

 Shell say you were rubbish today Ryan.  

2.  Would you explain what 

Greatest Britons awards?  

 Greatest Britons awards The Celebrity number.  

 

Seven QAPs were created within the was and were categories and examples of the 

results are shown in Table 3.8. 

Table 3. 8: Was and were group of GNLQ. 

 Question Answer 

1. Would you summarize what 

Tottenham Hotspur be?  

 Tottenham Hotspur was the first club he played for.  

2.  What can Ronaldo be?   Ronaldo was concerned but not afraid about coming back.  

 

3.9 Evaluation Results 
 

As discussed in the previous sections, subjective assessment was used to evaluate the 

experimental results of our system AWQDG and the comparative system GNLQ.  

After finishing the calculation of data classes for both AWQDG and GNLQ, a Python 

program was used to calculate the precision value for each part in each group of the 

two compared systems. Precision was calculated for Question, Answer, and QA pair 
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match for each of the groups is and are, simple past, simple present, and was and were 

in both systems AWQDG and GNLQ. Precision calculation results have been recorded 

and then entered into a MATLAB program to produce comparative bar graphs between 

AWQDG and GNLQ. The graphs are drawn as follows: 

The bar graph demonstrated in fig.3.7 is for precision levels of Question, Answer, and 

QA pairs matching in group is and are for both AWQDG and GNLQ. The graph shows 

proximity in precision levels between AWQDG and GNLQ. However, AWQDG 

surpasses GNLQ by 3 points in Questions with 0.96 for the former and 0.93 for the 

latter and also QA match by 3 points with 0.98 for the former and 0.95 for the latter. 

In contrast, in Answers GNLQ precision value surpasses AWQDG by 10 points with 

0.67 for the former and 0.57 for the latter. 

 

 

The bar graph in fig.3.8 illustrates the precision levels of Question, Answer, and QA 

pair match in the simple past group for both AWQDG and GNLQ. The graph shows 

another proximity between AWQDG and GNLQ with an increase for AWQDG over 

Fig. 3.7: Precision comparison between AWQDG and GNLQ (is and are 

group). 
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GNLQ in Answers, and QA pairs match with 0.96, 0.95 respectively for the former 

and 0.89, 0.92 respectively for the latter. The results show better performance for 

AWQDG by 7 points in Answers over GNLQ and 3 points in QA pairs match. By 

contrast, in Questions GNLQ surpasses by 1 point with 0.89 for AWQDG and 0.90 for 

GNLQ.  

 

 

 

 

The levels of precision for Question, Answer, and QA pairs match for simple present 

groups of both AWQDG over GNLQ are shown as a bar graph in fig.3.9. The graph 

shows a significant excess by 84 points for AWQDG over GNLQ in the Questions part 

where the values were 0.95 for the former and 0.11 for the latter. Equality is shown for 

both in Answers where the values are 0.11 for both. AWQDG also exceeded GNLQ 

in QA pair match by 3 points as 0.97 for the former and 0.94 for the latter 

 

Fig. 3. 8: Precision comparison between AWQDG and GNLQ (simple 

past group). 
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Fig.3.10 presents the bar graph for precision levels of Question, Answer, and QA pair 

match for was and were groups in AWQDG against GNLQ. The bar graph shows a 

considerable increase in the precision level of AWQDG over GNLQ by 68 points with 

0.93 for the former and 0.25 for the latter. AWQDG also beats GNLQ in QA pair 

match by 27 points and the numbers are 0.94 and 0.67, respectively, for the former and 

the latter whereas GNLQ exceeds AWQDG in Answer part by 24 points with values 

of 0.91 and 0.67, respectively. 

 

 

 

 

 

Fig. 3. 9: Precision comparison between AWQDG and GNLQ (simple 

present group). 
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The comparison of overall precision levels for both AWQDG over GNLQ is shown in 

the bar graph of fig.3.11. The graph shows a remarkable rise in favouring AWQDG 

over GNLQ in the was and were group by 33 points with 0.89 in AWQDG and 0.56 

in GNLQ and in the simple present group by 17 points with 0.67 for the former and 

0.50 for the latter. Even so, GNLQ overtakes AWQDG in the is and are and simple 

past groups by 5 points in the is and are groups with 0.88 for the former and 0.83 for 

the latter and 2 points in the simple past group with 0.96 for the former and 0.94 for 

the latter. 

 

 

 

 

 

 

 

Fig. 3. 10: Precision comparison between AWQDG and GNLQ (was and 

were group). 
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It is noticeable from the bar graph shown in fig.3.12 that AWQDG outperforms GNLQ 

in overall Questions and QA pair match. The graph shows an increase by 12 points in 

Questions for AWQDG over GNLQ with 0.93 for the former and 0.81 for the latter. 

Also, the graph shows that the QA pair match part rises in AWQDG over GNLQ by 7 

points and the numbers are 0.96 and 0.89 for them, respectively. However, GNLQ 

increases in the Answers part over AWQDG by 8 points with 0.9 for the former and 

0.82 for the latter. 

Overall, the recorded precision value for our question generation system was 0.91 

relating to the subjective assessment results we implemented for our system 

evaluation, whereas an overall precision value of 0.86 has been obtained for the 

comparative system that has been adapted to our system and our produced data set 

using the same evaluation method for the experimental results. The overall values 

present a clear success for our system over the comparative system by 5 points. An 

improvement is also shown in Questions and QA pairs match, which means that our 

system AWQDG generates more answerable questions than the comparative system 

GNLQ. 

Fig. 3. 11: Precision comparison between AWQDG and GNLQ (overall of 

the four groups). 
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To support the subjective evaluation results, average score, standard deviation, T-test, 

and p value for both our and comparative systems were calculated using a Python 

program and the results are shown in Table 3.9. The t-test was calculated using the 

following relation for independent samples [138] [139]: 

                           𝑡 =  
𝑥1− 𝑥2

√
1

𝑛1
+ 

1

𝑛2

𝑆𝑝
                                                                  3. 10 

                                 𝑆𝑝 =  √
(𝑛1−1)𝑆1

2+ (𝑛2−1)𝑆2
2

𝑛1+ 𝑛2−2
                                              3. 11 

where  

𝑥1 = Mean of first sample 

𝑥2 = Mean of second sample 

𝑛1 = Sample size (i.e., number of observations) of first sample 

Fig. 3.12: Precision comparison between AWQDG and GNLQ (overall of 

Questions, Answers, QA match). 
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𝑛2 = Sample size (i.e., number of observations) of second sample 

𝑆1 = Standard deviation of first sample 

𝑆2 = Standard deviation of first sample 

The statistical values mentioned above were calculated for the groups Question, 

Answer, and QA match. The results show significance in the t-test values for our 

system in the groups Question and QA Match and a value close to significance in the 

Answer group for the comparative system.  
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Table 3. 9: The results of statistical calculations for subjective assessment evaluation for both AWQDG and GNLQ. 

 

Statistics      Question 

 

Answer QA Match 

 AWQDG GNLQ AWQDG GNLQ AWQDG GNLQ 

 

Average 

 

3.2009 2.9492 3.0768 2.8861 3.0666 2.8646 

Standard 

deviation 

0.7718 0.6311 0.6037 0.5010 0.6177 0.5217 

T-test 

 

1.9724 -1.8841 1.9507 

P value 0.0509 

 

0.0619 0.0535 
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3.10 Conclusions 
 

In this chapter, two main contributions are presented. The first contribution is 

generating factual questions from existing factual sentences. Plain text was extracted 

from the 100 URLs from the Wikipedia page of the footballer David Beckham. Factual 

sentences were extracted from the plain text after pre-processing. Named Entity 

(proper name) Recognition (NER) and verb tense recognition were used to identify the 

factual sentence category. Specific rules were built to categorize the sentences and 

then to generate questions and categorize them. The new built SQL database was used 

as knowledge for the Online Feedable Chatbot that can answer questions about the 

personality of a desired figure or the behaviour of an object and improve over time. 

Four categories of QAPs were produced and examples of these categories are 

presented. A comparative system was incorporated into our system using our produced 

dataset and compared with our system. A subjective assessment to validate the QAPs 

was performed and the evaluation stage was implemented after the subjective 

assessment was made for the two systems. The overall precision levels obtained for 

the subjective assessment show an enhancement by 5 percentage points for our system 

over the comparative system. Also, the results show a clear improvement for our 

system in the Question and QA pair match categories, which means that our system 

produces more answerable questions from a sentence than the comparative system. 

The resultant QAPs produced by our question generation system was put into an 

SQLite database to be used as part of the knowledge base for our Online Feedable 

Chatbot. 
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   Chapter Four 

4 Question Answer System for Online 

Feedable Chatbot 
 

(Part of this chapter is published in [17]) 

 

4.1 Introduction 
 

Populating a Chatbot database from the web is considered a new research area. Few 

researchers have examined educating a new Chatbot in order to incorporate an artificial 

character. Some authors start database population from web pages or plain text based 

upon a certain genre or person [15, 140]. Using data from web pages needs numerous 

operations, such as pre-processing, filtering, mining, and quantification before 

classification and rank ordering. 

Feature extraction methods are used after text mining for both query and response 

sentences. Quantification uses content analysis involving occurrences, tabulation and 

statistical semantics for content units [141]. Particular features are used as score 

measurements for quantification according to statistical calculations. 

The aim of this chapter is to present a new method that employs various feature 

extraction methods to quantify text responses for Chatbot queries. The well-known 

footballer David Beckham is considered as the ‘personality’ for this Chatbot 

experiment. The results show that the highest scored sentences match well with 

subjective analysis and the objective evaluation results show that cosine similarity is 

more accurate than Jaccard’s coefficient to find term match between the query and the 

response sentences.  
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The study in [112] has been adapted to our system and our dataset for the purpose of 

comparison. The contribution presented in this chapter is using a new combination of 

multiple feature extraction methods to find a best response to a Chatbot query. 

 

4.2 Query and Features 
 

4.2.1 Query 

 

The processed data is tested using a sentence or a question that is associated to the 

extracted material. The sentence or question, which is used to test the processed, is 

called the query. The query sentence, in this work, is used to test the relevance of the 

extracted data in order to measure the performance of the system. The query and input 

data are analysed to form their basic components and then the features, which are the 

measurement metrics, are extracted to quantify the output data [142]. The query here 

in the experimental part is a set of TREC8 type factual questions about the personal 

and the career lives of the footballer David Beckham as in the examples below: 

 Who is David Beckham? 

 Who is David Beckham's wife? 

 Which club did David Beckham play for? 

 Where was David Beckham born? 

Query formulation is the operation of creating a list of keywords from the question. 

This list of keywords forms a query sent to an information retrieval system. The type 

of query to form, basically, depends on the application. If question answering is 

applied to the web, a keyword can simply be created from every word in the 

question, letting the web search engine remove any stop words automatically. Often, 

the question word, such as where, when, and so on, is left out. In addition, keywords 

can be formed from the terms found in the noun phrases in the question, applying 

stop word lists to remove function words and high frequency, low content verbs 

[143]. 
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4.2.2 Feature Extraction 

 

In order to be able to quantify the training text according to the query, particular 

features are extracted from both the query and the sentence. Then comparison is made 

between these features. Feature extraction enables discrimination between text classes 

[144] and it is considered an important step in improving the performance of the 

designed system [145]. A system that uses a combination of feature extraction methods 

together such as term, syntactic, and semantic at once is called a hybrid feature system. 

 

4.2.3 Feature Selection 

 

The examination of features that are extracted is of a primary concern. Arbitrary 

selection of features will decrease the accuracy of quantification and thus affect the 

performance of the system. Relevant features should be selected in order to reduce 

general data, save storage space in memory, improve the system performance, and 

simplify the extracted data. In this chapter, the features have been selected based on 

previous experimental work as in [99], which selects term, syntactic, and semantic 

features to quantify the similarity between two sentences. 

 

4.3 Term Match 
 

Term level analysis means converting a piece of text into a sequence of strings (words) 

called tokens. Each token has an identified meaning. In this method, the number of 

matching words between the query and the response sentence is determined [146]. The 

overlapping words are counted up to the number of words in the query and if the 

number of matching words is equivalent to the number of union words, there is a 100% 

match.  
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4.3.1 Similarity Measurement Methods 

 

The association between two words, phrases, or sentences is determined using 

different comparison metrics, such as similarity, dissimilarity, and distance. As the 

issue in this chapter is matching, then similarity metrics are of this chapter’s interest. 

There is a number of term similarity measurements [147]. In this chapter, Jaccard’s 

coefficient and cosine similarity methods are used to measure term similarity between 

the query sentence and each response sentence. 

 

4.3.2 Jaccard’s Coefficient 

 

Jaccard’s coefficient measures the similarity between two data sets through dividing 

the number of common properties between the compared sets by the total number of 

features [148, 149]. For example, if X and Y are two sets, then Jaccard’s coefficient 

between them is: 

                                   
YX

YX
  J(X,Y) 




                                                         4. 1 

The technique used in this method is n-grams which is a method that counts the number 

of words in a sentence or a text and considers each word as a gram. There is a feature 

in the N-grams, which allows finding the overlapping words between two lists of 

words. This feature is employed in this paper to find the overlapping words between 

the query and the response sentence according to the following relation: 

                                     nN qm1=r                                                                     4. 2 

And the union words can alternatively be obtained by using the following relation: 

                                    nN q=rm 2                                                                      4. 3 

where:  

m1 is the intersectional words between the query and the response sentences. 

m2 is the union words between the query and the response sentences. 

𝑟𝑁 is the response sentence. 
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𝑞𝑛 is the query sentence. 

N is the number of words in the response sentence. 

n is the number of words in the query sentence. 

The length of the resultant intersectional list m1 indicates the number of overlapping 

words (i.e. the number of matches), and the rate of match according to Jaccard’s 

coefficient comes from dividing the overlapping words number by union the words 

number: 

L 1= Len (m1) 

L 2= Len (m2) 

                                                 
L2 

L1
M(q,r)=                                                         4. 4 

where:  

M is the rate of term match. 

L1 is the number of intersection words.  

L2 is the number of union words.  

 

4.3.3 Cosine Similarity 

 

One of the popular similarity metrics used in text document processing techniques is 

cosine similarity. Cosine similarity is used when the text documents are considered as 

vectors. The similarity between two documents are here considered as the correlation 

of two vectors [150]. For example, if two document vectors ti and tj are given, cosine 

similarity between them is: 
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                                      𝑆𝐼𝑀𝑐𝑜𝑠(𝑡𝑖⃗⃗  , 𝑡𝑗⃗⃗ ) =   
𝑡𝑖⃗⃗⃗   ∙ 𝑡𝑗⃗⃗  ⃗

𝑡𝑖⃗⃗⃗   × 𝑡𝑗⃗⃗  ⃗
                                                     4. 5 

where ti and tj are m dimensional vectors of the term set 𝑇 = {𝑡1, … ,𝑚}. Each term 

with its weight is represented by a non-negative dimension. The cosine similarity is 

bounded between 0 and 1 and it is document length independent [151]. 

The query can be described as a vector qn = (wq0, wq1, wq2, …., wqn) and the same for 

the response sentence rN = (wr1, wr2, wr3, ...., wrN). To apply cosine similarity on the 

query and the response sentences, the relation will be as follows: 

                   𝑆𝐼𝑀𝑐𝑜𝑠(𝑞𝑛⃗⃗⃗⃗  , 𝑟𝑁⃗⃗⃗⃗ ) =  
∑   𝑞𝑛 (𝑤𝑞𝑖) 𝑟𝑁(𝑤𝑟𝑗)

𝑖=𝑛 𝑗=𝑁
𝑖=1 𝑗=1

√∑ 𝑞𝑛
2(𝑤𝑞𝑖)

𝑛
𝑖=1  √∑ 𝑟𝑁

2(𝑤𝑟𝑗)
𝑁
𝑗=1

                                         4. 6 

Where qn and rn are term vectors of the query and the response sentences respectively 

and n = N. 

In the implementation part, one of the term similarity metrics (Jaccard’s coefficient or 

cosine similarity) is used every run to find term similarity between the query and the 

response sentences. 

 

4.4 NLP Match (Syntactic Analysis) 
 

Syntactic or POS tag analysis is a technique used to analyse a sentence into chunks or 

phrases depending on POS tags performed according to language and grammar rules. 

Tokenizing the sentence into separate words is required before applying POS tagging. 

Syntactic predicate match can be used to obtain the extent of concordance between 

two compared sentences. The matching can be obtained by comparing the POS tags of 

the query and the response answer [152]. The function of comparison is shown in the 

relation below: 

           𝑃 =  ∑ 𝑃𝑇
𝑖=𝑛 𝑗=𝑁
𝑖=0 𝑗=0   𝑤ℎ𝑒𝑟𝑒 𝑃𝑇 = {

1  𝑤ℎ𝑒𝑛 𝑃𝑂𝑆(𝑖) = 𝑃𝑂𝑆(𝑗)
0 𝑤ℎ𝑒𝑛 𝑃𝑂𝑆(𝑖) ≠ 𝑃𝑂𝑆(𝑗)

                    4. 7 

where: 

P is the number of POS tag matches. 
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PT is the POS tag. 

i refers to the position of a POS tag in the query sentence words. 

j refers to the position of a POS tag in the response sentence words. 

By dividing by the total number of POS tags, a syntactic or POS tag match is obtained 

as shown below: 

                                    𝑃𝑇𝑀 =
𝑃

𝐿𝐸𝑁(𝑃𝑇𝑞∪ 𝑃𝑇𝑟)
                                                            4. 8 

where: 

PTq is the POS tag list of the query sentence. 

PTr is the POS tag list of the response sentence. 

LEN is the number of union POS tags in the query and the response sentences. 

PTM is POS tag match between the query and the response sentence words. 

 

4.5 Semantic Similarity 
 

Semantic relationship is one of the ways to measure similarity between two sentences. 

It is used in NLP to compare units of language, such as words, sentences, paragraphs, 

and documents [153]. “Semantic measures are mathematical tools used to estimate 

quantitatively and qualitatively the strength of the semantic relationship between units 

of language, concepts, or instances” using symbolic or numerical description gained 

according to formal or implicit information comparison for the meaning of these units 

[154]. Semantic similarity is used as a metric to measure the similarity in sense 

between two documents regardless of the size of these documents.  

There are different semantic measurement metrics; two of them are used in this work. 

Named entity and semantic cosine similarity are used in this chapter. 
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4.5.1 Named Entity 

 

In the previous chapter, named entity was used as a feature extracted after analysing a 

sentence to identify the subject of the sentence, which is the target to derive a question 

from this sentence. The concept of named entity is explained in Chapter 2 (Section 

2.2.9) 

In this chapter, the entity type semantic method is used as a feature extracted from the 

query and the extracted sentence in order to examine the similarity between them. The 

summation of similar named entities between the query and the response sentence is 

calculated as follows: 

                ENE =  ∑ NEk=K l=L
k=0 l=0  where NE =  {

1 when k = l 
0 when k ≠ l 

                                4. 9 

where: 

ENE is the number of named entity matches between the query and the response. 

NE is a named entity match. 

K indicates the number of named entities in the query sentence. 

L indicates the number of named entities in the response sentence. 

k indicates a named entity in the query sentence. 

l indicates a named entity in the response sentence. 

Then the named entity match rate NEM is:  

 

                          𝑁𝐸𝑀 = 
𝐸𝑁𝐸

𝐿𝐸𝑁((𝑁𝐸𝑞 ∪ 𝑁𝐸𝑟)+(𝑁𝐸𝑞  𝑁𝐸𝑟))
                                     4. 10 

 

where: 

NEq is the named entity list of the query. 

NEr is the named entity list of the response sentence. 

LEN is the number of unity words between NEq and NEr.   
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4.5.2 Semantic Cosine Similarity 

 

Cosine similarity is discussed in Section 4.3.3 above. The meaning of cosine similarity 

is different from the meaning of semantic cosine similarity. At term level, cosine 

similarity is when compared sentences are converted into term vectors. Cosine 

similarity is obtained by using the magnitudes of similar words in term vectors to 

calculate the overall similarity using the relation of cosine similarity. Semantic cosine 

similarity deals with semantic vectors of sentences rather than term vectors. WordNet 

is used to obtain semantic vectors of the query and the response sentences. WordNet 

is a lexical source that is used to model lexical knowledge of the English language. 

The smallest term in WordNet is a logical group of synonym set (synset). The synset 

represents the particular meaning of a word and the synsets have semantic relations 

explicitly with each other [155]. Hence, the query can be described as a semantic 

vector qsn = (wqs0, wqs1, wqs2, …. , wqsn) and the same for the response sentence rsN = 

(wrs1, wrs2, wrs3, ...., wrsN). To apply cosine similarity to the query and the response 

sentences, the relation will be as follows: 

          𝑆𝐼𝑀𝑆𝑒𝑚𝑐𝑜𝑠(𝑞𝑠𝑛⃗⃗⃗⃗⃗⃗  , 𝑟𝑠𝑁⃗⃗ ⃗⃗  ⃗) =  
∑   𝑞𝑠𝑛 (𝑤𝑞𝑠𝑖)∙

𝑟𝑠𝑁 (𝑤𝑟𝑠𝑗)
𝑖=𝑛 𝑗=𝑁
𝑖=1 𝑗=1

√∑ 𝑞𝑠𝑛
2 (𝑤𝑞𝑠𝑖)

𝑛
𝑖=1  √∑ 𝑟𝑠𝑁

2 (𝑤𝑟𝑠𝑗)
𝑁
𝑗=1

                             4. 11 

where qsn and rsn are semantic vectors of the query and the response sentences 

respectively and n = N. 

 

4.6 Maximum Percentage of Match 
 

Total match is calculated by adding the term, syntactic, and semantic features together 

in the combination using Jaccard’s coefficient and named entity as shown below:  

                  𝑀𝑡𝑜𝑡𝑎𝑙 =  𝑀(𝑞, 𝑟) +  𝑃𝑇𝑀(𝑃𝑇) + 𝑁𝐸𝑀(𝑁𝐸)                                    4. 12 

  

In the combination using cosine similarity and named entity, the total match equation 

is: 
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                𝑀𝑡𝑜𝑡𝑎𝑙 =   𝑆𝐼𝑀𝑐𝑜𝑠(𝑞𝑛⃗⃗⃗⃗  , 𝑟𝑁⃗⃗⃗⃗ ) +  𝑃𝑇𝑀(𝑃𝑇) +  𝑁𝐸𝑀(𝑁𝐸)                       4. 13 

The combination using Jaccard’s coefficient and semantic cosine similarity equation 

is: 

               𝑀𝑡𝑜𝑡𝑎𝑙 =  𝑀(𝑞, 𝑟) +  𝑃𝑇𝑀(𝑃𝑇) +  𝑆𝐼𝑀𝑆𝑒𝑚𝑐𝑜𝑠(𝑞𝑠𝑛⃗⃗⃗⃗⃗⃗  , 𝑟𝑠𝑁⃗⃗ ⃗⃗  ⃗)                       4. 14 

Finally, the formula of the combination using cosine similarity and semantic cosine 

similarity is:  

               𝑀𝑡𝑜𝑡𝑎𝑙 =   𝑆𝐼𝑀𝑐𝑜𝑠(𝑞𝑛⃗⃗⃗⃗  , 𝑟𝑁⃗⃗⃗⃗ ) +  𝑃𝑇𝑀(𝑃𝑇) +  𝑆𝐼𝑀𝑆𝑒𝑚𝑐𝑜𝑠(𝑞𝑠𝑛⃗⃗⃗⃗⃗⃗  , 𝑟𝑠𝑁⃗⃗ ⃗⃗  ⃗)         4. 15 

The percentage match is then obtained as in equation 4.16 below: 

                      𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑚𝑎𝑡𝑐ℎ =  𝑀𝑡𝑜𝑡𝑎𝑙  × 100                                             4. 16 

The maximum match percentage is obtained by re-ranking the percentage matches 

calculated above and the highest score can indicate the best match according to the 

assumptions considered for the output of the proposed system. 

 

4.7 The Proposed System 
 

The proposed system begins with a web crawler with the ability to obtain plain text 

from the web using a desired URL as the start/seed. The block diagram of the proposed 

system is shown in fig.4.1.  

The diagram in fig.4.2 shows the flow of the implemented system. The text retrieved 

from the web is read from the (To Visit) file. The plain text may contain different 

undesired code after being acquired from the HTML. One example is ‘u’ appearing 

before each word in the text and this is called UNICODE. So, the text is encoded to 

ASCII in order to make it easier to deal with. The text is then split into sentences using 

the NLP. The resulting sentences are filtered after that to remove redundant English 

symbols, punctuation, and non-English letters and symbols. The filtered sentences are 

broken down into words by the word tokenizing NLP process and each word is tagged 

by a part of speech label (POS). Named Entity Recogniser is then used to identify 

entity names for both the query and the extracted sentences. Features are extracted and 

compared to calculate the matching score.  
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The scores of syntactic, semantic, and term match are calculated then summed to 

obtain a total match score then a percentage match score. The sentences and the 

calculation results are all placed in an SQLite database prepared for that purpose. The 

sentences are then descending re-ranked according to their matching scores to evaluate 

relevance of the highest scores.  

The system is implemented in Python and the modules used in the implemented 

program are: NLTK, re, ngram, urllib, sqlite3, in addition to BeautifulSoup and 

WordNet.  

Web 
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order 

Text 

Selection 

Feature 
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Text Mining 

and NLTK 

processing 

Response 

Choosing 

Text Pre-

processing 

Buffer 

 

Database 

The Web 

User 

Query 

Response 

Sentence 

Outputting 

Fig. 4. 1: A block diagram for the proposed system. 
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Fig. 4. 2: A flow diagram of the implemented system. 
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4.8 Evaluation 
 

An experiment was prepared to test the proposed system’s efficiency. The first stage 

of this experiment was preparing the questions that were the dataset of the test. We 

used our own dataset that was extracted from the web from the Wikipedia page of the 

English footballer David Beckham. The second data set used to evaluate the proposed 

system was the Stanford QA dataset (SQuAD). The second stage of the experiment 

was writing the rules for answer selection. The third stage was writing the algorithm 

of the program then coding the program. The Python programming language was used 

to code the implementation programs. The fourth stage was running the code and using 

the QA data sets as inputs to produce outputs. The fifth stage was storing the output 

data in an SQLite database for the purpose of evaluation. The final stage was 

transferring the evaluation results into graph forms using the Python code. 

 

4.8.1 Experiment’s Evaluation Metrics 

 

In this experiment evaluation metrics were applied to see the enhancement our system 

added and also to compare it with other comparative systems. Precision@N and mean 

average Precision (MAP) were used to evaluate ranked information retrieval [14]. 

Thus, Precision@10, Precision@20 and MAP were used to evaluate our output 

answers to queries after rank-ordering the answers.  

The results were also evaluated using the mean reciprocal rank (MRR) method, which 

is suitable for measuring the performance of the implemented system. MRR is 

calculated relating to the following relation [156]: 

                                      𝑀𝑅𝑅 =  
1

𝑛
 ∑

1

𝑟𝑖

𝑛
𝑖=1                                                               4. 17 

where: 

n is the number of questions. 

i is the individual question number. 

ri is the reciprocal rank of the correct answer. 
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4.8.2 Experiment2 

 

The experiment starts with inputting the formulas and rules that score response 

sentences and rank them according to the scores obtained. The input text was extracted 

from the Wikipedia page of the English footballer David Beckham. Python 

programming codes were then produced to implement the equations that are derived 

in the theoretical part. Different Python modules are used to extract and filter the plain 

text then to sentence and word tokenize the resultant filtered text; for example, NLTK, 

NLTK-NE, WordNet, NumPy, ngrams, urllib, and BeautifulSoup. The resultant 

sentences were popped into a text file for retrieval in the run time of the calculation 

programs. Sixty-four questions (not the questions generated in Chapter 3) and their 

predicted answers were prepared to use with the extracted and prepared text. 

Also a SQuAD data set was prepared by inputting 54 source text paragraphs into 

source files and preparing 200 questions to be used with these text sources. Our four 

invented formulas in addition to the comparative system’s in [112] were coded into 

five Python programs, one for each of our four formulas and one for the comparative 

system; and we ran them all together using the two data sets; one run for each of the 

five programs per each query. The experimental results of the 264 runs for each 

program were stored in SQLite databases. The evaluation part was started when all 

runs for all the corresponding experimental programs were completed. Precision@10, 

Precision@20, MRR, and MAP were calculated and graphs for the evaluation results 

are presented. 

 

4.8.3 Experiment Goal 

 

The aim of the experiment was to implement our QA system that is proposed for the 

OFC. The experiment was also conducted in order to evaluate the performance of the 

system by applying two QA data sets and storing the results in an SQLite database 

prepared for this purpose. Moreover, Precision@10, Precision@20, MAP, and MRR 

were used for the purpose of evaluation. 
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4.8.4 Experiment Requirements 

 

The experiment requirements can be listed as below: 

1. The theoretical rules and hypotheses that were needed to be implemented in 

order to find a best answer to a query from a set of sentences extracted from a 

source text. 

2. A programming language to implement the proposed rules and hypothesis, and 

to calculate the evaluation results then to draw the evaluation graphs. The 

programming language we used is Python. Python was chosen because it is a 

reliable language in text processing and array operations. The MATLAB 

programming language was also required to draw the bar graphs of the results. 

3. Data set(s) of QA as input to the program coded in Python in order to test and 

evaluate whether the system is successful and comparative. 

4. Python modules, such as NumPy, urllib, NLTK, NLTK-NE, and 

BeautifulSoup. These modules help in retrieving information from the web 

using a web crawler (the same web crawler in Chapter 3 fig. 3.4) and in 

extracting the required plain text which is then filtered and tokenized into 

sentences and saved in a source file. 

5. Other Python modules such as WordNet, NumPy, ngrams, and sqlite3 are 

required in the stage of calculations and storing the results. 

6. A database browser for SQLite database is needed to create tables required for 

experimental results storage and to run short SQLite programs to rank order 

the stored answer sentences according to their percentage scores. 

 

4.8.5 Experiment Steps 

 

The steps that the experiment runs through are as follows: 

1. Two data sets were prepared to evaluate our system and to compare it with 

other comparative systems.  

 The first data set was our QA data set prepared according to the 

adaptation of TREC data set types to our subject, which is the footballer 
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David Beckham. We prepared 64 questions about the career and the 

personal life of that person. The source text used with this QA set was 

our extracted text from David Beckham’s Wikipedia page. The QA set 

used in this chapter are not the ones generated in Chapter 3. 

 The second data set was the Stanford QA dataset (SQuAD). We saved 

54 source text paragraphs of the data set in source files and we selected 

200 QA sets that are related to these text sources. 

2. A Python programming code was written to implement the proposed QA 

system. The code is divided into five programs; one for each of the four 

formulas in equations (4.12) to (4.15), and one for the comparative system in 

[112]. The five programming codes are doing the following tasks: 

i. Accessing the Wikipedia page of David Beckham using the URL of 

this page using the web crawler that is explained in Chapter 3 and 

illustrated in fig.3.4. The purpose of this access is to extract the 

information in the corresponding URL. We then extract all the URLs 

embedded in the main Wikipedia page of David Beckham. The 

extracted URLs were used to extract more information from the pages 

related to these URLs. Information from 100 URLs was extracted 

afterwards. 

ii. Filtering the HTML code after extracting the information from the 100 

web pages to acquire the plain text. This plain text was filtered to 

remove extra punctuation, non-English symbols or letters, or any 

redundant information. The filtered text was then converted to the right 

ASCII code format. 

iii. Sentence tokenizing the resultant text then saving it in a text source file 

for the purpose of processing. 

iv. Retrieving the resultant filtered sentences from the source file, then 

processing each sentence to extract features from it. The processing 

starts from word tokenizing the sentence, then POS tagging, followed 

by some more filtering for more symbols like redundant brackets, and 

then using feature extraction and score calculation. 
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v. Syntactic information was extracted using POS tag and then the 

similarity score between the query and the response sentence was 

calculated. 

vi. Term similarity was obtained by calculating Jaccard’s coefficient and 

cosine similarity values. 

vii. Semantic features were extracted and semantic similarity values were 

calculated using named entity and semantic cosine similarity. 

viii. The results of syntactic, semantic and term similarity scores were added 

together using equations (4.12) to (4.15). 

ix. The percentage of the results was calculated and the values of syntactic, 

semantic, and term similarity scores were stored in an SQLite database 

together with the corresponding response sentence, overall scores and 

the percentage scores. The results of 264 queries per each of the five 

programs were stored in 10 databases, one database for each program 

per each data set.  

3. The experimental results were examined table by table after ranking the 

answers in descending order according to the overall percentage score of each 

sentence to find the relevant answers. 

4. After recording the rank order of each relevant answer, the evaluation stage 

was started by calculating the precision@10, precision@20, and recall values 

for each query per five tables. Then MAP and MRR were calculated for each 

of the two data sets per each of the five programs (the Python programs one 

program per each of our four formulas and one for the comparative system). 

5. Precision-recall graphs were produced for precision@10 and precision@20 for 

each of the two data sets: our QA dataset and SQuAD. 

6. Bar graphs of MAP and MRR values for each five data groups for each dataset 

were plotted using the MATLAB programming language. 

 

4.9 Comparative System 
 

The comparative system in [112] is named by its authors as SemEval-2016 Task 3. 

The SemEval-2016 Task 3 is described as follows [112]: 
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1. SemEval-2016 Task 3 aims to solve a QA problem in community forums, 

which is caused by users having to post questions that have already been asked 

and answered. This problem annoys the users because it makes them refer to 

those previously asked questions. 

2. The main subtask (C) asks a question to find an answer which already exists in 

the community forum and it is suitable as a response to a newly posted 

question.  

3. SemEval-2016 Task 3 uses semantic vector similarity by using semantic word 

embedding obtained from Word2Vec. 

4. In semantic vector similarity, SemEval-2016 uses a number of similarity 

features calculated by using the centroid word vectors of the question. 

5. The centroid word vectors of the question are constructed according to the 

following relation: 

                                        𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (𝑤1…𝑛) =
∑ 𝑤𝑖

𝑛
𝑖=1

𝑛
                                          4. 18 

            Where: 

             𝑤𝑖 represents a word in a sentence. 

             n is number of words in the sentence. 

6. The authors in [112] assume that the relevant answer should have the closest 

centroid vector to the centroid vector of the question.  

7. SemEval-2016 Task 3 orders each word in the answer to the question body 

centroid vector according to their similarity and takes the average similarity of 

the top N words. The authors of SemEval-2016 Task 3 assume that if the 

average similarity of the top N most similar words is high, the answer should 

be relevant. 

8. In addition to semantic features, the authors of SemEval-2016 Task 3 consider 

some metadata common meaning features, such as answer length, question 

length, and question to comment length. 

According to the points we have described above, SemEval-2016 Task 3 uses semantic 

features to extract the highest scored answers in addition to some metadata features. 

We programmed the system in SemEval-2016 Task 3 with our work and we used the 

same data set to test it and compare it with our system.  
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4.10 Experimental Results 
 

Let us give the combination in equation (4.12) the abbreviation Jaccard POS tag 

Named Entity (JPNE) and the combination in equation (4.13) the abbreviation Cosine 

POS tag Named Entity (CPNE). Also, let us give the combination in equation (4.14) 

the abbreviation Jaccard POS tag Semantic Cosine (JPSC) and the combination in 

equation (4.15) the abbreviation Cosine POS tag Semantic Cosine (CPSC). The name 

of the comparative system is already explained in the previous section. 

The input data to the system was the unstructured text retrieved from David Beckham’s 

page on Wikipedia (https://en.wikipedia.org/wiki/David_Beckham). Over a hundred 

URLs associated with Beckham’s page on Wikipedia were accessed to retrieve their 

unstructured data in order to extract the plain text needed. The output was a set of rank 

ordered sentences according to a query given after filtering and structuring the 

unstructured plain text. The resultant output was put into a table of an SQLite database 

for evaluation purposes. General and personal queries were used to verify the proposed 

system operation. The resultant sentences have been filtered to obtain typical length 

(i.e. not too long) sentences of no more than 21 words in order to elicit clear and 

concise answers. Random examples of the queries, the closest match sentences, and 

the closest match scores for combinations in equations (4.12), (4.13), (4.14), and (4.15) 

are tabulated in Table 4.1. The experimental results demonstrated in Table 4.1 give the 

highest scored and the closest matches out of over 2000 records. 

The number of records means the total number of sentences in the database table which 

the highest and the lowest score sentences are part of. The sentences with 0 scores have 

been excluded and are not recorded in the database. 

The experimental results were stored in 10 SQLite databases; two for each 

combination formula: one of these two is for our OFC data set, which contains 64 

tables of unranked answers and 64 reviews for the answers in the 64 tables after 

ranking order. The second of the two databases was for the SQuAD data set and it 

contains 200 tables for unranked answers and 200 reviews for the answers in the 200 

tables after ranking order. 
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Table 4. 1: Examples of Experimental results. 

 

 

No

. 

 

Query 

 

Nearest match Sentence 

JPNE 

% 

Record 

order in 

JPNE 

CPNE 

% 

 

Record 

order 

CPNE 

JPSC 

% 

Record 

order in 

JPSC 

CPSC 

% 

Record 

order in 

CPSC 

SemEva

l-2016 

Task 3 

Record 

order in 

SemEva

l-2016 

Task 3 

No. of 

records  

1. Where was David Robert 

Joseph Beckham born? 

David Robert Joseph Beckham OBE 4 b k 

m/ born 2 May 1975 is an English former 

professional footballer. 

 

32.97 

 

2 

 

33.33 

 

2 

 

57.27 

 

 

1 

 

57.63 

 

1 

 

47.43 

 

2 

 

2165 

2. When did he announce his 

retirement? 

He announced his retirement in May 2013 

after a 20-year career during which he won 

19 major trophies.  

 

20.93 

 

2 

 

22.73 

 

1 

 

34.3 

 

3 

 

36.1 

 

 

1 

 

33.1 

 

2 

 

2313 

3. With which team did 

Beckham’s professional club 

career begin in 1992? 

Beckham’s professional club career began 

with Manchester United where he made his 

first-team debut in 1992 aged 17. 

 

33.5 

 

2 

 

33.8 

 

2 

 

54.57 

 

1 

 

55 

 

1 

 

41.53 

 

1 

 

2743 

4. Which local youth team did 

he play for? 

He played for a local youth team called 

Ridgeway Rovers. 

 

37.03 

 

1 

 

37.13 

 

1 

 

54.13 

 

1 

 

54.2 

 

1 

 

45.23 

 

1 

 

2178 

5. Which trials did Young 

Beckham have and which 

school of excellence did he 

attend? 

Young Beckham had trials with his local 

club Leyton Orient Norwich City and 

attended Tottenham Hotspur’s school of 

excellence. 

 

 

22.87 

 

8 

 

22.3 

 

9 

 

38.6 

 

1 

 

38.03 

 

1 

 

32.71 

 

3 

 

2717 

6. How many years did he 

spend playing football? 

Beckham played in all of England 's matches 

at Euro 2004. 

 

44.25 

 

2 

 

45.17 

 

2 

 

65.23 

 

1 

 

65.23 

 

1 

 

52.18 

 

2 

 

1827 
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4.11 Evaluation Results 
 

After collecting the experimental data and putting it into the SQLite databases, the 

evaluation stage began. The orders of the correct answers were recorded for each query 

in the two data sets for the five experimental groups of data. Precision at the two cut 

off regions 10 and 20, precision@10 and precision@20 were calculated for each 

experimental data group for the two data set queries. Recall was also calculated for the 

same items that precision was calculated for. Precision and recall values were 

calculated using a Python programming code and the graphs of Precision@10-Recall 

and Precision@20-Recall were drawn. Precision@10-Recall and Precision@20-

Recall graphs are reported as follows: 

Fig.4.3 illustrates the Precision@10-Recall graph of the five experimental data groups 

for our OFC data set. The graph shows that the highest accuracy is given by CPSC and 

the lowest by JPNE. The comparative system is in the middle of the five comparative 

models. The plotted curves are leaning slightly more to the left because we consider 

only one specific correct answer for each query and this affects the values of precision 

and recall in the middle and makes them lower. 

 

Fig. 4. 3: Precision@10-Recall graph for evaluation of the four 

experimental data groups and the comparative system (using our 

OFC data set). 
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Fig.4.4 below demonstrates the Precision@20-Recall graph of five experimental data 

groups for our OFC data set. The graph reports that CPSC, JPSC, and SemEval-2016 

Task 3 are becoming closer to each other and leading while CPNE and JPNE are 

lagging. 

 

 

 

Precision@10 graph of the five groups of data using the SQuAD data set is shown in 

fig.4.5. The graph shows that CPSC and JPSC are closer to each other and leading. 

The comparative system is slightly closer to the lagging ones, CPNE and JPNE. 

 

 

 

 

 

 

Fig. 4. 4: Precision@20-Recall graph for evaluation of the four 

experimental data groups and the comparative system (using 

our OFC data set). 
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Fig.4.6 below shows the Precision@20-Recall plot for five experimental data groups 

including the comparative system using the SQuAD data set. The graph illustrates that 

CPSC and SemEval-2016 Task 3 occupy the top of the curves’ positions, while JPNE 

and CPNE are at the bottom, and JPSC occupies the middle. 

 

 

 

 

 

 

 

 

Fig. 4.5: Precision@10-Recall graph for evaluation of the 

four experimental data groups and the comparative system 

(using SQuAD data set). 
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MAP and MRR curves were also plotted over the five experimental groups including 

the comparative system as other evaluation metrics and comparison criteria between 

our proposed four formulas and the comparative system. The graphs were drawn for 

the two data sets used and are explained as follows: 

Fig.4.7 shows the bar graph of MAP values of the five experimental data groups using 

our OFC data set. The bar graph reports that CPSC has the highest MAP with a value 

0.85 and JPNE has the lowest with the number 0.71. SemEval-2016 Task 3 is in the 

middle having the value 0.76 between CPNE and JPSC. 

 

Fig. 4. 6: Precision@20-Recall graph for evaluation of the four 

experimental data groups and the comparative system (using 

SQuAD data set). 
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Fig.4.8 demonstrates the bar graph of MAP for the five experimental groups of data 

using the SQuAD data set. The graph shows that SemEval-2016 Task 3 occupies the 

second position after CPSC with the values 0.78 and 0.80, respectively. JPNE is the 

lowest with 0.64 then CPNE with the value 0.67 and JPSC with 0.72. 

 

Fig. 4. 7: MAP values graph for evaluation of the four 

experimental data groups and the comparative system 

(using our OFC data set). 

 

Fig. 4. 8: MAP values graph for evaluation of the four 

experimental data groups and the comparative system 

(using SQuAD data set). 
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The bar graph of MRR values for the five experimental data groups using our OFC 

data set is shown in fig.4.9. The bar graph illustrates that the highest MRR is achieved 

by CPSC and the lowest by JPNE with the values 0.85 and 0.71, respectively. 

SemEval-2016 Task 3 is in the middle with the value 0.77 between CPNE and JPSC 

with the values 0.74 and 0.82, respectively. 

 

 

The bar graph in fig.4.10 presents the values of MRR for the five experimental data 

groups using SQuAD data set. The graph shows leading again for CPSC over the other 

four groups with the value 0.80 followed by SemEval-2016 Task 3 with the value 0.78. 

JPNE is again the lowest one with the value 0.64 after CPNE and JPSC with the values 

0.67 and 0.72, respectively. 

Fig. 4. 9: MRR values graph for evaluation of the four 

experimental data groups and the comparative system 

(using our OFC data set). 
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The overall MAP values of the five experimental data groups are shown as a bar graph 

in fig.4.11. The graph reports a clear contribution for CPSC with the value 0.825 

followed by SemEval-2016 Task 3 and JPSC with the values 0.77 and 0.765, 

respectively. Then CPNE and JPNE come with the values 0.705 and 0.675, 

respectively. 

 

Fig. 4. 10: MRR values graph for evaluation of the four 

experimental data groups and the comparative system 

(using SQuAD data set) 

 

Fig. 4. 11: Overall MAP values graph for evaluation of 

the four experimental data groups and the comparative 

system. 
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The overall MRR values of the five experimental data groups are shown in the bar 

graph of fig.4.12. The bar graph illustrates an achievement for the CPSC group with a 

value 0.825 followed by SemEval-2016 Task 3 with 0.775 and JPSC with 0.77. CPNE 

and JPNE values are 0.705 and 0.675, respectively. 

 

Overall, the results indicate that the formula in equation (4.15), which is the 

combination of cosine similarity, POS tag, and semantic cosine (CPSC), outperforms 

the comparative system SemEval-2016 Task 3 1.55 percentage points in MAP and 5 

points in MRR. The other three combinations are just behind the former two. This 

means that CPSC is the best among the five evaluated systems. 

  

4.12 Conclusion 
 

In this chapter, a new method that employs multiple feature extraction has been 

presented to quantify text responses for a learning Chatbot. More than one 

measurement metric has been examined at the same time to find the best match to a 

Chatbot query. Four combinations of extracted features were formulated and compared 

with a comparative model. Re-ranking the scores of extracted features for text 

responses gave the most semantically meaningful sentences. The experimental results 

Fig. 4. 12: Overall MRR values graph for evaluation of 

the four experimental data groups and the comparative 

system. 
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show that the highest scored sentences are the nearest to a query. Evaluation results 

show that the system performance rises significantly by using the cosine similarity 

metric for term match and semantic cosine similarity for semantic match. The 

combination of cosine similarity, POS tag, and semantic cosine similarity achieved the 

highest values in evaluation metrics and outperformed our other three combinations 

and the comparative system. 
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   Chapter Five 

5 Automatic Extraction of Imperative 

Sentences from the Web for Online 

Feedable Chatbot 
 

 

5.1 Introduction 
 

In daily discourse, different forms of speech are needed, such as greetings, questions 

and answers, requests, obligations, explanations, permissions, and commands.  

Imperative sentences are a style of speech needed in humans’ every day activities in 

different places and situations. They are also needed when using computer 

programming [133], searching in a huge database [132] or searching for ideas in 

articles [129].  

In order to make conversation more natural with dialogue systems, phrases or 

sentences from daily life need to be inserted into their knowledge bases like imperative 

sentences. An imperative sentence is simply a command telling someone to do 

something [157]. This type of command helps the user to direct the dialogue system 

to do a needed action, such as searching in the web, opening a new window, starting a 

program, or even shutting the computer down or putting it in sleep mode. 

This chapter is concerned with designing a system for automatic acquisition of 

imperative sentences from the web for the knowledge base of the OFC. Thousands of 

sentences are extracted from 200 Web pages associated to the Wikipedia page of the 

famous footballer David Beckham and pre-processed then filtered in order to be the 

data set of the proposed system. NLTK-POS tagger and verb tense type are used to 

identify and select the imperative sentences from the extracted set of sentences. The 

resultant sentences are stored in an SQL database to be used as part of the knowledge 

base of the OFC. The aim is to add more actionable activities to the Chatbot in the 

future using the extracted imperative sentences like controlling applications on the 
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computer. The results are evaluated using a human assessment subjective test and 

compared with other comparative systems. The evaluation results show that our 

system’s performance outperforms the comparative system’s. 

 

5.2 Imperative Sentence 
 

Sentences in the English language normally consist of the main sentence parts starting 

with the subject. The sentence formulation is usually as follows:  

           ))(( mpletionsentenceCoorObjectVerbSubject                         5. 1 

Examples like: 

1. The dog sat on the mat. 

2. She is very beautiful. 

3. Layan goes to school.  

 are representative of the rule presented in equation 5.1. 

The subject could be a true noun or a pronoun and there is a variety of verb tenses in 

the English language, such as simple present, perfect present, simple past, present 

participle, auxiliary verbs, etc. 

In imperative sentences of the examples below:  

4. Please open the door. 

5. Shut down the computer. 

6. Can you reach the salt? 

7. I encourage you to exercise every day;  

there is no obvious subject seen and the subject here is (you). A person in this kind of 

sentence orders or commands another person to do something. According to the main 

rule in equation 5.1, the sentences in examples 4 and 5 should be as follows: 

8. You please open the door. 

9. You shut down the computer. 
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The subject (you) here is considered as understood in order to formulate the imperative 

sentences in examples 4 and 5. 

As noticed, the imperative sentences come in different styles: indirect like in examples 

6 and 7, and direct like in examples 4 and 5 [158-160]. 

In this chapter, we concentrate on one type of direct imperative sentences which begin 

with the imperative verb. 

 

5.3 Imperative Sentence Identification 
 

As mentioned in the previous section, the type of imperative sentences extracted in 

this chapter is the direct one starting with a verb. Our hypothesis of extracting direct 

imperative sentences that begin with verb is as follows: 

i. The sentence should begin with a verb. 

ii. The sentence should not begin with a noun, pronoun, or any words other than 

verbs. 

iii. The verb at the beginning of the sentence should be simple present. 

iv. The sentence is considered even if it is only one word (a verb). 

According to the hypothesis stated above the rule of an extracted imperative sentence 

is as in the following equation: 

           phrase) nalpropositioor  phrase,noun or noun  (aObjectVerb                           5. 2 

 

5.3.1 Syntactic Analysis for the Sentence 

 

To analyse a sentence using NLP, word tokenising is needed for the sentences in order 

to split the sentence into individual words. Then each word should be POS tagged with 

a part of speech to identify the type of each word in the sentence. NLTK-POS tagger 

tags the first word in the sentence as NNP, which means a proper name, or PRP which 

means a pronoun, assuming that the first word in a sentence must be a subject 

according to basic English language rules. For example: 
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10. Beckham is joining the Los Angeles Galaxy after years with Real Madrid. 

          is POS tagged as follows:   

          [('Beckham', 'NNP'), ('is', 'VBZ'), ('joining', 'VBG'), ('the',  'DT'), ('Los', 'NNP'),   

          ('Angeles', 'NNP'), ('Galaxy', 'NNP'), ('after', 'IN'), ('years', 'NNS'), ('with', 'IN'), 

'Real', 'JJ'), ('Madrid', 'NNS')] 

11. It is not that easy. 

is POS tagged as follows: 

      [('It', 'PRP'), ("is", 'VBZ'), ('not', 'RB'), ('that', 'IN'), ('easy', 'JJ')] 

NLTK-POS tagger does the same thing with the sentences that begin with a verb. It 

tags the verb which sits in the beginning of the sentence as NNP, which makes it 

indistinguishable from the nouns or pronouns. For example: 

12.  Give me a football. 

     [('Give', 'NNP'), ('me', 'NNP'), ('a', ' DT '), ('Football', 'NNP')] 

We hard coded in Python programming language to tag the verb in the beginning of a 

sentence as a verb. The sentence in example 12 above can be POS tagged as follows: 

13.  [('Give', 'VB'), ('Me', 'NNP'), ('a', ' DT '), ('Football', 'NNP')] 

 

5.4 The Proposed System 
 

In the proposed system, the first process done is crawling the web pages using a web 

crawler in order to extract the plain text needed. The same web crawler in Chapter 3 

fig. 3.4 is used in the proposed system. 

After extracting the plain text from the web pages associated to the given main URL, 

the text is filtered from the HTML code and UNICODE and the text is turned into 

ASCII code. The resultant text is sentence tokenised then each sentence is word 

tokenised. Then the resultant sentences are filtered to remove undesired (redundant) 

information, such as non-English letters or symbols, and English redundant symbols 

and punctuation. POS tagging for each word in the resultant sentences is done in order 
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to tag the words with the parts of speech after the long sentences with more than 15 

words are eliminated because they are too long to be evaluated. Fig.5.1 shows the main 

block diagram of our proposed system of imperative sentence extraction. 

 

 

The main idea that we decided to identify and select the imperative sentences is 

detecting the main verb at the beginning of the sentence. This is implemented by 

detecting the POS tag of the first word in each sentence. If the POS tag of the first 

word denotes a verb and the verb is simple present, then the sentence is selected as an 

imperative. The resultant imperative sentences are placed in an SQL database in order 

to validate them and also as a part of the knowledge base of the conversational agent 

OFC. The implemented steps of imperative sentence extraction are shown in the flow 

diagram in fig.5.2. 

 

Web Spider 

 

Verb tense 

identification 

Text splitting 

and NLTK 

processing 

Text Pre-

processing 

The Web 

Buffer 

 

Sentence 

filtering 

Database 

Word splitting 

and POS tagging 

Verb tense 

classification 

Imperative 

sentence 

selection 

Fig. 5. 1: The main block diagram of Imperative sentence extraction 

from the web. 
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End 

Start 

Read the text already 

retrieved from the Web 

Encode the plain text to ASCII code 

 

Break the text down to sentences 

(sentence tokenize) 

Filter each sentence from redundant 

and non-English symbols 

Split a sentence into words    (word 

tokenization) 

POS tag each word in a sentence 

 

Select the Imperative Sentence 

 

Filter too long and too short 

sentences 

Imperative 

verb tense in 

the beginning 

of sentence? 

Yes 

No  

Place the results in a database 

 

Identify the verb tense in the 

sentence 

Fig. 5. 2: Implementation steps to process plain 

text and extract imperative sentences. 
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5.5 Evaluation 
 

In order to evaluate our proposed system, an experiment was needed. For this purpose, 

a subjective test experiment of two parts using human assessment was conducted. The 

first part of the experiment was to design and implement our proposed system of 

automatic extraction of imperative sentences from the web and then to evaluate it by 

human assessors. The second part was to adapt the system in [132] to our data set and 

implement it then evaluate it using human participants. The subjective assessment was 

used in order to validate the resultant imperative sentences from our proposed system 

and then compare our system with the comparative system in [132]. The number of 

the participants who joined the subjective test was 30 and they were divided into two 

groups: one to evaluate our system’s output and the other to evaluate the comparative 

system’s. 

Implementing the subjective test required us to prepare a subjective questionnaire that 

asked the users to score the relevance of the imperative sentences between 1 and 4 as: 

1. Totally unacceptable. 2. Unacceptable. 3. Acceptable 4. Strongly acceptable. The 

assessment is in terms of grammar, meaning, relation to the subject (David Beckham 

or football), and being imperative or not. This questionnaire form was used for both 

our and the comparative system. 

 

5.5.1 Experiment’s Evaluation Metrics 

 

After using the subjective test, the measurement metric used was the same as that used 

in unranked retrieved systems, which is Precision [14]. Precision was used to evaluate 

the results of the subjective assessment of the experiment in order to assess the 

accuracy of our system and to compare it with the comparative system. The same 

evaluation metric was used for both the proposed and the comparative system and the 

results are discussed in the following sections. Also, to justify the subjective evaluation 

results, average score, standard deviation, t-test, and p value were calculated for both 

our and comparative system’s using a Python program. 
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5.6 Experiment3 
 

Like the experiments in the previous chapters, this experiment began with thinking of 

the rules and the hypotheses needed to extract imperative sentences from a piece of 

text extracted from web pages (Wikipedia) using a web crawler. Then the resultant 

sentences were evaluated by subjective assessment and compared to a comparative 

system that was adapted to our dataset and evaluated using the same subjective test. 

The experiment was conducted with a group of participants who are PhD students in 

different research areas at the University of Essex. Then the evaluation data was 

collected using the following steps: 

1. Meeting each participant personally to explain the questionnaire to them and 

give them the questionnaire. 

2. Meeting the participants again to collect the completed questionnaire from 

them. 

3. Calculating the aggregate scores provided by them from the questionnaires. 

4. Using aggregate scores in a Python program prepared to calculate, classify, and 

plot the graphs of the results. 

 

5.6.1 Aim of Experiment 

 

The goal of this experiment is to evaluate our automatic imperative sentence extraction 

system for the OFC and compare it with the system in [132] when implementing the 

hypothesis proposed to design this system. Precision level assessment was also applied 

in order to measure the improvement that can be added by our system 

5.6.2 Experiment Participants 

 

This experiment, as in Chapter 3, was conducted with PhD students. These PhD 

students are from University of Essex and are specialised in different fields, such as 

computer science, electronic engineering, linguistics, and mathematical sciences. 

Around 40% of the judgers were native English speakers and the rest (60%) were non-

native English speakers.     
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The study included 30 participants (male, and female) distributed into two equal 

groups. The set of participants were chosen and then divided into groups depending 

on the theory of within and in between [137]. One of the two groups evaluated our 

system’s output and the other evaluated the output of the comparative system. Each 

participant filled in the questionnaire to allow us to measure the accuracy 

accomplished by our proposed system. The results were the aggregate scores of the 

participants’ responses across the questionnaire.  

 

5.6.3 Experiment Steps 

 

The experiment was executed through the following steps: 

1. The Python programming language was used to implement our proposed automatic 

extraction for imperative sentences. The program runs through stages for a single 

execution. These stages are: 

a) Collecting the needed plain text from the web and this plain text was 

extracted using a web crawler (Chapter 3 fig.3.4). The web crawler 

crawled the Wikipedia page of the famous football player David 

Beckham and acquired a list of URLs within this page. Then, the web 

crawler accessed 200 other pages and extracted the plain text from these 

pages using the extracted URLs from the main page. 

b) The extracted plain text was pre-processed in the second stage. The pre-

processing starts with filtering out undesired information such as extra 

punctuation, and non-English letters, non-English words, and non-

English symbols. Then the filtered text is split into individual sentences 

and then the sentences are split into single words.  

c) In this stage the imperative sentences were selected from the group of 

extracted sentences according to the hypothesis explained in Section 

5.3 above. The selection operation depends on detecting the verb tense 

in the beginning of the sentences. The verb detected in the beginning of 

the sentence should be simple present. 
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d) The resultant imperative sentences were saved in an SQLite database 

pre-prepared for the purpose of evaluation and to be used as part of the 

database of the OFC. 

2. Copying the imperative sentences saved in the SQLite database and putting 

them in a table of an evaluation form. 

3. Preparing the questionnaire for a subjective test including a table to clarify the 

idea and present the experiment results. 

4. Searching for the participants to do the subjective assessment and choosing 

them. The participants should be kind of experts and carefully selected. They 

are relatively familiar with the famous footballer David Beckham, football, 

sports, and the English language.  

5. Handing the questionnaire to the participants and explaining the experiment to 

every participant. After that, the completed questionnaire was collected from 

the participants. 

6. Precision was then calculated and saved to be compared with the comparative 

systems’. 

7. The same steps above were applied to the comparative system in [132] and the 

results are saved for the purpose of comparison with our system. 

8. Bar graphs were drawn for the precision values of our and comparative 

systems. The graphs are discussed in the following sections. 

9. For the purpose of validation of the subjective evaluation results, average 

score, standard deviation, t-test, and p value are calculated for both our and 

comparative systems’ using a Python program. 

 

5.7 Comparative System 
 

We named the comparative system in [132] ANLIS from Arabic Natural Language 

Interface System in the title of the paper and our system as AEIS from Automatic 

Extraction of Imperative Sentences. The system in ANLIS is described briefly as 

follows:  



117 
 

1. ANLIS parses and interprets Arabic natural language inputs, such as 

imperative sentences and questions.  

2. ANLIS applies context free grammar of Arabic language and morphology to 

analyse the input entries. 

3. ANLIS detects imperative sentences or clauses in user entries depending on 

the analysis tools used in 2 above. 

4. ANLIS extracts direct and indirect imperative sentences from user entries.  

5. ANLIS produces an SQL command according to the information extracted 

from the imperative sentences. 

6. ANLIS uses SQL commands to retrieve more suitable information from the 

Quran database. 

7. The approach in ANLIS allows the users to use natural language to search for 

the information they need. 

The system in ANLIS extracts the imperative sentences from computer inputs or user 

entries and uses free-context grammar to analyse the input sentences, whereas our 

system extracts imperative sentences from the web and uses the parts of speech tag 

approach to analyse the extracted sentences. These two points gave us the idea to 

compare ANLIS to our system. Although both systems detect imperative sentences, 

each uses a different approach to analysis, extraction, and application. 

The system in [132] has been adapted to the requirements of our system by making it 

extract direct imperative sentences only and by using the English language instead of 

an Arabic parser then implemented and evaluated with the same evaluation method 

used for our system, then a comparison was made between them. The results of the 

comparison are shown in the sections below.  

 

5.8 Experimental Results 
 

The input to our system AEIS is the text extracted from the Web pages associated with 

the main web page of the English footballer David Beckham and the output is a number 

of imperative sentences depending on the number of URLs used. We ran the program 

of AEIS 8 times in order to test the number of sentences obtained in the output in 
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relation to the number of the URLs used in the input to extract the plain text, and in 

order to find the optimum number of URLs that gives the optimum number of 

sentences. We used 1, 10, 50, 100, 200, 300, 400, and 500 URLs one value for each 

execution and we obtained the results as a graph shown in Fig.5.3. The graph shows 

that the number of output sentences increases rapidly as the number of URLs increases 

up to 400 then it decays at 500. We think that the pages start to repeat themselves after 

400 so the resultant sentences number no longer increases after 400 URLs. The results 

represented by fig.5.3 include repeated items and redundancy. The redundancy 

increases as the URLs number increases because some of the pages are repeated as the 

URLs number becomes higher.  

 

 

 

The filtered results graph is shown in fig.5.4 after removing the redundant and repeated 

outputs. The aim of testing AEIS with different numbers of input URLs is to find the 

optimum number in the output after filtering in order to prepare it for the subjective 

test. As a result, 200 URLs was found to be the optimum number to produce the 

Fig. 5. 3: Extracted data against number of web pages before filtering. 

 

Fig. 5. 5: Extracted data against number of web pages after 

filtering.Fig. 5. 6: Extracted data against number of web pages before 

filtering. 
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optimum output for the evaluation purpose because it gave us the minimum repetition 

in the results.  

 

 

So, the imperative sentences obtained from the plain text of 200 Web pages associated 

with David Beckham’s Wikipedia page were stored in an SQL database for evaluation. 

Forty output sentences were extracted from 200 URLs in AEIS and thirteen output 

sentences were extracted from the same number of URLs in ANLIS. Samples of the 

experimental results are shown in Table 5.1. 

Table 5. 1: Experimental results. 

No. Imperative Sentence 

1. Give that man a Knighthood. 

2. Give Me Football. 

3. Find out more about page archiving. 

4. Try our site map. 

5. Try again. 

6. Choose your language. 

Fig. 5. 4: Extracted data against number of web pages after filtering. 

 

Fig. 5. 7: Extracted data against number of web pages after filtering. 
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5.9 Evaluation Results 
 

A subjective test was used to evaluate the experiment results of our system AEIS and 

the experimental results of the comparative system ANLIS. A questionnaire was 

prepared for the purpose of evaluation of both AEIS and ANLIS in order to use them 

for human participants. Expert human participants were needed to evaluate our system. 

The participants should have knowledge about the footballer David Beckham and 

football as well as English language. We chose 30 participants to join our subjective 

assessment and the vast majority of these participants were PhD students from 

University of Essex in different research areas. The evaluation questionnaire was given 

to the participants after explaining to them what to do and how to select scores. The 

questionnaire was then collected from the participants and the aggregate scores were 

calculated.  

After finishing calculation of the data classes for both AEIS and ANLIS, we used a 

Python program to calculate the precision value for each part in each group of the two 

systems. Precision values were calculated for Grammar, Meaning, Relation to Subject, 

Imperative or not, and overall data groups in both AEIS and ANLIS. Precision 

calculation results were collected and saved then entered into a MATLAB program to 

produce comparative bar graphs for AEIS and ANLIS. The graphs are shown as 

follows: 

The bar graph in fig.5.5 illustrates the precision levels of Grammar and Meaning 

groups for both AEIS and ANLIS. The graph shows proximity between AEIS and 

ANLIS in Grammar with AEIS exceeding by 1 percentage point with 0.81 for AEIS 

and 0.80 for ANLIS. AEIS outperforms ANLIS in the Meaning group by 3 percentage 

points with 0.85 for AEIS and 0.82 for ANLIS. 
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The bar graph demonstrated in fig.5.6 is for precision levels of Relation to Subject, 

Imperative or not, and Overall groups for both AEIS and ANLIS. The graph reports 

exceeding by10 percentage points in the Relation to Subject group for ANLIS over 

AEIS with values of 0.67 for the former and 0.57 for the latter. AEIS beats ANLIS in 

the Imperative portion by 14 percentage points with 0.87 for the former and 0.73 for 

the latter. AEIS outperforms ANLIS in Overall precision by 5 percentage points with 

0.81 for AEIS and 0.76 for ANLIS. 

Fig. 5. 5: Precision comparison between AEIS and ANLIS (Grammar 

and Meaning) 
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Overall, recorded values of precision show that our system outperforms the 

comparative system by 5 percentage points. Also, according to the results, the portion 

of Imperative sentences in the output data in our proposed system is larger than the 

portion of Imperative sentences in the output data of the comparative system. 

To validate the subjective evaluation results, average score, standard deviation, t-test, 

and p value for both our and comparative systems’ were calculated using a Python 

program and the results are shown in Table 5.2. The t-test was calculated using the 

same relation for independent samples in Chapter 3 Section 3.10 [138] [139]: 

The statistical values mentioned above were calculated for the groups Grammar, 

Meaning, Relation to Subject, and Imperative or not. The results show significance in 

the t-test for our system from the value of p in the Grammar, and Imperative or not 

groups and a value near significance in the Meaning group. Also, the comparative 

system obtained a value near significance in Relation to Subject. 

 

Fig. 5. 6: Precision comparison between AEIS and ANLIS (Relation 

to Subject, Imperative, and Overall). 
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Table 5. 2: The results of statistical calculations for subjective assessment evaluation for AEIS and ANLIS.  

 

Statistics Grammar 

 

Meaning Relation to Subject Imperative or not 

 

 AEIS ANLIS AEIS ANLIS AEIS ANLIS AEIS ANLIS 

 

Average 

 

3.4598 3.1778 3.5280 3.2893 2.9682 2.7298 3.0990 3.3900 

Standard 

deviation 

0.6210 0.6557 0.4945 0.6142 0.5042 0.6200 0.5927 0.6649 

T-test 

 

1.9626 1.8907 -1.8637 2.0401 

P value 0.0532 0.0625 0.0663 0.0447 
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5.10 Conclusion 
 

In this chapter, a system for automatic extraction of imperative sentences from the web 

pages was described. Thousands of sentences were extracted from 200 Web pages 

related to the Wikipedia page of the well-known footballer David Beckham. Pr-

processing and filtering was done for the extracted text to be the data set of the 

proposed system. NLTK-POS tagger and the type of verb tenses were used to identify 

and select the imperative sentences from the extracted set of sentences. The resultant 

sentences were saved in an SQL database to be used as part of the knowledge base of 

the OFC Chatbot and for the evaluation purpose. The results were evaluated using a 

subjective test and compared with a comparative system. The evaluation results show 

that our system’s performance outperforms the comparative system. In addition, our 

system’s Imperative sentence percentage to overall output data is higher than the 

comparative system’s. Two main contributions were obtained in this chapter. First, we 

enriched our Chatbot OFC knowledge base by extracting more useful information 

from the web. The second main contribution is the automatic extraction of imperative 

sentences from the web using verb tense type and POS tag.  
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   Chapter Six 

6 Implementation of Online Feedable 

Chatbot 

 

6.1 Introduction 
 

The rapid growth in commercial conversational agents’ prevalence has led to an 

upsurge in research in terms of natural language understanding and machine learning 

for conversational systems. Chatbot development has been fairly well studied since 

Turing proposed his Imitation Game (TIG) [33, 161]. The Chatbot idea originated with 

the first Chatbot named ELIZA, which was built to demonstrate natural language 

conversation between human and computer [40]; then ALICE was another milestone 

[162]. The Loebner Prize and The Chatbot Challenge are annual competitions that 

have their roots in TIG [6]. Conversation is a special form of interaction that follows 

social conventions, and the purpose of building a Chatbot system is to simulate a 

human conversation [6, 163]. The Chatbot architecture combines computational 

algorithms and a language model to emulate chat communication between a computer 

and a human user using natural language [6, 164].  

There are many challenges in the context of a conversation and these challenges are 

getting bigger when people try to create conversations with machines. Some of these 

challenges are associated with the ways of chatting (Dialogue manager) and others are 

related to the information (knowledge base) [165]. Trying to work on improvements 

in both directions is the challenge of our work.  

In this chapter, we present the implementation of our proposed Chatbot. We built the 

platform of the OFC in order to test the consistency in work between the Chatbot 

manager and the SQL database prepared and populated using the approaches explained 

in the previous chapters. The implemented Chatbot is evaluated using humans in an 

experiment. We recruited 26 participants to implement our assessment experiment as 
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a conversational session per each participant. The evaluation results reveal reasonable 

accuracy and acceptability in accordance with human assessment. 

 

6.2 Chatbot Architecture 
 

Most of the first Chatbot toolkits’ design and development in the initial period of chat 

implicitly consider that an utterance from the user is followed by an utterance from the 

Chatbot [163]. 

There are basically three types of architecture for building conversational systems:  

1. A totally rule-oriented architecture provides a manually coded reply for each 

utterance as in classical examples of rule-based Chatbots, such as Eliza, and 

Parry [134]. Eliza can also extract a number of words from sentences to create 

another sentence using these words according to their syntactic functions. Eliza 

was a rule-based idea with no reasoning. 

2. A totally data-oriented architecture, in contrast to rule-oriented architectures, 

depends on learning patterns from samples of dialogues to recreate the 

behaviour of the interaction that is observed in the data. This kind of learning 

can be implemented using a machine learning approach, or by extracting rules 

from data instead of coding them manually. Different technologies can be used 

to build this kind of architecture, such as classical information retrieval 

algorithms, Hidden Markov Models (HMM), and neural networks. Example 

Chatbots are: Tay, which was a Chatbot developed by Microsoft to interact 

with teenagers on Twitter, Xiaoice2 in China, and Rinna3 in Japan [134].   

3. A mix of a rules and a data-oriented architecture as in the model of learning in 

the current ALICE [163] [166] , which is an incremental or/and interactive 

learning since the developers  monitor the robot’s conversations and create new 

AIML content to make the responses more accurate, believable, or human  

[163] [167].  

The architecture of the Chatbot proposed in our work depends on simple rules to build 

the chat. The novel idea of developing the chat and expanding or updating the 

information depends on its ability to access the information on the web. Our Chatbot 
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also has the ability to update the information whenever the user desires that without 

any human control or interference. 

A general block diagram of a spoken language Chatbot architecture is shown in fig.6.1 

below. The diagram shows the stages that the user’s voice passes through in order to 

obtain the eventual response to a query. The input speech query passes through the 

Automatic Speech Recognition (ASR) tool in order to convert voice speech to text, 

which is processed using Natural Language Processing (NLP). The dialogue manager 

analyses the query according to the analysis system of a Chatbot and then accesses the 

knowledge base of the Chatbot to prepare the matching response answer depending on 

the query analysis. Then, the target response answer is generated and converted from 

text to speech to be delivered to the user. 

 

6.3 Our Chatbot (OFC) 
 

The basic idea of our Chatbot, OFC is that the Chatbot knowledge base is empty until 

the user decides or chooses the figure or the object they need information about. After 

that, the OFC starts to access the Web pages corresponding to the figure or the object 

chosen. The OFC uses a web crawler to extract the text in the Wikipedia page 

User 

Fig. 6. 1: A general block diagram of a Chatbot architecture 

 

Fig. 6. 2: A general block diagram of a Chatbot architecture 
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associated with the chosen figure or object and a number of pages related to that page. 

The OFC then uses the techniques proposed to process the extracted plain text to 

automatically generate QAPs from the set of sentences extracted from the plain text. 

The database of the OFC is populated with tens of concentrated QAPs about the 

desired figure of object in a few hours. Then, a Chatbot with a totally new subject is 

initialised. The database of this Chatbot is extendable and accumulative according to 

the demand to learn from the user. The core of our Chatbot architecture is the link 

between the internet and the Chatbot database through the dialogue manager because 

this is the path of feeding the Chatbot with the chatting knowledge and this is the 

meaning of “Online Feedable”. The OFC also contains another source of information 

which is the Canned Responses database that is relatively static and connected to the 

dialogue manager. The Canned Responses database is used by the OFC for greetings 

and other simple conversational queries and also when no answers are found for a 

query. In the future, we will extract all the information in the canned responses from 

the web to make the Chatbot training fully automated. The block diagram of our 

Chatbot is shown in fig.6.2 below. 

 

User 

Internet 

Fig. 6. 2: A block diagram of our OFC chatbot. 
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6.4 Implementing Our Chatbot 
 

We implemented the first stage of our Chatbot using the Python programming 

language. The main parts of chatting, such as ASR, natural language understanding, 

dialogue management, and the answer selection stage, are coded using Python. Natural 

language processing for the user query is implemented using NLTK, and Microsoft 

Speech recogniser is used for Speech To Text (STT) and Text To Speech (TTS) 

operations. SQLite is used to build, update and populate the database of our Chatbot. 

The chatting process starts when the user pops a query through the microphone or texts 

a message into the Chatbot input. If the query is greetings or any conversational (not 

informative or pedagogical) speech, the dialogue manager goes to the canned 

responses database. If the query is not a greeting or conversational, the dialogue 

manager goes to the SQLite database to search for the response. If the dialogue 

manager does not find the response in the SQLite database, it responds to the query 

from the Canned Responses database of No Answers. The Chatbot keeps chatting until 

the user says any quitting query, such as goodbye, see you later, quit, or exit. The flow 

diagram of our implemented Chatbot OFC is shown in fig.6.3. 
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Yes 

Yes 

No 

No 

No 

Fig. 6. 3: The flow diagram of our implemented Chatbot OFC. 
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An example of discourse analysis in our Chatbot OFC for speech act classes is 

shown in Table 6.1. 

Table 6. 1: OFC Specific Speech Acts Classes. 

Speech Act Example 

Query Greetings  Hello 

Chatbot Greetings  Hi 

Query Conversational  How are you doing? 

Chatbot 

Conversational  

I’m fine. 

Query Definition  Who is David Beckham? 

Chatbot Inform 

Definition  

He is the first English player to win league titles in four 

countries England Spain the United States and France. 

Query News What did Beckham say? 

Chatbot Inform News  Beckham said I am honoured and privileged to receive 

this recognition. 

Query information How many years did David spend playing football? 

Chatbot Inform 

Information 

David spent at least 20 years playing football. 

Query information Can you tell me the weather? 

Chatbot No Answer Sorry I didn’t understand what you said 

Query bye See you later. 

Chatbot bye See you soon. 

 

 

6.5 Evaluation 
 

Our proposed Chatbot, like any other Chatbots, needs implementation in order to apply 

the rules that have been placed to design it. The Chatbot performance also needs 

evaluation after implementation. As the Chatbot’s job is to hold conversations with 

people, the most appropriate evaluator for it could be the human. An experiment has 

been conducted to implement and evaluate the first stage of our proposed Chatbot. The 
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experiment was in two stages: the first stage was to implement the Chatbot platform 

using the Python language, and the second stage was the evaluation stage. To evaluate 

our Chatbot, we used subjective assessment by using human participants. The 

subjective assessment was conducted in order to measure the performance of our 

system from the users’ point of view. The number of participants was 26 and a 

conversational session was held with each participant in order to allow them to assess 

the output responses to their conversational queries. An experimental sheet with 7 

queries was prepared with 4 evaluation questions directed to the participant for each 

query and the answer should be either yes or no. At the end of the query, there was 

another question of Chatbot humanness and the answer should be one of three options: 

yes, kind of, and no. 

 

6.5.1 Evaluation Metrics 

 

Evaluation metrics of a Chatbot depend on the challenges that the evaluated Chatbot 

is built for. The challenges that are promised to be solved by our Chatbot are: 

producing reasonably accurate responses from the information extracted from the 

internet, presenting useful educational or pedagogical information about the subject 

the user needs to learn, and providing acceptable conversational responses. 

In order to measure the quality of each response, we tried to classify responses 

according to an independent human evaluation of accuracy, effect, and whether the 

information provided matched the question and was correct, acceptable, and useful 

[37] [6]. The answer to each of the evaluation class questions is either yes or no. We 

also measure the humanness of the Chatbot by placing a question about that at the end 

of the query sheet [40]. The answer to the question of humanness classification class 

is one of the three answers: yes, no, or kind of. 

 

6.6 Experiment4 
 

Experiment4 started with configuring the algorithm and the flow diagram of 

implementing our Chatbot OFC program. After that the code of the OFC was written 
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in the Python programming language. The experimental sheet was prepared for the 

purpose of subjective evaluation. The experiment was conducted with a set of 

participants who are mostly students in the University of Essex. The experimental 

evaluation data were collected by doing the following. 

1. Meeting each participant and asking them about the possibility of participating 

in our experiment. 

2. Meeting each participant again in a lab to do the experiment. 

3. Handing each participant the experimental sheet and explaining to them how 

to evaluate the chatting process. 

4. Starting the conversational session for the participants one by one and the 

filling in of the experimental sheet by the participant. 

5. Ending the conversational session and collecting the sheet from the participant. 

6. Calculating the aggregate scores given by the participants after completing all 

the assigned sessions. 

 

6.6.1 Aim of Experiment 

 

The aim of this experiment was to implement the first stage and evaluate the 

performance of our proposed OFC and the quality of its responses. The evaluation was 

made in the users’ point of view and the aggregate scores of the users’ assessment 

were calculated in percentage values. 

 

6.6.2 Experiment Participants 

 

The experiment was conducted with students from the University of Essex. These 

participants are undergraduate and postgraduate students in different disciplines. 

The study included 26 participants of both genders (male and female). The participants 

were around 47% native speakers and the rest (53%) were non-native. Each participant 

did the experiment by holding a conversational session with the OFC and then 

assessing the response answers according to an experimental sheet prepared for this 

purpose. 
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6.6.3 Experiment Steps 

 

The experiment was run through the following steps: 

1. The Python programming language was used to write the code of our proposed 

Chatbot OFC. The program runs to do the following activities.  

 Posting a greeting at the beginning and then introducing itself as a 

Chatbot for answering questions about the footballer David Beckham 

and as a tutor Chatbot, it can tell you facts about the person it gives 

information about. 

 Asking the user their name, and when the user gives their name, OFC 

greets the user by their name. 

 Offering help by asking how it can help the user. 

 Replying to greetings. 

 Answering the questions to which it has the answers. 

 Apologising if the answer is not available. 

 Quitting when the user wants; otherwise it continues chatting. 

2. Preparing the experimental sheet for the evaluation stage. The experimental 

sheet includes 7 user queries, 6 of them are put by the authors and one by the 

user. The user is requested to put a question or more on the experimental sheet. 

The evaluation fields include evaluation metrics from the users’ point of view 

in terms of matching the question, correctness, acceptability, and usefulness of 

the Chatbot responses. The users assess either by replying yes or no to each of 

these four attributes. A fifth evaluation attribute was also written at the bottom 

of the experimental sheet which is about the assessed Chatbots’ humanness, and 

the answer should be one of the options: yes, no, and kind of. 

3. The experimental participants were selected and invited to do an experiment 

for the purpose of evaluation. Twenty six undergraduate and postgraduate 

students from the University of Essex were recruited as experimental 

participants. 

4. The experiment was carried out by holding conversational sessions between 

the participants and the Chatbot. The participants used the experimental sheets 

to ask the OFC queries and assess the Chatbot responses. 
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5. The experimental conversational sessions were completed and the 

experimental sheets were collected. 

6. The evaluation scores were calculated manually by aggregating the scores 

recorded in all the experimental sheets and then the results were tabulated and 

shown in the experimental results section.  

 

6.6.4 Experimental Results 

 

Samples of experimental conversational sessions are shown in fig.6.4 and fig.6.5. 

These samples are selected randomly from the snap pictures taken for the 

conversational sessions on the Python shell during the experiment run. The picture of 

Fig.6.4 shows the conversational session of the OFC with User5, which was the name 

given on the experimental sheet to the participant.  
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The picture shown in fig.6.5 shows the conversational session on Python shell between 

User23 and the OFC. 

 

Fig. 6. 4: A user session in our experiment on Python 2.7.10 execution 

shell. 
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The experimental queries were categorised into five categories. Each category 

included a number of queries distributed all over the experimental sheets. The query 

category and the number of queries for each category are shown in Table 6.2 below.  

Table 6. 2: Query categories used in the experimental sheet. 

Query Category Number of Queries 

Greetings 26 

Friendly conversational 26 

Informative, Definition, and 

Pedagogical 

104 

Quit 26 

 

In the evaluation results calculation, we merged the categories Greetings, Friendly 

conversational queries, and Quit queries under Conversational queries and 

Informative, Definition, and Pedagogical queries under Informative and Pedagogical. 

After collecting the subjective assessment results of the experiment, they are tabulated 

in table 6.3 below.  

Fig. 6. 5: A sample of an experimental user session for one participant. 
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Table 6. 3: Experimental evaluation results according to human assessment. 

Category Quality 

Attribute 

Metric  Conversational Informative 

and 

Pedagogical 

 

Accuracy 

Response answer 

match the query. 

% of Queries 

Success. 

75% 64% 

Response answer 

correct. 

% of Queries 

Success. 

75% 51% 

Affect  Response 

Acceptable. 

% of Queries 

Success. 

74.7% 67% 

Information 

Provided 

Response answer 

Useful. 

% of Queries 

Success. 

32% 49% 

Humanness Does it respond 

like human? 

% of users who 

classify. 

88% 

 

The evaluation results in Table 6.3 show that our OFC has an overall 69.5% match 

between queries and answers, overall 73.5% correct response answers, overall 70.85% 

acceptable responses, overall 40.5% useful response answers, and 88% humanness, all 

according to user assessment.    

 

6.7 Conclusion 
 

In this chapter, we presented the implementation of our proposed OFC. We built the 

platform of our Chatbot in order to test the accuracy, acceptability, and usefulness of 

our Chatbot’s responses to queries. The humanness of the proposed Chatbot was also 

tested. The implemented Chatbot was evaluated using a subjective assessment 

experiment. We used 26 participants to implement our assessment experiment as a 

conversational session per each participant. The evaluation results show reasonable 

accuracy, and acceptability and 88% of humanness according to human assessment.  
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   Chapter Seven 

7 Conclusions 
 

7.1 Summary 
 

This thesis focuses on the design and implementation of a tutor Chatbot that has 

information of an entity that it can answer questions about. This Chatbot is capable of 

retrieving information about the entity from the web to populate its SQL database. Our 

Online Feedable Chatbot (OFC) can hold a conversation with a user and answer 

questions about the information it extracted from the web. Our Chatbot can update or 

amend its accumulative database without any interference from any instructor or 

administrator. New approaches are presented to generate questions and to extract 

imperative sentences from sentences that are extracted from Wikipedia and filtered 

from the HTML code and redundant information. Named entity and verb tense type 

are used to carefully select the factual sentences and then generate the QAPs using the 

targeted sentences. Moreover, verb tense and POS tag techniques are used to select 

and extract imperative sentences from the same dataset as the QAPs generated. A type 

of QA system was developed to find the best response for a Chatbot query among a 

set of sentences using hybrid term, syntactic, and semantic extracted features. 

Jaccard’s coefficient and cosine similarity are used for term features, POS tags are 

used for syntactic ones, and named entity and semantic cosine similarity are used for 

semantic features extraction. The sentences dataset is acquired from the same source 

as for the QAP and the imperative sentences. This response search method is planned 

to be used as the search model used by our Chatbot’s dialogue manager in order to find 

the best answers for a query in its database or from online. Comparative systems were 

adapted to our systems and datasets in order to be compared with our implemented 

systems. The QG and imperative sentence extraction systems were evaluated using 

human assessment and compared with the adapted comparative systems. The QA 

system was also evaluated and compared to a comparative system adapted to our 

system for this purpose. Our OFC invented QA dataset and Stanford QA data set were 

used to test our QA system and to produce the output data for evaluation purposes.  
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The proposed Chatbot was implemented and assessed by the users using a subjective 

assessment.  

The experimental results show that our designed Chatbot OFC can hold a simple 

conversation with a user and answer the users’ questions on the figure or the object it 

contains information about. In addition, the OFC can populate its database from the 

Wikipedia and it can update its database every time a user request without any 

interference from any instructor or controller. Our Chatbot populates its database by 

generating QAPs from the plain text it extracts from Wikipedia. Moreover, the OFC 

extracts imperative sentences from the same retrieved text from Wikipedia. The QA 

system was not implemented with the OFC and left for future work. The results of all 

the implemented systems are illustrated and show that our systems outperform the 

comparative systems in all the modelled proposals we presented in chapters 3, 4, and 

5.  

 

7.2 Limitations in This Work 
 

One of the limitations in this work is using human assessment, as it depends on the 

individual’s opinion which is related to different circumstances and variables like the 

participant’s mood. That could affect the human’s decision and consequently the 

assessment results.  

Using Wikipedia pages as the only source of information from the web is a weakness 

as well. Moreover, the use of simple heuristics for generating questions constrains the 

quality and the quantity of the generated questions. The narrow types of questions 

which depend only on the subject and verb tense also limit the work outputs of chapter 

3. 

Using only a few number of data sets to evaluate our implemented systems is another 

limitation in this work since it gives results restricted to these data sets.  

Another issue is in the software and the programming languages used in the 

implementation part that could cause errors in output results (as explained in section 

3.5 Source of Error).  
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7.3 Future Work 
 

Design and implementation of our Chatbot needs a huge amount of work; from 

building and populating the knowledge base through the process of developing 

appropriate methods for this purpose; finding the best way to select a response to a 

query; implementing the Chatbot and using humans to evaluate the system and then 

using the feedback of the users to enhance the system. The first stage of our Chatbot 

has been implemented and evaluated. In this section the next stages of our Chatbot 

design and improvement are explained as follows: 

Online Feedable Chatbot. In the next stage of our Chatbot, we plan to add the 

following enhancements: 

1. Using the QA system presented in Chapter 4 as an answer selection method in 

our Chatbot’s dialogue manager. We also plan to use the same response search 

system to search for responses online after reducing the processing time. 

2. Expanding the QAPs database of our Chatbot via adding more categorising to 

the database by dividing the information into genres of subjects about the entity 

or entities it answers questions about. 

3. Converting the tenses in the QAPs from third person to first person in order to 

satisfy the simulation proposal in this thesis. 

4. Increasing the OFC’s chatting abilities by automatically extracting more 

conversational sentences from the web to expand its conversational database 

and by adding more methods to make the dialogue more natural. 

5. Expanding the conversational database by extracting sentiment sentences from 

the web which could help in adding more naturalism to the conversations. 

 

Automatic Question Generation System.  

1. New methods for factual question generation from a sentence are planned to 

use in order to expand the QAPs database. Object related factual, subject 
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related are extracted in this work, questions are intended to be generated using 

novel methods. 

2. Generating new types of questions like interpretive or evaluative questions to 

support the tutoring idea.  

 

QA System. We are intending to enhance the search strategy of our proposed QA 

system by trying more feature extraction methods. Variance feature extraction 

approaches such as Euclidean, or Manhattan distance features may be used in the 

future to extract term features.  

 

Imperative Sentence Extraction.  

1. The extracted imperative sentences are planned to be used in the future to 

generate actionable activities that help the user to access and use applications 

slightly more easily by using some conversational utterances such as 

commands as the conversation is carrying on.  

2.  We have an idea to add more actions to Chatbot activities by using normal 

conversation to extract indirect imperative words; then to use these words to 

control applications and software on the computer. This could help by adding 

more actions to a Chatbot’s work rather than using specific commands to 

perform specific tasks. 
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