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Abstract
This study aims to design a vertical handover prediction method to minimize unnecessary

handovers for a mobile node (MN) during the vertical handover process. This relies on a

novel method for the prediction of a received signal strength indicator (RSSI) referred to as

IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train

the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict

the optimal solution. The prediction accuracy of the proposed IRBF–FFA model was vali-

dated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP)

models. In order to assess the model’s performance, we measured the coefficient of deter-

mination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute

percentage error (MAPE). The achieved results indicate that the IRBF–FFA model provides

more precise predictions compared to different ANNs, namely, support vector machines

(SVMs) and multilayer perceptron (MLP). The performance of the proposed model is ana-

lyzed through simulated and real-time RSSI measurements. The results also suggest that

the IRBF–FFA model can be applied as an efficient technique for the accurate prediction of

vertical handover.

Introduction
In recent decades, we have witnessed the astonishing development in wireless applications,
devices and networks. In heterogeneous wireless networks, the (Vertical Handover) VH is an
important factor in the provision of seamless mobility between varied network environments
and an essential feature of all next-generation all-IP mobile network endeavors. In the context
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of future wireless networks, many analyses, studies and tutorials have been proposed in the lit-
erature [1–4]. These algorithms were classified into different groups based on the decision
technique expended. Rakovic and Gavrilovska [5] proposed a novel method for Radio Access
Technology (RAT) selection, namely, the Hopfield neural network RAT selection Mechanism
(HRM), that utilized the Hopfield neural networks as a strong decision making tool. A new
approach using information about data rate, monetary cost and received signal strength as dif-
ferent parameters to make a handover decision has been reported by [6]. The main weaknesses
were exactly linked to the computation of the error function and Jacobian inversion for acquir-
ing a matrix in which the dimensions were equal to the total of all the weights in the neural net-
work. Hence, the requirement for memory was very high [7,8]. Existing algorithms [9]
considered service fee, Received Signal Strength Information (RSSI), and user preference, etc.
The proposed algorithm compared to the traditional RSSI based algorithm, enhanced out-
comes significantly for both user and network as a consequence of the proposed fuzzy based
handover systems [9]. In terms of hybrid categories, Nan et al. [10] proposed a PSO-FNN-
based vertical handover decision algorithm that could make a reasonable handover decision
intelligently based on the study of network status. Liu and Jiang [11] reported a novel vertical
handover decision algorithm built on fuzzy logic with the assistance of grey theory and
dynamic weights adaptation. A neuro-fuzzy multi-parameter-based Vertical Handover Deci-
sion Algorithm (VHDA) was proposed by [12] where the results of performance evaluation,
carried out by a handover quality indicator (used to quantify QoS) which is related upon the
‘Ping-Pong’ effect, ESA and throughput, proved that the proposed VHDA offered better QoS
than existing vertical handover methods. Pahlavan et al. (2000) was a good representation of
the application of a fuzzy logic-based normalized quantitative decision algorithm and a differ-
ential prediction algorithm that had good accuracy.

With the possibility of network prediction, which has posed as a significant challenge in
next-generation access networks, the usage of networks associated with low costs and high data
rates can be maximized. In this regard, several methods have been proposed based on handover
prediction [13]. Due to necessity of accurate and reliable VHO decisions, artificial and compu-
tational intelligence methods have been exhaustively used to predict vertical handover in
numerous studies in the literature. Neural networks have been successfully applied to solve
complicated problems by automatically learning the system’s behavior. The field of neural net-
works has applied in handover related issues in order to estimate signal decay[14], and also to
predict users’ profiles[15,16].

In Received Signal Strength Indicator (RSSI)-based prediction algorithms, RSSI of the cur-
rent attachment point is compared to the RSSI of the other available networks for the predic-
tion of handover. Becvar et al.[2] suggest a handover mechanism to maximize the handover
prediction efficiency using the parameter of the (RSSI)[17,18]. The authors have described two
thresholds for RSSI for optimal use. Using a similar method in [19,20], a predictive RSS scheme
with a Markov Decision Process (MDP) was proposed based on network selection for vertical
handovers in heterogeneous wireless networks. In the first stage, a polynomial regression based
methodology is used to predict whether a mobile node (MN) handover is nearer to or farther
away from a wireless network. In the next stage, the candidate access network with the lower-
most possible cost must be determined for the optimal network selection for handover. The
proposed approach could achieve load balancing in the target networks, and prevents unneces-
sary handovers. Also, [21] proposed another predictive RSS-based method that addresses the
QoS parameters based on dynamic network conditions in HetNets.

Liu et al., [22] proposed a scheme to achieve improved performance in terms of low number
of unnecessary handovers and Ping-Pong effect avoidance, based on the predicted RSS and
mobile velocity; but this scheme needs to address some more performance assessment
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measures such as handover latency. According to the proposed scheme, if the mobile node is
attached to a WLAN, and its velocity is higher than a predefined threshold velocity, a handover
towards the UMTS network is initialized to prevent connection loss. The authors in [23] pro-
posed a mobile agent-based scheme to prevent service interruptions during horizontal and ver-
tical handovers in a heterogeneous environment. To predict a handover using this method,
RSS of different networks is compared, and whenever the handover prediction is completed, it
exploits its context to select an optimal network from the ones available based on user service
requirements and preferences. P. Pawar [24] proposed a similar context based scheme that col-
lects the contextual information from fixed networks and mobile nodes for providing end-to-
end QoS.

The author in [25] described a cross layer predictive vertical handover mechanism that uses
the MIH protocol to support QoS; this scheme can manage connectivity issues in heteroge-
neous wireless networks. The authors in [26] designed an estimation mechanism that is highly
dependent on user-predicted traveling time in order to decrease the number of unnecessary
handovers. However, this method has high handover latency, although it reduces unnecessary
handovers and the probability of handover failures.

These works are very affective, but a vast majority of them are based on current system state
only (i.e., they focus solely on current QoS of the networks and current mobile nodes’ condi-
tions). Handover decisions need to consider the probabilistic outcomes of future system states
as the result of the current decision. Hence, the integration of various intelligence aspects and
prediction techniques is necessary in the decision function.

This study aims to propose a novel prediction algorithm that exploits the prediction model
by using the imperialist competition algorithm (ICA), radial basis function (RBF) and firefly
algorithm (FFA), to meet the above stated requirements. The purposes of the IRBF-FFA algo-
rithm for prediction are threefold: (1) to serve as a validation algorithm for prediction; (2) to
decrease the number of unnecessary handover, and prevent the ‘Ping-Pong’ effect; and (3) to
improve the selection of the best candidate access point among various access technologies.
ANNs are a good choice to address function prediction problems. This study presents a com-
parison based on two prediction methods, namely, the IRBF–FFA model; and support vector
machines (SVM) and multilayer perceptron (MLP) models, to predict the RSSI. However, for
all three cases, by proper training, weights and bias are determined to guarantee a specified per-
formance goal.

More importantly, this comparison evaluates the aforementioned methods from different
aspects, including root mean square (RMSE), coefficient of determination (R2) correlation coef-
ficient (r) and means absolute percentage error (MAPE). The results suggest that IRBF–FFA
has better performance; this is subsequently discussed. The proposed method is a step towards
future computer-based optimization methods, where huge uncertainties by the optimization
algorithm must be avoided. To do this, the imperialist competition algorithm (ICA) is used to
train the radial basis function (RBF), combined with the Firefly Algorithm, to predict the opti-
mal solution. Fig 1 presents a schematic diagram of the proposed IRBF–FFA model based on
scanned RSSI as the considered input parameters.

The paper is outlined as follows. The materials and methods are described in Section 2. In
Section 3, the proposed prediction method based on IRBF–FFA is explained. Section 4 intro-
duces the different neural modelling methods for performance evaluation. Section 5 analyzes
and discuses the performance of the algorithm through simulation results. Finally, section 6
concludes.
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Materials and Methods
A prediction technique for vertical handover using the IRBF–FFA algorithm is presented in
this study. The RSSI is a common metric used in handover decision-making [27].

The initial RSSI is used to identify the existence of wireless networks. In heterogeneous wire-
less environments, when the mobile device senses more than one wireless network at the same
time, the network selection with the best QoS plays an important role as the main problem. In
the proposed model, the scanning phase first identifies the physical layer metric (RSSI) of avail-
able networks in heterogeneous environments to perform intelligent prediction.

For this purpose, we analyze the quality and distance for each AP in the range by scanning
RSSI via mobile node (MN). When the MN changes its location to an AP, the level of RSSI for
that AP is also changed. The real-tested measurement is used to realize the RSSI level through
the MNmovement. The scenario to perform the measurements comprises one computer as a
MN within different nodes used to offer the UMTS and WLAN services. The computer collects
MAC/PHY level KPIs, application level QoS KPIs, and location information. The location
information is retrieved from a GPS device, as well as from the measurement tool QoSMeT for
outdoors and indoors systems. The QoSMeT is able to monitor a large set of application level
QoS KPIs over a point-to-point connection. The engineering mode terminal incorporates the
Nemo Handy application, which provides the terminal with powerful radio monitoring capa-
bility. Nemo Handy provides extensive network parameters and exchanged signaling messages
captured over data transfers. The logged measured data has been processed using the Nemo
Outdoor software tool. The testbed enables both real-time offline measurements. A commer-
cially available network-monitoring tool (Nemo Outdoor) was used to provide offline measure-
ments for validation purposes. The server combines the incoming information with network
planning information, and provides the prediction algorithm with the aggregated data. The
architecture of the testbed is depicted in Fig 2.

The IRBF–FFAModel has been designed in this paper as a novel prediction model to con-
struct a mathematical function that has the best fit to a series of data points for RSSI value in
UMTS and WLAN networks. In the scanning phase, the received signal strength indicator
parameter is measured as the main input to the IRBF–FFAModel to predict the received signal

Fig 1. Diagram of IRBF-FFA.

doi:10.1371/journal.pone.0151355.g001
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strength value for the four access points includes UMTS, WiMAX and twoWi-Fi in an intelli-
gent approach. The RSSI has varying values during MNmovement during a span of 15 Sec.

The performance of the proposed algorithm has been assessed in a scenario in which the
MNmoves with a constant speed along a straight path from the area covered by UMTS to the
one covered by WiMAX, and then roams to the area covered by Wi-Fi. Clearly, with the
increase of distance, the average RSS, ABR, SNR and throughput are reduced, while BER is
increased. The Simulation scenario is shown in Fig 3.

Radial basis function (RBF)
Artificial Neural Networks (ANNs) have widely been used to develop, optimize, estimate, pre-
dict and monitor complicated systems. A new and effective feed forward neural network with
three layers, called a radial basis function (RBF) neural network, has fine characteristics of
approximation performance and the global optimum [28]. The RBF network generally consists
of the input layer, the hidden layer and the output layer. Each neuron in the input layer is
responsible for transferring the recorded signal to the hidden layer. In the hidden layer, we

Fig 2. The architecture of the testbed.

doi:10.1371/journal.pone.0151355.g002

Fig 3. Simulation scenario.

doi:10.1371/journal.pone.0151355.g003
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often use the radial basis function as the transfer function, while we usually adopt a simple lin-
ear function in the output layer. The RBF program was implemented in MATLAB. The RBF
neural network with three layers is displayed in Fig 4. RBF was chosen because it has relatively
good computational performance, simplicity, reliability and a high level of adaptation to opti-
mization and other adaptive methods. Moreover, it is able to adapt and handle complicated
parameters [29].

The RBF network basically comprises three layers (input layer, hidden layer and output
layer). The ANN executes the nominal computation to offer an output. The computation com-
prises one-pass arithmetic steps. No iterative and nonlinear computations are complicated in
offering an output. We have chosen RBF networks because it has a simple three layer design.
The number of neurons in the hidden layer is set to 15; the MSE is set to 0.1 according to the
actual training process; and the σ parameter (the width of the RBF) is set to 0.02.

The main advantage is that RBF has a hidden layer that comprises nodes called RBF units.
Each RBF includes main factors that designate the location, deviation or width of the function’s
center. The hidden component processes the distance from the input data vector and the center
of its RBF. If the distance from the specific center to the input data vector is zero, then RBF has
its own peak. However, if the distance increases, the peak of the RBF steadily declines.

In the RBF, hidden layers have different sets of weights that are divided into two sets. These
weights can connect the hidden layer to the input layer, and the hidden layer to the output
layer, as linkages. The subjects of the basis functions fixed into the weights those connect to the
input layer. Since the hidden units are nonlinear, the outputs of the hidden layer can be merged
linearly, and subsequently, processing becomes faster. The output of the network is computed
using the following formula [30]:

ykðxÞ ¼
XN

j¼1
wkj�jðxÞ þ wk0 ð1Þ

where N is the number of basic functions, wkj represents a weighted connection between the
basis function and output layer, x is the input data vector, and ϕj is the nonlinear function of
unit j, which is typically a Gaussian of the following form [30]:

�jðxÞ ¼ expð� kx � mk2

2s2
j

Þ ð2Þ

where x and μ are the input and the center of the RBF unit respectively, while σj is the spread of

Fig 4. RBF Neural Network Structure.

doi:10.1371/journal.pone.0151355.g004
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the Gaussian basis function [30]. The weights can be optimized by the LMS algorithm once the
centers of RBF units are determined. The centers are selected either randomly, or by clustering
algorithms.

Imperialist Competitive Algorithm
The Imperialist Competition Algorithm (ICA) is a new global search algorithm based on the
socio-political strategy for optimizing different tasks [31]. It is worthy to note that this algo-
rithm has two great advantages in terms of convergence rate and good global search. ICA can
be useful in different domains. For example, ICA is used to design an optimal controller [32];
to converse analysis of an ANN to describe the types of materials in the testing step [23]; or to
find the Nash equilibrium point of various games [33]. In this study, ICA is used in interpola-
tion of the RBF. In other words, we train the RBF by ICA as an optimization problem to fore-
cast RSSI. ICA was implemented in this study to optimize the connection weights of the RBF
system.

In the first step, ICA starts with a defined population. All individuals of the population are
called countries. After initialization, the colonies start moving toward their relevant imperialist
country. Fig 5 shows the movement of a colony towards the imperialist, where θ and x are ran-
dom numbers with uniform distribution, and d is the distance between the colony and the
imperialist.

The power of each country must be computed based on cost function, and then some of the
countries are selected as the best with the lowest cost, called imperialists; the rest play the role
as their colonies. In the next stage, the colonies have a competition to achieve the relevant
imperialist’s position. The total power of the empire is related to both the power of its imperial-
ist, and their colonies. The number of kernel RBFs was set to 10. Also, the MSE was used as
cost function in the ICA. The Pseudo code for the ICA is shown in Fig 6.

Firefly optimization algorithm
The Firefly Algorithm (FFA) is a meta-heuristic search algorithm based on the social dashing
behavior of fireflies in nature [34,35]. In the FA, there are two important issues: the difference
of light intensity, and the formulation of the attractiveness. We can consider that the attractive-
ness of a firefly is assessed by its light intensity that in turn is related with the encoded objective
function. For simplicity, the light intensity L (d) varies with the distance d monotonically and
exponentially, based on Eq (3).

L ¼ L0e
�gd ð3Þ

Fig 5. Movement of colony toward its relevant imperialist.

doi:10.1371/journal.pone.0151355.g005
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where light intensity and absorption coefficient are presented by L0 and γ respectively. As a
firefly’s attractiveness is proportional to the light intensity seen by adjacent fireflies, we can
now define the attractiveness β of a firefly as follows:

b ¼ b0e
�gd2 ð4Þ

where β0 is the attractiveness at d = 0. The distance between any two fireflies i and j at Xi and Xj

can be the Cartesian distance dij = kXi−Xjk2 or the 2-norm. The movement of a firefly i
attracted to another more attractive (brighter) firefly j is determined as follows:

Xi ¼ Xi þ b0e
�gd2 ðXj � XiÞ þ aεi ð5Þ

where the second term is due to the attraction, while the third term is randomization with the
vector of random variables εi being drawn from a Gaussian distribution.

In this study, we have developed a novel prediction algorithm for prediction of RSSI to
boost handover decision making via hybridization of IRBF and the FFA. We used the FFA for
determining optimal RBF solutions. To achieve this, four nodes were distributed in different
locations to analyze the influence of distance on the capability of the developed method. The
general description of the FFA is shown in Fig 7. The Matlab codes for implementing the
ICA-RBF are shown in Appendix A.

Fig 6. Pseudo code for the Imperialist Competition Algorithm (ICA).

doi:10.1371/journal.pone.0151355.g006

Fig 7. Description of the Firefly Algorithm (FFA).

doi:10.1371/journal.pone.0151355.g007
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RBF Parameters Selection Using ICA and FFA
ANNs with radial basis function (RBF) based on ICA have been utilized to interpolation in
order to approximate the solution, and are then combined with the FFA to estimate RSSI data.
In this section, the explanation of the experiment for the IRBF–FFA model is shown. It should
be mentioned that, here, the number of kernel RBFs was set to 10. Also, the MSE was used as a
cost function in the ICA. The ability of the IRBF to make good predictions is related to input
parameters selection. The RSSI data are inserted as inputs into IRBF in order to examine the
best prediction using this method. The pseudo code of IRBF–FFA to determine the optimal
RBF parameters is shown in Fig 8.

The pseudo code of the hybrid ICA and RBF is shown in Fig 9. In this combination, we
train the RBF using ICA. In other words, in order to improve the accuracy of the prediction,
the responsibility of RBF’s training is considered. For the ICA-RBF algorithm, we have pro-
vided a brief introduction. Next, the operations of the main functions, namely, CreateInitia-
lEmpires, AssimilateColonies, DoRevolution, InterEmpireCompetition and
IntraEmpireCompetition, are explained in pseudocode format (Appendix A-E) to facilitate the
implementation and use of such algorithms by researchers and practitioners.

Fig 8. Pseudo code for the IRBF-FFA.

doi:10.1371/journal.pone.0151355.g008

Fig 9. Hybrid of ICA and RBF.

doi:10.1371/journal.pone.0151355.g009
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Model Performance Evaluation
Various neural modelling methods, namely, SVMs and MLPs are tested to model IRBF–FFA.
To evaluate the performance of the proposed model and two famous prediction methods MLP
and SVM; some statistical indicators were examined as root mean squared error (RMSE), coef-
ficient of determination (R2), correlation coefficient (r) and mean absolute percentage error
(MAPE). Structurally, the evaluated networks consist of a single input and output layer; and a
single hidden layer for MLP, IRBF–FFA and SVM. We have postponed the evaluation and
comparison of the approaches until Section 5.

Support Vector Machine (SVM)
A SVMs model is a supervised learning method that is used for classification and regression
analysis. In this study, in order to predict RSSI using SVMs, the RSSI of four nodes as inputs
are mapped and generated in the first step of the training stage by kernel functions, and then
the results of this stage are applied to compute the related weights. All of the aforementioned
steps should be repeated in the testing stage; however, in the training step, the trained RSSI use
only the testing RSSI for mapping. Afterwards, it will be applied on the kernel function. In
other words, in the training stage, the inputs of the SVMs model are RSSI of four sources,
which generate mapping vectors via kernel functions and outputs that are presented as derived
weights and bias. During the testing stage, the inputs of the SVMs model are as follows: the
RSSI of the testing stage, derived weights, bias and also the outputs are predicted RSSI.

Multilayer Perceptron (MLP)
From past two decades, ANNs have become a popular research topic in various domains [36].
The number of neurons selected plays an important role in the overall process; because a high
number of neurons can potentially lead to inadequate generalization due to the over fitting;
while a low number of neurons can potentially lead to poor performance. Thus, the number of
neurons should be selected suitably, based on a trial and error process. In this study, a MLP
with a single hidden layer is used, as this is a general approximation when enough hidden neu-
rons are employed. The MLP network topology with a single hidden layer is shown in Fig 10.

Results and Discussions
This experiment is for the case of a vertical handover between a 3G network and WLANs. The
scenario simulated in the MATLAB is composed of the UMTS, WiMAX and IEEE 802.11 APs.
The WiMAX is based on the IEEE 802.16 standard. The capacity of a 3G Universal Mobile
Telecommunications System is 384 kbps. All links except for the wireless links have a capacity
of 100Mbps each. Ad hoc on-demand distance vector (AODV) protocol is used as the reactive
routing protocol [37], [38]. This protocol offers quick convergence when the ad hoc network
topology changes (typically, when a node moves in the network). We consider that the velocity
from 1 to 25m/s, the number of UMTSs equals 1, arrival rate of Poisson distribution is 6 to 16,
and the bandwidths of B3G/UMTS and WLAN are 384kb/s and 54 Mb/s, respectively. The
topology covers an area of 2000 m in length and 2000m in width.

As shown in Fig 3, the mobile node can be at a fixed time in the coverage area of the UMTS.
Nevertheless, due to movement, it can travel into the areas that cover more than one access net-
work, that is, simultaneously within the coverage areas of, for example, a UMTS BS and
WiMAX access point. Multiple WLAN coverage areas are usually comprised within a UMTS
coverage area. Since the WLAN has a lower coverage range when the mobile user is moving
out of a WLAN area, the existence of an accurate and timely handoff decision to maintain the
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connectivity before the loss of the WLAN access is necessary. The user could move into the
regions covered by a UMTS network and then the user could move into a WiMAX area to
achieve a higher QoS at the lowest cost. Therefore, the user changes the connection to the
WiMAX access point. Then the mobile node roams to the area covered by Wi-Fi.

The mobile node associated with the UMTS or WLANs monitors and measures DRSS, which
is the diversity of the received signal strength between the networks of the nearby WLANs/
UMTS to check whether an access network with high data rate is offered. The proposed
method using the IRBF–FFA prediction is compared to the SVMs and MLP. The simulation
considers two classes of traffic, that is, constant bit rate (CBR) and variable bit rate (VBR).
Some applications produce VBR (variable bit rate) traffic streams, while constant applications
produce CBR traffic streams. The CBR traffic stream is easy to model and to predict its impact
on the performance of the network. Data rates of CBR of B3G andWLAN are 50 and 200
(Kbps) and low and high-level data rates of VBR for B3G and WLAN are 10 (Kbps) and 1.6
(Mbps), respectively [19]. The route as demonstrated in the Fig 3 shows the trajectory of a
moving UE which is assumed to follow a certain pattern, where the simulation parameters of
the mobile user are given in the (Table 1).

Table 1. Simulation parameters and channel characteristics.

Parameter WiMAX UMTS Wi-Fi

Cell Radius (m) 100 250 10

Transmit Power (Watts) 0.01 0.5 0.036

RSS_min_Th [dBm] -95 -98 -95

MS speed [m/s] 10 10 10

Frequency band [GHz] 2.4 8e+8 2.4

Simulation duration [s] 100 100 100

Fading (Ϭ) 3 4 4

doi:10.1371/journal.pone.0151355.t001

Fig 10. MLP network topology.

doi:10.1371/journal.pone.0151355.g010
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In this section, we attempt to demonstrate the importance of each independent input vari-
able on the output. Some experimental works were executed to conduct the evaluation of pro-
posed model. The root-mean-square error (RMSE), coefficient of determination(R2),
correlation coefficient (r) and mean absolute percentage error (MAPE) served to evaluate the
differences between the predicted and actual values for both SVMs models.

The radial basis ANNmodel was trained to minimize the MSE with RSSI parameter as
input, and the desired output (predicted RSSI). To design and verify the reliability of the pro-
posed model, the dataset was divided into two different sets: training (80%) and test (20%).
There is no overlap with the test data during training. Afterwards, when the training process is
done, the reliability and over fitting of the network were verified with the test data. The overall
performance of the proposed models in estimating the RSSI of four nodes has been graphically
depicted in Fig 11.

In order to acquire correct assessment, the RBF models are tested with a data set that has
not been used during the training process. The real and predicted RSSI values for four Aps dur-
ing 15 seconds have been stated in Table 2. According to (Table 2), the IRBF–FFA model can
estimate the RSSI value quickly (about 800 ms before the actual time).

In order to assess the performance of fit in our RBF–FFA (Fig 5), residual analysis has been
modified and used. This is to justify in the manner in which the IRBF–FFA is able to predict
new RSSI values, with a great degree of certainty, resulting from extremely variable RSSI data
collected from APs. To evaluate the performance of the RBF–FFA, three statistical estimators
were used, which are as follows: the mean squared error (MSE) shown in Eq (6), the coefficient
of determination (R2) shown in Eq (7) and the root mean square error (RMSE) shown in Eq
(8). Note that if the RMSE is zero, the method has outstanding performance.

MSE ¼ 1

r

Xr

i¼1
ðVpi � VaiÞ2 ð6Þ

R2 ¼ 1�
Xr

i¼1
ðVpi � VaiÞ2Xr

i¼1
ðVpi � VavÞ2

ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r

Xr

i¼1
ðVpi � VaiÞ2

r
ð8Þ

where r is the number of points; Vpi is the estimated value; Vai is the actual value; and Vav is
the average of the actual values. The coefficient of determination, R2 of the linear regression
line between the estimated values of the neural network model, and the required output, was
also used as a measure of performance. The closer the R2 value is to 1, the better the model fits
the actual data [39]. This measurement determines the degree of success the fit is in describing
the change of the data. Expressed differently, R2 is the square of the correlation between the
response values and the predicted response values. It is also referred to as the square of the
multiple correlation coefficients, and the coefficient of multiple determinations. Fig 6 shows
more details for N1, N2, N3 and N4. It is worthy to note that, the suitable selection of initial
weights may cause the local minimum data. In order to prevent this unfavorable phenomenon,
30 runs for each method were applied. In each run, different random values of initial weights
were measured. Finally, in RBF, the best-trained network that had a minimumMSE of valida-
tion data was selected as the trained network. The estimation performance of IRBF–FFA, SVM
and MLP were assessed by R2 andMSE. The output values are stated in Table 3. Table 3 shows
a comparison of IRBF–FFA with SVMs and MLP. This table shows the results of 30 indepen-
dent runs with Iteration = 100.
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Table 3 shows R2 values of all data sets for the IRBF–FFA, SVM and MLP. It is clear that the
fit is rationally suitable for all data sets with R-values of 1 for the IRBF–FFA. The SVM and
MLP were found to be sufficient for estimation of the RSSI, whereas the IRBF–FFA model
showed a significantly high degree of accuracy in the estimation of R2 between 0.97 and 0.99.
Also, the root ofMSE demonstrated that, the smaller the RMSE of the test data set, the higher
the predictive quality. The assessment of the aforementioned models shows the suitable predic-
tive capabilities of the IRBF–FFA model. This prediction method using IRBF–FFA helps to
expect the RSSI value for each AP up to 800 ms distant from the actual value.

We also attempt to demonstrate the results of comparison based on the correlation coeffi-
cient (r) [40], [41] and mean absolute percentage error (MAPE) [42], which served to evaluate
the differences between the predicted and actual values for the IRBF–FFA, SVM and MLP

Fig 11. The plots of IRBF–FFAmodel predicted versus actual values for training, testing and all data sets for N1, N2,
N3, and N4. (a) The RSSI prediction values for N1. (b) The RSSI prediction values for N2. (c) The RSSI prediction values for
N3. (d) The RSSI prediction values for N4.

doi:10.1371/journal.pone.0151355.g011

Table 2. Real and predicted RSSI values.

Time Real RSSI Predicted RSSI by IRBF–FFA

(UMTS) N1 (WiMAX) N2 (Wi-Fi) N3 (Wi-Fi) N4 (UMTS) N1 (WiMAX) N2 (Wi-Fi) N3 (Wi-Fi) N4

1 -20 -29 -27 -98

1.7 -25.8 -35.1 -30.6 -96.4

2 -27 -36 -31 -97

2.5 -29.6 -36.8 -38.4 -95.3

3 -30 -37 -40 -96

3.2 -32.8 -36.9 -55.2 -93.6

4 -33 -37 -60 -94

4.4 -38.1 -37.5 -66.1 -94.8

5 -38 -38 -68 -93

5.6 -44.3 -40.4 -79.9 -92.5

6 -45 -40 -80 -91

6.8 -48.9 -45.1 -80.2 -89.9

7 -50 -45 -81 -90

7.5 -55.6 -49.9 -86.5 -86.6

8 -57 -50 -87 -86

8.6 -56.9 -58.2 -92.5 -79.3

9 -57 -60 -93 -79

9.2 -59.5 -70.8 -86.2 -65.4

10 -60 -72 -87 -66

10.4 -65.3 -78.8 -85.3 -53

11 -66 -79 -85 -52

11.6 -70.3 -80.1 -82.7 -46.6

12 -70 -80 -82 -46

12.8 -79.9 -89.3 -75.4 -39

13 -80 -89 -76 -39

13.4 -90.9 -93.6 -69.6 -34.1

14 -94 -94 -68 -33

14.6 -97.6 -94.8 -57.1 -26.1

15 -98 -95 -56 -26

doi:10.1371/journal.pone.0151355.t002
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models. Table 4 shows the results of comparison based on (r) and (MAPE).

r ¼
Xn

i¼1
ðVpi � VpiÞ:ðVai � VaiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðVpi � VpiÞ:

Xn

i¼1
ðVai � VaiÞ

q ð9Þ

MAPE ¼ 1

r

Xn

i¼1

�����
Vpi � Vai

Vai

������ 100 ð10Þ

where n is the number of points; Vpi is the estimated value; Vai is the actual value; and Vpi and

Vai are the mean value of Vpi and Vai, respectively. The smaller value ofMAPE has a better per-
formance model, and vice versa, in the case of r.

Tables 3 and 4 indicate that the IRBF–FFA model has the best capability in estimating the
RSSI. Based on the results of comparison, it can be observed that the performance of the pro-
posed model is different between the two considered approaches. After a comparison between
the proposed IRBF–FFA model, and SVMs and MLP, the achieved demonstrate the former
method is superior to the latter baseline.

Fig 12 shows the evaluation of the proposed approach by comparing the number of vertical
handoffs. Clearly, the proposed prediction approach considerably improves the number of ver-
tical handoffs. The 95% confidence intervals of the simulation results in Fig 12 are created
from 30 independent runs. The number of vertical handoffs of all the approaches increases
when the arrival rate increases. The proposed prediction model, the IRBF–FFA approach,
results in the fewest vertical handoffs. Consequently, the IRBF–FFA approach outperforms
other approaches in the number of vertical handoffs in heterogeneous wireless networks.

The vertical handover process is based on the predicted RSSI value, which could set a
smaller threshold whenever the predicted value is smaller than the threshold of the link layer
triggering which might lead to being activated. So handover is performed before RSSI becomes
weak to avoid ping-pong. Fig 13 displays the locations where handovers occur are shown in. It
illustrates the proposed algorithm can execute accurate handovers and eliminate the ping-pong
effect.

Conclusion
In this study, a novel hybrid prediction model was proposed in order to predict the next RSSI
value for APs that are in scanning area range. For this purpose, we integrated the imperialist
competition Algorithm (ICA) to train the Radial basis function (RBF), combined with the Fire-
fly Algorithm (FFA), to improve the prediction accuracy. The simulation studies measured
RSSI data obtained from four different nodes. The main idea of the study focuses on the exami-
nation of the feasibility of the proposed hybrid technique in comparison to other techniques.
To validate the precision of the developed IRBF–FFA model, its performance was compared to
support vector machines (SVMs) and multilayer perceptron (MLP) models. After the analyses,
the proposed model demonstrated better performance. The proposed method using IRBF–FFA
can expect the RSSI value for every AP up to 800 ms distant from the actual value. So, MN is
able to perform the handover procedure in a predictive mode within low latency. Our novel
section scheme was aimed at making mobile nodes smart enough to be able to autonomously
decide the best network using data prediction. The statistical indicator used for performance
evaluation of the proposed model indicates lower values of RMSE and MAPE, and higher val-
ues of R2 and r, when compared to SVM and MLP models, for all the nodes considered. The
IRBF–FFA model showed a significantly high degree of accuracy in the estimation of R2
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between 0.97 and 0.99. The achieved results revealed that the proposed hybrid IRBF–FFA
approach would be an appealing option to predict RSSI, since the results were favorable for all
30 runs, despite different node characteristics. Also, we compared the number of vertical hand-
offs under various arrival rates then we found that prediction by IRBF–FFA approach has bet-
ter performance. The algorithm adopts predictive RSSI, capable save time that provides good
ground to minimize ping-pong. Based on this, the proposed IRBF–FFA model can thus be allo-
cated as an efficient approach for the accurate prediction of RSSI data.

Appendix A: CreateInitialEmpires ()
function emp = CreateInitialEmpires()
global ProblemSettings;
global ICASettings;
CostFunction = ProblemSettings.CostFunction;
nVar = ProblemSettings.nVar;
VarSize = ProblemSettings.VarSize;
VarMin = ProblemSettings.VarMin;
VarMax = ProblemSettings.VarMax;
nPop = ICASettings.nPop;
nEmp = ICASettings.nEmp;
nCol = nPop-nEmp;
alpha = ICASettings.alpha;
empty_country.Position = [];
empty_country.Cost = [];
empty_country.Sol = [];
country = repmat(empty_country,nPop,1);
for i = 1:nPop

country(i).Position.m = unifrnd(VarMin.m,VarMax.m,VarSize.m);
country(i).Position.sigma = unifrnd(VarMin.sigma,VarMax.sigma,VarSize.
sigma);

Fig 12. Comparing the number of vertical handoffs under various arrival rates.

doi:10.1371/journal.pone.0151355.g012
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country(i).Position.w = unifrnd(VarMin.w,VarMax.w,VarSize.w);[country
(i).
Cost country(i).Sol] = CostFunction(country(i).Position);
end
costs = [country.Cost];
[~, SortOrder] = sort(costs);
country = country(SortOrder);
imp = country(1:nEmp);
col = country(nEmp+1:end);
empty_empire.Imp = [];
empty_empire.Col = repmat(empty_country,0,1);
empty_empire.nCol = 0;
empty_empire.TotalCost = [];
emp = repmat(empty_empire,nEmp,1);
% Assign Imperialists
for k = 1:nEmp
emp(k).Imp = imp(k);
end
% Assign Colonies
P = exp(-alpha*[imp.Cost]/max([imp.Cost]));
P = P/sum(P);
for j = 1:nCol
k = RouletteWheelSelection(P);
emp(k).Col = [emp(k).Col
col(j)];
emp(k).nCol = emp(k).nCol+1;
end
emp = UpdateTotalCost(emp);
end

Appendix B: AssimilateColonies(emp)
function emp = AssimilateColonies(emp)
global ProblemSettings;
CostFunction = ProblemSettings.CostFunction;

Fig 13. Predicted RSSI of MT in three different networks (WiMAX &Wi-Fi& UMTS).

doi:10.1371/journal.pone.0151355.g013
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VarSize = ProblemSettings.VarSize;
VarMin = ProblemSettings.VarMin;
VarMax = ProblemSettings.VarMax;
global ICASettings;
beta = ICASettings.beta;
nEmp = numel(emp);
for k = 1:nEmp
for i = 1:emp(k).nCol

emp(k).Col(i).Position.m = emp(k).Col(i).Position.m…+beta*rand (Var-
Size.m).*(emp(k).Imp.Position.m- emp(k).Col(i).Position.m);
emp(k).Col(i).Position.m = max(emp(k).Col(i).Position.m,VarMin.m);
emp(k).Col(i).Position.m = min(emp(k).Col(i).Position.m,VarMax.m);
emp(k).Col(i).Position.sigma = emp(k).Col(i).Position.sigma…
+ beta*rand(VarSize.sigma).*(emp(k).Imp.Position.sigma-emp(k).Col(i).
Position.sigma);
emp(k).Col(i).Position.sigma = max(emp(k).Col(i).Position.sigma,Var-
Min.sigma);
emp(k).Col(i).Position.sigma = min(emp(k).Col(i).Position.sigma,Var-
Max.sigma);
emp(k).Col(i).Position.w = emp(k).Col(i).Position.w…
+ beta*rand(VarSize.w).*(emp(k).Imp.Position.w-emp(k).Col(i).Position.w);
emp(k).Col(i).Position.w = max(emp(k).Col(i).Position.w,VarMin.w);
emp(k).Col(i).Position.w = min(emp(k).Col(i).Position.w,VarMax.w);
emp(k).Col(i).Cost emp(k).Col(i).Sol] = CostFunction(emp(k).Col(i).
Position);
end
end
end

Appendix C: DoRevolution ()
function emp = DoRevolution(emp)
global ProblemSettings;
CostFunction = ProblemSettings.CostFunction;
nVar = ProblemSettings.nVar;
VarSize = ProblemSettings.VarSize;
VarMin = ProblemSettings.VarMin;
VarMax = ProblemSettings.VarMax;

global ICASettings;
pRevolution = ICASettings.pRevolution;
mu = ICASettings.mu;
nmu = ceil(mu*nVar);
SIGMA.m = 0.15*(VarMax.m-VarMin.m);
SIGMA.sigma = 0.15*(VarMax.sigma-VarMin.sigma);
SIGMA.w = 0.15*(VarMax.w-VarMin.w);
nEmp = numel(emp);
for k = 1:nEmp
NewImp = emp(k).Imp;
Q = randi([1 3]);
jj = randsample(nVar,nmu)';
switch Q
case 1

NewPos.m = NewImp.Position.m + SIGMA.m*randn(VarSize.m);
NewImp.Position.m(jj) = NewPos.m(jj);
NewImp.Position.m = max(NewImp.Position.m,VarMin.m);
NewImp.Position.m = min(NewImp.Position.m,VarMax.m);

case 2
NewPos.sigma = NewImp.Position.sigma + SIGMA.sigma*randn(VarSize.sigma);
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NewImp.Position.sigma(jj) = NewPos.sigma(jj);
NewImp.Position.sigma = max(NewImp.Position.sigma,VarMin.sigma);
NewImp.Position.sigma = min(NewImp.Position.sigma,VarMax.sigma);

case 3
NewPos.w = NewImp.Position.w + SIGMA.w*randn(VarSize.w);
NewImp.Position.w(jj) = NewPos.w(jj);
NewImp.Position.w = max(NewImp.Position.w,VarMin.w);
NewImp.Position.w = min(NewImp.Position.w,VarMax.w);
end
NewImp.Cost NewImp.Sol] = CostFunction(NewImp.Position);
if NewImp.Cost<emp(k).Imp.Cost
emp(k).Imp = NewImp;

end
for i = 1:emp(k).nCol

if rand< = pRevolution
Q = randi([1 3]);
jj = randsample(nVar,nmu)';
switch Q

case 1
NewPos.m = emp(k).Col(i).Position.m + SIGMA.m*randn(VarSize.m); emp(k).
Col(i).Position.m(jj) = NewPos.m(jj); emp(k).Col(i).Position.m = max(emp
(k).Col(i).Position.m,VarMin.m); emp(k).Col(i).Position.m = min(emp(k).
Col(i).Position.m,VarMax.m);

case 2
NewPos.sigma = emp(k).Col(i).Position.sigma + SIGMA.sigma *randn (Var-
Size.sigma);
emp(k).Col(i).Position.sigma(jj) = NewPos.sigma(jj);

emp(k).Col(i).Position.sigma = max(emp(k).Col(i).Position.sigma,
VarMin.sigma);

emp(k).Col(i).Position.sigma = min(emp(k).Col(i).Position.sigma,
VarMax.sigma);

case 3
NewPos.w = emp(k).Col(i).Position.w + SIGMA.w*randn(VarSize.w);
emp(k).Col(i).Position.w(jj) = NewPos.w(jj);
emp(k).Col(i).Position.w = max(emp(k).Col(i).Position.w,VarMin.w);
emp(k).Col(i).Position.w = min(emp(k).Col(i).Position.w,VarMax.w);
end
[emp(k).Col(i).Cost emp(k).Col(i).Sol] = CostFunction(emp(k).Col(i).
Position);

end
end
end

end

Appendix D: InterEmpireCompetition ()
function emp = InterEmpireCompetition(emp)
if numel(emp) = = 1

return;
end
global ICASettings;
alpha = ICASettings.alpha;
TotalCost = [emp.TotalCost];
[~, WeakestEmpIndex] = max(TotalCost);
WeakestEmp = emp(WeakestEmpIndex);
P = exp(-alpha*TotalCost/max(TotalCost));
P(WeakestEmpIndex) = 0;
P = P/sum(P);
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if any(isnan(P))
P(isnan(P)) = 0;
if all(P = = 0)
P(:) = 1;

end
P = P/sum(P);
end
if WeakestEmp.nCol>0
[~, WeakestColIndex] = max([WeakestEmp.Col.Cost]);
WeakestCol = WeakestEmp.Col(WeakestColIndex);
WinnerEmpIndex = RouletteWheelSelection(P);
WinnerEmp = emp(WinnerEmpIndex);
WinnerEmp.Col(end+1) = WeakestCol;
WinnerEmp.nCol = WinnerEmp.nCol+1;
emp(WinnerEmpIndex) = WinnerEmp;
WeakestEmp.Col(WeakestColIndex) = [];
WeakestEmp.nCol = WeakestEmp.nCol-1;
emp(WeakestEmpIndex) = WeakestEmp;

end
if WeakestEmp.nCol = = 0
WinnerEmpIndex2 = RouletteWheelSelection(P);
WinnerEmp2 = emp(WinnerEmpIndex2);
WinnerEmp2.Col(end+1) = WeakestEmp.Imp;
WinnerEmp2.nCol = WinnerEmp2.nCol+1;
emp(WinnerEmpIndex2) = WinnerEmp2;
emp(WeakestEmpIndex) = [];
end
end

Appendix E: IntraEmpireCompetition ()
function emp = IntraEmpireCompetition(emp)
nEmp = numel(emp);
for k = 1:nEmp
for i = 1:emp(k).nCol
if emp(k).Col(i).Cost<emp(k).Imp.Cost
imp = emp(k).Imp;
col = emp(k).Col(i);
emp(k).Imp = col;
emp(k).Col(i) = imp;
end
end
end

end
function [z sol] = MyCost(s,data)
x = data.x;
y = data.y;
xmin = data.xmin;
xmax = data.xmax;
ws.w;
ms.m;
sigma = s.sigma;
nKernel = numel(w);

% nData = numel(x);
% yhat = zeros(size(y));
% for k = 1:nData
% yhat(k) = 0;
% for i = 1:nKernel
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% yhat(k) = yhat(k)+w(i)*exp(-0.5*((x(k)-m(i))/sigma(i))^2);
% end
% end
xx = linspace(xmin,xmax,200);
yy = zeros(size(xx));
yhat = zeros(size(y));
for i = 1:nKernel
yhat = yhat+w(i)*exp(-0.5*((x-m(i))/sigma(i)).^2);
yy = yy+w(i)*exp(-0.5*((xx-m(i))/sigma(i)).^2);
end
e = y-yhat;
MSE = mean(e.^2);
RMSE = sqrt(MSE);
z = MSE;
sol.x = x;
sol.y = y;
sol.xmin = xmin;
sol.xmax = xmax;
sol.yhat = yhat;
sol.e = e;
sol.MSE = MSE;
sol.RMSE = RMSE;
sol.xx = xx;
sol.yy = yy;

end
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