
An Investigation on Question Answering for

an Online Feedable Chatbot

Sameera A’amer Abdul-Kader
Department of Computer Science and Electronic Engineering

University of Essex

A thesis submitted for the degree of

Doctor of Philosophy in Computing and Electronic Systems

November, 2017

ii

iii

I would like to dedicate this thesis to

my family

iv

Acknowledgements

First, I would like to address my sincerest thanks to my supervisor Dr.

John Woods, who supported and guided me through my PhD journey, his

helpful guidance, advice, humanity, and care.

I also would like to thank the Ministry of Higher Education and Scientific

Research (MOHESR) in Iraq for offering me a scholarship, which helped

me to undertake my PhD degree.

I’d also like to thank my colleagues and friends at the School of Computer

Science and Electronic Engineering, University of Essex for their help and

support. Special thanks to my colleagues and friends Mrs. Thabat Thabet,

Mrs. Maysa Almulla Khalaf, Miss. Nora Alkhamees, Mrs. Rabab Al-

Zaidi, Mr. Mohammed Al-Khalidi and Dr. Abdullah Almuhaimeed for

their endless support and advice.

Last but not least, I would like to express my gratitude to my family, my

parents, and my husband Ali for their endless trust, support,

encouragement and love, as well as critique and advice whenever I was

lost or helpless in this journey.

v

Abstract

This thesis presents the design and implementation of a Chatbot that is able to answer

questions about an entity it is learning about. This Chatbot is capable of automatically

generating multiple genres using a unique technique to populate its SQL database from

the Web. Our Online Feedable Chatbot can hold a conversation with the user regarding

the information it has extracted from the Web. Our Online Feedable Chatbot attempts

to create Question Answer pairs (QAPs) and acquire imperative sentences specially

targeted at the entity it gives information about. A method to select the best response

for a Chatbot query among a set of sentences using hybrid terms, syntactic, and

semantic extracted features is developed as a response search system of our Online

Feedable Chatbot. This tutor Chatbot can expand its training knowledge base by

automatically extracting more QAPs and imperative sentences from the Web

whenever the user needs to learn about a new entity and without any instructor's

supervision, amendments, or control.

vi

Contents

Contents vi

List of Figures x

List of Tables xii

1 Introduction .. 1

1.1 Introduction .. 1

1.2 Motivation .. 3

1.3 Research Objectives ... 5

1.3.1 Online Feedable Chatbot ... 5

1.3.2 Automatic Question Generation .. 5

1.3.3 Question Answer System ... 6

1.3.4 Imperative Sentence Extraction ... 6

1.4 Contributions .. 7

1.5 Thesis Outlines ... 9

1.6 Publications .. 11

2 Background ... 12

2.1 Introduction .. 12

2.2 Important Concepts .. 13

2.2.1 Human Computer Speech Interaction .. 13

2.2.2 Chatbot Strategies .. 16

2.2.3 Chatbot as Part of Dialogue Systems ... 18

2.2.4 Chatbot Fundamental Design Techniques and Approaches 20

2.2.5 SQL .. 22

2.2.6 Named Entity ... 22

2.2.7 Question Answering .. 24

2.2.8 Part of Speech Tags ... 26

2.2.9 Semantic Role Labels .. 27

2.2.10 Word Embedding ... 27

2.2.11 Natural Language ToolKit (NLTK) ... 28

2.2.12 Machine Learning .. 28

vii

2.2.13 Artificial Neural Networks (ANNs) .. 29

2.3 Literature Review ... 30

2.3.1 Online Feedable Chatbot ... 31

2.3.2 Tutor Chatbots ... 33

2.3.3 Question Answer Systems ... 36

2.3.4 Automatic Question Generation System .. 40

2.3.5 Extracting Imperative Sentences ... 44

2.3.6 Implementation of the OFC ... 45

3 Automatic Web-based Question Answer Database Generation for

Online Feedable Chatbot .. 47

3.1 Introduction .. 47

3.2 Sentence Hypothesis .. 48

3.2.1 Syntactic Analysis for the Sentence ... 49

3.3 Question Hypothesis .. 50

3.4 Source of Error ... 52

3.5 The Proposed System ... 53

3.6 SQLite Database ... 59

3.7 Evaluation .. 59

3.7.1 Evaluation Metrics ... 60

3.7.2 Experiment1 ... 60

3.7.3 Aim of Experiment .. 61

3.7.4 Experiment Participants ... 61

3.7.5 Experiment Steps ... 62

3.7.6 Outputs of Our System .. 63

3.8 Comparative System .. 65

3.8.1 Comparative System’s Experimental Results 67

3.9 Evaluation Results .. 68

3.10 Conclusions .. 77

4 Question Answer System for Online Feedable Chatbot 78

4.1 Introduction .. 78

4.2 Query and Features .. 79

4.2.1 Query ... 79

4.2.2 Feature Extraction .. 80

viii

4.2.3 Feature Selection .. 80

4.3 Term Match .. 80

4.3.1 Similarity Measurement Methods .. 81

4.3.2 Jaccard’s Coefficient .. 81

4.3.3 Cosine Similarity ... 82

4.4 NLP Match (Syntactic Analysis) ... 83

4.5 Semantic Similarity .. 84

4.5.1 Named Entity ... 85

4.5.2 Semantic Cosine Similarity ... 86

4.6 Maximum Percentage of Match ... 86

4.7 The Proposed System ... 87

4.8 Evaluation .. 90

4.8.1 Experiment’s Evaluation Metrics .. 90

4.8.2 Experiment2 ... 91

4.8.3 Experiment Goal .. 91

4.8.4 Experiment Requirements .. 92

4.8.5 Experiment Steps ... 92

4.9 Comparative System .. 94

4.10 Experimental Results ... 96

4.11 Evaluation Results .. 98

4.12 Conclusion.. 105

5 Automatic Extraction of Imperative Sentences from the Web for

Online Feedable Chatbot .. 107

5.1 Introduction .. 107

5.2 Imperative Sentence ... 108

5.3 Imperative Sentence Identification .. 109

5.3.1 Syntactic Analysis for the Sentence ... 109

5.4 The Proposed System ... 110

5.5 Evaluation .. 113

5.5.1 Experiment’s Evaluation Metrics .. 113

5.6 Experiment3 ... 114

5.6.1 Aim of Experiment .. 114

5.6.2 Experiment Participants ... 114

5.6.3 Experiment Steps ... 115

ix

5.7 Comparative System .. 116

5.8 Experimental Results ... 117

5.9 Evaluation Results .. 120

5.10 Conclusion.. 124

6 Implementation of Online Feedable Chatbot 125

6.1 Introduction .. 125

6.2 Chatbot Architecture .. 126

6.3 Our Chatbot (OFC) .. 127

6.4 Implementing Our Chatbot .. 129

6.5 Evaluation .. 131

6.5.1 Evaluation Metrics ... 132

6.6 Experiment4 ... 132

6.6.1 Aim of Experiment .. 133

6.6.2 Experiment Participants ... 133

6.6.3 Experiment Steps ... 134

6.6.4 Experimental Results ... 135

6.7 Conclusion.. 138

7 Conclusions ... 139

7.1 Summary .. 139

7.2 Limitations in This Work ... 140

7.3 Future Work ... 141

Bibliography .. 143

x

List of Figures

Fig. 1. 1: A general block diagram of a spoken dialogue system. 2

Fig. 2. 1: The stage of speech recognition and converting to text. 14

Fig. 2. 2: The stage of text processing. .. 14

Fig. 2. 3: The stage of response and action taking ... 15

Fig. 2. 4: The main steps of analysis and processing to perform human computer

conversation. 26

Fig. 2. 5: Components of Chatbot. ... 17

Fig. 2. 6: Dialogue systems types and their relations to each other. 19

Fig. 2. 7: Entity Name classes as in the NLTK_NE library....................................... 24

Fig. 3. 1: Factual sentence analysis relating to verb tense. .. 50

Fig. 3. 2: The analysis of 'Wh' factual questions with regard to verb tense and named

entity type. ... 52

Fig. 3. 4: The implemented web crawler. .. 56

Fig. 3. 5: The implemented steps to treat plain text to generate questions from

sentences and produce QA pairs. 58

Fig. 3. 6: The analysis of GNLQ question templates adapted to our system for

comparison. .. 67

Fig. 3. 7: Precision comparison between AWQDG and GNLQ (is and are group). .. 69

Fig. 3. 8: Precision comparison between AWQDG and GNLQ (simple past group). 70

Fig. 3. 9: Precision comparison between AWQDG and GNLQ (simple present

group). .. 71

Fig. 3. 10: Precision comparison between AWQDG and GNLQ (was and were

group). .. 72

Fig. 3. 11: Precision comparison between AWQDG and GNLQ (overall of the four

groups). .. 73

Fig. 3. 12: Precision comparison between AWQDG and GNLQ (overall of

Questions, Answers, QA match). ... 74

Fig. 4. 1: A block diagram for the proposed system. ... 88

Fig. 4. 2: A flow diagram of the implemented system. ... 89

file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417211
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417212
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417213
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417214
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417215
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417216
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417220
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417222
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417224
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417224
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417226
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417231
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417231
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417236
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417237
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417238
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417238
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417239
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417239
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417240
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417240
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417241
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417241
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417248
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417249

xi

Fig. 4. 3: Precision@10-Recall graph for evaluation of the four experimental data

groups and the comparative system (using our OFC data set). 98

Fig. 4. 4: Precision@20-Recall graph for evaluation of the four experimental data

groups and the comparative system (using our OFC data set). 99

Fig. 4. 5: Precision@10-Recall graph for evaluation of the four experimental data

groups and the comparative system (using SQuAD data set). 100

Fig. 4. 6: Precision@20-Recall graph for evaluation of the four experimental data

groups and the comparative system (using SQuAD data set). 101

Fig. 4. 7: MAP values graph for evaluation of the four experimental data groups and

the comparative system (using our OFC data set). .. 102

Fig. 4. 8: MAP values graph for evaluation of the four experimental data groups and

the comparative system (using SQuAD data set). ... 102

Fig. 4. 9: MRR values graph for evaluation of the four experimental data groups and

the comparative system (using our OFC data set). .. 103

Fig. 4. 10: MRR values graph for evaluation of the four experimental data groups

and the comparative system (using SQuAD data set) .. 104

Fig. 4. 11: Overall MAP values graph for evaluation of the four experimental data

groups and the comparative system. .. 104

Fig. 4. 12: Overall MRR values graph for evaluation of the four experimental data

groups and the comparative system. .. 105

Fig. 5. 1: The main block diagram of Imperative sentence extraction from the web.

 ... 111

Fig. 5. 2: Implementation steps to process plain text and extract imperative sentences.

 ... 112

Fig. 5. 3: Extracted data against number of web pages before filtering. 118

Fig. 5. 4: Extracted data against number of web pages after filtering. 119

Fig. 5. 5: Precision comparison between AEIS and ANLIS (Grammar and Meaning)

 121

Fig. 5. 6: Precision comparison between AEIS and ANLIS (Relation to Subject,

Imperative, and Overall) 122

Fig. 6. 1: A general block diagram of a Chatbot architecture 127

Fig. 6. 2: A block diagram of our OFC chatbot. .. 128

file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417251
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417251
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417252
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417252
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417253
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417253
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417254
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417254
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417255
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417255
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417256
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417256
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417257
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417257
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417258
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417258
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417259
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417259
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417260
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417260
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417261
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417261
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417262
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417262
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417263
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417264
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417267
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417268

xii

Fig. 6. 3: The flow diagram of our implemented Chatbot OFC. 130

Fig. 6. 4: A user session in our experiment on Python 2.7.10 execution shell. 136

Fig. 6. 5: A sample of an experimental user session for one participant. 137

List of Tables

Table 3. 1: Is and are QA group examples of AWQDG. ... 63

Table 3. 2: Simple past QA group examples AWQDG. .. 64

Table 3. 3: Simple present QA group examples AWQDG. 64

Table 3. 4: Was and were group examples AWQDG. ... 64

Table 3. 5: Is and are QA group examples of GNLQ. ... 67

Table 3. 6: Simple past QA group examples of GNLQ. .. 68

Table 3. 7: Simple present QA group examples of GNLQ. 68

Table 3. 8: Was and were group of GNLQ. ... 68

Table 3. 9: The results of statistical calculations for subjective assessment evaluation

for both AWQDG and GNLQ. .. 76

Table 4. 1: Examples of Experimental results. .. 97

Table 5. 1: Experimental results. ... 119

Table 5. 2: The results of statistical calculations for subjective assessment evaluation

for AEIS and ANLIS. .. 123

Table 6. 1: OFC Specific Speech Acts Classes. ... 131

Table 6. 2: Query categories used in the experimental sheet. 137

Table 6. 3: Experimental evaluation results according to human assessment. 138

file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417269
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417271
file:///C:/Users/user/Dropbox/Thesis/Sameera_Abdul-Kader_Thesis.docx%23_Toc528417272

1

 Chapter One

1 Introduction

1.1 Introduction

Commercial conversational agents have given a boost to the research area of

Conversational Agents. Computer based chat systems have become one of the most

common communication models used in the modern world [1]. Therefore, there are

numerous chat systems available worldwide [1, 2]. Chatbots have been used in various

scenarios for getting people interested in different subject areas for decades [2].

However, their ability to teach basic concepts and their engaging effect have not been

measured [3, 4].

The World Wide Web (WWW) has developed into a rich information repository in a

distributed manner. It is a good trade-off for the information revolution that eventual

users are finding it challenging to find relevant information and services easily and

quickly [5, 6].

A better compromise is needed among the conversational agents, tutor Chatbots,

exploiting the huge information source on the internet and one of these main sources

is the WWW. The artificial intelligence Chatbot, which is a category of spoken

dialogue systems, is a technology that makes interaction between humans and

machines using natural language processing [7] [8]. A general block diagram of a

spoken dialogue system is shown in Fig.1.1. A Chatbot is basically structured in a

database or knowledge base, a dialogue strategy, Automatic Speech Recognition

(ASR) for input speech, and Text To Speech (TTS) conversion for output [9].

Researchers in the area of conversational systems mainly concentrate on improvement

of the database and the dialogue strategy [10] [11] [12].

2

The main idea presented in this thesis is basically to create a Chatbot that can answer

questions about the personality of a figure or the characteristics of an object. This

Chatbot has the ability to answer questions in order to present the information it

contains about the figure or object i.e. it acts as a tutor to provide the user with

information about the figure or object without any instructor control or access to its

information. This Chatbot has the capability to populate itself any time and its

knowledge base is fillable from the web. The database of the proposed Chatbot can be

empty when the user chooses the figure or the object they need to learn about. When

the user chooses the figure (any figure randomly) or the object they desire, the Chatbot

starts to populate its (SQL) database from the web using, mainly, the Wikipedia page

related to that figure or object. After a few hours, the Chatbot Question Answer Pairs

(QAPs) database is full of information about the desired person or object. Notice that

the Chatbot’s database was empty before choosing the property the user needs to learn,

then the person or the object is initialised as a Chatbot after a while. Therefore, the

Chatbot can be initialised any time the user switches to another object. The database

of our Chatbot is accumulative and extendable as the user keeps choosing more entities

to learn.

This thesis mainly focuses on how to find out new automatic techniques or methods to

populate the knowledge base of the Online Feedable Chatbot from the web. Question

Answer Pairs are one of the popular data types to fill in Chatbot’s database. The first

novel idea is generating factual question answer pairs from factual sentences gathered

by a web spider; the raw text sentences are extracted from the HTML and pre-

processed. Named Entity (Proper Name) Recognition (NER) is used in addition to verb

tense recognition in order to identify the factual sentence category. Specific rules are

built to categorize the sentences and then to generate questions based upon them.

 Database

Dialogue

strategy

TTS

ASR

User

Fig. 1. 1: A general block diagram of a spoken dialogue system.

3

Subjective assessment is used to evaluate the Question Answer Generation (QAG)

system, and a comparison with other approaches is made. We did not extract questions;

we generated questions. There is a measure of error in the generated questions and

they are evaluated and given a score. We do not have 100% correct questions and this

is explained in Source of Error in section 3.5.

The second idea is to use hybrid (Term, Syntactic, and Semantic) features to design a

Question Answer (QA) system that uses multiple feature extraction to filter and

quantify the response sentences to a Chatbot query before selecting the best answer for

that query. The response sentences are extracted from the same source as in the first

idea, which is Wikipedia. The system is evaluated and compared to other comparative

systems. The third novel idea is to automatically extract imperative sentences using

POS tags and verb tense type from the same source of text as in the first and the second

ideas in order for them to be used in future work in actionable activities and added to

the designed Chatbot. The footballer David Beckham is used as an example and the

data used is acquired from a page about him on Wikipedia. The Chatbot is

implemented and comparative systems are chosen and adapted to the data sets of

Online Feedable Chatbot (OFC) and implemented for the purpose of comparison to

our systems. Subjective assessments are used to evaluate our systems’ outputs as well

as the comparative systems’. The results of the subjective assessments report that our

system performance was better than the comparative systems.

1.2 Motivation

The following questions motivated us to address the problem:

1. Can a Chatbot be a tutor to answer questions and give information about the

personality of a figure or characteristics of an object?

2. How can the information about that figure or that object be collected?

3. Can Wikipedia be an information repository to extract adequate and reliable

information?

4. What kind of information can the database be populated with?

4

5. How can we model appropriate methods to populate the database of our

Chatbot?

6. What are the best methods to validate our outputs and evaluate our system?

The first step was to research previous studies about Chatbots in order to investigate

the recent developments in the area of conversational system research. We also

investigated information retrieval studies to track the recent improvements.

Furthermore, we looked into the recent methods of Question Generation (QG) and QA

systems. After these investigations, we created the idea of designing a tutor Chatbot

that can answer questions and give information about the entity that the user selects

randomly. Then we found the idea of populating the knowledge base of this Chatbot

from the World Wide Web and specifically Wikipedia. Then we started to think about

the type of information that can be inserted into our Chatbot database and we found

the idea of automatically generating question answer pairs to be considered as part of

the knowledge base of our Chatbot. In the meantime, we found a way to extract another

type of information to populate the database and this was imperative sentences.

Moreover, we thought of a method to find the best match for a question among a group

of sentences as a response to a Chatbot query. Furthermore, our invented QA data set

and Stanford data set (Stanford Question Answer Dataset) SQuAD was used to test

our QA system in chapter 4.

In order to evaluate the outcomes of the system, we have chosen the idea of using

subjective assessment, since the main interaction of the conversational agents is with

people and their task is to talk to humans [13]. Therefore, we needed to evaluate our

system by examining human satisfaction as humans are the eventual users for any

Chatbot. We used human assessment for three of our methods: the QG system (Chapter

3), the Imperative sentence extraction system (Chapter 5), and the implementation of

our Chatbot (Chapter 6). Other evaluation metrics were chosen for the QA system

(Chapter 4) such as Precision, Recall, Mean Average Precision (MAP), and Mean

Reciprocal Rank (MRR) [14]. Precision is also used to evaluate the results of the

subjective assessments in the QG system, and Imperative sentence extraction system.

In order to implement the Chatbot, a plan for an algorithm has been derived and an

analysis of the conversation form has also been written. The plan is divided into stages

5

and the first stage of implementing our Online Feedable Chatbot (OFC) is presented

in Chapter 6 and the other implementation stages are explained in section 7.3 in

Chapter 7.

1.3 Research Objectives

1.3.1 Online Feedable Chatbot

The first main objective of this thesis is to design and implement a Chatbot that has

information about the personality of a figure or the characteristics of an object. This

Chatbot should:

1. Populate its database automatically from the internet. We found an idea to populate

our Chatbot’s database from the Wikipedia page of the target figure or the object [15].

2. Hold a simple conversation with the user like greetings and asking about name.

3. Answer questions on the entity it has information about.

4. Use Wikipedia to extract information about the figure or the object it answers

questions about.

5. Update its database when a user needs information about a new entity. This means

adding to the already available information (accumulative database).

1.3.2 Automatic Question Generation

The second main objective is to find the best methods to design and populate the

database of the proposed Chatbot. The idea is to develop a QG system to produce

QAPs for the proposed Chatbot database. This system should:

1. Extract plain text from the Wikipedia page of the figure or the object that a user desire

using a web crawler.

2. Filter the extracted text from HTML and undesired codes using natural language

processing (NLP) like POS tagging.

3. Acquire factual sentences from the text that was extracted from the Wikipedia page

associated to the user selected entity.

6

4. Detect the proper names at the beginning of each factual sentence and the verb tense

in order to use them for question generation.

5. Select the factual sentences with proper name subject and simple present and simple

past verb tenses.

6. Generate Wh factual questions from the selected sentences.

7. Pair the generated questions with the selected factual sentences to make QAPs then

put the QAPs into an SQL database.

1.3.3 Question Answer System

The third main objective of this thesis is to develop a model of response answer

selection for a query from a database. This model investigates the best ways to extract

features from the query and the response answers. We needed to find a method to

obtain the best match between a query and a response answer and we designed a system

for this purpose. This answer selection system should:

1. Extract raw text from the Wikipedia page of the desired entity using a web crawler.

2. Filter the extracted text using NLP.

3. Split the text into sentences using NLP word tokenizing and then POS tag each word.

4. After posing a question, Split the query sentence using NLP word tokenizing then

POS tag the tokenized words.

5. Use POS tags to find syntactic match, Jaccard’s coefficient or cosine similarity to find

term match, and named entity or semantic cosine similarity to find semantic similarity

between the query and the response sentences then aggregate the matching scores for

each response sentence.

The highest scored sentence should be the best to match the query sentence.

1.3.4 Imperative Sentence Extraction

The fourth main objective of this thesis is to find a method to extract imperative

sentences. A system is designed to support this method and this system should:

7

1. Do the same steps of text extraction, filtering, sentence then word tokenization, and

POS tagging done in the previous two sections which are all named pre-processing.

2. Detect the verb tense in the beginning of each sentence.

3. Select the sentences that begin with simple present verbs and put them into the SQL

database.

1.4 Contributions

The work presented in this thesis contributes to designing and building a Chatbot that

depends mainly on its knowledge from data acquired from the Web. It also contributes

to proposing a new method of automatic question generation, a new method to extract

multiple features for a QA system, and a new method to automatically extract

imperative sentences from the Web.

The main contributions are listed as follows:

 Online Feedable Chatbot (OFC). Proposing and building a tutor Chatbot that

can feed its knowledge base from the Web. This Chatbot has the ability to:

1. Make conversational chat with the user using the chatting database.

2. Answer definition, information, and new queries about the figure or

object.

3. Populate its knowledge base with information from the web about a

figure or an object whenever a user chooses. After a few hours of

running, its SQL database is populated by QAPs about the user

selected figure or object.

4. Extend its database and categorise it into genres depending on the

subjects added according to user request.

The database of this Chatbot is built using SQL. New approaches are used

to extract text from the web and generate QAPs as chat information for the

OFC in addition to imperative sentences. The OFC is implemented and

tested using human assessment.

8

 Automatic Question Generation System for OFC. We built a new automatic

system to generate questions from factual sentences, which are extracted from

the web using a web crawler and filtered using part of speech information.

Specific hypotheses and rules are built for selecting the factual sentences and

to produce questions from these sentences. We used named entity and verb

tense features to carefully select the corresponding sentences and the generated

questions have been categorised according to verb tense type. This part was

published in [16]. We have run an experiment to implement the system and

evaluated the resultant QAPs. We adapted a comparative system to our QG

system and data set in order to compare it with our system. A subjective

assessment has been used to validate and evaluate our system’s output as well

as the comparative system’s. The evaluation results show that our QG system

outperforms the comparative system by 5 percentage points. Moreover, our

questions are more answerable than the comparative systems’ according to the

QA match scores. The resultant QAPs are stored in an SQL database as part of

the knowledge base of OFC.

 Question Answer System for the OFC. We built a QA system for the OFC

that uses hybrid features to select the best response for a query in a Chatbot.

Multiple terms, syntactic, and semantic features are used to find the similarity

between a query and a set of sentences extracted from the web, and filtered

using part of speech POS tags. We used cosine similarity and Jaccard’s

Coefficient for the term similarity, POS tag for syntactic features, and named

entity and semantic cosine similarity for semantic features. Four hybrid

formulas are produced from these similarity features and compared to each

other. The resultant selected sentences are re-ranked according to the obtained

similarity scores from the highest to the lowest. We assume that the highest

scored sentences are the best responses to the query. A comparative system has

been adapted to our system and our data set so as to compare it with our four

produced equations. Our produced QA data set and Stanford data set SQuAD

were used to test our system. Precision, recall, mean average precision, and

mean reciprocal rank have been calculated and graphs were produced so as to

9

compare the five comparative systems (our four combinations and the

comparative system). We found that the best combination to find the best

response for a Chatbot query is; cosine similarity for term, POS tag for

syntactic, and semantic cosine similarity for semantic and this part was

published in [17]. It is planned to use this QA system as the response selection

system for our Chatbot OFC from the SQL database or from the Web.

 Automatic Imperative sentence extraction System for the OFC. We built

an automatic system to extract imperative sentences from the web. Verb tense

type and a POS tag are used to extract direct imperative sentences from a group

of sentences extracted from the Wikipedia page of the English footballer David

Beckham using a web crawler and filtered using a part of speech tag. A

comparative system was chosen and adapted to the data set of the OFC and

implemented for the purpose of comparison to our system. A subjective

assessment was implemented using human assessors to evaluate our system’s

output as well as the comparative system’s. The subjective test result reports

that our system outperforms the comparative system. The resultant imperative

sentences are saved in an SQL database as part of the OFC database.

1.5 Thesis Outlines

The remainder of this thesis is structured as follows:

 Chapter 2 gives a background for some important terminologies, introduces a

literature review of the state of the art regarding the problem domain,

concentrating on the Online Feedable Chatbot, Tutor Chatbots, Automatic

Question Generation, Question Answer Systems, and Extracting Imperative

sentences. This provides a motivation for the subsequent chapters where we

present the detailed theories and hypotheses, justifications, experimental work

and evaluation results and analysis.

10

 Chapter 3 presents the QAG system’s rules and hypothesis. It explains a

generalised abstract design of the proposed system. It gives details about the

experiment conducted to implement and evaluate the proposed system. It also

demonstrates the evaluation results in comparison to the comparative system.

 Chapter 4 describes feature extraction methods used in term, syntactic, and

semantic similarities. It proposes a method for a QA system to be used in the

OFC. Moreover, it presents the proposed system and its implementation. It also

provides the experimental results and how they are evaluated and compared to

other systems.

 Chapter 5 explains the rules and the hypothesis to extract imperative sentences

from the web. It also describes the proposed system to apply the corresponding

hypothesis. Furthermore, it presents the experimental results and the evaluation

way to assess the proposed system and to compare it with other studies.

 Chapter 6 gathers all the methods presented in the former chapters to design

the OFC by implementing this Chatbot. The chapter provides diagrams and an

explanation for the structure of the Chatbot and the discourse analysis. In

addition, it reports the evaluation results using human assessors.

 Chapter 7 summarises the additive conclusions of the earlier chapters and

identifies the challenges which can be faced through further development of

our Chatbot in the future.

The next section is included to clarify which sections of this thesis have been

published.

11

1.6 Publications

1. Abdul-Kader, Sameera A., and John Woods, "Survey on Chatbot design

techniques in speech conversation systems." Int. J. Adv. Comput. Sci.

Appl.(IJACSA) 6.7, 2015.

2. Abdul-Kader, Sameera A., and John Woods, "Question Answer System for an

Online Feedable Chatbot " Intelligent Systems Conference, London, UK, 2017.

3. Abdul-Kader, Sameera A., and John Woods, "Automatic Web-based Question

Answer Generation System for Online Feedable New-Born Chatbot". IEEE

Computing Conference, London, 2018.

12

 Chapter Two

2 Background

(Part of this chapter is published [18])

2.1 Introduction

Speech is one of the most powerful forms of communication between humans; hence,

it is the ambition of the researchers in the field of human computer interaction to

improve speech interaction between humans and computers. Speech interaction with

modern networked computing devices has received increasing interest in the past few

years with contributions from Google, Android and IOS. Spoken dialogue systems are

becoming the primary interaction method with a machine because they are more

natural than graphic-based interfaces [19]. Therefore, speech interaction will play a

significant role in humanising machines in the near future [20].

Much research work has focused on improving recognition rates of the human voice

and the technology is now approaching viability for speech based human computer

interaction. Speech interaction splits into more than one area [21], including speech

recognition, speech parsing, NLP (Natural Language Processing), keyword

identification, Chatbot design/personality, artificial intelligence and so on.

Chatbots have been the new trend of the information technology world in the past few

years because of the convenience and ease of their usage. A Chatbot is a computer

program that has the ability to hold a conversation with humans using Natural

Language Speech [18]. It can interact with humans and perform different tasks such

as booking trains or flights, ordering food, dialling a person’s number, telling the

weather forecast, and teaching foreign languages. Commercial examples of such types

of Chatbots are MS Cortana, Siri, and Google Assistant.

This chapter presents definitions and identification for the important terminologies

used in this thesis. Then, a literature review categorised into detailed topics is

presented.

13

2.2 Important Concepts

In order to know the fundamental Chatbot characteristics and strategies, we need to

figure out some preliminary terminologies related to the area of Chatbots or

conversational systems. Some of these terms are explained in the following

subsections. Each section is explained separately and independently from the other as

a title related to the work in this thesis.

2.2.1 Human Computer Speech Interaction

Speech recognition is one of the most natural and sought-after techniques in

computers, and networked device interaction have only recently become possible (in

the last two decades) with the advent of fast computing.

Speech is a sophisticated signal and happens at different levels: “semantic, linguistic,

articulatory, and acoustic” [22]. Speech is considered to be the most natural among

the aspects of human communication, owing to copious information implicitly existing

beyond the meaning of the spoken words. One of the speech information extraction

stages is converting speech to text via Automatic Speech Recognition (ASR) and

mining speech information [23, 24]; then, the resulting text can be treated to extract

the meaning of the words.

Speech recognition is widely accepted as the future of interaction with computers and

mobile applications; there is no need to use traditional input devices such as the mouse,

keyboard or touch sensitive screen and it is especially useful for users who do not have

the ability to use these traditional devices [25, 26]. It can help disabled people with

paralysis, for example, to interact with modern devices easily by voice only without

moving their hands. This part is not going to be adopted in this thesis, but we found it

important to explain it as a technique used to input user queries into a Chatbot.

14

Speech analysis can be divided into three stages: (i) voice recognition and conversion

to text, (ii) text processing, and (iii) response and action taking. These stages are

explained as follows:

Firstly, speaker independent speech passes through a microphone to a digital signal

processing package built in the computer to convert it into a stream of pulses that

contain speech information. Specific instructions are used to read input speech then to

convert it into text [27]. This stage provides speech text for processing in the next

stage. The diagram, which illustrates this stage, is shown in fig.2.3.

Secondly, the resulting text is split into separate words for tagging with part of speech

labels according to their positions and neighbours in the sentence. Different types of

grammar can be used in this stage to chunk the individual tagged words in order to

form phrases [18]. Keywords can be extracted from these phrases by eliminating

unwanted words in chinking operations. These keywords can be checked and corrected

if they are not right. The phases of the text processing stage are shown in fig.2.4.

2. Tagging the

Words by

Speech Parts

1. Splitting

Text into

Individual

Words

3. Chunking

the Text into

Phrases

4. Omitting

Redundant

Words

5. Checking

Keywords

6. Correcting

Existing Errors

Fig. 2. 2: The stage of text processing.

Speech to

Text

Speech

Input

Digital

Signal

Processing

Microphone

Fig. 2. 1: The stage of speech recognition and

converting to text.

15

Finally, a Chatbot can be built to give the desired intelligent response to a natural

language speech conversation. The input to this Chatbot is keywords released from the

speech text processing; the output is the programmed response, which will be, for

example, an application running or any other text or speech response. Fig.2.5 shows a

brief diagram of the third stage [28].

Conversation techniques between a human and a computer can be either chatting by

typing text or speech dialogue using the voice. The processing of the information in

both techniques is the same after converting speech to text in the case of speech

dialogue. A diagram showing the main steps of analysis and processing required to

perform human computer conversation is shown in fig.2.6 [18].

Conversation

Keywords

Response

(Speech or

action)

Chatbot

Fig. 2. 3: The stage of response and

action taking

16

2.2.2 Chatbot Strategies

To give suitable answers to keywords or phrases extracted from speech and to keep

conversation continuous, there is a need to build a dialogue system (programme) called

a Chatbot (Chatter-Bot). Chatbots can assist in human computer interaction and they

have the ability to examine and influence the behaviour of the user [29] by asking

questions and responding to the user's questions. The Chatbot is a computer

programme that mimics intelligent conversation. The input to this programme is

Choosing a phrase

(keywords)

A Chatbot built using

any technique

Speech to text

Splitting text to words and

tagging the words

Chunking and chinking

into phrases (grammar

parts)

Making a response

Speech

Fig. 2. 4: The main steps of analysis and processing

to perform human computer conversation.

17

natural language text, and the application should give an answer that is the best

intelligent response to the input sentence. This process is repeated as the conversation

continues [30] and the response is either text or speech.

Writing a perfect Chatbot is very difficult because it needs a very large database and

must give reasonable answers to all interactions. There are a number of approaches to

create a knowledge base for a Chatbot and these include writing by hand and learning

from a language corpus. Learning here means saving new phrases and then using them

later to give appropriate answers for similar phrases [31].

Designing a Chatbot software package requires the identification of the constituent

parts. A Chatbot can be divided into three parts: Responder, Classifier and

Graphmaster (as shown in fig. 2.1) [32], which are described as follows:

1. Responder: the part that plays the interfacing role between the bot’s main

routines and the user. The tasks of the responder are: transferring the data from

the user to the Classifier and controlling the input and output.

2. Classifier: this is the part between the Responder and the Graphmaster. This

layer’s functions are filtering and normalising the input, segmenting the input

entered by the user into logical components, transferring the normalised

sentence into the Graphmaster, processing the output from the Graphmaster,

and handling the instructions of the database syntax (e.g. AIML).

3. Graphmaster: this is the part for pattern matching that does the following tasks:

organising the Chatbot’s storage and holding the pattern matching algorithms.

Responder

Chatbot

Classifier Graphmaster

U
se

r
In

te
rf

ac
e

Simulation Interface

Fig. 2. 5: Components of Chatbot.

18

2.2.3 Chatbot as Part of Dialogue Systems

In the field of Artificial Intelligence, Turing was the first to pose the question, “Can a

machine think?” [33], where thinking is defined as the ability held by humans.

According to this question and this definition, Turing suggests the “imitation game”

as a method to directly avoid the question and to specify a measurement of

achievement for researchers in Artificial Intelligence [34] if the machine appears to be

human. The imitation game is played between three people: (A) which is a man, (B)

which is a woman, and (C) which is the interrogator and can be either a man or a

woman. The aim of the interrogator here is to determine who the woman is and who

the man is (A and B). The interrogator knows the two as labels X and Y and has to

decide at the end of the game either “X is B and Y is A” or “X is A and Y is B”. The

interrogator also has the right to direct questions to A and B. Turing then questions

what will happen if A is replaced with a machine; can the interrogator differentiate

between the two? The original question “Can machines think?” can make the new

question explicit [33, 35]. In this imitation game, the Chatbot represents the machine

and it tries to mislead the interrogator into thinking that it is the human, or the designers

who try to programme it to do so [36].

In 1990 an agreement was made between Hugh Loebner and The Cambridge Centre

for Behavioural Studies to establish a competition based on implementing the Turing

Test. A Gold Medal and $100,000 were offered by Hugh Loebner as a Grand Prize for

the first computer that makes responses which cannot be distinguished from humans

[18]. The important thing in this competition is to design a Chatbot that has the ability

to drive a conversation. During the chat session, the interrogator tries to guess whether

they are talking to a programme or a human. After a ten-minute conversation between

the judge and a Chatbot on one side and the judge and a confederate independently on

the other side, the judge has to nominate which one was the human. The scale of non-

human to human is from 1 to 4 and the judge must evaluate the Chatbot in this range

[36]. According to this judgement, the more human Chatbot is the winner. No Chatbot

has ever achieved the gold medal and passed the test to win the Loebner Prize.

However, some Chatbots have scored as highly as 3 out of the 12 judges believing they

were human [18].

19

A Chatbot is a software system that is capable of interacting (chatting) with real people

in natural language [37]. Chatbots can receive natural language input that is text or

speech interpreted using speech recognition software, and can execute appropriate

commands to engage in a desired behaviour. As intelligent agents, they are normally

reactive, autonomous, social, and proactive. Chatbot is a category of conversational

agents, which are software programs that mimic conversations with humans. They are

typically not embodied in the forms of animals, avatars, humans, or humanoid robots

(those programs are considered as “embodied conversational agents”). Conversational

agents are a class of dialogue system and have been an interest of research in

communications for decades. Interactive Voice Response (IVR) systems are dialogue

systems as well. However, they are not considered as conversational agents because

they implement decision trees [38, 39]. Types of dialogue system and their relations

to each other are shown in fig.2.2 [40].

Our implemented Chatbot in this research is a Chatbot system that is part of

conversational agents from the category of dialogue systems.

To build a dialogue system (Chatbot) program, one of the most essential requirements

is to design a sufficiently detailed database for that system. As the Chatbot bases its

knowledge on statements or sentences and uses them to hold a conversation, it needs

Fig. 2. 6: Dialogue systems types and their relations to each other.

20

a large but not overlapping knowledge base. Chatbots can assist in human computer

interaction and they have the ability to examine and influence the behaviour of the user

by asking questions and responding to the user's questions. The Chatbot is a computer

programme that mimics an intelligent conversation. The input to this program is

natural language text, and the application should give an answer that is the most

relevant intelligent response to the input sentence. This process is repeated as the

conversation continues and the response is either text or speech [18]

Trying to build a Chatbot is a big challenge. The challenge is collecting and processing

the data that is used to populate the Chatbot database because the only knowledge the

Chatbot has access to is the information it has learnt itself. Therefore, the data fed into

the Chatbot should be selected and filtered carefully using statistical and numerical

means.

A Chatbot can learn general facts but is often focused towards a specific figure or

object and its database can be updated from the web according to a user request (i.e.

the user can choose the figure or the object they need).

2.2.4 Chatbot Fundamental Design Techniques and Approaches

To design any Chatbot, the designer must be familiar with a number of techniques [41]

these techniques are listed below:

1. Parsing: this technique includes analysing the input text and manipulating it

by using a number of NLP functions, for example, trees in Python NLTK. This

technique is not used in this research.

2. Pattern matching: this is the technique that is used in most Chatbots and it is

quite common in QA systems, depending on matching types, such as natural

language enquiries, simple statements, or the semantic meaning of enquiries

[42]. This technique is used in this work to select a suitable answer to a Chatbot

query.

3. AIML: this is one of the core techniques that is commonly used in Chatbot

design. More details about this technique and the language used are explained

in Section 2.2.6 below. This technique is not employed in our work.

21

4. Chat Script: this is the technique that helps when no matches occur in AIML.

It concentrates on the best syntax to build a sensible default answer. It gives a

set of functionalities such as variable concepts, facts, and logical AND/OR

[43]. We do not use Chat Script in this work.

5. SQL and relational database: this is a technique used recently in Chatbot

design in order to make the Chatbot remember previous conversations. More

details and explanation are provided in Section 2.2.7 below. This database type

is used to build our Chatbot’s database.

6. Markov Chain: this is used in Chatbots to build responses that are more

applicable probabilistically and, consequently, are more correct. The idea of

Markov Chains is that there is a fixed probability of occurrences for each letter

or word in the same textual data set [44]. We do not use Markov Chain in our

work.

7. Language tricks: these are sentences, phrases, or even paragraphs available in

Chatbots in order to add variety to the knowledge base and make it more

convincing. The types of language tricks are:

 Canned responses;

 Typing errors and simulating key strokes;

 Model of personal history;

 Non-Sequitur (not a logical conclusion).

Each of these language tricks is used to satisfy a specific purpose and to

provide alternative answers to questions [44]. We use the first two techniques

(Canned responses and typing errors and simulating key strokes) in our

Chatbot.

8. Ontologies: these are also named semantic networks and are a set of concepts

that are interconnected relationally and hierarchically. The aim of using

ontologies in a Chatbot is to compute the relation between these concepts, such

as synonyms, hyponyms and other relations which are natural language

concept names. The interconnection between these concepts can be represented

in a graph enabling the computer to search by using particular rules for

reasoning [44]. Ontologies are not used in this work.

22

2.2.5 SQL

A relational data base (RDB) is one of the database types used to build Chatbot

knowledge bases. The technique has been used to build a database for a Chatbot, i.e.

to enable the Chatbot to remember previous conversations and to make the

conversation more continuous and meaningful. The most familiar RDB language is

SQL (Structured Query Language), which can be used for this purpose.

SQL, or MYSQL has gained a high recognition in RDB because it is the most popular

open source database system for nonprocedural data. Query blocks nesting to arbitrary

depths is one of the most interesting features, and the SQL query is divided into five

basic kinds of nesting. Algorithms are developed to change queries that include these

basic nesting types into "semantically equivalent queries". Semantically equivalent

queries are adjustable to achieve effective processing via existing query processing

subsystems. SQL as a data language is implemented in ZETA; also as a calculus-based

and block-structured language, it is implemented in System R, ORACLE, as well as

SEQUEL [45, 46]. Some researchers, as can be seen in the next sections, have recently

used SQL to generate a database that saves the conversation history in order to make

a search for any word or phrase match easier. This technique gives continuity and

accuracy to the dialogue because it enables the dialogue system to retrieve some

previous information history.

2.2.6 Named Entity

One of the main elements in the QA is Named Entity Recognition to extract

information from text. The NER consists of three groups:

1. Entity names.

2. Number expressions.

3. Temporal expressions.

Temporal expressions identify time entities, such as date, and time, and number

expressions identify number entities like monetary values [47]. Numbered and

23

temporal expressions are not the interest of this work. Entity names can annotate

unique identifiers for the proper nouns that they represent: PERSON,

ORGANIZATION, LOCATION (GPE), and FACILITY names in the text (see fig.

2.7 below) as in the NER.

The NER system normally recognize the string that represents the entity name then

identifies it as the named entity specifying the type as in the example below:

The sentence:

 “Rami Eid is studying at Stony Brook University in NY”

contains entities of proper names. Applying NER operation gives the following:

[[('Rami', 'PERSON'), ('Eid', 'PERSON')], [('Stony', 'ORGANIZATION'), ('Brook',

'ORGANIZATION'), ('University', 'ORGANIZATION')], [('NY', 'LOCATION')]].

The noticeable issue here is that we have two main entity names: ‘Rami Eid’ and

‘Stony Brook University in NY’. This chained type of entity name is called a Cascaded

Entity Name and the existing (Python) kinds of NER recognise one word entities [48].

Therefore, the cascaded names are separated during the NER application because of

the limitations in the Stanford and NLTK NER modules. Hard code is needed in the

implementation part to re-join the same name’s separated words and obtain the

following form of output:

 [('Rami Eid', ' PERSON '), ('Stony Brook University', ' ORGANIZATION ')]

In this work, NER is used to detect the proper name subjects at the beginning of the

sentences because we need to ask questions about the subject of the sentence; and

identify their classes in order to determine question-words during the question

generation process. NER is also used in this work as a feature extracted to examine the

semantic similarity between a query and a group of response answers.

24

2.2.7 Question Answering

Question answering is a topic of Information Retrieval and an NLP domain interest.

The authors in [49] think that it needs more cooperation between the communities of

Knowledge Representation and NLP [49]. The Question Answering system is

normally a mechanism embedded within sophisticated search engines that has featured

in TREC 8 (Text Retrieval Conference 8) [50]. A QA system normally retrieves a

particular piece of information from the web to select the optimum answer to a user

query. The concepts and rules of TREC developed over a number of years to expand

the range of question sets and to choose answers that are more accurate. The rules

proposed in this thesis reverse the concept of putting or setting the question, analysing

it, and then finding the best answer for it. It is proposed to retrieve the piece of

information, classify the sentences after extracting, analyse the sentences, and then

generate questions from the existing statement to give an answer. The analysis

techniques used in both cases (Question lead to Answer or Answer lead to Question)

are the same: part of speech tag, ngrams, and NER.

There are three levels of questions we will use when creating or answering questions

from a piece of text [51] [52] .

1. Factual: In this level, the questions are answered explicitly by facts contained

in the text. The answers to these questions are clear in the text. These questions

Entity Names

(NE)

FACILITY

LOCATION

(GPE)
ORGANISAT

ION

PERSON

Fig. 2. 7: Entity Name classes as in the NLTK_NE library.

25

are really basic and literal. For example if we have the following text from the

Cinderella story [51] [52]:

“Cinderella’s mother died while she was a very little child, leaving her to the

care of her father and her two step-sisters, who were very much older than

herself, for Cinderella’s father had been twice married, and her mother was his

second wife. It happened, when Cinderella was about seventeen years old, that

the King of that country gave a ball, to which all the ladies of the land, and

among the rest, the young girl’s sisters, were invited. And they made her dress

them for the ball, but never thought of allowing her to go there. When they

were gone, Cinderella, whose heart was very sad, sat down and cried bitterly;

but as she sat sorrowful, thinking of the unkindness of her sisters, a voice called

to her from the garden, and she went out to see who was there. It was her

godmother, a good old Fairy [53]”

The factual questions are:

 Who died when Cinderella was little?

 How many step-sisters does Cinderella have?

 Who did the King invite to the ball?

2. Interpretive: this type of question is textually implicit, needing analysis and

interpretation of specific parts of the text. The reader needs to apply their

knowledge to the text. The reader has to read between the lines (infer) the

answer to the questions on this level. For example, for the same piece of text

above, the questions would be [51] [52]:

 Why doesn’t Cinderella’s step-family want her to attend the ball?

 Do you think the prince would have fallen in love with Cinderella even

if she hadn’t received a makeover?

 In what ways does the Fairy Godmother assist Cinderella?

 How do you think Cinderella feels about her step-family?

3. Evaluative: are more open-ended and go beyond the text. They are intended to

stimulate a discussion of an abstract idea or issue. These questions ask So

what? Why does it matter? For example from the text above the evaluation

questions would be [51] [52]:

26

 Why do step-parents often have difficulty getting along with their step-

children?

 Do you believe in love-at-first-sight?

 Has anyone ever given you help when you least expected it?

In this work, straightforward factual type questions are generated from the text

extracted from the web and pre-processed using part-of-speech tag. Moreover, ‘Wh’

question words are specifically used to generate questions in this work.

Wh questions are the type of questions that usually start with a word beginning with

‘wh’ such as what, who, where, etc. but ‘how’ is also included. This type of question

is used to ask for information [54] [55]. For example:

 Who are you talking to?

 What is it?

 Where do you live?

2.2.8 Part of Speech Tags

A large number of language processing systems use a part of speech tagger for pre-

processing [56]. In corpus linguistics, part of speech tagging (POS tagging or PoS

tagging or POST) is the process of labelling a word in a text according to a

particular part of speech [57] depending on both its definition and its context (meaning

the relationship of such a word with adjacent and related words in a phrase, sentence,

or paragraph). The simplest form of this is commonly taught to school-age children,

in the identification of words as nouns, verbs, adjectives, adverbs, and so on [58]. It

was done by hand in the past, whereas POS tagging is now performed in the context

of computational linguistics, using algorithms which relate to discrete terms, and

hidden parts of speech, in accordance with a collection of descriptive tags [58].

The tagger works by automatically recognising and treating its own weaknesses, by

incrementally improving its performance. The tagger initially tags by allocating each

word its most likely tag, estimated by inspecting a large tagged corpus, without

reference to context [57]. POS tagging is used in this work for question answer

https://en.wikipedia.org/wiki/Corpus_linguistics
https://en.wikipedia.org/wiki/Parts_of_speech
https://en.wikipedia.org/wiki/Lexicography
https://en.wikipedia.org/wiki/Phrase
https://en.wikipedia.org/wiki/Sentence_(linguistics)
https://en.wikipedia.org/wiki/Paragraph
https://en.wikipedia.org/wiki/Noun
https://en.wikipedia.org/wiki/Verb
https://en.wikipedia.org/wiki/Adjective
https://en.wikipedia.org/wiki/Adverb
https://en.wikipedia.org/wiki/Computational_linguistics
https://en.wikipedia.org/wiki/Algorithms

27

comparison to find the similarity between them (Chapter 3 and Chapter 4) and for

imperative sentence extraction (Chapter 5).

2.2.9 Semantic Role Labels

In the field of artificial intelligence, semantic role labelling, sometimes also called

shallow semantic parsing, is a process in natural language processing that allocates

labels to words or phrases in a sentence that specifies their semantic role in the

sentence, like that of an agent, goal, or result [59]. It includes the detection of the

semantic arguments related to the predicate or the verb of a sentence and their

classification according to their specific roles. For example, given a sentence like

"Layan sold the book to Mustafa", the task is to recognize the verb "to sell" as

representing the predicate, "Layan" as representing the seller (agent), "the book" as

representing the goods (theme), and "Mustafa" as representing the recipient [60]. A

semantic analysis of this kind is at a lower level of abstraction than a syntactic analysis

because it has more categories and groups with fewer clauses in each category. For

instance, "the book belongs to Layan" would need two labels such as "possessed" and

"possessor" whereas "the book was sold to Mustafa" need two other labels such as

"goal" (or "theme") and "receiver" (or "recipient") in spite of that, these two clauses

would be very similar as long as "subject" and "object" functions are examined [59].

A form of semantic role labels (WordNet) is used in this work to detect the similarity

in meaning between a query and an answer (Chapter 4).

2.2.10 Word Embedding

This is the common name for a collection of feature learning and language modelling

techniques in NLP where words or phrases from the lexicon are mapped onto real

number vectors. Basically it includes a mathematical embedding from a space with

one dimension for each word to a continuous vector space with a lower dimension [61]

[62] [63].

Word and phrase embedding are used as the underlying input representation to boost

the performance in NLP tasks such as sentiment analysis and syntactic parsing [64].

28

2.2.11 Natural Language ToolKit (NLTK)

In this work, we need to split words in a string of text and separate the text into parts

of speech by tagging word labels according to their positions and functions in the

sentence. The resulting tagged words are then processed to extract the meaning and

produce a response as speech or action as required. Different grammar rules are used

to categorise the tagged words in the text into groups or phrases relating to their

neighbours and positions. This type of grouping is called chunking into phrases, such

as noun phrases and verb phrases.

In this thesis, NLP pre-processing operations like tokenization and POS tagging are

needed for our extracted text manipulation. These NLP operations are done using the

NLTK.

2.2.12 Machine Learning

This is a field of computer science that employs statistical techniques to give the ability

to computer systems to learn with data, without being clearly programmed [65]. The

name machine learning evolved from the study of computational learning theory and

pattern recognition in artificial intelligence [65]. It explores the study and the building

of algorithms that can learn from and make predictions on data [66].

Machine learning is related to, or overlaps with, computational statistics that also focus

on prediction-making via the use of computers. It also has relations with mathematical

optimization, which provides methods, theory and application domains to the field

[66].

Machine learning tasks are classified into two main categories, according to their

learning "signal" or "feedback" availability to a learning system [67]:

 Supervised learning: the computer is provided with example inputs and their

expected outputs, given by a "teacher", and the aim is to learn a general rule

that maps inputs to outputs. The input signal can be partially available, or

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Map_(mathematics)

29

restricted to special feedback. Semi-supervised learning, active learning,

reinforcement learning are branches of supervised learning [68].

 Unsupervised learning: in this category of machine learning, no labels are

given to the learning algorithm, it is left on its own to structure its input.

Unsupervised learning is a goal in itself to discover hidden patterns in data or

a way towards an end as in feature learning [69].

Machine learning applications is another categorization for machine learning tasks

which emerges when considering the desired output of a machine-learned system.

Some machine learning applications are [70]:

 Classification.

 Regression.

 Clustering.

 Density estimation.

 Dimensionality reduction.

2.2.13 Artificial Neural Networks (ANNs)

These are also named connectionist systems or neural intelligent systems which are

computing systems that are inspired by the biological neural networks that constitute

animal brains [71]. These systems learn to do tasks by considering examples, without

being programmed with any task-specific rules. For example, in image recognition,

they could learn to identify images that contain cats by analysing example images that

have been manually labelled as "cat" or "no cat" then using the results to recognise

cats in other images [72]. They do this without any previous knowledge about cats, for

example that they have cat-like faces, tails, and whiskers. They automatically create

identifying characteristics from the learning material that they process [73].

An ANN idea depends on a group of connected units or nodes called artificial

neurons which model the neurons in a biological brain. Each connection, like

the synapses in a biological brain, transmits a signal from one artificial neuron to

https://en.wikipedia.org/wiki/Semi-supervised_learning
https://en.wikipedia.org/wiki/Active_learning_(machine_learning)
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Connectionism
https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Image_recognition
https://en.wikipedia.org/wiki/Labeled_data
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Brain

30

another. The artificial neuron that receives a signal, processes it, and then stimulates

additional artificial neurons connected to it [73].

The original aim of ANNs was to solve problems in the same way that a human

brain does. However, attention has recently moved to performing specific tasks and

this lead to deviations from biology. Artificial neural networks are used in a variety of

tasks, such as speech recognition, computer vision, machine translation, playing board

and video games, social network filtering, and medical diagnosis [72].

2.3 Literature Review

Designing an Online Feedable Chatbot and populating it from the web is a new area

of research. Few researchers have investigated the possibility of educating a new

Chatbot that embodies an artificial figure. Some authors suggest extracting Chatbot

knowledge from the discussion forums available online [74, 75]. Others start database

population from the web or plain text depending on a particular object or person [15].

The data extracted from web pages needs significant processing before it is ready for

conversational systems, especially if the text is unstructured like that in Wikipedia.

Filtering and analysis are required for some text in the database to have meaning. One

of the popular forms of data in Chatbot knowledge bases is QAPs. The majority of

QAPs are either written manually or acquired from existing online discussion forums

[75]. Generating QAPs for a Chatbot requires much processing and filtering of the

sentences to generate the corresponding questions. Some kind of hypothesis is

necessary to build a framework to derive questions from sentences [76]. The

hypothesis then needs to be converted to specific rules and processes to mechanically

populate the database. Validation is also applied to the QAPs and compared with other

question generation systems. The following categorised literature review demonstrates

the details of the development of question generation and question answering in the

field of online feedable and tutoring Chatbots and how their databases are populated

with information.

https://en.wikipedia.org/wiki/Human_brain
https://en.wikipedia.org/wiki/Human_brain
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/General_game_playing
https://en.wikipedia.org/wiki/General_game_playing
https://en.wikipedia.org/wiki/Social_network
https://en.wikipedia.org/wiki/Medical_diagnosis

31

2.3.1 Online Feedable Chatbot

Since the first Chatbot, Eliza, was presented, Chatbot knowledge has been manually

scripted or learning knowledge has been added using user responses [77]. Different

Chatbots or dialogue systems have been developed utilising speech or text

communication and applied to a variety of domains such as language education,

linguistic research, website help, customer service, and fun. However, the majority of

the Chatbots have been restricted to knowledge that is hand coded in their files, and

to specific natural languages that are written or spoken [77, 78].

Some agents employ user responses to reply to other users; authors explore the notion

of self-agency in developing agent-based systems that support human-to-human

communication. They refer to the fact that a challenge in developing an agent-based

system is the transfer of conversational experiences that agents gain to their users. Self-

agency is presented as a key to address this challenge. An experimental system is also

presented to inspect the sense of self-agency impact on the successful conversational

experiences transferred from agents to their users [79]. However, this is a form of

managing conversations rather than creating them. Other type of Chatbots are used to

gather information from chatting to users. A Chatbot is used as a question answer

interface. To automatically retrain the Chatbot knowledge-base, the TRE09 QA track

is used. The aim is to improve the algorithm for building the database [80]. However,

this keeps the Chatbot knowledge restricted to user’s knowledge.

Chatbots use databases of responses often chosen from a corpus of text created for a

different purpose; for instance, film scripts or interviews [81]. Existing corpora are

converted to Chatbot style as a trial to extend Chatbot knowledge. A software is

presented to convert a corpus to a specific Chatbot format, which is used after that to

re-train a Chatbot and create a chat closer to human language. Different corpora are

used such as dialogue corpora, like the British National Corpus of English (BNC), the

holy Quran, which is a monologue corpus, and the FAQ where questions and answers

are pairs. The aim of this automation is to generate different Chatbot prototypes that

speak multiple languages depending on the corpus [77]. In addition, an approach is

presented to use crowdsourced data to increase the response database from an existing

32

corpus focusing on responses which people judge to be inappropriate. The goal is to

create a data set of more suitable chat responses. Researchers found that the version

with the expanded database was rated better with regard to response level

appropriateness and the ability to engage users [81]. Updating information in this case

will remain frozen until an updating process is created for the existing corpora as this

depends on experts’ work.

The internet gives more updatable, extendable, and at any time accessible information

[82] that is more useful in Chatbot knowledge enrichment. A number of works used

the internet as a source to acquire information for the Chatbot knowledge base. Using

Wikipedia, an idea is presented to identify significant facts in the text representing the

life of a historical figure to build a Chatbot. This Chatbot should be able to learn from

previous experiences in order to act more realistically. A generic form of sentence is

proposed to solve the problem of learning to enable the Chatbot to acquire as much

information as possible relating to the personality and life of the person that the

Chatbot teaches about. The source of information to feed this Chatbot is websites such

as Wikipedia for unstructured data and DBpedia for structured data. NLP techniques

are used to convert plain text to structured text and then restructure them into a generic

form of a sentence [15]. Using a child-care forum, an automatic Chatbot knowledge

acquisition method from online forums is presented. It contains a combination of a

classification model based on rough set theory, and the theory of ensemble learning to

make a decision. Multiple rough set classifiers are built and trained first. After that all

replies are classified with those classifiers. The final results are drawn by selecting the

output of these classifiers. The corresponding replies are selected as Chatbot

knowledge. As the authors state, relevant experiments on a child-care forum prove that

the method based on rough set theory has high recognition efficiency of related replies

and the combination of ensemble learning improves the results [75]. Also, using

discussion forums, extracting thread-title reply pairs from online discussion forums is

presented to populate Chatbot knowledge base. These pairs are extracted in a cascade

framework and then ranked using a ranking depending on their content quality. The

top N ranked pairs are selected as part of Chatbot knowledge [74].

Moreover, multi-purpose algorithms are introduced to design a Chatbot that can hold

a conversation on any topic. This Chatbot employs snippets of internet search results

33

to continue within a context. This Chatbot also detects a possibility of replying with a

pun via analysing the input sentence and generating a new one when the timing is

adequate [83]. However, none of the current studies have investigated reformulation

of` the extracted information to QAPs.

The idea in [15] motivated us to extract our chatbot information from the web. The

authors in [15] bring the information from Wikipedia and put it in Chatbot knowledge

format but as chapters under certain topics. Our idea is to retrieve the information of

our chatbot from Wikipedia and to convert the extracted text into QA pairs.

2.3.2 Tutor Chatbots

There is an extensive body of studies and researches in the field of online tutoring [84].

Chatbots can play a good role for educational purposes since they have an interactive

mechanism in comparison to traditional learning systems. Students can continuously

interact with the Chatbot by asking questions regarding a certain field. In spite of the

presence of Chatbots since the middle 1960’s, only a few of them are used for

educational purposes [85] . The studies mostly focus on dialogue systems or Chatbots

that depend mainly on the subject instructor to place and modify the database.

In recent years, approaches have used conversational systems to deal with the learners.

Some studies focused on Chatbot engagement in the pedagogical field.

Some authors discuss the development of conversational agents and Intelligent

Tutoring Systems, especially Open Learner Modelling. They describe a Wizard-of-Oz

experiment so as to examine the feasibility of using a Chatbot to uphold negotiation.

They conclude that a combination of the two fields (Conversational agents and

Intelligent Tutoring Systems) can be a reason for developing Chatbot negotiation

techniques and Open Learner Model enhancement. This technology could have

applications in schools, universities and other training scenarios [84].

A software platform named Chatbot is presented [3] and designed to foster engagement

while teaching basic Computer Science concepts. Two experiences are continued

using Chatbot and the known Chatbot Alice. These experiences are an online nation-

34

wide competition and an in-class 15-lesson pilot course in high schools. Moreover, a

Chatbot to teach an undergraduate class in Sweden is provided [85] and the possibility

of using learning analytics is explored to predict the design of an intelligent language

tutor, Chatbot Lucy. This Chatbot focuses on using student-created data to understand

the design of Lucy such as to assist English language learning designers to improve

second language acquisition. The chatting log architecture is also presented in addition

to students’ learning journey and data trails [86]. Also an architecture that facilitates

building pedagogical Chatbots is proposed [87] to interact with students in natural

language. The proposal provides a modular and scalable framework to develop such

systems efficiently. Geranium, another system is also presented to help children to

appreciate and protect their environment with an interactive Chatbot developed

following their scheme.

The role that an educational Chatbot could provide in improving the learning process

of a student is explored [88]. A virtual agent is presented, as part of an e-Learning

platform capable of guiding and answering questions related to a studied subject. An

automated question answering system is introduced for a Chatbot system [89]. This

proposed system answers the queries posted by the student in a more interactive way,

like a virtual teacher (Chatbot system). The QA knowledge base can be accessed and

modified by the instructor. That instructor could also know the areas where the

students are more prone to doubts, thus helping the student as well as the instructor.

A prototype of MOOCs conversational agent is developed in [90] and integrated into

MOOCs website to respond to the learner’s enquiries using text or speech input.

MOOC-bot is using the commonly used AIML to develop its knowledge base. The

system architecture of MOOC-bot consists of the knowledge base of AIML interpreter,

chat interface, MOOCs website and Web Speech API to provide speech synthesis

capability. The initial MOOC-bot prototype has the general knowledge from the Alice

Chatbot, a course’s frequently asked questions, and a course’s content offered by the

University Technical Malaysia Melaka. The advantages of MOOC-bot lie in the fact

that it has the ability to provide a 24-hour service and have knowledge in different

domains, and can be shared by multiple sites simultaneously. In [6], a Chatbot is

especially built to provide the FAQBot system with the object of being an

undergraduate student advisor. The Chatbot accepts natural language input, navigates

35

through the knowledge base, then responds with student information in natural

language. The design semantics contain an AIML specification language for authoring

the information repository. An intelligent web-based computer aided instruction

system is also presented in [91] for learning a foreign language. The system is

Computer Simulator in Educational Communication (CSIEC). Such a system can

grammatically understand the sentences in English given by the users through the

internet in addition to speaking with the users. Important notations of English grammar

are used.

However, all the current studies rely completely on instructors in preparing the taught

material. The instructor has supervision and control over the Chatbot and any change

in material is basically made by the instructor. The following work tries to reduce the

restriction of material modification by making the Chatbot learn from the student’s

feedback: The authors in [92] developed a Chatbot that focuses on engineering

education. The purpose of this engineering Chatbot is to build an online artificial

intelligence called "Anne G. Neering" which is useful to students in their courses.

Students are encouraged to pop some personality into the responses remembering that

other students learn from the responses. The Chatbot gives students the chance to

explore course content in their own words and from the student’s point of view [92].

In the next scenario, learning takes a completely new dimension. Internet usage as a

source of learning material has emerged. The work in [93] focuses on the main

advantages of an open and modular e-learning software platform to give a boost to

cognitive tasks completed by the main actors of the learning process. The authors in

[93] present the integration inside the platform of two conversational agents devoted

to chatting to the student and acquiring new information sources on the web. The

process is sent off as a reply to the system’s perception that the student feels disaffected

with the presented contents [93]. However, this study uses two agents, one to manage

the conversation and one for the content. The content agent updates its knowledge

from the web but not in a form of QAPs, in order to simplify the material understanding

and to prevent visiting the internet for every information piece needed. In addition, it

allows teachers and tutors to make the educational interventions explicit and to

customise the learning process.

36

The idea in [93] motivated us to propose a tutor dialogue system whose database can

be populated and updated automatically from the web and the user can decide the

information they need. Our tutor Chatbot works without any interventions from an

instructor and learns new information as the user requests a new learning subject.

2.3.3 Question Answer Systems

Answer selection is the most complicated phase of a question answering (QA) system

[94] because the answer determines the success of a QA system. The common

approach is to acquire the candidate answers from an information source and then

select the most frequent answers as the best answers [95]. To solve this task, many

approaches have been presented using different models to find the best match between

a question and an item among a number of items. Some researchers presented surveys

like the survey in [95] that describes the state of the art for a QA answering task in

three different lines of research: a number of works that focus on candidate answers

are presented; then, the idea of a cooperative answer that is correct, useful, and non-

misleading is recovered; after that, attempts to address cooperative answering are

presented [95].

The issue of answer selection is investigated in information retrieval systems that have

typically been concerned with retrieving a set of documents that are relevant to a user's

query [96]; for example, in [94] the authors supervised discriminative models are

studied to learn to rank answers using examples of QAPs. The pair representation is

provided implicitly by kernel combinations. Exploiting the application of structural

kernels to syntactic/semantic structures, the authors represent QAPs by generalization

methods in order to reduce the burden of large amounts of manual annotation [94]. In

addition, the use of linguistic features is investigated to improve the search for ranking

answers to non-factoid questions. The possibility of utilising existing large collections

of QAPs from online social Question Answering sites is shown so as to extract those

features and then to train ranking models which combine them effectively. A range of

feature types using natural language processing are investigated, such as named-entity,

coarse word sense disambiguation, identification, semantic role labelling, and

syntactic parsing [97]. Additionally, a system is described to retrieve a smaller section

37

of text as a direct answer to a user question. The SMART IR system is employed to

extract a ranked set of relevant passages to the query. Entities are extracted from the

targeted passages as possible answers to the question then ranked for plausibility

according to their match score to the query, and according to their position and

frequency in the passages [96]. With their system QALC (Question Answering

program of the Language and Cognition), the authors in [50] contributed to the

Question Answering track of the evaluations for TREC8, TREC9 and TREC10. QALC

analyses documents using multi-word term search and linguistic variation to minimize

the number of selected documents and to provide additional clues during question

comparison and sentence representation. This comparison also uses the results of

syntactic parsing for the questions and functionalities of Named Entity Recognition.

Answer extraction depends on syntactic patterns application according to the kind of

information that is searched for, and is categorised based on the question syntactic

form [50]. In the same area, a Turkish factoid, which is a shallow type of questions

QA system is presented to utilise surface level patterns, named answer patterns, to

extract the answers from documents retrieved from the web. The approaches of named

entity tagged answer patterns extraction, and factor assignment, increased the

performance of the presented QA system. A new query expansion technique is also

described to enhance the performance [98]. Maximum Entropy methods are exploited

to combine various lexical, syntactic and semantic features extracted from the text.

The focus is on the relation extraction component of the Automatic Content Extraction

(ACE) system [99]; however, no application is mentioned in the conversational area.

The evaluation of a number of machine learning techniques is presented for a ranking

answers task to Why questions. TF-IDF and a set of 36 linguistic features are used to

characterise questions and answers. A number of machine learning techniques are

experimented with for the purpose of finding out how the different machine learning

methods can adapt with their highly imbalanced binary relevance data regardless of

hyper parameter tuning [100]. Distributional Semantic Models’ (DSMs) role in

Question Answering (QA) systems is investigated. The aim is to employ DSMs for re-

ranking of answers in Question Cube which is a framework for QA system building.

DSMs shape words to look like points in a geometric space which is known as

semantic space. If words are close in that space, they are similar. The idea is that DSMs

38

models can help to compute the relation between user questions and candidate answers

using paradigmatic relations among words, which leads to providing better re-ranking

for answers [101].

To improve existing search engines, an architecture was developed to enhance existing

search engines in order to make them boost natural language question answering. The

task involves, in sequence: query modulation, document retrieval, passage extraction,

phrase extraction and answer ranking. A number of probabilistic approaches for the

last three of the five stages is investigated. The proposed technique is applied to a

number of existing search engines. The proposed algorithm, Probabilistic Phrase Re-

ranking (PPR), employs proximity and question type features to achieve a total

document reciprocal rank of 20 on the TREC8 corpus [102].

To improve the existing datasets, researchers discuss the WIKIQA dataset which has

a publicly available QAPs set, collected for research on open domain question

answering. WIKIQA is built using a natural process and is of an order of size larger

than the previous datasets. The WIKIQA dataset includes questions with no correct

sentences, so as to enable researchers to put an effort into answer triggering [103].

Also, an end-to-end neural architecture for a task is proposed to solve the problem of

the large set and variable lengths of candidate answers in the Stanford QA dataset

(SQuAD) [104].

Depending on the information on the web, researchers evaluate two entity

normalization methods in [105] which depend on Wikipedia in the context of passage

and document extraction for question answering. It is found that a simple

normalisation method causes improvements of early precision for both document and

passage retrieval. Other researchers introduce Aranea (named after the Brazilian armed

spider Phoneutria nigriventer) [106] which is a question answer system that uses

knowledge annotation and knowledge mining techniques to extract answers from the

World Wide Web. Knowledge annotation utilises semi-structured database techniques

and knowledge mining utilises statistical techniques. Aranea combines these two

different question answering models into a single framework [106]. An idea is also

proposed to find QAPs from the web by detecting the question in a thread of an

extracted forum. A method of graph-based propagation is used to detect the answer

39

from the same thread. An Open Instructor based on Wikipedia is presented to extract

unstructured text and transfer it to corresponding sentences without mentioning the

Chatbot as an application for their idea [74, 75, 107, 108]. Another idea of an automatic

generating mechanism is proposed by the authors in [109] to give expressive opinion

sentences from numerous reviews extracted from the web. The authors in [109] base

the analysis on the frequency of adjectives, sentence length, and contextual relevance

to rank the reviews.

For pedagogical purposes, gated self-matching networks are presented for question

answering of reading comprehension style that is used to test the reading of English

language learners. The question is first matched with the passage with gated attention

based on recurrent networks to produce question-aware passage representation. Then

a self-matching attention technique is proposed to process the representation by

matching the passage with itself. The pointer networks are also used to assign the

answers’ positions from the passages [5], and the advantage of surface text patterns is

explored in open-domain question answer systems. In order to obtain an optimal set

of patterns, a method to learn the targeted patterns automatically is developed. A

tagged corpus is constructed from the internet in a bootstrapping procedure by

supplying a few handcrafted examples for each question type to AltaVista. Then,

patterns are automatically acquired and standardized from the returned documents

[110].

For conversational purposes, the relation between question answering and constraint

relaxation in dialogue systems is explored in [111] for developing dialogue strategies

for selecting and concisely presenting information. Methods are described to deal with

database query results in information seeking dialogues. The aim is to build the

dialogue in a way that the user does not become confused. Using existing

conversational material, the authors in [112] propose a system that finds good answers

in a community forum for SemEval-2016, Task 3 on Community Question Answering

system. The approach used is based on semantic similarity features that rely on fine-

tuned word embedding and topics similarities [112]. Then, [113] presents

SemEval2017 Task 3 for Community Question Answering by rerunning the four

subtasks of SemEval2016. The authors added a new subtask to the approach in [112]

to enable experimentation with Detection of Multi-domain Question Duplication in a

40

larger-scale scenario, utilising Stack Exchange sub forums [113]. To add more

interaction, researchers report design and implementation of YourQA, the open-

domain, interactive QA system. YourQA depends on a Web search engine to find

answers to fact-based and complex questions like descriptions and definitions. They

describe the discourse moves and management model to make YourQA interactive.

They discuss the new model’s chat-based dialogue interface architecture,

implementation and evaluation [114]. However, the studies in the conversational area

did not use multiple features to find the best answer to a question.

The idea in [99] motivated us to design a QA system that exploits multiple Term,

Syntactic, and Semantic features extraction to find the similarity scores between a

query and a set of candidate answers extracted from the web and filtered using part of

speech tagging. The similarity scores of the sentences are re-ranked so as to select the

best answer for a Chatbot query. This QA system is planned to be the search engine in

our proposed Chatbot to find the best response for a user query in the Chatbot SQL

database or even online.

2.3.4 Automatic Question Generation System

Question Generation (QG) is one of the key challenges facing interactional systems

with natural languages. The potential advantages of using automated question

generation help shrink the dependency on humans to generate questions [115]. In the

educational area, the instructors frequently involve accompanying questions when

they prepare learning materials for students in order to guide learning [13].

Researchers have discussed different strategies for generating questions for general

and pedagogical purposes. Prior question generation methods focused fundamentally

on generating factoid questions that are not often pedagogically important questions

for the learners. [116].

Some researchers presented multiple choice question answering for the purpose of

teaching. An unsupervised method is investigated to apply Relation Extraction to

automatically generate multiple-choice questions (MCQs). Semantic relations in a

document are identified without allocating explicit labels to relations to ensure broad

41

coverage predefined relations. Three types of surface pattern are investigated, each

implements different hypotheses about linguistic expression of semantic relations

among named entities. The application for this method is in e-Learning systems and

other NLP scenarios [117]. However, no internet is used in this approach. Also results

of a study that is seeking to find similarity measures are reported to generate better

quality multiple-choice test distractors. The similarity measures utilised in the

procedure of distractors selection are collocation patterns. Four different WordNet

based semantic similarity methods are used in [118] and a computer aided approach

to generate multiple choice test questions from electronic documents is described. The

system employs language resources such as corpora and ontologies in addition to using

different NLP techniques, such as computing of semantic distance, shallow parsing,

sentence transformation, and automatic term extraction to analyse the sentences that

are used to generate questions [119]. An existing corpus is also used as well to describe

a computer-aided procedure to generate multiple choice tests from electronic

instructional documents. The program uses language resources such as a corpus and

WordNet, in addition to the use of various NLP techniques like term extraction and

shallow parsing. The approach generates test questions and distractors, allowing the

user to edit the test items later [120].

Using Wikipedia, automatically built multiple choice test generators that have two

main components are proposed. The first is for the generation of QAPs, the second for

the generation of distractors. Two approaches are followed: the first is using word

features to return QAPs and distractors respectively; the second approach uses the web

for automatic generation of syntactic patterns. A set of syntactic patterns are generated

and used to create multiple choice tests. An interface for the automated system was

developed and both approaches were evaluated in a newspapers corpus and Wikipedia

texts [121]. However, multiple choice questions are not very suitable for

conversational formats like Chatbots. Attempts resulted in short or shallow questions

to present an approach to automatically generate short answer questions for reading

comprehension assessment. Lexical Functional Grammar (LFG) is introduced as a

linguistic framework for question generation, which enables systematic utilisation of

semantic and syntactic information. The approach can generate questions of better

quality and uses paraphrasing and sentence selection in order to improve the cognitive

42

complexity and effectiveness of questions [122]. However, this system generates short

answer questions and there is no evidence whether it works with factual questions or

not. Two algorithms are also developed in order to supply biology instructors with

questions for students in introductory classes of biology. One of the algorithms

generates questions from photosynthesis knowledge. The other retrieves biology

questions from the web and human students validate questions. The exact pattern of

results shows a little improvement in the pedagogical benefits of each class. This

suggests that the generated questions may work well helping students to learn [123].

However, the authors in [123] stated that the questions generated may be shallower

than questions written by professionals.

Generating different types of questions automatically has been investigated. The work

in [13] introduces a sophisticated template based approach which incorporates

semantic role labels into a question generation system. This system generates natural

language questions automatically to support online learning. The authors state that they

have not yet integrated a learning context completely into their approach [13]. Also,

in this approach, questions are not answerable from the sentences they are generated

from because a question is generated from a part of a sentence, so the rest of the

sentence is not related to the generated question. Another template-based approach is

introduced to generate questions that incorporate semantic roles with a method that

generates general and domain-specific questions. The evaluation shows that the

approach is effective in generating pedagogical questions [116]. An automatic question

generator is described to utilise semantic pattern recognition to create questions of

various depths and kinds for self-study. Source sentences’ semantic role labels are

employed in a domain independent way to generate questions and answers in relation

to the source sentence [124]. Considering that each topic is related to a piece of text

containing useful information about that topic, questions are generated using named

entity information and the predicate argument formats of the sentences in the body of

texts. Syntactic tree kernels are also used to automatically judge the syntactic

correctness of the questions. The questions are ranked by their importance and

syntactic correctness [125].

Taking all possibilities into consideration, a system is presented to automate the

generation of all possible questions from a sentence which contains these questions

43

and answers. The system generates elementary sentences from the input complex

sentences using a syntactic parser. Depending on subject, verb, object, and

prepositional phrase, the sentence is classified to determine possible question types

that can be generated from a sentence [115]. To generate even deeper and subjective

questions, an extension is presented to a state-of-the-art question generation system

that makes it possible to produce deep and subjective questions appropriate for group

discussion. Generating questions from paragraphs and sentences provides the First

Shared Task Evaluation Challenge detailed account on Question Generation which

took place in 2010. The operation included two tasks that take text as input and produce

questions as output: Task A, which generates Questions from Paragraphs, and Task B

for Question Generation from Sentences. [126].

Two automatic Question Generation Systems are described in [127] to generate

questions of various types and scopes for the user from natural language text input.

The aim is to generate assessment questions for the content knowledge that a student

has acquired through reading a text. The systems are not concerned with grammar or

vocabulary assessment or language learning. Both these systems factor the QG process

into several stages, enabling more or less independent development of particular stages

[127]. However, these systems use user input text to generate the questions, which

restricts the questions to limited knowledge.

Although all the works above use documents or sentences or both to generate one or

different types or levels of questions, none of them generated questions from

automatically extracted information from online sources. Furthermore, we have not

found a study that automatically generates questions from information extracted from

the web and for a Chatbot knowledge base. We generate factual or definition questions

in order to support the pedagogical aspect of our proposed Chatbot. Factual and

definition questions can be classified as cognitive pedagogical questions [128].

Based on the discussion above we propose a QG system for generating factual and

definition questions for pedagogical purposes. These questions are generated from the

sentences that are extracted from the plain text, which is acquired from Wikipedia. The

resultant QAPs are part of our tutor Chatbot database.

44

2.3.5 Extracting Imperative Sentences

Few researchers have discussed extracting sentences or phrases that involve

commanding meanings. Actionable or advice revealing sentences have been

investigated; for instance, an approach to automatically extract human activity

knowledge from web articles is presented to describe performing task methods in

different domains. The corresponding knowledge base consists of ingredients, activity

goals, and actions, which are extracted using syntactic pattern-based and probabilistic

machine learning based methods [129]. In addition, a new approach is presented for

automatically detecting actionable clauses in how-to instructions. The focus is on

processing non-imperative clauses to extract implicit commands or instructions.

Depending on some predominant linguistic pattern in how-to instructions, actionable

clauses detection is formulated using linguistic features, such as syntactic, and modal

characteristics. The presented algorithm makes it possible to acquire complete

sequences of action and convert them to a structural form for problem solving tasks

[130]. To detect advice regarding travel in web forums, a methodology for advice-

revealing sentences extraction from the web forums is provided, especially in the travel

domain. It is defined as a sequence-labelling problem using various features instead of

viewing the problem as a simple classification. Three types of features are identified:

syntactic, context features, and sentence informativeness. A new method using the

Hidden Markov Model (HMM) is also proposed for sequential sentence labelling

[131].

For the searching purpose in the database, a system is proposed to translate natural

Arabic Quran DBs users’ requests like questions or imperative sentences into SQL

commands in order to retrieve answers from a Quran DB. The proposed system in

[132] performs parsing and morphological processes depending on a subset of Arabic

context-free grammar rules so as to act as an interface layer between Quran DB and

its users [132]. And for solving problems in object oriented programming, [133] it

addresses the concern of not understanding innovative programming techniques like

object-oriented programming in the context of reverse engineering. It discusses the

development of a method to recognize objects in an imperative code, specifically in

45

FORTRAN-77. The proposed algorithm that uses an approach to object extraction is

presented. The imperative code is analysed using the concepts of graph theory [133].

The studies from [129] to [133] have not used the information from the web to extract

imperative sentences for conversational agent purposes. We propose an approach that

uses verb tense and POS tags to extract imperative sentences from a set of candidate

sentences that are extracted from plain text acquired from Wikipedia. The resultant

imperative sentences are planned to be used for more actionable activities in our

Chatbot.

2.3.6 Implementation of the OFC

In this section we focus on the works that focus on implementing Chatbots as we

needed to base some of Chatbot evaluation metrics used in these studies. Below is a

review of these studies.

The authors in [6] explain the design of a Chatbot that was especially built to provide

a FAQBot system with the object of being an undergraduate student advisor. The

Chatbot accepts natural language input, navigates through the knowledge base, then

responds with student information in natural language. The authors in [6] model the

knowledge base using a connected graph where nodes containing information and

links interrelate the information nodes. The design semantics contain the AIML

specification language for authoring the information repository [6].

The authors in [40] present a literature review of quality issues and attributes related

to the current issues of Chatbot development and implementation. The focus in [40] is

on the text-based conversational agents available online and on the Internet of Things

(IoT) devices. This contrasts with voice-activated conversational agents such as

Cortana, Siri, Samsung S Voice, and Google Now that are not considered Chatbots

[40].

The work in [134] presents a hybrid method where conversational trees are developed

for particular types of conversations. Then, using a bespoke scripting language called

OwlLang, domain knowledge is acquired from semantic web ontologies. New

46

knowledge that is obtained from the conversations is also stored in the ontologies

creating a developed knowledge base. The evaluation involves using a learning

management system experience and the experience of students with an intelligent tutor

system [134].

The authors in [2] report on the Sinhala Chatbot System design and implementation.

Sinhala Chatbot can communicate with a user using Sinhala language and it is the first

ever Sinhala Chatbot. Sinhala Chatbot can be asked about operating system related

concepts such as date and time, identifies individuals, and greets appropriately.

Sinhala Chatbot has been built as an extension of a Sinhala parser and it is an to catch

verbal syntax and semantics in Sinhala language to a machine translation [2].

The focus of [135] is to evaluate the use of a neural network-based approach to create

an end-to-end trainable Chatbot, which has the capability to automate a restaurant

booking service. A sequence-to-sequence prototype is implemented and trained on

dialogue data [135].

The authors in [37] investigate methods to adapt and train a Chatbot to a particular

user language or application, using a user supplied training corpus. They utilise open-

ended trials via real users. Examples like Afrikaans Chatbot for Afrikaans speaking

researchers and students in South Africa are used. [37].

47

 Chapter Three

3 Automatic Web-based Question Answer

Database Generation for Online

Feedable Chatbot

3.1 Introduction

The idea proposed in this chapter carries through the ideas presented in [15]. The main

purpose of this chapter is to generate factual questions from existing factual sentences,

i.e. reverse engineering. These sentences are extracted from plain text retrieved from

the web and pre-processed using a part of speech tag. Entity Name (proper name)

recognition and verb tense recognition are used to determine factual sentence type.

Then, specific rules are used to classify the factual sentences and then generate and

categorise the questions. The second purpose of this chapter is to generate the OFC

database by putting the resultant QAPs into an SQLite database that is built in a number

of tables to contain different question and answer categories. A Chatbot database is

automatically populated with QAPs from the web pages associated with a desired

figure or object. This enables the user to chat with a Chatbot that emulates the

behaviour of the object they would like. The example figure used is the footballer

David Beckham and his Wikipedia page was used to retrieve the associated data and

to produce our data set. We present results for our unranked QAPs produced by our

rule-based QA generator. The approach in [13] has been adapted to our system and the

produced data set is used to generate QAPs which are compared with our system.

Subjective assessment is used to evaluate both our and the comparative systems, and

conclusions are then drawn.

48

3.2 Sentence Hypothesis

There are several kinds of sentences in the English language. The simplest form of

sentences have been chosen for question generation in order to simplify the procedure

of acquisition. The sentence intended is a factual or definition sentence. The hypothesis

of active factual and definition sentences is formulated to generic forms as follows:

Simple past sentence is supposed to have the format:

ompletionsentence cobject or

 +mple pasterb in sihe first vSubject +T
 3.1

For example:

Example 1

David Beckham played football.

Auxiliary verbs are excluded from the form above since their rules are different from

the simple past tense. Auxiliary verbs was and were as the main verb sentence

hypothesis is:

 ompletion sentence c

+ as or werehe verbs wSubject +t
 3. 2

For example:

Example 2

David Beckham was a footballer.

The simple present sentence hypothesis is similar to the simple past form except the

main verb:

ompletion sentence cobject or

t+ ple presenerb in simhe first vSubject +T
 3. 3

For example:

Example 3

49

David announces his retirement.

and the hypothesis of the verbs is and are is similar to the one for was and were:

 ompletionsentence cs or are+ he verbs iSubject +t 3. 4

For example:

Example 4

England is in Europe.

The subject type chosen here is just the proper name according to the connection

between the fact and definition associated with these types of nouns.

The hypothesis of the verb tense for the main verb of the sentence is:

i. Should be the first verb after the subject.

ii. The auxiliary verb should not be followed by a past participle because this makes

it passive which is not included in the proposal in this paper.

iii. The auxiliary verb should not be followed by a present participle since this make

it present continuous which is not needed in our hypothesis.

3.2.1 Syntactic Analysis for the Sentence

The normal steps performed in QA systems start with syntactic analysis for the

question based on the hypothesis set for the question, followed by extracting the

information that enables the system to detect the best answer. The procedure proposed

in this chapter is to analyse the sentence (answer) according to the built rules, then

generate the question depending on the question hypothesis set in advance. Part of

speech tags and NER are used to analyse the sentences to filter them and acquire the

desired sentences according to the hypothesis stated above. Verb tense recognition

exists and is quite straightforward to perform in NLP, but differentiation between the

verbs to filter them needs hard coding. The POS tags are mainly used to recognise the

main verb tense and then processing needs to separate the required verbs from the

eliminated ones. The diagram in fig.3.1 shows sentence analysis with regard to the

three hypotheses built above and NLP analysis concepts.

50

3.3 Question Hypothesis

Question type ‘Wh’ is generated from each hypothesis based on selected answers.

Factual or definition questions are generated according to verb tense and Entity Name

class. So, the hypothesis is as illustrated below:

The generic form of the question in the case of simple past tense is:

 form+' ?' e present b in simplNE+the verWhat+did+ 3. 5

The sentence in example 1 can be used to generate the following question:

Example 5

What did David Beckham play?

The question format of was and were auxiliary verb tense is different from the simple

past form:

Active Tense

Past

Present

was, were

Simple Past

Simple present

is, are

NE + Verb + Object

NE + was, were + sentence

 completion

NE + Verb + Object

NE + is, are + sentence

 completion

Fig. 3. 1: Factual sentence analysis relating to verb tense.

51

 '?' NE
were

was

Where

What

Who

 3. 6

where the question word ‘who’ is used if the Entity Name (EN) type is PERSON or

ORGANIZATION, ‘What’ is used in the case of EN type is FACILITY, and the word

‘Where’ is used for asking about LOCATION or GPE.

The question that can be generated from example 2 is:

Example 6

Who was David Beckham?

The question hypothesis for the simple present tense is similar to the one for simple

past except the auxiliary verb did; it is does here:

?'nt form+' mple preseverb in si + NE+the What +does 3. 7

The sentence in example 3 can be used to generate the following question:

Example 7

What does David announce?

Is and are questions are the same format as was and were:

 '?' NE
Are

Is

Where

What

Who

 3. 8

Example 8

Where is England?

The answer for each type of question must be the same type considered in the sentence

hypothesis stated above. The detailed diagram of question analysis according to verb

tense is shown in fig.3.2.

52

3.4 Source of Error

The assumptions and hypothesis considered in the theoretical part are not overly

complicated. The rules are simplified to minimize the errors that may result from over

complexity. Errors have been found in the results and the sources of these errors are

not the theoretical propositions. The errors are mainly due to the implementation where

tools are used to analyse the text or the sentences. The modules of NLTK and NLTK-

NE in the Python library are very useful tools to analyse the sentences syntactically

and to identify the NEs, but both have errors in their library; for instance, NLTK-NE

recognizes the word ‘please’ in the beginning of the sentence as a named entity and

the NLTK library considers the verb ‘saw’ as the present and the past of the verb ‘see’.

These types of defects in the tools cause many of the observed errors in the results.

(Wh) Questions

Past

Present

was, were

Simple Past

Simple present

is, are

What + did + NE + the verb

in simple

present form?

Who was

Where + were + NE ?

What

What + does + NE + the verb

in simple

present form?

Who is

Where + are + NE ?

What

Fig. 3. 2: The analysis of 'Wh' factual questions with regard to verb tense and named

entity type.

53

3.5 The Proposed System

The proposed system begins with a web crawler which is capable of accessing web

pages and it retrieves plain text from the web starting with a desired URL called the

start/seed URL. Buffering has been used in order to avoid storage limitation problems.

The buffer enables the crawler to keep the number of pages within the limits of

computer memory by controlling the generation of new pages. Pre-processing is

applied to the HTML code to extract the plain text. Then, further manipulation is

applied to the resultant text to filter the redundant symbols such as stop words, non-

English letters and words, and punctuation.

NLP operations are applied to split (tokenize) the text into sentences in separate lines

and each sentence is then tokenized into a group of words. The split words are then

tagged by speech parts. Named Entity Recognition (NER) is used to identify the

sentences with proper name subjects and the verb tense is identified in order to set the

verb form. The QAPs are produced and then the results are loaded into an SQLite

database. The diagram of the proposed system is shown in fig.3.3. The system is

implemented in the Python programming language and the implementation details are

presented below.

The web crawler for the proposed system begins with a seed URL of a page associated

with a desired figure or the object. The seed URL is used to make a request to the

associated web page and then to store the HTML document with the page data in a

file. URLs are extracted to be saved in a (To Visit) file by parsing the HTML document.

A Try and Catch programming mechanism is used to track the saved URLs in order to

check the availability of each of them and then to visit the associated new web pages.

54

Plain text is extracted from the web pages of existing URLs and saved into a text file

which is processed in the next stage. The process carries on up to the last URL in the

(To Visit) file. The diagram in fig.3.4 shows the flow of the web crawler operation.

The text extracted from the web is read from the (To Visit) file. The plain text could

contain different undesired codes after filtering from the HTML. For example: u

appears before each word in the text and it is called UNICODE. Therefore, the text is

encoded to ASCII so as to make it easier to deal with. The text after that is broken

down into sentences using the NLTK sentence tokenizing operation. The resultant

sentences are then filtered to remove redundant English symbols, and punctuation, in

addition to non-English letters and symbols. The filtered sentences are split into words

by the word tokenizing NLTK operation and each word is POS tagged with a part of

speech label (POS). Sentences with fewer than three words are not useful in this system

because two words do not make a complete sentence. Therefore, too short (fewer than

two or three words) and too long sentences (more than 20 words) are filtered after POS

tagging. The main idea we rely on to identify the subject is detecting the named entity

Fig. 3. 3: The main diagram of proposed QA production system.

55

at the beginning of the sentence as the subject. Depending on this concept, the

sentences that begin with a named entity are only used to extract question forms.

Hence, the proper name named entity is determined for each sentence using NLTK

named entity recognition (NLTK-NE). NLTK-NE normally identifies only one word

named entity and does not recognize multiple word named entities as a single entity;

to deal with this problem, a function has been written to detect and obtain a continuous

chain named entity from the multiple entities that NLTK-NE nominated. To generate

the proposed form of the questions, named entity (subject) and the verb tense should

be known. The verb tense is determined in the same stage of finding the named entity

subject to prepare both together for the stage of question generation. Based on the verb

tense, the sentence is manipulated in one of the four question manufacturing functions

in the implemented software. If the verb tense is past and was or were, it goes to the

function that generates the specified category questions. If it is not was and were, it is

simple past and goes to the function that produces simple past category questions. The

present tense is also divided into two categories: is and are and simple present. Each

present tense category also has a function that extracts the question from the sentence.

The resultant QAPs are then placed in an SQLite database that is designed to maintain

the database of a Chatbot. Cosine similarity is calculated for each QAP so as to know

the similarity distance between the generated question and the original sentence, which

is the answer.

56

Yes

Start

Enter URL

Send Request for URL page

Receive HTML Document from the

URL page

Extract URLS by parsing HTML

document

Save URLs in To Visit file

Use try and catch for To Visit URL list

in the file

Extract the plain text

Does the URL

exist?

Add the plain text into a file

Is it the last

URL in the file?

End

NO

Yes

NO

Fig. 3. 4: The implemented web crawler.

57

The Python modules used in the implemented program are: re (regular expressions),

urllib (for web URLs), BeautifulSoup (for HTML filtering), ngram (for term

similarity), sqlite3 (database) in addition to NLTK. The flow diagram in fig.3.5

demonstrates the sequence of operations to treat plain text and generate questions from

sentences and to produce QAPs.

58

Fig. 3. 5: The implemented steps to treat plain text to generate questions from sentences and

produce QA pairs.

59

3.6 SQLite Database

The data resulting from the processing needs to be saved into a database for storage

and for later evaluation. An SQLite database has been built to contain the resultant

QAPs.

3.7 Evaluation

Each designed system needs an evaluation stage to assess whether the work is

successful and competitive or not. An experiment of two parts has been done to

measure the validity of our questions and answers and to compare our work with other

systems. The experiment was divided into two parts: the first part was to design and

build our automatic question generation system and then evaluate it by human

participants, and the second part was to adapt a comparative question generation

system and use the same evaluation method to assess it in order to compare the two

systems to each other. A subjective assessment was used in order to evaluate the

validity of the questions, the answers, and both of them as a pair. Thirty-four

participants were included in the experiment and divided into two groups: one to assess

our system and the other to evaluate the comparative system.

A questionnaire was prepared to ask the user to assess the relevance of the questions,

the answers, and the QAPs according to the subject area (football) or the figure (David

Beckham). The questionnaire included four tables of the four main QA categories.

Each table contains a number of rows equal to the number of QAPs and the columns

represent Question, Answer, Question Relevance, Answer Relevance, and QA pair

matching relevance. The example figure in this experiment was the footballer David

Beckham and we used his page on Wikipedia as a source to prepare the data set. The

questionnaire scores range between 1, which means totally unacceptable, and 4, which

means fully acceptable. The questionnaire was applied to both our and the comparative

system’s experimental results.

60

3.7.1 Evaluation Metrics

There are no specific evaluation metrics for question generation and “There remains

no standard set of evaluation metrics for assessing the quality of question generation

output. Some present no evaluation at all” [13]. Also “Among those who do perform

an evaluation, there does appear to be a consensus that some form of human evaluation

is necessary” [13]. Therefore, we used a subjective assessment that depends on human

participants’ opinions.

After searching in references [14] and comparative studies [13] we found that

Precision is the best measurement metric for unranked retrieved data or information,

as our work is. In addition, Precision is used as an evaluation metric in the subjective

assessment measurements that we used to produce our evaluation results. Thus,

Precision was applied to the subjective assessment results of both parts of the

experiment in order to assess the accuracy we achieved and compare it with the

comparative system. The results of applying the former evaluation metrics are

discussed in the following sections. Precision is calculated according to the following

relation [136]:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠} ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}
 3. 9

The same evaluation metrics are used for the subjective assessment results for the two

parts of the experiment in order to measure the enhancement that could be achieved

by our QG system. In order to justify the subjective evaluation results, average score,

standard deviation, t-test, and p value were calculated for both our and comparative

systems.

3.7.2 Experiment1

The experiment starts with using the rules and the hypotheses to select particular

sentences extracted from the text retrieved from Wikipedia and pre-processed, then to

generate questions from these carefully selected sentences. After that, the resultant

61

QAPs are compared with the other QG system’s after adapting this system to our

system. The results of both systems were assessed by a subjective assessment. The

experiment has been conducted with a set of participants who are PhD students in

different research areas to assess the performance of our system.

The evaluation data was collected depending by the following steps:

1. Meeting each participant, explaining the questionnaire to them, and giving

them the questionnaire.

2. Collecting the completed questionnaire from the participants.

3. Calculating the aggregate scores provided by the participants in the

questionnaire.

4. Inputting the aggregate scores to a program we prepared to calculate and

classify the results.

3.7.3 Aim of Experiment

The aim of the experiment was to assess our Question Generation System that was

generated for the OFC in comparison with the other approach in [13] when applying

the hypotheses we put for generating QAPs. In addition, we determined the precision

level of improvement added to the question generation area by relying on human

assessment as the eventual user for any designed conversational system.

3.7.4 Experiment Participants

This experiment was conducted with PhD students from the University of Essex. These

students are specialised in different fields of PhD study, such as computer science,

electronic engineering, linguistics, and mathematics. Approximately 35% of the

judges were native English speakers and the rest (65%) were non-native English

speakers.

The study included 34 participants of both genders (male and female) distributed into

two equal groups. The participants were chosen and split into groups using the theory

62

of within and in between [137] which resulted in dividing the judgers into two groups,

one to evaluate the performance of our system and the other to evaluate the

comparative system’s work.. The questionnaire was completed by each participant to

allow us to measure the level of accuracy that was achieved by our Question

Generation system. The results of this questionnaire were calculated by aggregating

the participants’ responses.

3.7.5 Experiment Steps

The experiment was run through the following steps:

1. A programming language was used to implement our Automatic Question

Generation System and the program worked in different stages for one single

execution. These stages are:

i. Information collection from the web: this information was collected as

text extracted using a web crawler (fig.3.4).

ii. After collecting the plain text from Wikipedia, the text was pre-

processed.

iii. In the third stage the desired sentences were selected from the set of

extracted sentences according to the hypothesis set described in section

3.3 above. The selection operation involved Named Entity Recognition

as the first word or words in the sentence, and verb tense identification

to classify the sentences to groups as shown in fig.3.1 above.

iv. Questions were generated from the selected sentences from the

previous stage and the resultant QAPs were stored in a database pre-

prepared specially for this purpose.

2. The QAPs stored in the database were collected and sorted into tables to put them in

an evaluation form.

3. A questionnaire was prepared for a subjective evaluation that included an

explanation about the idea and the experiment and the tables of experimental

results.

4. Human participants were chosen to do the subjective evaluation. The

participants were kind of experts selected carefully and the vast majority of

63

them were PhD research students from the University of Essex in different

research areas. The participants were aware of the famous footballer David

Beckham, Football, and Sports.

5. The questionnaire was distributed to the participants and the idea of the

experiment was explained briefly to each of them, then the completed

questionnaire was collected from the participants.

6. Precision was calculated, prepared, and stored for comparison with the

comparative system.

7. The same steps above were applied to the comparative system in [13] and the

results were for comparison with our system.

8. A program was written to draw the bar graphs of precision values for our and

comparative systems. The graphs are shown and discussed in the following

sections.

9. Average score, standard deviation, t-test, and p value for both our and

comparative systems were calculated using a program in order to justify the

subjective evaluation results.

3.7.6 Outputs of Our System

Results of our system (AWQDG) are presented in four tables in a database. The tables

present QAPs for four categories of factual or definition sentence classes. The text

extracted from a 100 web pages or URLs was treated to produce 12 QAPs in the is and

are category (examples are shown in Table 3.1).

Table 3. 1: Is and are QA group examples of AWQDG.

 Question Answer

1. Who is Elton John? Elton John is godfather to Brooklyn and Romeo Beckham

their godmother is Elizabeth Hurley.

2. Where is Beckham? Beckham is currently playing Major League Soccer for LA

Galaxy.

In the simple past category, 36 QAPs were generated and examples are shown in Table

3.2.

64

Table 3. 2: Simple past QA group examples AWQDG.

 Question Answer

1. What did Beckham choose? Beckham chose to wear number.

2. What did Beckham become? Beckham became only the fifth Englishman to win caps.

3. What did David help? David helped launch our Philippines Typhoon children’s

appeal which raised in the UK alone.

Only two QAPs appear to belong to the category of simple present as demonstrated in

Table 3.3.

Table 3. 3: Simple present QA group examples AWQDG.

 Question Answer

1. What does Greatest Britons award? Greatest Britons awards The Celebrity number.

2. What does Man Utd play? Man Utd play down Arsenal rift.

Thirteen pairs of QA are created within the was and were category and examples of

the results are shown in Table 3.4.

Table 3. 4: Was and were group examples AWQDG.

 Question Answer

1. Who was Beckham? Beckham was a Manchester United mascot for a match against West

Ham United in.

2. Who was Tottenham

Hotspur?

Tottenham Hotspur was the first club he played for.

3. Who was Ryan Giggs? Ryan Giggs The 39-year-old was the first of Fergie s Fledglings.

The example QAPs include the mistaken ones. The resultant QAPs that are produced

by our QAPs generator are put into an SQL database in order to use them as part of

the Chatbot OFC.

65

3.8 Comparative System

We will give the comparative system in [13] the abbreviation GNLQ (Generating

Natural Language Questions) and our system the abbreviation AWQDG. These

abbreviations are extracted from the titles of the comparative work and the work in

this chapter. The approach in [13] has been selected to be considered as a comparative

system to assess our hypothesis for the following reasons:

i. The approach in GNLQ uses single sentences to generate questions from

sentences, which is quite similar to our system.

ii. GNLQ considers target identification by determining specific words or

phrases to ask about, which is similar to our narrowing for the selection of

a specific subject type (True Noun Named Entity) and specific verb tense.

iii. GNLQ generates template-based questions and to some extent uses

syntactic or/and semantic information to select the sentences or generate

questions. Our approach uses semantic features and verb tense types to

select the sentences and generate questions in a form similar to the

template-based category.

iv. GNLQ generates questions to support learning online and our system

generates questions for a conversational agent that can be a tutor about a

figure or an object it contains information about. This gives us another

justification for the comparison.

v. GNLQ does not simplify the selected sentences to generate the questions

from; i.e. it does not cut words or phrases from the selected sentence. It

uses predicates of a sentence to generate a question.

vi. GNLQ focuses on generating specific kinds of questions and it selects only

the sentence targets appropriate for those kinds of questions. Although the

kinds of questions generated in our approach are fundamentally different,

similar comparisons can still be made.

GNLQ is briefly described as follows:

 It extracts sentences from online documents and filters the sentences for

redundancy. GNLQ does not simplify the sentences or cut words or phrases

66

from the selected sentences to generate questions because the authors believe

that simplification of a sentence will eliminate useful semantic content.

 The authors of GNLQ produced templates for each predicate type to generate

one or more questions from that predicate.

 GNLQ could generate more than one question from a sentence depending on

the number of predicates.

 GNLQ templates depend on assuming copula auxiliary verb in a predicate to

generate a question and the authors of GNLQ think that non-copula predicates

are not meaningful. GNLQ also filters by auxiliary copulas. We do not filter

by auxiliary verbs in our system and we kept them when applying the GNLQ

approach to see what the results would be.

 GNLQ does not extract the questions from the whole sentence but uses

predicate frames rather than the whole sentence.

 It develops a template based QG framework. It combines the benefit of

semantic and syntactic categories of QG with a template-based QG.

 The questions in GNLQ are not answerable from the sentences they are

generated from, whereas they are answerable from the documents the sentences

are extracted from [13].

We adapted the comparative system to our system by selecting specific templates

designed by the comparative system’s authors that match our sentence filtering, subject

type, and verb tense then we programmed the selected templates. Our data set was

used to produce QAPs from the comparative templates in GNLQ and the results are

shown in the following sections. A block diagram of GNLQ templates adapted to our

system for comparison is shown in fig.3.6. The results are evaluated using a subjective

questionnaire given to human judges for assessment and then compared to our system.

67

3.8.1 Comparative System’s Experimental Results

Experimental results of GNLQ are also presented in four tables in an SQLite database.

The tables present QAPs of four categories. The text extracted from a 100 web pages

or URLs was treated to produce 13 QAPs in the is and are category (examples are

shown in Table 3.5).

Table 3. 5: Is and are QA group examples of GNLQ.

 Question Answer

1. Where can we find Messi? Messi is very authentic to his sport.

2. Who would Roy Keane be? Roy Keane is among those who like Ferguson disapproves

of Beckham 's extravagant lifestyle.

Fig. 3. 6: The analysis of GNLQ question templates adapted to our system for comparison.

68

In the simple past category, 33 QAPs were generated and examples are shown in Table

3.6.

Table 3. 6: Simple past QA group examples of GNLQ.

 Question Answer

1. Can you summarize what

Brooklyn Beckham set?

 Brooklyn Beckham set to be released by Arsenal already.

2. What can Beckham make? Beckham made you want to believe that right feet could be

described as educated too.

Four QAPs appear in the category of simple present, as demonstrated in Table 3.7.

Table 3. 7: Simple present QA group examples of GNLQ.

 Question Answer

1. Would you explain what

Shell say?

 Shell say you were rubbish today Ryan.

2. Would you explain what

Greatest Britons awards?

 Greatest Britons awards The Celebrity number.

Seven QAPs were created within the was and were categories and examples of the

results are shown in Table 3.8.

Table 3. 8: Was and were group of GNLQ.

 Question Answer

1. Would you summarize what

Tottenham Hotspur be?

 Tottenham Hotspur was the first club he played for.

2. What can Ronaldo be? Ronaldo was concerned but not afraid about coming back.

3.9 Evaluation Results

As discussed in the previous sections, subjective assessment was used to evaluate the

experimental results of our system AWQDG and the comparative system GNLQ.

After finishing the calculation of data classes for both AWQDG and GNLQ, a Python

program was used to calculate the precision value for each part in each group of the

two compared systems. Precision was calculated for Question, Answer, and QA pair

69

match for each of the groups is and are, simple past, simple present, and was and were

in both systems AWQDG and GNLQ. Precision calculation results have been recorded

and then entered into a MATLAB program to produce comparative bar graphs between

AWQDG and GNLQ. The graphs are drawn as follows:

The bar graph demonstrated in fig.3.7 is for precision levels of Question, Answer, and

QA pairs matching in group is and are for both AWQDG and GNLQ. The graph shows

proximity in precision levels between AWQDG and GNLQ. However, AWQDG

surpasses GNLQ by 3 points in Questions with 0.96 for the former and 0.93 for the

latter and also QA match by 3 points with 0.98 for the former and 0.95 for the latter.

In contrast, in Answers GNLQ precision value surpasses AWQDG by 10 points with

0.67 for the former and 0.57 for the latter.

The bar graph in fig.3.8 illustrates the precision levels of Question, Answer, and QA

pair match in the simple past group for both AWQDG and GNLQ. The graph shows

another proximity between AWQDG and GNLQ with an increase for AWQDG over

Fig. 3.7: Precision comparison between AWQDG and GNLQ (is and are

group).

70

GNLQ in Answers, and QA pairs match with 0.96, 0.95 respectively for the former

and 0.89, 0.92 respectively for the latter. The results show better performance for

AWQDG by 7 points in Answers over GNLQ and 3 points in QA pairs match. By

contrast, in Questions GNLQ surpasses by 1 point with 0.89 for AWQDG and 0.90 for

GNLQ.

The levels of precision for Question, Answer, and QA pairs match for simple present

groups of both AWQDG over GNLQ are shown as a bar graph in fig.3.9. The graph

shows a significant excess by 84 points for AWQDG over GNLQ in the Questions part

where the values were 0.95 for the former and 0.11 for the latter. Equality is shown for

both in Answers where the values are 0.11 for both. AWQDG also exceeded GNLQ

in QA pair match by 3 points as 0.97 for the former and 0.94 for the latter

Fig. 3. 8: Precision comparison between AWQDG and GNLQ (simple

past group).

71

Fig.3.10 presents the bar graph for precision levels of Question, Answer, and QA pair

match for was and were groups in AWQDG against GNLQ. The bar graph shows a

considerable increase in the precision level of AWQDG over GNLQ by 68 points with

0.93 for the former and 0.25 for the latter. AWQDG also beats GNLQ in QA pair

match by 27 points and the numbers are 0.94 and 0.67, respectively, for the former and

the latter whereas GNLQ exceeds AWQDG in Answer part by 24 points with values

of 0.91 and 0.67, respectively.

Fig. 3. 9: Precision comparison between AWQDG and GNLQ (simple

present group).

72

The comparison of overall precision levels for both AWQDG over GNLQ is shown in

the bar graph of fig.3.11. The graph shows a remarkable rise in favouring AWQDG

over GNLQ in the was and were group by 33 points with 0.89 in AWQDG and 0.56

in GNLQ and in the simple present group by 17 points with 0.67 for the former and

0.50 for the latter. Even so, GNLQ overtakes AWQDG in the is and are and simple

past groups by 5 points in the is and are groups with 0.88 for the former and 0.83 for

the latter and 2 points in the simple past group with 0.96 for the former and 0.94 for

the latter.

Fig. 3. 10: Precision comparison between AWQDG and GNLQ (was and

were group).

73

It is noticeable from the bar graph shown in fig.3.12 that AWQDG outperforms GNLQ

in overall Questions and QA pair match. The graph shows an increase by 12 points in

Questions for AWQDG over GNLQ with 0.93 for the former and 0.81 for the latter.

Also, the graph shows that the QA pair match part rises in AWQDG over GNLQ by 7

points and the numbers are 0.96 and 0.89 for them, respectively. However, GNLQ

increases in the Answers part over AWQDG by 8 points with 0.9 for the former and

0.82 for the latter.

Overall, the recorded precision value for our question generation system was 0.91

relating to the subjective assessment results we implemented for our system

evaluation, whereas an overall precision value of 0.86 has been obtained for the

comparative system that has been adapted to our system and our produced data set

using the same evaluation method for the experimental results. The overall values

present a clear success for our system over the comparative system by 5 points. An

improvement is also shown in Questions and QA pairs match, which means that our

system AWQDG generates more answerable questions than the comparative system

GNLQ.

Fig. 3. 11: Precision comparison between AWQDG and GNLQ (overall of

the four groups).

74

To support the subjective evaluation results, average score, standard deviation, T-test,

and p value for both our and comparative systems were calculated using a Python

program and the results are shown in Table 3.9. The t-test was calculated using the

following relation for independent samples [138] [139]:

 𝑡 =
𝑥1− 𝑥2

√
1

𝑛1
+

1

𝑛2

𝑆𝑝
 3. 10

 𝑆𝑝 = √
(𝑛1−1)𝑆1

2+ (𝑛2−1)𝑆2
2

𝑛1+ 𝑛2−2
 3. 11

where

𝑥1 = Mean of first sample

𝑥2 = Mean of second sample

𝑛1 = Sample size (i.e., number of observations) of first sample

Fig. 3.12: Precision comparison between AWQDG and GNLQ (overall of

Questions, Answers, QA match).

75

𝑛2 = Sample size (i.e., number of observations) of second sample

𝑆1 = Standard deviation of first sample

𝑆2 = Standard deviation of first sample

The statistical values mentioned above were calculated for the groups Question,

Answer, and QA match. The results show significance in the t-test values for our

system in the groups Question and QA Match and a value close to significance in the

Answer group for the comparative system.

76

Table 3. 9: The results of statistical calculations for subjective assessment evaluation for both AWQDG and GNLQ.

Statistics Question

Answer QA Match

 AWQDG GNLQ AWQDG GNLQ AWQDG GNLQ

Average

3.2009 2.9492 3.0768 2.8861 3.0666 2.8646

Standard

deviation

0.7718 0.6311 0.6037 0.5010 0.6177 0.5217

T-test

1.9724 -1.8841 1.9507

P value 0.0509

0.0619 0.0535

77

3.10 Conclusions

In this chapter, two main contributions are presented. The first contribution is

generating factual questions from existing factual sentences. Plain text was extracted

from the 100 URLs from the Wikipedia page of the footballer David Beckham. Factual

sentences were extracted from the plain text after pre-processing. Named Entity

(proper name) Recognition (NER) and verb tense recognition were used to identify the

factual sentence category. Specific rules were built to categorize the sentences and

then to generate questions and categorize them. The new built SQL database was used

as knowledge for the Online Feedable Chatbot that can answer questions about the

personality of a desired figure or the behaviour of an object and improve over time.

Four categories of QAPs were produced and examples of these categories are

presented. A comparative system was incorporated into our system using our produced

dataset and compared with our system. A subjective assessment to validate the QAPs

was performed and the evaluation stage was implemented after the subjective

assessment was made for the two systems. The overall precision levels obtained for

the subjective assessment show an enhancement by 5 percentage points for our system

over the comparative system. Also, the results show a clear improvement for our

system in the Question and QA pair match categories, which means that our system

produces more answerable questions from a sentence than the comparative system.

The resultant QAPs produced by our question generation system was put into an

SQLite database to be used as part of the knowledge base for our Online Feedable

Chatbot.

78

 Chapter Four

4 Question Answer System for Online

Feedable Chatbot

(Part of this chapter is published in [17])

4.1 Introduction

Populating a Chatbot database from the web is considered a new research area. Few

researchers have examined educating a new Chatbot in order to incorporate an artificial

character. Some authors start database population from web pages or plain text based

upon a certain genre or person [15, 140]. Using data from web pages needs numerous

operations, such as pre-processing, filtering, mining, and quantification before

classification and rank ordering.

Feature extraction methods are used after text mining for both query and response

sentences. Quantification uses content analysis involving occurrences, tabulation and

statistical semantics for content units [141]. Particular features are used as score

measurements for quantification according to statistical calculations.

The aim of this chapter is to present a new method that employs various feature

extraction methods to quantify text responses for Chatbot queries. The well-known

footballer David Beckham is considered as the ‘personality’ for this Chatbot

experiment. The results show that the highest scored sentences match well with

subjective analysis and the objective evaluation results show that cosine similarity is

more accurate than Jaccard’s coefficient to find term match between the query and the

response sentences.

79

The study in [112] has been adapted to our system and our dataset for the purpose of

comparison. The contribution presented in this chapter is using a new combination of

multiple feature extraction methods to find a best response to a Chatbot query.

4.2 Query and Features

4.2.1 Query

The processed data is tested using a sentence or a question that is associated to the

extracted material. The sentence or question, which is used to test the processed, is

called the query. The query sentence, in this work, is used to test the relevance of the

extracted data in order to measure the performance of the system. The query and input

data are analysed to form their basic components and then the features, which are the

measurement metrics, are extracted to quantify the output data [142]. The query here

in the experimental part is a set of TREC8 type factual questions about the personal

and the career lives of the footballer David Beckham as in the examples below:

 Who is David Beckham?

 Who is David Beckham's wife?

 Which club did David Beckham play for?

 Where was David Beckham born?

Query formulation is the operation of creating a list of keywords from the question.

This list of keywords forms a query sent to an information retrieval system. The type

of query to form, basically, depends on the application. If question answering is

applied to the web, a keyword can simply be created from every word in the

question, letting the web search engine remove any stop words automatically. Often,

the question word, such as where, when, and so on, is left out. In addition, keywords

can be formed from the terms found in the noun phrases in the question, applying

stop word lists to remove function words and high frequency, low content verbs

[143].

80

4.2.2 Feature Extraction

In order to be able to quantify the training text according to the query, particular

features are extracted from both the query and the sentence. Then comparison is made

between these features. Feature extraction enables discrimination between text classes

[144] and it is considered an important step in improving the performance of the

designed system [145]. A system that uses a combination of feature extraction methods

together such as term, syntactic, and semantic at once is called a hybrid feature system.

4.2.3 Feature Selection

The examination of features that are extracted is of a primary concern. Arbitrary

selection of features will decrease the accuracy of quantification and thus affect the

performance of the system. Relevant features should be selected in order to reduce

general data, save storage space in memory, improve the system performance, and

simplify the extracted data. In this chapter, the features have been selected based on

previous experimental work as in [99], which selects term, syntactic, and semantic

features to quantify the similarity between two sentences.

4.3 Term Match

Term level analysis means converting a piece of text into a sequence of strings (words)

called tokens. Each token has an identified meaning. In this method, the number of

matching words between the query and the response sentence is determined [146]. The

overlapping words are counted up to the number of words in the query and if the

number of matching words is equivalent to the number of union words, there is a 100%

match.

81

4.3.1 Similarity Measurement Methods

The association between two words, phrases, or sentences is determined using

different comparison metrics, such as similarity, dissimilarity, and distance. As the

issue in this chapter is matching, then similarity metrics are of this chapter’s interest.

There is a number of term similarity measurements [147]. In this chapter, Jaccard’s

coefficient and cosine similarity methods are used to measure term similarity between

the query sentence and each response sentence.

4.3.2 Jaccard’s Coefficient

Jaccard’s coefficient measures the similarity between two data sets through dividing

the number of common properties between the compared sets by the total number of

features [148, 149]. For example, if X and Y are two sets, then Jaccard’s coefficient

between them is:

YX

YX
 J(X,Y)

 4. 1

The technique used in this method is n-grams which is a method that counts the number

of words in a sentence or a text and considers each word as a gram. There is a feature

in the N-grams, which allows finding the overlapping words between two lists of

words. This feature is employed in this paper to find the overlapping words between

the query and the response sentence according to the following relation:

 nN qm1=r 4. 2

And the union words can alternatively be obtained by using the following relation:

 nN q=rm 2 4. 3

where:

m1 is the intersectional words between the query and the response sentences.

m2 is the union words between the query and the response sentences.

𝑟𝑁 is the response sentence.

82

𝑞𝑛 is the query sentence.

N is the number of words in the response sentence.

n is the number of words in the query sentence.

The length of the resultant intersectional list m1 indicates the number of overlapping

words (i.e. the number of matches), and the rate of match according to Jaccard’s

coefficient comes from dividing the overlapping words number by union the words

number:

L 1= Len (m1)

L 2= Len (m2)

L2

L1
M(q,r)= 4. 4

where:

M is the rate of term match.

L1 is the number of intersection words.

L2 is the number of union words.

4.3.3 Cosine Similarity

One of the popular similarity metrics used in text document processing techniques is

cosine similarity. Cosine similarity is used when the text documents are considered as

vectors. The similarity between two documents are here considered as the correlation

of two vectors [150]. For example, if two document vectors ti and tj are given, cosine

similarity between them is:

83

 𝑆𝐼𝑀𝑐𝑜𝑠(𝑡𝑖⃗⃗ , 𝑡𝑗⃗⃗) =
𝑡𝑖⃗⃗⃗ ∙ 𝑡𝑗⃗⃗ ⃗

𝑡𝑖⃗⃗⃗ × 𝑡𝑗⃗⃗ ⃗
 4. 5

where ti and tj are m dimensional vectors of the term set 𝑇 = {𝑡1, … ,𝑚}. Each term

with its weight is represented by a non-negative dimension. The cosine similarity is

bounded between 0 and 1 and it is document length independent [151].

The query can be described as a vector qn = (wq0, wq1, wq2, …., wqn) and the same for

the response sentence rN = (wr1, wr2, wr3,, wrN). To apply cosine similarity on the

query and the response sentences, the relation will be as follows:

 𝑆𝐼𝑀𝑐𝑜𝑠(𝑞𝑛⃗⃗⃗⃗ , 𝑟𝑁⃗⃗⃗⃗) =
∑ 𝑞𝑛 (𝑤𝑞𝑖) 𝑟𝑁(𝑤𝑟𝑗)

𝑖=𝑛 𝑗=𝑁
𝑖=1 𝑗=1

√∑ 𝑞𝑛
2(𝑤𝑞𝑖)

𝑛
𝑖=1 √∑ 𝑟𝑁

2(𝑤𝑟𝑗)
𝑁
𝑗=1

 4. 6

Where qn and rn are term vectors of the query and the response sentences respectively

and n = N.

In the implementation part, one of the term similarity metrics (Jaccard’s coefficient or

cosine similarity) is used every run to find term similarity between the query and the

response sentences.

4.4 NLP Match (Syntactic Analysis)

Syntactic or POS tag analysis is a technique used to analyse a sentence into chunks or

phrases depending on POS tags performed according to language and grammar rules.

Tokenizing the sentence into separate words is required before applying POS tagging.

Syntactic predicate match can be used to obtain the extent of concordance between

two compared sentences. The matching can be obtained by comparing the POS tags of

the query and the response answer [152]. The function of comparison is shown in the

relation below:

 𝑃 = ∑ 𝑃𝑇
𝑖=𝑛 𝑗=𝑁
𝑖=0 𝑗=0 𝑤ℎ𝑒𝑟𝑒 𝑃𝑇 = {

1 𝑤ℎ𝑒𝑛 𝑃𝑂𝑆(𝑖) = 𝑃𝑂𝑆(𝑗)
0 𝑤ℎ𝑒𝑛 𝑃𝑂𝑆(𝑖) ≠ 𝑃𝑂𝑆(𝑗)

 4. 7

where:

P is the number of POS tag matches.

84

PT is the POS tag.

i refers to the position of a POS tag in the query sentence words.

j refers to the position of a POS tag in the response sentence words.

By dividing by the total number of POS tags, a syntactic or POS tag match is obtained

as shown below:

 𝑃𝑇𝑀 =
𝑃

𝐿𝐸𝑁(𝑃𝑇𝑞∪ 𝑃𝑇𝑟)
 4. 8

where:

PTq is the POS tag list of the query sentence.

PTr is the POS tag list of the response sentence.

LEN is the number of union POS tags in the query and the response sentences.

PTM is POS tag match between the query and the response sentence words.

4.5 Semantic Similarity

Semantic relationship is one of the ways to measure similarity between two sentences.

It is used in NLP to compare units of language, such as words, sentences, paragraphs,

and documents [153]. “Semantic measures are mathematical tools used to estimate

quantitatively and qualitatively the strength of the semantic relationship between units

of language, concepts, or instances” using symbolic or numerical description gained

according to formal or implicit information comparison for the meaning of these units

[154]. Semantic similarity is used as a metric to measure the similarity in sense

between two documents regardless of the size of these documents.

There are different semantic measurement metrics; two of them are used in this work.

Named entity and semantic cosine similarity are used in this chapter.

85

4.5.1 Named Entity

In the previous chapter, named entity was used as a feature extracted after analysing a

sentence to identify the subject of the sentence, which is the target to derive a question

from this sentence. The concept of named entity is explained in Chapter 2 (Section

2.2.9)

In this chapter, the entity type semantic method is used as a feature extracted from the

query and the extracted sentence in order to examine the similarity between them. The

summation of similar named entities between the query and the response sentence is

calculated as follows:

 ENE = ∑ NEk=K l=L
k=0 l=0 where NE = {

1 when k = l
0 when k ≠ l

 4. 9

where:

ENE is the number of named entity matches between the query and the response.

NE is a named entity match.

K indicates the number of named entities in the query sentence.

L indicates the number of named entities in the response sentence.

k indicates a named entity in the query sentence.

l indicates a named entity in the response sentence.

Then the named entity match rate NEM is:

 𝑁𝐸𝑀 =
𝐸𝑁𝐸

𝐿𝐸𝑁((𝑁𝐸𝑞 ∪ 𝑁𝐸𝑟)+(𝑁𝐸𝑞 𝑁𝐸𝑟))
 4. 10

where:

NEq is the named entity list of the query.

NEr is the named entity list of the response sentence.

LEN is the number of unity words between NEq and NEr.

86

4.5.2 Semantic Cosine Similarity

Cosine similarity is discussed in Section 4.3.3 above. The meaning of cosine similarity

is different from the meaning of semantic cosine similarity. At term level, cosine

similarity is when compared sentences are converted into term vectors. Cosine

similarity is obtained by using the magnitudes of similar words in term vectors to

calculate the overall similarity using the relation of cosine similarity. Semantic cosine

similarity deals with semantic vectors of sentences rather than term vectors. WordNet

is used to obtain semantic vectors of the query and the response sentences. WordNet

is a lexical source that is used to model lexical knowledge of the English language.

The smallest term in WordNet is a logical group of synonym set (synset). The synset

represents the particular meaning of a word and the synsets have semantic relations

explicitly with each other [155]. Hence, the query can be described as a semantic

vector qsn = (wqs0, wqs1, wqs2, …. , wqsn) and the same for the response sentence rsN =

(wrs1, wrs2, wrs3,, wrsN). To apply cosine similarity to the query and the response

sentences, the relation will be as follows:

 𝑆𝐼𝑀𝑆𝑒𝑚𝑐𝑜𝑠(𝑞𝑠𝑛⃗⃗⃗⃗⃗⃗ , 𝑟𝑠𝑁⃗⃗ ⃗⃗ ⃗) =
∑ 𝑞𝑠𝑛 (𝑤𝑞𝑠𝑖)∙

𝑟𝑠𝑁 (𝑤𝑟𝑠𝑗)
𝑖=𝑛 𝑗=𝑁
𝑖=1 𝑗=1

√∑ 𝑞𝑠𝑛
2 (𝑤𝑞𝑠𝑖)

𝑛
𝑖=1 √∑ 𝑟𝑠𝑁

2 (𝑤𝑟𝑠𝑗)
𝑁
𝑗=1

 4. 11

where qsn and rsn are semantic vectors of the query and the response sentences

respectively and n = N.

4.6 Maximum Percentage of Match

Total match is calculated by adding the term, syntactic, and semantic features together

in the combination using Jaccard’s coefficient and named entity as shown below:

 𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑀(𝑞, 𝑟) + 𝑃𝑇𝑀(𝑃𝑇) + 𝑁𝐸𝑀(𝑁𝐸) 4. 12

In the combination using cosine similarity and named entity, the total match equation

is:

87

 𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑆𝐼𝑀𝑐𝑜𝑠(𝑞𝑛⃗⃗⃗⃗ , 𝑟𝑁⃗⃗⃗⃗) + 𝑃𝑇𝑀(𝑃𝑇) + 𝑁𝐸𝑀(𝑁𝐸) 4. 13

The combination using Jaccard’s coefficient and semantic cosine similarity equation

is:

 𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑀(𝑞, 𝑟) + 𝑃𝑇𝑀(𝑃𝑇) + 𝑆𝐼𝑀𝑆𝑒𝑚𝑐𝑜𝑠(𝑞𝑠𝑛⃗⃗⃗⃗⃗⃗ , 𝑟𝑠𝑁⃗⃗ ⃗⃗ ⃗) 4. 14

Finally, the formula of the combination using cosine similarity and semantic cosine

similarity is:

 𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑆𝐼𝑀𝑐𝑜𝑠(𝑞𝑛⃗⃗⃗⃗ , 𝑟𝑁⃗⃗⃗⃗) + 𝑃𝑇𝑀(𝑃𝑇) + 𝑆𝐼𝑀𝑆𝑒𝑚𝑐𝑜𝑠(𝑞𝑠𝑛⃗⃗⃗⃗⃗⃗ , 𝑟𝑠𝑁⃗⃗ ⃗⃗ ⃗) 4. 15

The percentage match is then obtained as in equation 4.16 below:

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑚𝑎𝑡𝑐ℎ = 𝑀𝑡𝑜𝑡𝑎𝑙 × 100 4. 16

The maximum match percentage is obtained by re-ranking the percentage matches

calculated above and the highest score can indicate the best match according to the

assumptions considered for the output of the proposed system.

4.7 The Proposed System

The proposed system begins with a web crawler with the ability to obtain plain text

from the web using a desired URL as the start/seed. The block diagram of the proposed

system is shown in fig.4.1.

The diagram in fig.4.2 shows the flow of the implemented system. The text retrieved

from the web is read from the (To Visit) file. The plain text may contain different

undesired code after being acquired from the HTML. One example is ‘u’ appearing

before each word in the text and this is called UNICODE. So, the text is encoded to

ASCII in order to make it easier to deal with. The text is then split into sentences using

the NLP. The resulting sentences are filtered after that to remove redundant English

symbols, punctuation, and non-English letters and symbols. The filtered sentences are

broken down into words by the word tokenizing NLP process and each word is tagged

by a part of speech label (POS). Named Entity Recogniser is then used to identify

entity names for both the query and the extracted sentences. Features are extracted and

compared to calculate the matching score.

88

The scores of syntactic, semantic, and term match are calculated then summed to

obtain a total match score then a percentage match score. The sentences and the

calculation results are all placed in an SQLite database prepared for that purpose. The

sentences are then descending re-ranked according to their matching scores to evaluate

relevance of the highest scores.

The system is implemented in Python and the modules used in the implemented

program are: NLTK, re, ngram, urllib, sqlite3, in addition to BeautifulSoup and

WordNet.

Web

Spider

Quantificatio

n and rank

order

Text

Selection

Feature

Extraction

Text Mining

and NLTK

processing

Response

Choosing

Text Pre-

processing

Buffer

Database

The Web

User

Query

Response

Sentence

Outputting

Fig. 4. 1: A block diagram for the proposed system.

89

Fig. 4. 2: A flow diagram of the implemented system.

90

4.8 Evaluation

An experiment was prepared to test the proposed system’s efficiency. The first stage

of this experiment was preparing the questions that were the dataset of the test. We

used our own dataset that was extracted from the web from the Wikipedia page of the

English footballer David Beckham. The second data set used to evaluate the proposed

system was the Stanford QA dataset (SQuAD). The second stage of the experiment

was writing the rules for answer selection. The third stage was writing the algorithm

of the program then coding the program. The Python programming language was used

to code the implementation programs. The fourth stage was running the code and using

the QA data sets as inputs to produce outputs. The fifth stage was storing the output

data in an SQLite database for the purpose of evaluation. The final stage was

transferring the evaluation results into graph forms using the Python code.

4.8.1 Experiment’s Evaluation Metrics

In this experiment evaluation metrics were applied to see the enhancement our system

added and also to compare it with other comparative systems. Precision@N and mean

average Precision (MAP) were used to evaluate ranked information retrieval [14].

Thus, Precision@10, Precision@20 and MAP were used to evaluate our output

answers to queries after rank-ordering the answers.

The results were also evaluated using the mean reciprocal rank (MRR) method, which

is suitable for measuring the performance of the implemented system. MRR is

calculated relating to the following relation [156]:

 𝑀𝑅𝑅 =
1

𝑛
 ∑

1

𝑟𝑖

𝑛
𝑖=1 4. 17

where:

n is the number of questions.

i is the individual question number.

ri is the reciprocal rank of the correct answer.

91

4.8.2 Experiment2

The experiment starts with inputting the formulas and rules that score response

sentences and rank them according to the scores obtained. The input text was extracted

from the Wikipedia page of the English footballer David Beckham. Python

programming codes were then produced to implement the equations that are derived

in the theoretical part. Different Python modules are used to extract and filter the plain

text then to sentence and word tokenize the resultant filtered text; for example, NLTK,

NLTK-NE, WordNet, NumPy, ngrams, urllib, and BeautifulSoup. The resultant

sentences were popped into a text file for retrieval in the run time of the calculation

programs. Sixty-four questions (not the questions generated in Chapter 3) and their

predicted answers were prepared to use with the extracted and prepared text.

Also a SQuAD data set was prepared by inputting 54 source text paragraphs into

source files and preparing 200 questions to be used with these text sources. Our four

invented formulas in addition to the comparative system’s in [112] were coded into

five Python programs, one for each of our four formulas and one for the comparative

system; and we ran them all together using the two data sets; one run for each of the

five programs per each query. The experimental results of the 264 runs for each

program were stored in SQLite databases. The evaluation part was started when all

runs for all the corresponding experimental programs were completed. Precision@10,

Precision@20, MRR, and MAP were calculated and graphs for the evaluation results

are presented.

4.8.3 Experiment Goal

The aim of the experiment was to implement our QA system that is proposed for the

OFC. The experiment was also conducted in order to evaluate the performance of the

system by applying two QA data sets and storing the results in an SQLite database

prepared for this purpose. Moreover, Precision@10, Precision@20, MAP, and MRR

were used for the purpose of evaluation.

92

4.8.4 Experiment Requirements

The experiment requirements can be listed as below:

1. The theoretical rules and hypotheses that were needed to be implemented in

order to find a best answer to a query from a set of sentences extracted from a

source text.

2. A programming language to implement the proposed rules and hypothesis, and

to calculate the evaluation results then to draw the evaluation graphs. The

programming language we used is Python. Python was chosen because it is a

reliable language in text processing and array operations. The MATLAB

programming language was also required to draw the bar graphs of the results.

3. Data set(s) of QA as input to the program coded in Python in order to test and

evaluate whether the system is successful and comparative.

4. Python modules, such as NumPy, urllib, NLTK, NLTK-NE, and

BeautifulSoup. These modules help in retrieving information from the web

using a web crawler (the same web crawler in Chapter 3 fig. 3.4) and in

extracting the required plain text which is then filtered and tokenized into

sentences and saved in a source file.

5. Other Python modules such as WordNet, NumPy, ngrams, and sqlite3 are

required in the stage of calculations and storing the results.

6. A database browser for SQLite database is needed to create tables required for

experimental results storage and to run short SQLite programs to rank order

the stored answer sentences according to their percentage scores.

4.8.5 Experiment Steps

The steps that the experiment runs through are as follows:

1. Two data sets were prepared to evaluate our system and to compare it with

other comparative systems.

 The first data set was our QA data set prepared according to the

adaptation of TREC data set types to our subject, which is the footballer

93

David Beckham. We prepared 64 questions about the career and the

personal life of that person. The source text used with this QA set was

our extracted text from David Beckham’s Wikipedia page. The QA set

used in this chapter are not the ones generated in Chapter 3.

 The second data set was the Stanford QA dataset (SQuAD). We saved

54 source text paragraphs of the data set in source files and we selected

200 QA sets that are related to these text sources.

2. A Python programming code was written to implement the proposed QA

system. The code is divided into five programs; one for each of the four

formulas in equations (4.12) to (4.15), and one for the comparative system in

[112]. The five programming codes are doing the following tasks:

i. Accessing the Wikipedia page of David Beckham using the URL of

this page using the web crawler that is explained in Chapter 3 and

illustrated in fig.3.4. The purpose of this access is to extract the

information in the corresponding URL. We then extract all the URLs

embedded in the main Wikipedia page of David Beckham. The

extracted URLs were used to extract more information from the pages

related to these URLs. Information from 100 URLs was extracted

afterwards.

ii. Filtering the HTML code after extracting the information from the 100

web pages to acquire the plain text. This plain text was filtered to

remove extra punctuation, non-English symbols or letters, or any

redundant information. The filtered text was then converted to the right

ASCII code format.

iii. Sentence tokenizing the resultant text then saving it in a text source file

for the purpose of processing.

iv. Retrieving the resultant filtered sentences from the source file, then

processing each sentence to extract features from it. The processing

starts from word tokenizing the sentence, then POS tagging, followed

by some more filtering for more symbols like redundant brackets, and

then using feature extraction and score calculation.

94

v. Syntactic information was extracted using POS tag and then the

similarity score between the query and the response sentence was

calculated.

vi. Term similarity was obtained by calculating Jaccard’s coefficient and

cosine similarity values.

vii. Semantic features were extracted and semantic similarity values were

calculated using named entity and semantic cosine similarity.

viii. The results of syntactic, semantic and term similarity scores were added

together using equations (4.12) to (4.15).

ix. The percentage of the results was calculated and the values of syntactic,

semantic, and term similarity scores were stored in an SQLite database

together with the corresponding response sentence, overall scores and

the percentage scores. The results of 264 queries per each of the five

programs were stored in 10 databases, one database for each program

per each data set.

3. The experimental results were examined table by table after ranking the

answers in descending order according to the overall percentage score of each

sentence to find the relevant answers.

4. After recording the rank order of each relevant answer, the evaluation stage

was started by calculating the precision@10, precision@20, and recall values

for each query per five tables. Then MAP and MRR were calculated for each

of the two data sets per each of the five programs (the Python programs one

program per each of our four formulas and one for the comparative system).

5. Precision-recall graphs were produced for precision@10 and precision@20 for

each of the two data sets: our QA dataset and SQuAD.

6. Bar graphs of MAP and MRR values for each five data groups for each dataset

were plotted using the MATLAB programming language.

4.9 Comparative System

The comparative system in [112] is named by its authors as SemEval-2016 Task 3.

The SemEval-2016 Task 3 is described as follows [112]:

95

1. SemEval-2016 Task 3 aims to solve a QA problem in community forums,

which is caused by users having to post questions that have already been asked

and answered. This problem annoys the users because it makes them refer to

those previously asked questions.

2. The main subtask (C) asks a question to find an answer which already exists in

the community forum and it is suitable as a response to a newly posted

question.

3. SemEval-2016 Task 3 uses semantic vector similarity by using semantic word

embedding obtained from Word2Vec.

4. In semantic vector similarity, SemEval-2016 uses a number of similarity

features calculated by using the centroid word vectors of the question.

5. The centroid word vectors of the question are constructed according to the

following relation:

 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (𝑤1…𝑛) =
∑ 𝑤𝑖

𝑛
𝑖=1

𝑛
 4. 18

 Where:

 𝑤𝑖 represents a word in a sentence.

 n is number of words in the sentence.

6. The authors in [112] assume that the relevant answer should have the closest

centroid vector to the centroid vector of the question.

7. SemEval-2016 Task 3 orders each word in the answer to the question body

centroid vector according to their similarity and takes the average similarity of

the top N words. The authors of SemEval-2016 Task 3 assume that if the

average similarity of the top N most similar words is high, the answer should

be relevant.

8. In addition to semantic features, the authors of SemEval-2016 Task 3 consider

some metadata common meaning features, such as answer length, question

length, and question to comment length.

According to the points we have described above, SemEval-2016 Task 3 uses semantic

features to extract the highest scored answers in addition to some metadata features.

We programmed the system in SemEval-2016 Task 3 with our work and we used the

same data set to test it and compare it with our system.

96

4.10 Experimental Results

Let us give the combination in equation (4.12) the abbreviation Jaccard POS tag

Named Entity (JPNE) and the combination in equation (4.13) the abbreviation Cosine

POS tag Named Entity (CPNE). Also, let us give the combination in equation (4.14)

the abbreviation Jaccard POS tag Semantic Cosine (JPSC) and the combination in

equation (4.15) the abbreviation Cosine POS tag Semantic Cosine (CPSC). The name

of the comparative system is already explained in the previous section.

The input data to the system was the unstructured text retrieved from David Beckham’s

page on Wikipedia (https://en.wikipedia.org/wiki/David_Beckham). Over a hundred

URLs associated with Beckham’s page on Wikipedia were accessed to retrieve their

unstructured data in order to extract the plain text needed. The output was a set of rank

ordered sentences according to a query given after filtering and structuring the

unstructured plain text. The resultant output was put into a table of an SQLite database

for evaluation purposes. General and personal queries were used to verify the proposed

system operation. The resultant sentences have been filtered to obtain typical length

(i.e. not too long) sentences of no more than 21 words in order to elicit clear and

concise answers. Random examples of the queries, the closest match sentences, and

the closest match scores for combinations in equations (4.12), (4.13), (4.14), and (4.15)

are tabulated in Table 4.1. The experimental results demonstrated in Table 4.1 give the

highest scored and the closest matches out of over 2000 records.

The number of records means the total number of sentences in the database table which

the highest and the lowest score sentences are part of. The sentences with 0 scores have

been excluded and are not recorded in the database.

The experimental results were stored in 10 SQLite databases; two for each

combination formula: one of these two is for our OFC data set, which contains 64

tables of unranked answers and 64 reviews for the answers in the 64 tables after

ranking order. The second of the two databases was for the SQuAD data set and it

contains 200 tables for unranked answers and 200 reviews for the answers in the 200

tables after ranking order.

97

Table 4. 1: Examples of Experimental results.

No

.

Query

Nearest match Sentence

JPNE

%

Record

order in

JPNE

CPNE

%

Record

order

CPNE

JPSC

%

Record

order in

JPSC

CPSC

%

Record

order in

CPSC

SemEva

l-2016

Task 3

Record

order in

SemEva

l-2016

Task 3

No. of

records

1. Where was David Robert

Joseph Beckham born?

David Robert Joseph Beckham OBE 4 b k

m/ born 2 May 1975 is an English former

professional footballer.

32.97

2

33.33

2

57.27

1

57.63

1

47.43

2

2165

2. When did he announce his

retirement?

He announced his retirement in May 2013

after a 20-year career during which he won

19 major trophies.

20.93

2

22.73

1

34.3

3

36.1

1

33.1

2

2313

3. With which team did

Beckham’s professional club

career begin in 1992?

Beckham’s professional club career began

with Manchester United where he made his

first-team debut in 1992 aged 17.

33.5

2

33.8

2

54.57

1

55

1

41.53

1

2743

4. Which local youth team did

he play for?

He played for a local youth team called

Ridgeway Rovers.

37.03

1

37.13

1

54.13

1

54.2

1

45.23

1

2178

5. Which trials did Young

Beckham have and which

school of excellence did he

attend?

Young Beckham had trials with his local

club Leyton Orient Norwich City and

attended Tottenham Hotspur’s school of

excellence.

22.87

8

22.3

9

38.6

1

38.03

1

32.71

3

2717

6. How many years did he

spend playing football?

Beckham played in all of England 's matches

at Euro 2004.

44.25

2

45.17

2

65.23

1

65.23

1

52.18

2

1827

98

4.11 Evaluation Results

After collecting the experimental data and putting it into the SQLite databases, the

evaluation stage began. The orders of the correct answers were recorded for each query

in the two data sets for the five experimental groups of data. Precision at the two cut

off regions 10 and 20, precision@10 and precision@20 were calculated for each

experimental data group for the two data set queries. Recall was also calculated for the

same items that precision was calculated for. Precision and recall values were

calculated using a Python programming code and the graphs of Precision@10-Recall

and Precision@20-Recall were drawn. Precision@10-Recall and Precision@20-

Recall graphs are reported as follows:

Fig.4.3 illustrates the Precision@10-Recall graph of the five experimental data groups

for our OFC data set. The graph shows that the highest accuracy is given by CPSC and

the lowest by JPNE. The comparative system is in the middle of the five comparative

models. The plotted curves are leaning slightly more to the left because we consider

only one specific correct answer for each query and this affects the values of precision

and recall in the middle and makes them lower.

Fig. 4. 3: Precision@10-Recall graph for evaluation of the four

experimental data groups and the comparative system (using our

OFC data set).

99

Fig.4.4 below demonstrates the Precision@20-Recall graph of five experimental data

groups for our OFC data set. The graph reports that CPSC, JPSC, and SemEval-2016

Task 3 are becoming closer to each other and leading while CPNE and JPNE are

lagging.

Precision@10 graph of the five groups of data using the SQuAD data set is shown in

fig.4.5. The graph shows that CPSC and JPSC are closer to each other and leading.

The comparative system is slightly closer to the lagging ones, CPNE and JPNE.

Fig. 4. 4: Precision@20-Recall graph for evaluation of the four

experimental data groups and the comparative system (using

our OFC data set).

100

Fig.4.6 below shows the Precision@20-Recall plot for five experimental data groups

including the comparative system using the SQuAD data set. The graph illustrates that

CPSC and SemEval-2016 Task 3 occupy the top of the curves’ positions, while JPNE

and CPNE are at the bottom, and JPSC occupies the middle.

Fig. 4.5: Precision@10-Recall graph for evaluation of the

four experimental data groups and the comparative system

(using SQuAD data set).

101

MAP and MRR curves were also plotted over the five experimental groups including

the comparative system as other evaluation metrics and comparison criteria between

our proposed four formulas and the comparative system. The graphs were drawn for

the two data sets used and are explained as follows:

Fig.4.7 shows the bar graph of MAP values of the five experimental data groups using

our OFC data set. The bar graph reports that CPSC has the highest MAP with a value

0.85 and JPNE has the lowest with the number 0.71. SemEval-2016 Task 3 is in the

middle having the value 0.76 between CPNE and JPSC.

Fig. 4. 6: Precision@20-Recall graph for evaluation of the four

experimental data groups and the comparative system (using

SQuAD data set).

102

Fig.4.8 demonstrates the bar graph of MAP for the five experimental groups of data

using the SQuAD data set. The graph shows that SemEval-2016 Task 3 occupies the

second position after CPSC with the values 0.78 and 0.80, respectively. JPNE is the

lowest with 0.64 then CPNE with the value 0.67 and JPSC with 0.72.

Fig. 4. 7: MAP values graph for evaluation of the four

experimental data groups and the comparative system

(using our OFC data set).

Fig. 4. 8: MAP values graph for evaluation of the four

experimental data groups and the comparative system

(using SQuAD data set).

103

The bar graph of MRR values for the five experimental data groups using our OFC

data set is shown in fig.4.9. The bar graph illustrates that the highest MRR is achieved

by CPSC and the lowest by JPNE with the values 0.85 and 0.71, respectively.

SemEval-2016 Task 3 is in the middle with the value 0.77 between CPNE and JPSC

with the values 0.74 and 0.82, respectively.

The bar graph in fig.4.10 presents the values of MRR for the five experimental data

groups using SQuAD data set. The graph shows leading again for CPSC over the other

four groups with the value 0.80 followed by SemEval-2016 Task 3 with the value 0.78.

JPNE is again the lowest one with the value 0.64 after CPNE and JPSC with the values

0.67 and 0.72, respectively.

Fig. 4. 9: MRR values graph for evaluation of the four

experimental data groups and the comparative system

(using our OFC data set).

104

The overall MAP values of the five experimental data groups are shown as a bar graph

in fig.4.11. The graph reports a clear contribution for CPSC with the value 0.825

followed by SemEval-2016 Task 3 and JPSC with the values 0.77 and 0.765,

respectively. Then CPNE and JPNE come with the values 0.705 and 0.675,

respectively.

Fig. 4. 10: MRR values graph for evaluation of the four

experimental data groups and the comparative system

(using SQuAD data set)

Fig. 4. 11: Overall MAP values graph for evaluation of

the four experimental data groups and the comparative

system.

105

The overall MRR values of the five experimental data groups are shown in the bar

graph of fig.4.12. The bar graph illustrates an achievement for the CPSC group with a

value 0.825 followed by SemEval-2016 Task 3 with 0.775 and JPSC with 0.77. CPNE

and JPNE values are 0.705 and 0.675, respectively.

Overall, the results indicate that the formula in equation (4.15), which is the

combination of cosine similarity, POS tag, and semantic cosine (CPSC), outperforms

the comparative system SemEval-2016 Task 3 1.55 percentage points in MAP and 5

points in MRR. The other three combinations are just behind the former two. This

means that CPSC is the best among the five evaluated systems.

4.12 Conclusion

In this chapter, a new method that employs multiple feature extraction has been

presented to quantify text responses for a learning Chatbot. More than one

measurement metric has been examined at the same time to find the best match to a

Chatbot query. Four combinations of extracted features were formulated and compared

with a comparative model. Re-ranking the scores of extracted features for text

responses gave the most semantically meaningful sentences. The experimental results

Fig. 4. 12: Overall MRR values graph for evaluation of

the four experimental data groups and the comparative

system.

106

show that the highest scored sentences are the nearest to a query. Evaluation results

show that the system performance rises significantly by using the cosine similarity

metric for term match and semantic cosine similarity for semantic match. The

combination of cosine similarity, POS tag, and semantic cosine similarity achieved the

highest values in evaluation metrics and outperformed our other three combinations

and the comparative system.

107

 Chapter Five

5 Automatic Extraction of Imperative

Sentences from the Web for Online

Feedable Chatbot

5.1 Introduction

In daily discourse, different forms of speech are needed, such as greetings, questions

and answers, requests, obligations, explanations, permissions, and commands.

Imperative sentences are a style of speech needed in humans’ every day activities in

different places and situations. They are also needed when using computer

programming [133], searching in a huge database [132] or searching for ideas in

articles [129].

In order to make conversation more natural with dialogue systems, phrases or

sentences from daily life need to be inserted into their knowledge bases like imperative

sentences. An imperative sentence is simply a command telling someone to do

something [157]. This type of command helps the user to direct the dialogue system

to do a needed action, such as searching in the web, opening a new window, starting a

program, or even shutting the computer down or putting it in sleep mode.

This chapter is concerned with designing a system for automatic acquisition of

imperative sentences from the web for the knowledge base of the OFC. Thousands of

sentences are extracted from 200 Web pages associated to the Wikipedia page of the

famous footballer David Beckham and pre-processed then filtered in order to be the

data set of the proposed system. NLTK-POS tagger and verb tense type are used to

identify and select the imperative sentences from the extracted set of sentences. The

resultant sentences are stored in an SQL database to be used as part of the knowledge

base of the OFC. The aim is to add more actionable activities to the Chatbot in the

future using the extracted imperative sentences like controlling applications on the

108

computer. The results are evaluated using a human assessment subjective test and

compared with other comparative systems. The evaluation results show that our

system’s performance outperforms the comparative system’s.

5.2 Imperative Sentence

Sentences in the English language normally consist of the main sentence parts starting

with the subject. The sentence formulation is usually as follows:

))((mpletionsentenceCoorObjectVerbSubject 5. 1

Examples like:

1. The dog sat on the mat.

2. She is very beautiful.

3. Layan goes to school.

 are representative of the rule presented in equation 5.1.

The subject could be a true noun or a pronoun and there is a variety of verb tenses in

the English language, such as simple present, perfect present, simple past, present

participle, auxiliary verbs, etc.

In imperative sentences of the examples below:

4. Please open the door.

5. Shut down the computer.

6. Can you reach the salt?

7. I encourage you to exercise every day;

there is no obvious subject seen and the subject here is (you). A person in this kind of

sentence orders or commands another person to do something. According to the main

rule in equation 5.1, the sentences in examples 4 and 5 should be as follows:

8. You please open the door.

9. You shut down the computer.

109

The subject (you) here is considered as understood in order to formulate the imperative

sentences in examples 4 and 5.

As noticed, the imperative sentences come in different styles: indirect like in examples

6 and 7, and direct like in examples 4 and 5 [158-160].

In this chapter, we concentrate on one type of direct imperative sentences which begin

with the imperative verb.

5.3 Imperative Sentence Identification

As mentioned in the previous section, the type of imperative sentences extracted in

this chapter is the direct one starting with a verb. Our hypothesis of extracting direct

imperative sentences that begin with verb is as follows:

i. The sentence should begin with a verb.

ii. The sentence should not begin with a noun, pronoun, or any words other than

verbs.

iii. The verb at the beginning of the sentence should be simple present.

iv. The sentence is considered even if it is only one word (a verb).

According to the hypothesis stated above the rule of an extracted imperative sentence

is as in the following equation:

 phrase) nalpropositioor phrase,noun or noun (aObjectVerb 5. 2

5.3.1 Syntactic Analysis for the Sentence

To analyse a sentence using NLP, word tokenising is needed for the sentences in order

to split the sentence into individual words. Then each word should be POS tagged with

a part of speech to identify the type of each word in the sentence. NLTK-POS tagger

tags the first word in the sentence as NNP, which means a proper name, or PRP which

means a pronoun, assuming that the first word in a sentence must be a subject

according to basic English language rules. For example:

110

10. Beckham is joining the Los Angeles Galaxy after years with Real Madrid.

 is POS tagged as follows:

 [('Beckham', 'NNP'), ('is', 'VBZ'), ('joining', 'VBG'), ('the', 'DT'), ('Los', 'NNP'),

 ('Angeles', 'NNP'), ('Galaxy', 'NNP'), ('after', 'IN'), ('years', 'NNS'), ('with', 'IN'),

'Real', 'JJ'), ('Madrid', 'NNS')]

11. It is not that easy.

is POS tagged as follows:

 [('It', 'PRP'), ("is", 'VBZ'), ('not', 'RB'), ('that', 'IN'), ('easy', 'JJ')]

NLTK-POS tagger does the same thing with the sentences that begin with a verb. It

tags the verb which sits in the beginning of the sentence as NNP, which makes it

indistinguishable from the nouns or pronouns. For example:

12. Give me a football.

 [('Give', 'NNP'), ('me', 'NNP'), ('a', ' DT '), ('Football', 'NNP')]

We hard coded in Python programming language to tag the verb in the beginning of a

sentence as a verb. The sentence in example 12 above can be POS tagged as follows:

13. [('Give', 'VB'), ('Me', 'NNP'), ('a', ' DT '), ('Football', 'NNP')]

5.4 The Proposed System

In the proposed system, the first process done is crawling the web pages using a web

crawler in order to extract the plain text needed. The same web crawler in Chapter 3

fig. 3.4 is used in the proposed system.

After extracting the plain text from the web pages associated to the given main URL,

the text is filtered from the HTML code and UNICODE and the text is turned into

ASCII code. The resultant text is sentence tokenised then each sentence is word

tokenised. Then the resultant sentences are filtered to remove undesired (redundant)

information, such as non-English letters or symbols, and English redundant symbols

and punctuation. POS tagging for each word in the resultant sentences is done in order

111

to tag the words with the parts of speech after the long sentences with more than 15

words are eliminated because they are too long to be evaluated. Fig.5.1 shows the main

block diagram of our proposed system of imperative sentence extraction.

The main idea that we decided to identify and select the imperative sentences is

detecting the main verb at the beginning of the sentence. This is implemented by

detecting the POS tag of the first word in each sentence. If the POS tag of the first

word denotes a verb and the verb is simple present, then the sentence is selected as an

imperative. The resultant imperative sentences are placed in an SQL database in order

to validate them and also as a part of the knowledge base of the conversational agent

OFC. The implemented steps of imperative sentence extraction are shown in the flow

diagram in fig.5.2.

Web Spider

Verb tense

identification

Text splitting

and NLTK

processing

Text Pre-

processing

The Web

Buffer

Sentence

filtering

Database

Word splitting

and POS tagging

Verb tense

classification

Imperative

sentence

selection

Fig. 5. 1: The main block diagram of Imperative sentence extraction

from the web.

112

End

Start

Read the text already

retrieved from the Web

Encode the plain text to ASCII code

Break the text down to sentences

(sentence tokenize)

Filter each sentence from redundant

and non-English symbols

Split a sentence into words (word

tokenization)

POS tag each word in a sentence

Select the Imperative Sentence

Filter too long and too short

sentences

Imperative

verb tense in

the beginning

of sentence?

Yes

No

Place the results in a database

Identify the verb tense in the

sentence

Fig. 5. 2: Implementation steps to process plain

text and extract imperative sentences.

113

5.5 Evaluation

In order to evaluate our proposed system, an experiment was needed. For this purpose,

a subjective test experiment of two parts using human assessment was conducted. The

first part of the experiment was to design and implement our proposed system of

automatic extraction of imperative sentences from the web and then to evaluate it by

human assessors. The second part was to adapt the system in [132] to our data set and

implement it then evaluate it using human participants. The subjective assessment was

used in order to validate the resultant imperative sentences from our proposed system

and then compare our system with the comparative system in [132]. The number of

the participants who joined the subjective test was 30 and they were divided into two

groups: one to evaluate our system’s output and the other to evaluate the comparative

system’s.

Implementing the subjective test required us to prepare a subjective questionnaire that

asked the users to score the relevance of the imperative sentences between 1 and 4 as:

1. Totally unacceptable. 2. Unacceptable. 3. Acceptable 4. Strongly acceptable. The

assessment is in terms of grammar, meaning, relation to the subject (David Beckham

or football), and being imperative or not. This questionnaire form was used for both

our and the comparative system.

5.5.1 Experiment’s Evaluation Metrics

After using the subjective test, the measurement metric used was the same as that used

in unranked retrieved systems, which is Precision [14]. Precision was used to evaluate

the results of the subjective assessment of the experiment in order to assess the

accuracy of our system and to compare it with the comparative system. The same

evaluation metric was used for both the proposed and the comparative system and the

results are discussed in the following sections. Also, to justify the subjective evaluation

results, average score, standard deviation, t-test, and p value were calculated for both

our and comparative system’s using a Python program.

114

5.6 Experiment3

Like the experiments in the previous chapters, this experiment began with thinking of

the rules and the hypotheses needed to extract imperative sentences from a piece of

text extracted from web pages (Wikipedia) using a web crawler. Then the resultant

sentences were evaluated by subjective assessment and compared to a comparative

system that was adapted to our dataset and evaluated using the same subjective test.

The experiment was conducted with a group of participants who are PhD students in

different research areas at the University of Essex. Then the evaluation data was

collected using the following steps:

1. Meeting each participant personally to explain the questionnaire to them and

give them the questionnaire.

2. Meeting the participants again to collect the completed questionnaire from

them.

3. Calculating the aggregate scores provided by them from the questionnaires.

4. Using aggregate scores in a Python program prepared to calculate, classify, and

plot the graphs of the results.

5.6.1 Aim of Experiment

The goal of this experiment is to evaluate our automatic imperative sentence extraction

system for the OFC and compare it with the system in [132] when implementing the

hypothesis proposed to design this system. Precision level assessment was also applied

in order to measure the improvement that can be added by our system

5.6.2 Experiment Participants

This experiment, as in Chapter 3, was conducted with PhD students. These PhD

students are from University of Essex and are specialised in different fields, such as

computer science, electronic engineering, linguistics, and mathematical sciences.

Around 40% of the judgers were native English speakers and the rest (60%) were non-

native English speakers.

115

The study included 30 participants (male, and female) distributed into two equal

groups. The set of participants were chosen and then divided into groups depending

on the theory of within and in between [137]. One of the two groups evaluated our

system’s output and the other evaluated the output of the comparative system. Each

participant filled in the questionnaire to allow us to measure the accuracy

accomplished by our proposed system. The results were the aggregate scores of the

participants’ responses across the questionnaire.

5.6.3 Experiment Steps

The experiment was executed through the following steps:

1. The Python programming language was used to implement our proposed automatic

extraction for imperative sentences. The program runs through stages for a single

execution. These stages are:

a) Collecting the needed plain text from the web and this plain text was

extracted using a web crawler (Chapter 3 fig.3.4). The web crawler

crawled the Wikipedia page of the famous football player David

Beckham and acquired a list of URLs within this page. Then, the web

crawler accessed 200 other pages and extracted the plain text from these

pages using the extracted URLs from the main page.

b) The extracted plain text was pre-processed in the second stage. The pre-

processing starts with filtering out undesired information such as extra

punctuation, and non-English letters, non-English words, and non-

English symbols. Then the filtered text is split into individual sentences

and then the sentences are split into single words.

c) In this stage the imperative sentences were selected from the group of

extracted sentences according to the hypothesis explained in Section

5.3 above. The selection operation depends on detecting the verb tense

in the beginning of the sentences. The verb detected in the beginning of

the sentence should be simple present.

116

d) The resultant imperative sentences were saved in an SQLite database

pre-prepared for the purpose of evaluation and to be used as part of the

database of the OFC.

2. Copying the imperative sentences saved in the SQLite database and putting

them in a table of an evaluation form.

3. Preparing the questionnaire for a subjective test including a table to clarify the

idea and present the experiment results.

4. Searching for the participants to do the subjective assessment and choosing

them. The participants should be kind of experts and carefully selected. They

are relatively familiar with the famous footballer David Beckham, football,

sports, and the English language.

5. Handing the questionnaire to the participants and explaining the experiment to

every participant. After that, the completed questionnaire was collected from

the participants.

6. Precision was then calculated and saved to be compared with the comparative

systems’.

7. The same steps above were applied to the comparative system in [132] and the

results are saved for the purpose of comparison with our system.

8. Bar graphs were drawn for the precision values of our and comparative

systems. The graphs are discussed in the following sections.

9. For the purpose of validation of the subjective evaluation results, average

score, standard deviation, t-test, and p value are calculated for both our and

comparative systems’ using a Python program.

5.7 Comparative System

We named the comparative system in [132] ANLIS from Arabic Natural Language

Interface System in the title of the paper and our system as AEIS from Automatic

Extraction of Imperative Sentences. The system in ANLIS is described briefly as

follows:

117

1. ANLIS parses and interprets Arabic natural language inputs, such as

imperative sentences and questions.

2. ANLIS applies context free grammar of Arabic language and morphology to

analyse the input entries.

3. ANLIS detects imperative sentences or clauses in user entries depending on

the analysis tools used in 2 above.

4. ANLIS extracts direct and indirect imperative sentences from user entries.

5. ANLIS produces an SQL command according to the information extracted

from the imperative sentences.

6. ANLIS uses SQL commands to retrieve more suitable information from the

Quran database.

7. The approach in ANLIS allows the users to use natural language to search for

the information they need.

The system in ANLIS extracts the imperative sentences from computer inputs or user

entries and uses free-context grammar to analyse the input sentences, whereas our

system extracts imperative sentences from the web and uses the parts of speech tag

approach to analyse the extracted sentences. These two points gave us the idea to

compare ANLIS to our system. Although both systems detect imperative sentences,

each uses a different approach to analysis, extraction, and application.

The system in [132] has been adapted to the requirements of our system by making it

extract direct imperative sentences only and by using the English language instead of

an Arabic parser then implemented and evaluated with the same evaluation method

used for our system, then a comparison was made between them. The results of the

comparison are shown in the sections below.

5.8 Experimental Results

The input to our system AEIS is the text extracted from the Web pages associated with

the main web page of the English footballer David Beckham and the output is a number

of imperative sentences depending on the number of URLs used. We ran the program

of AEIS 8 times in order to test the number of sentences obtained in the output in

118

relation to the number of the URLs used in the input to extract the plain text, and in

order to find the optimum number of URLs that gives the optimum number of

sentences. We used 1, 10, 50, 100, 200, 300, 400, and 500 URLs one value for each

execution and we obtained the results as a graph shown in Fig.5.3. The graph shows

that the number of output sentences increases rapidly as the number of URLs increases

up to 400 then it decays at 500. We think that the pages start to repeat themselves after

400 so the resultant sentences number no longer increases after 400 URLs. The results

represented by fig.5.3 include repeated items and redundancy. The redundancy

increases as the URLs number increases because some of the pages are repeated as the

URLs number becomes higher.

The filtered results graph is shown in fig.5.4 after removing the redundant and repeated

outputs. The aim of testing AEIS with different numbers of input URLs is to find the

optimum number in the output after filtering in order to prepare it for the subjective

test. As a result, 200 URLs was found to be the optimum number to produce the

Fig. 5. 3: Extracted data against number of web pages before filtering.

Fig. 5. 5: Extracted data against number of web pages after

filtering.Fig. 5. 6: Extracted data against number of web pages before

filtering.

119

optimum output for the evaluation purpose because it gave us the minimum repetition

in the results.

So, the imperative sentences obtained from the plain text of 200 Web pages associated

with David Beckham’s Wikipedia page were stored in an SQL database for evaluation.

Forty output sentences were extracted from 200 URLs in AEIS and thirteen output

sentences were extracted from the same number of URLs in ANLIS. Samples of the

experimental results are shown in Table 5.1.

Table 5. 1: Experimental results.

No. Imperative Sentence

1. Give that man a Knighthood.

2. Give Me Football.

3. Find out more about page archiving.

4. Try our site map.

5. Try again.

6. Choose your language.

Fig. 5. 4: Extracted data against number of web pages after filtering.

Fig. 5. 7: Extracted data against number of web pages after filtering.

120

5.9 Evaluation Results

A subjective test was used to evaluate the experiment results of our system AEIS and

the experimental results of the comparative system ANLIS. A questionnaire was

prepared for the purpose of evaluation of both AEIS and ANLIS in order to use them

for human participants. Expert human participants were needed to evaluate our system.

The participants should have knowledge about the footballer David Beckham and

football as well as English language. We chose 30 participants to join our subjective

assessment and the vast majority of these participants were PhD students from

University of Essex in different research areas. The evaluation questionnaire was given

to the participants after explaining to them what to do and how to select scores. The

questionnaire was then collected from the participants and the aggregate scores were

calculated.

After finishing calculation of the data classes for both AEIS and ANLIS, we used a

Python program to calculate the precision value for each part in each group of the two

systems. Precision values were calculated for Grammar, Meaning, Relation to Subject,

Imperative or not, and overall data groups in both AEIS and ANLIS. Precision

calculation results were collected and saved then entered into a MATLAB program to

produce comparative bar graphs for AEIS and ANLIS. The graphs are shown as

follows:

The bar graph in fig.5.5 illustrates the precision levels of Grammar and Meaning

groups for both AEIS and ANLIS. The graph shows proximity between AEIS and

ANLIS in Grammar with AEIS exceeding by 1 percentage point with 0.81 for AEIS

and 0.80 for ANLIS. AEIS outperforms ANLIS in the Meaning group by 3 percentage

points with 0.85 for AEIS and 0.82 for ANLIS.

121

The bar graph demonstrated in fig.5.6 is for precision levels of Relation to Subject,

Imperative or not, and Overall groups for both AEIS and ANLIS. The graph reports

exceeding by10 percentage points in the Relation to Subject group for ANLIS over

AEIS with values of 0.67 for the former and 0.57 for the latter. AEIS beats ANLIS in

the Imperative portion by 14 percentage points with 0.87 for the former and 0.73 for

the latter. AEIS outperforms ANLIS in Overall precision by 5 percentage points with

0.81 for AEIS and 0.76 for ANLIS.

Fig. 5. 5: Precision comparison between AEIS and ANLIS (Grammar

and Meaning)

122

Overall, recorded values of precision show that our system outperforms the

comparative system by 5 percentage points. Also, according to the results, the portion

of Imperative sentences in the output data in our proposed system is larger than the

portion of Imperative sentences in the output data of the comparative system.

To validate the subjective evaluation results, average score, standard deviation, t-test,

and p value for both our and comparative systems’ were calculated using a Python

program and the results are shown in Table 5.2. The t-test was calculated using the

same relation for independent samples in Chapter 3 Section 3.10 [138] [139]:

The statistical values mentioned above were calculated for the groups Grammar,

Meaning, Relation to Subject, and Imperative or not. The results show significance in

the t-test for our system from the value of p in the Grammar, and Imperative or not

groups and a value near significance in the Meaning group. Also, the comparative

system obtained a value near significance in Relation to Subject.

Fig. 5. 6: Precision comparison between AEIS and ANLIS (Relation

to Subject, Imperative, and Overall).

123

Table 5. 2: The results of statistical calculations for subjective assessment evaluation for AEIS and ANLIS.

Statistics Grammar

Meaning Relation to Subject Imperative or not

 AEIS ANLIS AEIS ANLIS AEIS ANLIS AEIS ANLIS

Average

3.4598 3.1778 3.5280 3.2893 2.9682 2.7298 3.0990 3.3900

Standard

deviation

0.6210 0.6557 0.4945 0.6142 0.5042 0.6200 0.5927 0.6649

T-test

1.9626 1.8907 -1.8637 2.0401

P value 0.0532 0.0625 0.0663 0.0447

124

5.10 Conclusion

In this chapter, a system for automatic extraction of imperative sentences from the web

pages was described. Thousands of sentences were extracted from 200 Web pages

related to the Wikipedia page of the well-known footballer David Beckham. Pr-

processing and filtering was done for the extracted text to be the data set of the

proposed system. NLTK-POS tagger and the type of verb tenses were used to identify

and select the imperative sentences from the extracted set of sentences. The resultant

sentences were saved in an SQL database to be used as part of the knowledge base of

the OFC Chatbot and for the evaluation purpose. The results were evaluated using a

subjective test and compared with a comparative system. The evaluation results show

that our system’s performance outperforms the comparative system. In addition, our

system’s Imperative sentence percentage to overall output data is higher than the

comparative system’s. Two main contributions were obtained in this chapter. First, we

enriched our Chatbot OFC knowledge base by extracting more useful information

from the web. The second main contribution is the automatic extraction of imperative

sentences from the web using verb tense type and POS tag.

125

 Chapter Six

6 Implementation of Online Feedable

Chatbot

6.1 Introduction

The rapid growth in commercial conversational agents’ prevalence has led to an

upsurge in research in terms of natural language understanding and machine learning

for conversational systems. Chatbot development has been fairly well studied since

Turing proposed his Imitation Game (TIG) [33, 161]. The Chatbot idea originated with

the first Chatbot named ELIZA, which was built to demonstrate natural language

conversation between human and computer [40]; then ALICE was another milestone

[162]. The Loebner Prize and The Chatbot Challenge are annual competitions that

have their roots in TIG [6]. Conversation is a special form of interaction that follows

social conventions, and the purpose of building a Chatbot system is to simulate a

human conversation [6, 163]. The Chatbot architecture combines computational

algorithms and a language model to emulate chat communication between a computer

and a human user using natural language [6, 164].

There are many challenges in the context of a conversation and these challenges are

getting bigger when people try to create conversations with machines. Some of these

challenges are associated with the ways of chatting (Dialogue manager) and others are

related to the information (knowledge base) [165]. Trying to work on improvements

in both directions is the challenge of our work.

In this chapter, we present the implementation of our proposed Chatbot. We built the

platform of the OFC in order to test the consistency in work between the Chatbot

manager and the SQL database prepared and populated using the approaches explained

in the previous chapters. The implemented Chatbot is evaluated using humans in an

experiment. We recruited 26 participants to implement our assessment experiment as

126

a conversational session per each participant. The evaluation results reveal reasonable

accuracy and acceptability in accordance with human assessment.

6.2 Chatbot Architecture

Most of the first Chatbot toolkits’ design and development in the initial period of chat

implicitly consider that an utterance from the user is followed by an utterance from the

Chatbot [163].

There are basically three types of architecture for building conversational systems:

1. A totally rule-oriented architecture provides a manually coded reply for each

utterance as in classical examples of rule-based Chatbots, such as Eliza, and

Parry [134]. Eliza can also extract a number of words from sentences to create

another sentence using these words according to their syntactic functions. Eliza

was a rule-based idea with no reasoning.

2. A totally data-oriented architecture, in contrast to rule-oriented architectures,

depends on learning patterns from samples of dialogues to recreate the

behaviour of the interaction that is observed in the data. This kind of learning

can be implemented using a machine learning approach, or by extracting rules

from data instead of coding them manually. Different technologies can be used

to build this kind of architecture, such as classical information retrieval

algorithms, Hidden Markov Models (HMM), and neural networks. Example

Chatbots are: Tay, which was a Chatbot developed by Microsoft to interact

with teenagers on Twitter, Xiaoice2 in China, and Rinna3 in Japan [134].

3. A mix of a rules and a data-oriented architecture as in the model of learning in

the current ALICE [163] [166] , which is an incremental or/and interactive

learning since the developers monitor the robot’s conversations and create new

AIML content to make the responses more accurate, believable, or human

[163] [167].

The architecture of the Chatbot proposed in our work depends on simple rules to build

the chat. The novel idea of developing the chat and expanding or updating the

information depends on its ability to access the information on the web. Our Chatbot

127

also has the ability to update the information whenever the user desires that without

any human control or interference.

A general block diagram of a spoken language Chatbot architecture is shown in fig.6.1

below. The diagram shows the stages that the user’s voice passes through in order to

obtain the eventual response to a query. The input speech query passes through the

Automatic Speech Recognition (ASR) tool in order to convert voice speech to text,

which is processed using Natural Language Processing (NLP). The dialogue manager

analyses the query according to the analysis system of a Chatbot and then accesses the

knowledge base of the Chatbot to prepare the matching response answer depending on

the query analysis. Then, the target response answer is generated and converted from

text to speech to be delivered to the user.

6.3 Our Chatbot (OFC)

The basic idea of our Chatbot, OFC is that the Chatbot knowledge base is empty until

the user decides or chooses the figure or the object they need information about. After

that, the OFC starts to access the Web pages corresponding to the figure or the object

chosen. The OFC uses a web crawler to extract the text in the Wikipedia page

User

Fig. 6. 1: A general block diagram of a Chatbot architecture

Fig. 6. 2: A general block diagram of a Chatbot architecture

128

associated with the chosen figure or object and a number of pages related to that page.

The OFC then uses the techniques proposed to process the extracted plain text to

automatically generate QAPs from the set of sentences extracted from the plain text.

The database of the OFC is populated with tens of concentrated QAPs about the

desired figure of object in a few hours. Then, a Chatbot with a totally new subject is

initialised. The database of this Chatbot is extendable and accumulative according to

the demand to learn from the user. The core of our Chatbot architecture is the link

between the internet and the Chatbot database through the dialogue manager because

this is the path of feeding the Chatbot with the chatting knowledge and this is the

meaning of “Online Feedable”. The OFC also contains another source of information

which is the Canned Responses database that is relatively static and connected to the

dialogue manager. The Canned Responses database is used by the OFC for greetings

and other simple conversational queries and also when no answers are found for a

query. In the future, we will extract all the information in the canned responses from

the web to make the Chatbot training fully automated. The block diagram of our

Chatbot is shown in fig.6.2 below.

User

Internet

Fig. 6. 2: A block diagram of our OFC chatbot.

129

6.4 Implementing Our Chatbot

We implemented the first stage of our Chatbot using the Python programming

language. The main parts of chatting, such as ASR, natural language understanding,

dialogue management, and the answer selection stage, are coded using Python. Natural

language processing for the user query is implemented using NLTK, and Microsoft

Speech recogniser is used for Speech To Text (STT) and Text To Speech (TTS)

operations. SQLite is used to build, update and populate the database of our Chatbot.

The chatting process starts when the user pops a query through the microphone or texts

a message into the Chatbot input. If the query is greetings or any conversational (not

informative or pedagogical) speech, the dialogue manager goes to the canned

responses database. If the query is not a greeting or conversational, the dialogue

manager goes to the SQLite database to search for the response. If the dialogue

manager does not find the response in the SQLite database, it responds to the query

from the Canned Responses database of No Answers. The Chatbot keeps chatting until

the user says any quitting query, such as goodbye, see you later, quit, or exit. The flow

diagram of our implemented Chatbot OFC is shown in fig.6.3.

130

Start

OFC introduces itself

and asks user about

their name

Greetings and

Conversational Canned

answers

Good bye

(Quit)?

End

User inputs their name

once then inputs the

first query

Greetings or

Conversatio

nal?

No answer Canned

answers

Output Response

In the

Database?

Yes

Yes

Yes

No

No

No

Fig. 6. 3: The flow diagram of our implemented Chatbot OFC.

131

An example of discourse analysis in our Chatbot OFC for speech act classes is

shown in Table 6.1.

Table 6. 1: OFC Specific Speech Acts Classes.

Speech Act Example

Query Greetings Hello

Chatbot Greetings Hi

Query Conversational How are you doing?

Chatbot

Conversational

I’m fine.

Query Definition Who is David Beckham?

Chatbot Inform

Definition

He is the first English player to win league titles in four

countries England Spain the United States and France.

Query News What did Beckham say?

Chatbot Inform News Beckham said I am honoured and privileged to receive

this recognition.

Query information How many years did David spend playing football?

Chatbot Inform

Information

David spent at least 20 years playing football.

Query information Can you tell me the weather?

Chatbot No Answer Sorry I didn’t understand what you said

Query bye See you later.

Chatbot bye See you soon.

6.5 Evaluation

Our proposed Chatbot, like any other Chatbots, needs implementation in order to apply

the rules that have been placed to design it. The Chatbot performance also needs

evaluation after implementation. As the Chatbot’s job is to hold conversations with

people, the most appropriate evaluator for it could be the human. An experiment has

been conducted to implement and evaluate the first stage of our proposed Chatbot. The

132

experiment was in two stages: the first stage was to implement the Chatbot platform

using the Python language, and the second stage was the evaluation stage. To evaluate

our Chatbot, we used subjective assessment by using human participants. The

subjective assessment was conducted in order to measure the performance of our

system from the users’ point of view. The number of participants was 26 and a

conversational session was held with each participant in order to allow them to assess

the output responses to their conversational queries. An experimental sheet with 7

queries was prepared with 4 evaluation questions directed to the participant for each

query and the answer should be either yes or no. At the end of the query, there was

another question of Chatbot humanness and the answer should be one of three options:

yes, kind of, and no.

6.5.1 Evaluation Metrics

Evaluation metrics of a Chatbot depend on the challenges that the evaluated Chatbot

is built for. The challenges that are promised to be solved by our Chatbot are:

producing reasonably accurate responses from the information extracted from the

internet, presenting useful educational or pedagogical information about the subject

the user needs to learn, and providing acceptable conversational responses.

In order to measure the quality of each response, we tried to classify responses

according to an independent human evaluation of accuracy, effect, and whether the

information provided matched the question and was correct, acceptable, and useful

[37] [6]. The answer to each of the evaluation class questions is either yes or no. We

also measure the humanness of the Chatbot by placing a question about that at the end

of the query sheet [40]. The answer to the question of humanness classification class

is one of the three answers: yes, no, or kind of.

6.6 Experiment4

Experiment4 started with configuring the algorithm and the flow diagram of

implementing our Chatbot OFC program. After that the code of the OFC was written

133

in the Python programming language. The experimental sheet was prepared for the

purpose of subjective evaluation. The experiment was conducted with a set of

participants who are mostly students in the University of Essex. The experimental

evaluation data were collected by doing the following.

1. Meeting each participant and asking them about the possibility of participating

in our experiment.

2. Meeting each participant again in a lab to do the experiment.

3. Handing each participant the experimental sheet and explaining to them how

to evaluate the chatting process.

4. Starting the conversational session for the participants one by one and the

filling in of the experimental sheet by the participant.

5. Ending the conversational session and collecting the sheet from the participant.

6. Calculating the aggregate scores given by the participants after completing all

the assigned sessions.

6.6.1 Aim of Experiment

The aim of this experiment was to implement the first stage and evaluate the

performance of our proposed OFC and the quality of its responses. The evaluation was

made in the users’ point of view and the aggregate scores of the users’ assessment

were calculated in percentage values.

6.6.2 Experiment Participants

The experiment was conducted with students from the University of Essex. These

participants are undergraduate and postgraduate students in different disciplines.

The study included 26 participants of both genders (male and female). The participants

were around 47% native speakers and the rest (53%) were non-native. Each participant

did the experiment by holding a conversational session with the OFC and then

assessing the response answers according to an experimental sheet prepared for this

purpose.

134

6.6.3 Experiment Steps

The experiment was run through the following steps:

1. The Python programming language was used to write the code of our proposed

Chatbot OFC. The program runs to do the following activities.

 Posting a greeting at the beginning and then introducing itself as a

Chatbot for answering questions about the footballer David Beckham

and as a tutor Chatbot, it can tell you facts about the person it gives

information about.

 Asking the user their name, and when the user gives their name, OFC

greets the user by their name.

 Offering help by asking how it can help the user.

 Replying to greetings.

 Answering the questions to which it has the answers.

 Apologising if the answer is not available.

 Quitting when the user wants; otherwise it continues chatting.

2. Preparing the experimental sheet for the evaluation stage. The experimental

sheet includes 7 user queries, 6 of them are put by the authors and one by the

user. The user is requested to put a question or more on the experimental sheet.

The evaluation fields include evaluation metrics from the users’ point of view

in terms of matching the question, correctness, acceptability, and usefulness of

the Chatbot responses. The users assess either by replying yes or no to each of

these four attributes. A fifth evaluation attribute was also written at the bottom

of the experimental sheet which is about the assessed Chatbots’ humanness, and

the answer should be one of the options: yes, no, and kind of.

3. The experimental participants were selected and invited to do an experiment

for the purpose of evaluation. Twenty six undergraduate and postgraduate

students from the University of Essex were recruited as experimental

participants.

4. The experiment was carried out by holding conversational sessions between

the participants and the Chatbot. The participants used the experimental sheets

to ask the OFC queries and assess the Chatbot responses.

135

5. The experimental conversational sessions were completed and the

experimental sheets were collected.

6. The evaluation scores were calculated manually by aggregating the scores

recorded in all the experimental sheets and then the results were tabulated and

shown in the experimental results section.

6.6.4 Experimental Results

Samples of experimental conversational sessions are shown in fig.6.4 and fig.6.5.

These samples are selected randomly from the snap pictures taken for the

conversational sessions on the Python shell during the experiment run. The picture of

Fig.6.4 shows the conversational session of the OFC with User5, which was the name

given on the experimental sheet to the participant.

136

The picture shown in fig.6.5 shows the conversational session on Python shell between

User23 and the OFC.

Fig. 6. 4: A user session in our experiment on Python 2.7.10 execution

shell.

137

The experimental queries were categorised into five categories. Each category

included a number of queries distributed all over the experimental sheets. The query

category and the number of queries for each category are shown in Table 6.2 below.

Table 6. 2: Query categories used in the experimental sheet.

Query Category Number of Queries

Greetings 26

Friendly conversational 26

Informative, Definition, and

Pedagogical

104

Quit 26

In the evaluation results calculation, we merged the categories Greetings, Friendly

conversational queries, and Quit queries under Conversational queries and

Informative, Definition, and Pedagogical queries under Informative and Pedagogical.

After collecting the subjective assessment results of the experiment, they are tabulated

in table 6.3 below.

Fig. 6. 5: A sample of an experimental user session for one participant.

138

Table 6. 3: Experimental evaluation results according to human assessment.

Category Quality

Attribute

Metric Conversational Informative

and

Pedagogical

Accuracy

Response answer

match the query.

% of Queries

Success.

75% 64%

Response answer

correct.

% of Queries

Success.

75% 51%

Affect Response

Acceptable.

% of Queries

Success.

74.7% 67%

Information

Provided

Response answer

Useful.

% of Queries

Success.

32% 49%

Humanness Does it respond

like human?

% of users who

classify.

88%

The evaluation results in Table 6.3 show that our OFC has an overall 69.5% match

between queries and answers, overall 73.5% correct response answers, overall 70.85%

acceptable responses, overall 40.5% useful response answers, and 88% humanness, all

according to user assessment.

6.7 Conclusion

In this chapter, we presented the implementation of our proposed OFC. We built the

platform of our Chatbot in order to test the accuracy, acceptability, and usefulness of

our Chatbot’s responses to queries. The humanness of the proposed Chatbot was also

tested. The implemented Chatbot was evaluated using a subjective assessment

experiment. We used 26 participants to implement our assessment experiment as a

conversational session per each participant. The evaluation results show reasonable

accuracy, and acceptability and 88% of humanness according to human assessment.

139

 Chapter Seven

7 Conclusions

7.1 Summary

This thesis focuses on the design and implementation of a tutor Chatbot that has

information of an entity that it can answer questions about. This Chatbot is capable of

retrieving information about the entity from the web to populate its SQL database. Our

Online Feedable Chatbot (OFC) can hold a conversation with a user and answer

questions about the information it extracted from the web. Our Chatbot can update or

amend its accumulative database without any interference from any instructor or

administrator. New approaches are presented to generate questions and to extract

imperative sentences from sentences that are extracted from Wikipedia and filtered

from the HTML code and redundant information. Named entity and verb tense type

are used to carefully select the factual sentences and then generate the QAPs using the

targeted sentences. Moreover, verb tense and POS tag techniques are used to select

and extract imperative sentences from the same dataset as the QAPs generated. A type

of QA system was developed to find the best response for a Chatbot query among a

set of sentences using hybrid term, syntactic, and semantic extracted features.

Jaccard’s coefficient and cosine similarity are used for term features, POS tags are

used for syntactic ones, and named entity and semantic cosine similarity are used for

semantic features extraction. The sentences dataset is acquired from the same source

as for the QAP and the imperative sentences. This response search method is planned

to be used as the search model used by our Chatbot’s dialogue manager in order to find

the best answers for a query in its database or from online. Comparative systems were

adapted to our systems and datasets in order to be compared with our implemented

systems. The QG and imperative sentence extraction systems were evaluated using

human assessment and compared with the adapted comparative systems. The QA

system was also evaluated and compared to a comparative system adapted to our

system for this purpose. Our OFC invented QA dataset and Stanford QA data set were

used to test our QA system and to produce the output data for evaluation purposes.

140

The proposed Chatbot was implemented and assessed by the users using a subjective

assessment.

The experimental results show that our designed Chatbot OFC can hold a simple

conversation with a user and answer the users’ questions on the figure or the object it

contains information about. In addition, the OFC can populate its database from the

Wikipedia and it can update its database every time a user request without any

interference from any instructor or controller. Our Chatbot populates its database by

generating QAPs from the plain text it extracts from Wikipedia. Moreover, the OFC

extracts imperative sentences from the same retrieved text from Wikipedia. The QA

system was not implemented with the OFC and left for future work. The results of all

the implemented systems are illustrated and show that our systems outperform the

comparative systems in all the modelled proposals we presented in chapters 3, 4, and

5.

7.2 Limitations in This Work

One of the limitations in this work is using human assessment, as it depends on the

individual’s opinion which is related to different circumstances and variables like the

participant’s mood. That could affect the human’s decision and consequently the

assessment results.

Using Wikipedia pages as the only source of information from the web is a weakness

as well. Moreover, the use of simple heuristics for generating questions constrains the

quality and the quantity of the generated questions. The narrow types of questions

which depend only on the subject and verb tense also limit the work outputs of chapter

3.

Using only a few number of data sets to evaluate our implemented systems is another

limitation in this work since it gives results restricted to these data sets.

Another issue is in the software and the programming languages used in the

implementation part that could cause errors in output results (as explained in section

3.5 Source of Error).

141

7.3 Future Work

Design and implementation of our Chatbot needs a huge amount of work; from

building and populating the knowledge base through the process of developing

appropriate methods for this purpose; finding the best way to select a response to a

query; implementing the Chatbot and using humans to evaluate the system and then

using the feedback of the users to enhance the system. The first stage of our Chatbot

has been implemented and evaluated. In this section the next stages of our Chatbot

design and improvement are explained as follows:

Online Feedable Chatbot. In the next stage of our Chatbot, we plan to add the

following enhancements:

1. Using the QA system presented in Chapter 4 as an answer selection method in

our Chatbot’s dialogue manager. We also plan to use the same response search

system to search for responses online after reducing the processing time.

2. Expanding the QAPs database of our Chatbot via adding more categorising to

the database by dividing the information into genres of subjects about the entity

or entities it answers questions about.

3. Converting the tenses in the QAPs from third person to first person in order to

satisfy the simulation proposal in this thesis.

4. Increasing the OFC’s chatting abilities by automatically extracting more

conversational sentences from the web to expand its conversational database

and by adding more methods to make the dialogue more natural.

5. Expanding the conversational database by extracting sentiment sentences from

the web which could help in adding more naturalism to the conversations.

Automatic Question Generation System.

1. New methods for factual question generation from a sentence are planned to

use in order to expand the QAPs database. Object related factual, subject

142

related are extracted in this work, questions are intended to be generated using

novel methods.

2. Generating new types of questions like interpretive or evaluative questions to

support the tutoring idea.

QA System. We are intending to enhance the search strategy of our proposed QA

system by trying more feature extraction methods. Variance feature extraction

approaches such as Euclidean, or Manhattan distance features may be used in the

future to extract term features.

Imperative Sentence Extraction.

1. The extracted imperative sentences are planned to be used in the future to

generate actionable activities that help the user to access and use applications

slightly more easily by using some conversational utterances such as

commands as the conversation is carrying on.

2. We have an idea to add more actions to Chatbot activities by using normal

conversation to extract indirect imperative words; then to use these words to

control applications and software on the computer. This could help by adding

more actions to a Chatbot’s work rather than using specific commands to

perform specific tasks.

143

Bibliography

[1] I. V. Serban, C. Sankar, M. Germain, S. Zhang, Z. Lin, S. Subramanian, et al., "A Deep
Reinforcement Learning Chatbot," arXiv preprint arXiv:1709.02349, 2017.

[2] B. Hettige and A. S. Karunananda, "First Sinhala chatbot in action," Proceedings of
the 3rd Annual Sessions of Sri Lanka Association for Artificial Intelligence (SLAAI),
University of Moratuwa, 2006.

[3] L. Benotti, M. C. Martínez, and F. Schapachnik, "Engaging high school students using
chatbots," in Proceedings of the 2014 conference on Innovation & technology in
computer science education, 2014, pp. 63-68.

[4] C. Xing, W. Wu, Y. Wu, J. Liu, Y. Huang, M. Zhou, et al., "Topic Aware Neural
Response Generation," in AAAI, 2017, pp. 3351-3357.

[5] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, "Gated self-matching networks
for reading comprehension and question answering," in Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2017, pp. 189-198.

[6] S. Ghose and J. J. Barua, "Toward the implementation of a topic specific dialogue
based natural language chatbot as an undergraduate advisor," in 2013 International
Conference on Informatics, Electronics & Vision (ICIEV), 2013, pp. 1-5.

[7] I. Papaioannou and O. Lemon, "Combining Chat and Task-Based Multimodal
Dialogue for More Engaging HRI: A Scalable Method Using Reinforcement
Learning," in Proceedings of the Companion of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction, 2017, pp. 365-366.

[8] A. S. Lokman and J. M. Zain, "Extension and prerequisite: An algorithm to enable
relations between responses in chatbot technology," Journal of Computer Science,
vol. 6, p. 1212, 2010.

[9] M. Dahiya, "A Tool of Conversation: Chatbot," International Journal of Computer
Sciences and Engineering, 2017.

[10] I. V. Serban, R. Lowe, P. Henderson, L. Charlin, and J. Pineau, "A survey of available
corpora for building data-driven dialogue systems," arXiv preprint rXiv:1512.05742,
2015.

[11] T. Hiraoka, G. Neubig, K. Yoshino, T. Toda, and S. Nakamura, "Active learning for
example-based dialog systems," in Dialogues with Social Robots, ed: Springer, 2017,
pp. 67-78.

[12] G. Skantze, "Exploring human error recovery strategies: Implications for spoken
dialogue systems," Speech Communication, vol. 45, pp. 325-341, 2005.

[13] D. L. F. Popowich and J. N. P. Winne, "Generating Natural Language Questions to
Support Learning On-Line," ENLG 2013, p. 105, 2013.

[14] D. M. Christopher, R. Prabhakar, and S. Hinrich, "Introduction to information
retrieval," An Introduction To Information Retrieval, vol. 151, p. 177, 2008.

[15] E. Haller and T. Rebedea, "Designing a Chat-bot that Simulates an Historical Figure,"
in 19th International Conference on Control Systems and Computer Science (CSCS)
2013, pp. 582-589.

[16] S. A. Abdul-Kader, and John Woods, "Automatic Web-based Question Answer
Generation System for Online Feedable New-Born Chatbot," IEEE Computing
Conference, London, UK, 2018.

[17] S. A. Abdul-Kader, and John Woods, "Question Answer System for an Online
Feedable New Born Chatbot " Intelligent Systems Conference, London, UK, 2017.

144

[18] S. A. Abdul-Kader and J. Woods, "Survey on Chatbot Design Techniques in Speech
Conversation Systems," IJACSA, vol. 6, pp. 72-80, July 2015.

[19] C. I. Nass and S. Brave, Wired for speech: How voice activates and advances the
human-computer relationship: MIT Press Cambridge, 2005.

[20] Y.-P. Yang, "An Innovative Distributed Speech Recognition Platform for Portable,
Personalized and Humanized Wireless Devices," Computational Linguistics and
Chinese Language Processing, vol. 9, pp. 77-94, 2004.

[21] J. Lazar, J. H. Feng, and H. Hochheiser, Research methods in human-computer
interaction: Morgan Kaufmann, 2017.

[22] J. P. Campbell Jr, "Speaker recognition: a tutorial," Proceedings of the IEEE, vol. 85,
pp. 1437-1462, 1997.

[23] C.-H. Lee, "From knowledge-ignorant to knowledge-rich modeling: a new speech
research paradigm for next generation automatic speech recognition," in Proc.
ICSLP, 2004.

[24] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang, et al., "Deep
Voice: Real-time neural text-to-speech," arXiv preprint arXiv:1702.07825, 2017.

[25] V. Bhargava and N. Maheshwari, "An Intelligent Speech Recognition System for
Education System," nikhilmaheshwari.com, 2009.

[26] L. Guerrouj, M. Di Penta, G. Antoniol, and Y. G. Guéhéneuc, "Tidier: an identifier
splitting approach using speech recognition techniques," Journal of Software:
Evolution and Process, vol. 25, pp. 575-599, 2013.

[27] E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer, "An analysis of
environment, microphone and data simulation mismatches in robust speech
recognition," Computer Speech & Language, vol. 46, pp. 535-557, 2017.

[28] P. Roy and P. J. Lagassey, "Method for processing the output of a speech
recognizer," ed: Google Patents, 2017.

[29] A. M. Galvao, F. A. Barros, A. M. Neves, and G. L. Ramalho, "Persona-aiml: An
architecture developing chatterbots with personality," in Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems-
Volume 3, 2004, pp. 1266-1267.

[30] J. Ratkiewicz, "Evolutionary Sentence Combination for Chatterbots Dana Vrajitoru "
Computer and Information Sciences Indiana University South Bend, 1700
Mishawaka Ave, 2004.

[31] M. J. Pereira and L. Coheur, "Just. Chat-a platform for processing information to be
used in chatbots," [Online] Available :
https://fenix.tecnico.ulisboa.pt/downloadFile/395145485809/ExtendedAbstract.pdf
, 2013.

[32] D. J. Stoner, L. Ford, and M. Ricci, "Simulating Military Radio Communications Using
Speech Recognition and Chat-Bot Technology," The Titan Corporation, Orlando,
2004.

[33] A. M. Turing, "Computing machinery and intelligence," Mind, pp. 433-460, 1950.
[34] B. Kirkpatrick and B. Klingner, "Turing’s Imitation Game: a discussion with the

benefit of hind-sight," Berkeley Computer Science course. See http://www. cs.
berkeley. edu/~ christos/classics/ttest. pdf Accessed, vol. 1, p. 13, 2009.

[35] S. M. Shieber, "Inverting the Turing Test [review of The Most Human Human by
Brian Christian," American Scientist vol. (99) 6., 2011.

[36] P. Hingston, "A turing test for computer game bots," IEEE Transactions on
Computational Intelligence and AI in Games, vol. 1, pp. 169-186, 2009.

http://www/

145

[37] B. A. Shawar and E. Atwell, "Different measurements metrics to evaluate a chatbot
system," in Proceedings of the Workshop on Bridging the Gap: Academic and
Industrial Research in Dialog Technologies, 2007, pp. 89-96.

[38] M. McTear, Z. Callejas, and D. Griol, "Conversational Interfaces: Past and Present,"
in The Conversational Interface, ed: Springer, 2016, pp. 51-72.

[39] I. O’Neill, P. Hanna, X. Liu, D. Greer, and M. McTear, "Implementing advanced
spoken dialogue management in Java," Science of Computer Programming, vol. 54,
pp. 99-124, 2005.

[40] N. M. Radziwill and M. C. Benton, "Evaluating Quality of Chatbots and Intelligent
Conversational Agents," arXiv preprint arXiv:1704.04579, 2017.

[41] K. Chandrasekaran, "A Survey of Design Techniques for Conversational Agents," in
Information, Communication and Computing Technology: Second International
Conference, ICICCT 2017, New Delhi, India, May 13, 2017, Revised Selected Papers,
2017, p. 336.

[42] K. Meffert, "Supporting design patterns with annotations," in 13th Annual IEEE
International Symposium and Workshop on Engineering of Computer Based Systems
ECBS 2006, pp. 8-445.

[43] M. L. McNeal and D. Newyear, "Chatbot creation options," Library Technology
Reports, vol. 49, pp. 11-17, 2013.

[44] D. Mladenić and L. Bradeško, "A survey of chabot system through a Loebner prize
competition," Proceedings of Slovenian Artificial Intelligence Laboratory, Jozef
Stefan Institute in Ljubljana, 2012.

[45] W. Kim, "On optimizing an SQL-like nested query," ACM Transactions on Database
Systems (TODS), vol. 7, pp. 443-469, 1982.

[46] D. J. Mocek, K. Li, and J. M. Levine, "Natural language translation of an SQL query,"
ed: Google Patents, 1999.

[47] N. Chinchor and P. Robinson, "MUC-7 named entity task definition," in Proceedings
of the 7th Conference on Message Understanding, 1997, p. 29.

[48] D. Nadeau and S. Sekine, "A survey of named entity recognition and classification,"
Lingvisticae Investigationes, vol. 30, pp. 3-26, 2007.

[49] A. Peñas, A. Rodrigo, V. Sama, and F. Verdejo, "Testing the reasoning for question
answering validation," Journal of Logic and Computation, vol. 18, pp. 459-474,
2008.

[50] O. Ferret, B. Grau, M. Hurault-Plantet, G. Illouz, C. Jacquemin, L. Monceaux, et al.,
"How NLP can improve question answering," Knowledge Organization, vol. 29, pp.
135-155, 2002.

[51] H. Yu and V. Hatzivassiloglou, "Towards answering opinion questions: Separating
facts from opinions and identifying the polarity of opinion sentences," in
Proceedings of the 2003 conference on Empirical methods in natural language
processing, 2003, pp. 129-136.

[52] "Types of Questions," [Online] Available :
http://bowmanatbrooks.weebly.com/uploads/8/3/8/3/8383240/levelsofquestions.
doc_-_literal_-_interpretive_-_universal.pdf 2017.

[53] C. Perrault, "Short Kid Stories," [Online] Available :
http://www.shortkidstories.com/story/cinderella-2/, 2017.

[54] J. Sarma, "The acquisition of wh-questions in English," Doctoral Dissertations.
AAI9215447. , 1991.

http://bowmanatbrooks.weebly.com/uploads/8/3/8/3/8383240/levelsofquestions.doc_-_literal_-_interpretive_-_universal.pdf
http://bowmanatbrooks.weebly.com/uploads/8/3/8/3/8383240/levelsofquestions.doc_-_literal_-_interpretive_-_universal.pdf
http://www.shortkidstories.com/story/cinderella-2/

146

[55] R. Hawkins and H. Hattori, "Interpretation of English multiple wh-questions by
Japanese speakers: A missing uninterpretable feature account," Second Language
Research, vol. 22, pp. 269-301, 2006.

[56] T. Brants, "TnT: a statistical part-of-speech tagger," in Proceedings of the sixth
conference on Applied natural language processing, 2000, pp. 224-231.

[57] E. Brill, "A simple rule-based part of speech tagger," in Proceedings of the third
conference on Applied natural language processing, 1992, pp. 152-155.

[58] H. Schmid, "Probabilistic part-of-speech tagging using decision trees," in New
methods in language processing, 2013, p. 154.

[59] T. Cohn and P. Blunsom, "Semantic role labelling with tree conditional random
fields," in Proceedings of the Ninth Conference on Computational Natural Language
Learning, 2005, pp. 169-172.

[60] S. P. Ponzetto and M. Strube, "Exploiting semantic role labeling, WordNet and
Wikipedia for coreference resolution," in Proceedings of the main conference on
Human Language Technology Conference of the North American Chapter of the
Association of Computational Linguistics, 2006, pp. 192-199.

[61] R. Lebret and R. Collobert, "Word emdeddings through hellinger PCA," arXiv
preprint arXiv:1312.5542, 2013.

[62] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed
representations of words and phrases and their compositionality," in Advances in
neural information processing systems, 2013, pp. 3111-3119.

[63] M. A. Qureshi and D. Greene, "EVE: explainable vector based embedding technique
using Wikipedia," Journal of Intelligent Information Systems, pp. 1-29, 2017.

[64] R. Socher, J. Bauer, and C. D. Manning, "Parsing with compositional vector
grammars," in Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2013, pp. 455-465.

[65] A. L. Samuel, "Some studies in machine learning using the game of checkers," IBM
Journal of research and development, vol. 3, pp. 210-229, 1959.

[66] H. Mannila, "Data mining: machine learning, statistics, and databases," in ssdbm,
1996, p. 2.

[67] D. Freitag, "Machine learning for information extraction in informal domains,"
Machine learning, vol. 39, pp. 169-202, 2000.

[68] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, "Supervised machine learning: A review
of classification techniques," Emerging artificial intelligence applications in
computer engineering, vol. 160, pp. 3-24, 2007.

[69] J. G. Dy and C. E. Brodley, "Feature selection for unsupervised learning," Journal of
machine learning research, vol. 5, pp. 845-889, 2004.

[70] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: theory and
applications," Neurocomputing, vol. 70, pp. 489-501, 2006.

[71] D. Klerfors and T. L. Huston, "Artificial neural networks," Sant Louis University
School of Business & Administration, 1998.

[72] I. A. Basheer and M. Hajmeer, "Artificial neural networks: fundamentals,
computing, design, and application," Journal of microbiological methods, vol. 43,
pp. 3-31, 2000.

[73] S. Agatonovic-Kustrin and R. Beresford, "Basic concepts of artificial neural network
(ANN) modeling and its application in pharmaceutical research," Journal of
pharmaceutical and biomedical analysis, vol. 22, pp. 717-727, 2000.

[74] J. Huang, M. Zhou, and D. Yang, "Extracting Chatbot Knowledge from Online
Discussion Forums," in IJCAI, 2007, pp. 423-428.

147

[75] Y. Wu, G. Wang, W. Li, and Z. Li, "Automatic chatbot knowledge acquisition from
online forum via rough set and ensemble learning," in Network and Parallel
Computing, 2008. NPC 2008. IFIP International Conference on, 2008, pp. 242-246.

[76] N.-T. Le, N.-P. Nguyen, K. Seta, and N. Pinkwart, "Automatic question generation for
supporting argumentation," Vietnam Journal of Computer Science, vol. 1, pp. 117-
127, 2014.

[77] B. AbuShawar and E. Atwell, "Automatic Extraction of Chatbot Training Data from
Natural Dialogue Corpora," in RE-WOCHAT: Workshop on Collecting and Generating
Resources for Chatbots and Conversational Agents-Development and Evaluation
Workshop Programme (May 28 th, 2016), p. 29.

[78] J. Jia, "CSIEC: A computer assisted English learning chatbot based on textual
knowledge and reasoning," Knowledge-Based Systems, vol. 22, pp. 249-255, 2009.

[79] J. Nakanishi, Y. Sakatani, M. Okubo, S. Fujii, K. Matsuo, T. Yamada, et al., "Sense of
Self-Agency in Sharing Conversational Experiences between Agents and Human
Users," in IEEE Tenth International Conference on Semantic Computing (ICSC), 2016,
pp. 270-271.

[80] B. Abu Shawar and E. Atwell, "Chatbots: can they serve as natural language
interfaces to QA corpus?," in Proceeding (689) Advances in Computer Science and
Engineering/690: Internet and Multimedia Systems and Applications-2010, 2010.

[81] Z. Yu, Z. Xu, A. W. Black, and A. Rudnicky, "Chatbot evaluation and database
expansion via crowdsourcing," in Proceedings of the RE-WOCHAT workshop of LREC,
Portoroz, Slovenia, 2016.

[82] Y. Kim and D. Chung, "Method and apparatus for information delivery on the
internet," ed: Google Patents, 2001.

[83] R. Rzepka, W. Shi, M. Ptaszynski, P. Dybala, S. Higuchi, and K. Araki, "Serious
processing for frivolous purpose: a chatbot using web-mining supported affect
analysis and pun generation," in Proceedings of the 14th international conference
on Intelligent user interfaces, 2009, pp. 487-488.

[84] A. Kerly, P. Hall, and S. Bull, "Bringing chatbots into education: Towards natural
language negotiation of open learner models," Knowledge-Based Systems, vol. 20,
pp. 177-185, 2007.

[85] R. Hoffmann, S. Kowalski, R. Jain, and M. Mumtaz, "E_Universities Services in the
New Social Eco-systems: Security Risk Analysis: Using Conversational Agents to Help
Teach Information Security Risk Analysis," International Conference on Social
Psychology and Language, 1st. University of Bristol, vol. , 2011.

[86] Y. F. Wang and S. Petrina, "Using learning analytics to understand the design of an
intelligent language tutor–Chatbot lucy," Editorial Preface, vol. 4, 2013.

[87] D. Griol and Z. Callejas, "An architecture to develop multimodal educative
applications with chatbots," International Journal of Advanced Robotic Systems, vol.
10, 2013.

[88] C. G. Rospide, C. Puente, and J. A. Olivas, "Improving Educational Methods by
Means of an Intelligent Virtual Agent," in Proceedings on the International
Conference on Artificial Intelligence (ICAI), 2013, p. 1.

[89] M. Niranjan, M. Saipreethy, and T. G. Kumar, "An intelligent question answering
conversational agent using Naïve Bayesian classifier," in IEEE International
Conference onTechnology Enhanced Education (ICTEE), 2012, pp. 1-5.

[90] S. L. Lim and O. S. Goh, "Intelligent Conversational Bot for Massive Online Open
Courses (MOOCs)," arXiv preprint arXiv:1601.07065, 2016.

148

[91] J. Jia, "CSIEC (Computer simulator in educational communication): an intelligent
web-based teaching system for foreign language learning," arXiv preprint
cs/0312030, 2003.

[92] S. Crown, A. Fuentes, R. Jones, R. Nambiar, and D. Crown, "Anne G. Neering:
Interactive Chatbot to Motivate and Engage Engineering Students," in American
Society for Engineering Education, 2010.

[93] C. A. Bentivoglio, D. Bonura, V. Cannella, S. Carletti, A. Pipitone, R. Pirrone, et al.,
"Intelligent Agents supporting user interactions within self regulated learning
processes," Journal of e-Learning and Knowledge Society, vol. 6, 2010.

[94] A. Moschitti and S. Quarteroni, "Linguistic kernels for answer re-ranking in question
answering systems," Information Processing & Management, vol. 47, pp. 825-842,
2011.

[95] A. C. Mendes and L. Coheur, "When the answer comes into question in question-
answering: survey and open issues," Natural Language Engineering, vol. 19, pp. 1-
32, 2013.

[96] S. Abney, M. Collins, and A. Singhal, "Answer extraction," in Proceedings of the sixth
conference on Applied natural language processing, 2000, pp. 296-301.

[97] M. Surdeanu, M. Ciaramita, and H. Zaragoza, "Learning to rank answers to non-
factoid questions from web collections," Computational linguistics, vol. 37, pp. 351-
383, 2011.

[98] N. P. Er and I. Cicekli, "A Factoid Question Answering System Using Answer Pattern
Matching," in IJCNLP, 2013, pp. 854-858.

[99] N. Kambhatla, "Combining lexical, syntactic, and semantic features with maximum
entropy models for extracting relations," in Proceedings of the ACL 2004 on
Interactive poster and demonstration sessions, 2004, p. 22.

[100] S. Verberne, H. van Halteren, D. Theijssen, S. Raaijmakers, and L. Boves, "Learning
to rank for why-question answering," Information Retrieval, vol. 14, pp. 107-132,
2011.

[101] P. Molino, P. Basile, A. Caputo, P. Lops, and G. Semeraro, "Distributional Semantics
for Answer Re-ranking in Question Answering," in IIR, 2013, pp. 100-103.

[102] D. Radev, W. Fan, H. Qi, H. Wu, and A. Grewal, "Probabilistic question answering on
the web," Journal of the Association for Information Science and Technology, vol.
56, pp. 571-583, 2005.

[103] Y. Yang, W.-t. Yih, and C. Meek, "WikiQA: A Challenge Dataset for Open-Domain
Question Answering," in EMNLP, 2015, pp. 2013-2018.

[104] S. Wang and J. Jiang, "Machine comprehension using match-lstm and answer
pointer," arXiv preprint arXiv:1608.07905, 2016.

[105] M. A. Khalid, V. Jijkoun, and M. De Rijke, "The impact of named entity normalization
on information retrieval for question answering," in European Conference on
Information Retrieval, 2008, pp. 705-710.

[106] J. Lin, A. Fernandes, B. Katz, G. Marton, and S. Tellex, "Extracting answers from the
web using knowledge annotation and knowledge mining techniques," DTIC
Document2006.

[107] G. Cong, L. Wang, C.-Y. Lin, Y.-I. Song, and Y. Sun, "Finding question-answer pairs
from online forums," in Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, 2008, pp. 467-
474.

[108] F. Wu and D. S. Weld, "Open information extraction using Wikipedia," in
Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, 2010, pp. 118-127.

149

[109] Y. Matsuyama, A. Saito, S. Fujie, and T. Kobayashi, "Automatic expressive opinion
sentence generation for enjoyable conversational systems," IEEE/ACM Transactions
onAudio, Speech, and Language Processing, vol. 23, pp. 313-326, 2015.

[110] D. Ravichandran and E. Hovy, "Learning surface text patterns for a question
answering system," in Proceedings of the 40th annual meeting on association for
computational linguistics, 2002, pp. 41-47.

[111] S. Varges, F. Weng, and H. Pon-Barry, "Interactive question answering and
constraint relaxation in spoken dialogue systems," Natural Language Engineering,
vol. 15, pp. 9-30, 2009.

[112] T. Mihaylov and P. Nakov, "SemanticZ at SemEval-2016 Task 3: Ranking Relevant
Answers in Community Question Answering Using Semantic Similarity Based on
Fine-tuned Word Embeddings," in SemEval@ NAACL-HLT, 2016, pp. 879-886.

[113] P. Nakov, D. Hoogeveen, L. Màrquez, A. Moschitti, H. Mubarak, T. Baldwin, et al.,
"SemEval-2017 task 3: Community question answering," in Proceedings of the 11th
International Workshop on Semantic Evaluation (SemEval-2017), 2017, pp. 27-48.

[114] S. Quarteroni and S. Manandhar, "Designing an interactive open-domain question
answering system," Natural Language Engineering, vol. 15, pp. 73-95, 2009.

[115] H. Ali, Y. Chali, and S. A. Hasan, "Automation of question generation from
sentences," in Proceedings of QG2010: The Third Workshop on Question
Generation, 2010, pp. 58-67.

[116] D. L. Lindberg, "Automatic question generation from text for self-directed learning,"
Applied Sciences: School of Computing Science, 2013.

[117] N. Afzal, V. Pekar, and G. C. St, "Unsupervised Relation Extraction for Automatic
Generation of Multiple-Choice Questions," in RANLP, 2009, pp. 1-5.

[118] R. Mitkov, L. A. Ha, A. Varga, and L. Rello, "Semantic similarity of distractors in
multiple-choice tests: extrinsic evaluation," in Proceedings of the Workshop on
Geometrical Models of Natural Language Semantics, 2009, pp. 49-56.

[119] R. Mitkov, L. A. Ha, and N. Karamanis, "A computer-aided environment for
generating multiple-choice test items," Natural Language Engineering, vol. 12, pp.
177-194, 2006.

[120] R. Mitkov and L. A. Ha, "Computer-aided generation of multiple-choice tests," in
Proceedings of the HLT-NAACL 03 workshop on Building educational applications
using natural language processing-Volume 2, 2003, pp. 17-22.

[121] A. Papasalouros, K. Kanaris, and K. Kotis, "Automatic Generation Of Multiple Choice
Questions From Domain Ontologies," in e-Learning, 2008, pp. 427-434.

[122] Y. HUANG and L. HE, "Automatic generation of short answer questions for reading
comprehension assessment," Natural Language Engineering, vol. 22, pp. 457-489,
2016.

[123] L. Zhang and K. VanLehn, "How do machine-generated questions compare to
human-generated questions?," Research and Practice in Technology Enhanced
Learning, vol. 11, p. 1, 2016.

[124] K. Mazidi and R. D. Nielsen, "Linguistic Considerations in Automatic Question
Generation," in ACL (2), 2014, pp. 321-326.

[125] Y. Chali and S. A. Hasan, "Towards topic-to-question generation," Computational
Linguistics, 2015.

[126] V. Rus, B. Wyse, P. Piwek, M. Lintean, S. Stoyanchev, and C. Moldovan, "A detailed
account of the first question generation shared task evaluation challenge,"
Dialogue and Discourse, vol. 3, pp. 177-204, 2012.

150

[127] R. Shah, "Automatic question generation using discourse cues and distractor
selection for cloze questions," International Institute of Information Technology
Hyderabad, 2012.

[128] M. D. Gall, "The use of questions in teaching," Review of educational research, vol.
40, pp. 707-721, 1970.

[129] J. Ryu, Y. Jung, K.-m. Kim, and S. H. Myaeng, "Automatic extraction of human
activity knowledge from method-describing web articles," in Proceedings of the 1st
Workshop on Automated Knowledge Base Construction, 2010, p. 16.

[130] J. Ryu, Y. Jung, and S.-H. Myaeng, "Actionable Clause Detection from Non-
imperative Sentences in Howto Instructions: A Step for Actionable Information
Extraction," in TSD, 2012, pp. 272-281.

[131] A. F. Wicaksono and S.-H. Myaeng, "Automatic extraction of advice-revealing
sentences foradvice mining from online forums," in Proceedings of the seventh
international conference on Knowledge capture, 2013, pp. 97-104.

[132] K. N. El Sayed, "An Arabic natural language Interface system for a database of the
holy Quran," International Journal of Advanced Research in Artificial Intelligence,
vol. 4, pp. 9-14, 2015.

[133] B. Achee and D. L. Carver, "A greedy approach to object identification in imperative
code," in IEEE Third Workshop on Program Comprehension, 1994. Proceedings.,
1994, pp. 4-11.

[134] K. O. Lundqvist, G. Pursey, and S. Williams, "Design and implementation of
conversational agents for harvesting feedback in eLearning systems," in European
Conference on Technology Enhanced Learning, 2013, pp. 617-618.

[135] A. Strigér, "End-to-End Trainable Chatbot for Restaurant Recommendations," ed,
2017.

[136] J. J. Jiang and D. W. Conrath, "Semantic similarity based on corpus statistics and
lexical taxonomy," arXiv preprint cmp-lg/9709008, 1997.

[137] A. Almuhaimeed, "Enhancing Recommendations in Specialist Search Through
Semantic-based Techniques and Multiple Resources," University of Essex, 2016.

[138] J. J. Summers, A. Waigandt, and T. A. Whittaker, "A comparison of student
achievement and satisfaction in an online versus a traditional face-to-face statistics
class," Innovative Higher Education, vol. 29, pp. 233-250, 2005.

[139] S. B. Wegner, K. C. Holloway, and E. M. Garton, "The effects of Internet-based
instruction on student learning," Journal of Asynchronous Learning Networks, vol. 3,
pp. 98-106, 1999.

[140] Z. Yan, N. Duan, J. Bao, P. Chen, M. Zhou, Z. Li, et al., "DocChat: an information
retrieval approach for chatbot engines using unstructured documents," in ACL,
2016.

[141] R. Franzosi, "Content analysis: Objective, systematic, and quantitative description
of content," Content analysis, vol. 1, pp. XXI-XLX, 2008.

[142] X. Li, P. Nguyen, G. Zweig, and A. Acero, "Presenting search results according to
query domains," ed: Google Patents, 2017.

[143] D. Jurafsky, "Speech and language processing: An introduction to natural language
processing," Computational linguistics, and speech recognition, 2000.

[144] C. Lee and D. A. Landgrebe, "Feature extraction based on decision boundaries,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, pp. 388-
400, 1993.

[145] O. D. Trier, A. K. Jain, and T. Taxt, "Feature extraction methods for character
recognition-a survey," Pattern recognition, vol. 29, pp. 641-662, 1996.

151

[146] G. Salton and C. Buckley, "Term-weighting approaches in automatic text retrieval,"
Information processing & management, vol. 24, pp. 513-523, 1988.

[147] E. Stamatatos, "A survey of modern authorship attribution methods," Journal of the
Association for Information Science and Technology, vol. 60, pp. 538-556, 2009.

[148] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, "Using of Jaccard
coefficient for keywords similarity," in Proceedings of the International
MultiConference of Engineers and Computer Scientists, 2013, pp. 13-15.

[149] J. Lewis, S. Ossowski, J. Hicks, M. Errami, and H. R. Garner, "Text similarity: an
alternative way to search MEDLINE," Bioinformatics, vol. 22, pp. 2298-2304, 2006.

[150] A. Huang, "Similarity measures for text document clustering," in Proceedings of the
sixth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand, 2008, pp. 49-56.

[151] J. L. Fagan, "Automatic P hrase Indexing for Document Retrieval: An Examination of
Syntactic and Non-Syntactic Methods," in ACM SIGIR Forum, 2017, pp. 51-61.

[152] S. Sanyal, S. Hazra, S. Adhikary, and N. Ghosh, "Resume Parser with Natural
Language Processing," International Journal of Engineering Science, vol. 4484, 2017.

[153] A. Budanitsky and G. Hirst, "Evaluating wordnet-based measures of lexical semantic
relatedness," Computational Linguistics, vol. 32, pp. 13-47, 2006.

[154] S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain, "Semantic Measures for the
Comparison of Units of Language, Concepts or Instances from Text and Knowledge
Base Analysis," arXiv preprint arXiv:1310.1285, 2013.

[155] F. Rahutomo, T. Kitasuka, and M. Aritsugi, "Semantic Cosine Similarity," in The 7th
International Student Conference on Advanced Science and Technology ICAST, 2012.

[156] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan, "Expected reciprocal rank for
graded relevance," in Proceedings of the 18th ACM conference on Information and
knowledge management, 2009, pp. 621-630.

[157] S. He, C. Liu, K. Liu, and J. Zhao, "Generating natural answers by incorporating
copying and retrieving mechanisms in sequence-to-sequence learning," in
Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2017, pp. 199-208.

[158] N. Postman and C. Weingartner, "LINGUISTICS, A REVOLUTION IN TEACHING," ERIC,
1967.

[159] B. Srinivasan and R. Parthasarathi, "A survey of imperatives and action
representation formalisms," Artificial Intelligence Review, vol. 48, pp. 263-297,
2017.

[160] S. Crabbe, "Developing a New Controlled Language for Technical Documents," in
Controlling Language in Industry, ed: Springer, 2017, pp. 89-105.

[161] K. Warwick and H. Shah, "Taking the fifth amendment in Turing’s imitation game,"
Journal of Experimental & Theoretical Artificial Intelligence, vol. 29, pp. 287-297,
2017.

[162] R. J. L. John, N. Potti, and J. M. Patel, "Ava: From Data to Insights Through
Conversations," in CIDR, 2017.

[163] M. G. de Bayser, P. Cavalin, R. Souza, A. Braz, H. Candello, C. Pinhanez, et al., "A
Hybrid Architecture for Multi-Party Conversational Systems," arXiv preprint
arXiv:1705.01214, 2017.

[164] J. Cahn, "CHATBOT: Architecture, Design, & Development," University of
Pennsylvania, 2017.

[165] L. Shao, S. Gouws, D. Britz, A. Goldie, B. Strope, and R. Kurzweil, "Generating Long
and Diverse Responses with Neural Conversation Models," arXiv preprint
arXiv:1701.03185, 2017.

152

[166] R. Wallace, "The elements of AIML style," Alice AI Foundation, 2003.
[167] M. d. G. B. Marietto, R. V. de Aguiar, G. d. O. Barbosa, W. T. Botelho, E. Pimentel, R.

d. S. França, et al., "Artificial Intelligence MArkup Language: A Brief Tutorial," arXiv
preprint arXiv:1307.3091, 2013.

