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A Low Profile Antenna for Millimetre-Wave
Body-Centric Applications

Masood Ur-Rehman, Senior Member, IEEE, Nabeel Ahmed Malik, Xiaodong Yang, Member, IEEE, Qammer
Hussain Abbasi, Senior Member, IEEE, Zhiya Zhang and Nan Zhao

Abstract—Millimetre-Wave frequencies are a front runner
contender for the next generation body-centric wireless com-
munications. In this paper, design of a very low profile antenna
is presented for body-centric applications operating in the
millimetre-wave frequency band centred at 60 GHz. The antenna
has an overall size of 14×10.5×1.15 mm3 and is printed on a
flexible printed circuit board. The performance of the antenna
is evaluated in off-body, on-body and body-to-body commu-
nication scenarios using a realistic numerical phantom and
verified through measurements. The antenna has a bandwidth
of 9.8 GHz and offers a gain of 10.6 dBi in off-body (free space)
configuration while 12.1 dBi in on-body configuration. It also
acheives an efficiency of 74% in off-body and 63% in on-body
scenario. The small and flexible structure of the antenna along
with excellent impedance matching, broad bandwidth, high gain
and good efficiency makes it a suitable candidate to attain
simultaneous data transmission/reception at millimetre-wave
frequencies for the 5G body-centric applications.

Index Terms—Millimetre-Wave, 5G, Body-centric applications,
Remote health monitoring.

I. INTRODUCTION

Body-centric networks (BCNs) are one of the most attrac-
tive venues for the next generation wireless technologies
due to a huge range of applications. Body-centric devices
are offering wide variety of services. Though personal health
care is the dominant field, its applications cover navigation
and tracking, detection and localisation, sports and fitness,
infotainment and gaming, augmented reality and smart
watches [1]–[4]. They are also expected to play a very
important role in 5G and Internet-of-Things (IoT) [1]. The
popularity and applicability of the body-centric networks
had resulted in a massive annual device shipment of 20
million units in 2015 and is estimated to rise to 187.2
million units by 2020 [5], [6].

The millimetre-wave (mm-Wave) band at 60 GHz (57-
64 GHz) has recently received much interest for the BCNs
due to high demand of increased network capacity and data
rates. No requirement of licensing and possible adoption for
5G technologies further adds to its popularity [1], [7]. Low
interference and confidentiality due to high atmospheric
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attenuation is another source of attraction for 60-GHz BCNs
[1].

Antennas are a key element in the design and successful
deployment of the BCNs. The BCN antenna design is
a very challenging task due to multiple requirements to
ensure mobility, reliable link and robustness. The BCN
antennas are required to have low profile, small size, light
weight and should be flexible to offer conformity with
the human body shape [8]. Low power consumption is
another restriction that needs to be followed [9]. Broad
bandwidth and high gain is also required for the mm-Wave
operation to fulfil high data rate demands [7]. Additionally,
the impact of human user’s presence on such antennas
must be characterised as the human body is an inherent
part of BCN applications. The antennas operating in the
vicinity of the human body are subject to electromagnetic
distortions due to absorptions in the lossy human body
tissues and reflections/scattering from the body surface [2].
Efficient performance of BCN systems therefore, requires a
detailed evaluation of the interaction between the human
body and wearable antennas. Moreover, current tele-health
systems and future 5G/IoT application scenarios necessitate
inter-connectivity between body-worn sensors, body-worn
access points and remote processing units [1].

A huge amount of effort has been put by researchers
worldwide to study the performance of the antennas in
on/off body scenarios. It is now well established that the
proximity of the human tissues brings high level of losses
over the communication spectrum. It affects the antenna
performance by detuning frequency and distorting radi-
ation pattern [2], [10]. Although lower frequency ranges
offer a wide variety of antenna solutions coping with these
performance hurdles employing slot patches [11], embroi-
dered fabrics [12], flexible substrates [13], [14] and substrate
integrated waveguides [15] to name few, these challenges
remain for the mm-Wave frequency band and need further
exploration [16], [17].

Design of mm-Wave antennas have attracted interest
of many researchers but few of these studies consider
wearable scenarios. Wu et al. have presented a substrate
integrated waveguide Yagi-Uda antenna in [18] that makes
use of via rows as directors. Two periodic rows of metal-
lic vias are also employed to form the sidewalls of the
waveguide. An end-fire Yagi-Uda antenna array consisting
of four single Yagi antennas each having a driven dipole,
18 directors, and a reflector has been presented in [19].
This antenna requires a microstrip-to-waveguide transition
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Fig. 1. Geometry and dimensions of the proposed millimetre-wave
antenna (all units are in mm).

at the feed point. A Yagi-Uda antenna printed on a fabric
substrate having a permittivity of 1.5 is discussed by Chahat
et al. [20]. A disc-like antenna having an electromagnetic
coupling between a circular disc and the feeding pin is
presented in [21]. This antenna is using substrate integrated
horn for the feeding. A planar end-fire substrate integrated
waveguide horn antenna having 6.1 GHz bandwidth has
been designed by Razafimahatratra et al. [22]. A four-
patch 2×2 array antenna fed through a microstrip feed
has been proposed in [23]. Lu et al. have used three-stage
ladder-shaped directors to enhance the directivity by 2.4-
3.1 dB and bandwidth by 30% of a four-arm quasi-Yagi
antenna [24]. A horizontally aligned H-shaped microstrip
patch antenna fed by a microstrip line for 60 GHz oper-
ation is discussed in [25] by Rabbani et al. This antenna
accomplishes a bandwidth of 4.92 GHz and gain of 10.1
dBi. Liao et al. have proposed a planar aperture antenna
on low-temperature cofired ceramic (LTCC) consisting of a
complex geometry with an open cavity, cross-shaped strip,
meshed ground and probe pads [26]. The antenna is fed
using a feed network based on two differential striplines
connecting the probe pads with two differential ports. The
antenna generates dual-polarisation in 60 GHz band.

These antennas employ either complex geometries, use
fabrics or require special fabrication technologies. It limits
their applicability due to cost and complexity. Moreover,
only few of them consider the antenna performance in
wearable scenarios. Therefore, a new design of a flexible
patch antenna for 60 GHz BCN operation is presented
in this study. The antenna employs a simple and flexible
slotted-patch type structure that covers V-band frequencies
from 55 GHz to 64.8 GHz. The performance of this antenna
in off-body, on-body and body-to-body communication
scenarios is investigated through numerical analysis. The
simulated results are verified through measurements.

Following the introduction, this paper is organised in
four sections. Section II discusses the antenna design and
presents a detailed parametric study to understand the
role of different structural parameters in its operation.
Section III evaluates the antenna performance in off-body
(free space) configuration through simulations and mea-
surements. In section IV, operation of the proposed an-
tenna in wearable conditions considering various on-body,
on/off-body and body-to-body scenarios is analysed both
numerically and experimentally. This section also provides
a comparison between the proposed work and previously
published related studies. Conclusions are drawn in Section
V.

II. ANTENNA DESIGN AND INNOVATION

A. Concept and Topology

Body-mounted devices often require low profile anten-
nas to adhere with strict form factor. Simple geometry
is also a preferred choice to reduce the complexity and
associated cost. A patch-type structure is considered helpful
in obtaining these goals. Moreover, it also minimises the
backward radiations towards the underlying human subject.
The inherent separation between the radiator and the
human body due to the presence of underlying substrate
and ground plane also helps to minimise the impedance
mismatch and maintain efficiency to certain extent. There-
fore, a patch-like geometry is employed for the proposed
antenna.

The antenna consists of two layers of flexible printed cir-
cuit board (FPCB) which helps to maintain the conformity
and flexibility pertinent for the BCN devices. The FPCB have
a relative permittivity of 2.7 and t anσ = 0.005. Thickness
of the FPCB is 0.15 mm. The antenna is fed through a
microstrip feed line.

The overall size of the antenna is 14×10.5×1.15 mm3. The
radiating element is combination of a rectangular loop and
two U-shaped patches fed through a short microstrip feed
line. For the centre frequency of 60 GHz, the optimised
lengths and widths of the radiating elements, rectangular
loop (RL) and U-shaped patches (UL), adhere to the fol-
lowing design principles:

RLwi d th = 1.4×λ60 (1)

RLl eng th = 2.2×λ60 (2)

and,

U Pwi d th = RLwi d th/2 (3)

U Pleng th = RLleng th/2.4 (4)

The proposed antenna is modelled numerically and sim-
ulated using CST Microwave Studio® that provides Finite
Integration Technique (FIT) based solution of the Maxwell’s
equations [27]. The structural dimensions of the modelled
antenna are shown in Fig. 1.

The electromagnetic coupling between the loop and the
U-shaped patches provides excitation to them. The loop is
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Fig. 2. Surface current distribution on the proposed antenna at 58 GHz, 60 GHz and 62 GHz.
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Fig. 3. Effects of thickness of the air substrate on the performance of the
proposed antenna.

directly fed through a 50 Ω microstrip line and provides
feed balancing as evident from surface current distribution
given in Fig. 2. The gap between the loop and the U-
shaped patches is optimised to attain good impedance
matching in 60 GHz band. A standing wave pattern can
also be observed from the current distribution on the
loop and patches. To further enhance the performance
of the antenna in terms of bandwidth and efficiency and
minimise the detuning effects of the human body, an air
substrate (air gap) is used between the top and bottom
layers of the FPCB [14]. Though this arrangement results in
a slightly less rigid structure, facilitation of body-conformity
and increased performance in on-body scenarios (observed
in Section IV) make this arrangement a good trade-off.

B. Parametric Study

Optimal antenna performance depends on an optimised
configuration of various structural elements necessary for
good impedance matching and radiation characteristics.
This section investigates the effects of three key elements
namely thickness of the air substrate, length of the feed gap
and thickness of the rectangular loop on the performance
of the proposed antenna to enhance the understanding of
the antenna operating principle. The performance with the
optimised values of these parameters is taken as a reference.

1) Thickness of the Air Substrate (At ) : Thickness of the
air substrate (At ) between the two FPCB layers is one of the
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Fig. 4. Effects of length of the feed gap on the performance of the
proposed antenna.
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Fig. 5. Effects of thickness of the rectangular loop on the performance
of the proposed antenna.

key elements in the proposed antenna design. Impact of
this parameter on the impedance matching and bandwidth
in terms of reflection coefficient (S11) is presented in Fig. 3.
It can be observed that a thinner air substrate changes the
impedance matching hugely making the antenna lose its -10
dB bandwidth completely at the required frequency band. A
higher gap on the other hand, improves the matching and
bandwidth. In comparison to the optimised At =0.85 mm,
the antenna gain is reduced from 9.3 dBi to 8.3 dBi and 8.7
dBi while the efficiency is decreased to 64% and 66% from
69% for At =0.35 mm and At =1.35 mm, respectively.
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Fig. 6. Fabricated prototype of the proposed antenna fed by a V-connector.

2) Length of Feed Gap (Fg ): Length of the feed gap (Fg )
also plays an important role in the antenna performance.
Impact of varying values of this parameter is compared with
the optimal value of Fg =1 mm on the antenna working
in terms of S11 in Fig. 4. It is noted that a change in the
feed gap length not only changes the bandwidth by shifting
the resonance frequency but also varies the impedance
matching. A lower gap degrades the matching and shifts
the resonance towards the lower band losing almost half
of the bandwidth at the upper end of the operational
band. On contrary, an increased feed gap length improves
the matching and enhances the bandwidth with resonance
shifted to the higher frequency end. This parameter also
affects the gain and efficiency of the antenna. The antenna
exhibits a lowered gain of 8.7 dBi and 9.0 dBi for Fg =0.5
mm and Fg =1.5 mm, respectively. The efficiency reduces to
65% for Fg =0.5 mm and increases to 89% for Fg =1.5 mm.

3) Thickness of the Rectangular Loop (T1): The reflection
coefficient response illustrated in Fig. 5 depicts that the
thickness of the rectangular loop (T1) has an opposite im-
pact on the antenna matching to that observed for the feed
gap length. A lower value of T1 improves the matching and
shifts the resonance upwards while a thicker rectangular
loop lessens the matching and shifts the resonance to a
lower frequency. The -10 dB bandwidth in the 60-GHz mm-
Wave band remains intact in both cases. The gain of the
antenna is noted to be 8.5 dBi for T1=0.5 mm and 9.1 dBi
for T1=1.5 mm. The efficiency becomes 68% and 85% for
the two loop thicknesses, respectively.

III. ANTENNA PERFORMANCE IN OFF-BODY SCENARIOS

The impedance and radiation characteristics of the pro-
posed mm-Wave antenna are studied in off-body (free
space) configuration throughout the range of the operat-
ing frequencies in terms of reflection coefficient response,
radiation patterns, peak gain and radiation efficiency. A
prototype is fabricated and tested to verify the proposed
antenna design. The fabricated antenna is shown in Fig. 6. A
V-connector is used to feed the prototype. The simulated re-
sults are then verified through experimental measurements
in an anechoic chamber using Anritsu’s MS4647B Vector
Network Analyser (VNA).

Fig. 7 illustrates the reflection coefficient response of the
proposed antenna. It can be observed from these results
that the antenna exhibits a good impedance matching in
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Fig. 7. Comparison of simulated and measured reflection coefficient
response of the proposed antenna.
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Fig. 8. Simulated and measured radiation patterns of proposed mm-Wave
antenna in XZ and YZ planes at 58 GHz, 60 GHz and 62 GHz.
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Fig. 10. Structure of realistic skin-equivalent human phantom taken out
of a high-resolution human body model.

the 60 GHz band. It provides a wide bandwidth covering
frequencies from 55 GHz to 63.4 GHz in simulation while
55 GHz to 64.8 GHz in measurement. A good agreement
between simulation and measurement is observed. The
discrepancies are mainly attributed to fabrication imper-
fections and spurious radiations from coaxial cable and
scattering on the V-connector.

A comparison of measured and simulated radiation pat-
terns in XZ plane (azimuth) and YZ plane (elevation) in
the range of frequencies of interest (58 GHz, 60 GHz and
62 GHz) is shown in Fig. 8. Overall, the antenna exhibits
good radiation coverage throughout the 60 GHz mm-Wave
frequency band. The radiation pattern is nearly omni-
directional in the YZ plane and provides coverage of the
whole upper hemisphere in both the planes. It also covers
almost all angles in the lower hemisphere in YZ plane but
slightly distorted in XZ plane due to the presence of the V-
connector. The radiation pattern undergoes slight distortion
at higher frequencies in both planes as expected. A good
agreement between the simulation and measurement is
again observed.
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Fig. 11. Complex permittivity of dry skin in 55 GHz-65 GHz band.

Fig. 9 presents the comparison of simulated and mea-
sured peak gain and radiation efficiency of the proposed
antenna throughout the frequencies of interest. The two
results are in good agreement with a maximum difference
of 1.6 dBi in the gain and 4% in efficiency. The proposed
antenna exhibits good performance in the 60 GHz band
achieving a maximum gain of 10.1 dBi at 62 GHz in
simulation and 10.6 dBi in measurement. The antenna gain
is observed to be minimum (7.3 dBi in simulation and
8.2 dBi in measurement) at 56 GHz. The antenna has a
simulated efficiency of 66%, 69% and 71% at 58 GHz, 60
GHz and 62 GHz, respectively. This is in good agreement
with the measured values of 61%, 71% and 74% at the three
frequencies, respectively.

IV. ANTENNA PERFORMANCE IN WEARABLE SCENARIOS

Human body presence distorts the antenna performance.
It is therefore, pertinent that the BCN antennas should
be tested in realistic body-worn scenarios. This section
presents a detailed analysis and discussion on the antenna
working in on-body, on/off-body and body-to-body config-
urations to establish its usability for interconnected body
sensors and IoT applications.

A. Numerical Modelling of the Skin Phantom

The electromagnetic absorptions by the human body
at 60 GHz mainly takes place in the skin tissues due
to a penetration depth of around 0.5 mm [1]. A single
layer homogeneous torso phantom with electric properties
of dry skin is therefore, employed to study the on-body
antenna performance. The skin-equivalent phantom of the
torso has been taken out of a high resolution whole-body
model and thus, employs a realistic body shape. The overall
dimensions of the phantom are 288×100×40 mm3 as shown
in Fig. 10.

The overall number of cell volumes (voxels) in the com-
putational domain and subsequently the computation and
time requirements are reduced by using an adaptive mesh-
ing scheme in the CST Microwave Studio®. The Perfectly
Matched Layer (PML) absorbing boundary conditions are
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Fig. 12. Comparison of simulated and measured reflection coefficient response of the proposed antenna in three on-body configurations with off-body
performance.

used [27]. It resulted in a maximum resolution of 2 mm
near the boundaries of the computational domain.

The dielectric properties of the skin are well characterised
up to 110 GHz based on the extrapolation of data obtained
through measurements up to 20 GHz [28], [29]. Debye
model with a single relaxation time is considered to exhibit
good accuracy for modelling the permittivity data in 55 GHz
to 65 GHz frequency range [30]:

ε∗ = εo(ε
′ − jε

′′
) = εo(ε∞+ εs −ε∞

1+ jωτ
) (5)

where εo , is the free space permittivity (8.85×10−12 F/m),
εs represents the static permittivity, ε∞ is the optical per-
mittivity, ω depicts the angular frequency and τ is the
relaxation time. The optimised values for the best fit in
55 GHz to 65 GHz range are: εs = 34.8, ε∞ = 4.1 and
τ = 6.9× 10−12 [31]. The modelled permittivity values are
given in Fig. 11.

B. On-body Antenna Performance

The performance of the antenna is evaluated in typical
body-worn scenarios by placing it on top of the skin equiva-
lent phantom. Three separations between the phantom and
the antenna are considered including zero gap (d=0 mm), a
gap of 1 mm (d=1 mm) and a gap of 6 mm (d=6 mm). First
two configurations replicate antenna positioned directly on-
body while third scenario provides a more realistic scenario
having a clearance for the external casing of the BCN device
(Fig. 10). Simulated results are confirmed through measure-
ments in an anechoic chamber using physical phantom (a
dielectric block having the electric properties of the dry skin
given in Fig. 11).

Comparison of the reflection coefficient response and ra-
diation patterns at the centre frequency of 60 GHz between
the three on-body scenarios and off-body operation (free
space) is depicted in Figs. 12 and 13. A good agreement
between the simulated and measured results can be ob-
served from the presented results.

The results show that the human body effects on the
antenna impedance matching are more significant for direct
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Fig. 13. Comparison of simulated and measured radiation patterns of
the proposed mm-Wave antenna in off-body and on-body scenarios at 60
GHz.

placements of the antenna on the body surface (d=0 mm
and d=1 mm). The placement at d=0 mm loses 4.8 GHz
of the bandwidth while d=1 mm placement has to bear a
loss of 3.8 GHz bandwidth due to change in the electrical
properties of the substrate. These configurations however,
succeed to retain a good impedance matching at the centre
frequency of 60 GHz. The human body does not affect the
antenna matching significantly when the body-antenna gap
becomes 6 mm and it achieves a bandwidth of 9.3 GHz
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Fig. 14. Experimental setup for body-centric channel characterisation for the proposed mm-Wave antenna (all units are in mm).
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which is comparable with the off-body configuration.

The antenna radiation patterns in on-body configurations
follow a similar trend. The first two on-body configurations
undergo larger deteriorations as compared to the d=6
mm configuration due to higher reflections from the body
surface. In the three on-body scenarios, the human body
backscatters the energy changing the induced current on
the antenna structure. It results in lower back radiations and
an increased maximum gain. The maximum gain values are
observed to be 11.5 dBi, 11.8 dBi and 12.5 dBi in simulation
while 10.4 dBi, 10.9 dBi and 12.0 dBi in measurement for
d=0 mm, d=1 mm and d=6 mm placements, respectively.
It shows a good agreement with a maximum difference of
1.1 dB.

The antenna radiation efficiency in the presence of the
human body also decreases due to absorptions in the lossy
human body tissues. The simulated efficiency varies from
18% for d=0 mm to 35% for d=1 mm and 65% for d=6 mm.
In measurements, efficiency is observed to be 10% for d=0
mm placement, 30% for d=1 mm placement and reaches
to 63% when d=6 mm. The maximum difference between
the simulated and measured efficiency values is calculated
to be 8%.

These results show that in typical wearable configura-
tions, where the antenna is located at 6 mm or more
separation from the human body surface, the proposed
antenna can work very well. It is therefore, suitable for
body-worn applications where antenna is mounted on the
circuit board or on top edge of the sensor/device.

C. On-body Channel Characterisation

The potential use of the proposed antenna in on/off-body
communication necessitates an investigation of its response
in on/off-body channel. The antenna performance in terms
of path gain (S21) is therefore, evaluated considering var-
ious representative body-centric channels. The common
scenarios of on-body channel between two body mounted
antennas, on-off body channel where one antenna is body-
worn while the other is placed off-body at certain distance
and body-to-body channel with two distant human subjects
each wearing an antenna are investigated. For the on-off
body channel, possibility of a line-of-sight (LOS) and non-
line-of-sight (NLOS) link is also considered. The antenna is
placed at a separation of 6 mm from the body surface in
these studies. Fig. 14 depicts the experimental setup. The
path length for the on-body link is 206 mm while it is kept at
250 mm for on-off body LOS, on-off body NLOS and body-
to-body links to satisfy the farfield radiation condition.

The results in Fig. 15 show that the path gain values
lie between -43 dB to -73 dB for different body-centric
channels when the antenna is operating at 60 GHz. The
on-body channel is the weakest with a path gain of -73 dB
due to non-availability of a direct signal and high decay rate
of the creeping wave signal. The LOS on-off body channel
is the strongest with a path gain of -43 dB due to strong
direct signal. The body-to-body channel has a path gain of
-52 dB while the NLOS on-off body channel has achieved a
path gain of -55 dB. It is evident from these results that the
antenna establishes a good communication link at 60 GHz
guaranteeing continuous and robust working of the BCN
systems.

D. Comparison with Reported Wearable Millimeter-Wave
Antennas

The proposed antenna design is compared with related
60-GHz antennas reported in open literature, [19]–[26], in
terms of structure, size and radiation characteristics to
show its effectiveness. Table I presents a summary of this
comparative study.

It is evident that the proposed antenna exhibits a broader
bandwidth than rest of the compared designs except pre-
sented in [26] that makes use of a complex geometry and
requires specialised fabrication technology. Furthermore,
the presented antenna employs a simple geometry with
ease of fabrication through traditional low cost techniques
and attains a size smaller than most of the reported designs
except [24] and [25]. Most importantly, the proposed design
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TABLE I
COMPARISON BETWEEN THE PROPOSED ANTENNA AND STATE-OF-THE-ART MM-WAVE ANTENNAS.

Ref. Antenna structure
Size

(mm)
-10 dB BW

(GHz)
Off-body

gain (dBi)
On-body

gain (dBi)
Off-body

efficiency(%)
On-body

efficiency(%)

[19]
End-fire Yagi-Uda array

with 18 directors
33×15×0.127 55-60 15 N/I * N/R ** N/I *

[20]
End-fire textile Yagi-Uda
array with 10 directors

26×8×0.2 57-64 9.2 11.9 78 48

[21]
SIW-fed disc-like antenna

with dielectric loading
49.7× 31 ×3.1 59.3-63.4 4.7 6.7 65 25

[22]
SIW horn with metallic

vias and plates
24×17×0.79 56.7-62.5 6.6 4.4 92 62

[23]
Microstrip-fed four-patch

array on 3 mm thick ground
20×8×3.13 59-65 11.8 11.9 62 60

[24]
Quasi-Yagi array

loaded with three directors
9.2×10×0.21 57-66 11.7 N/I * N/R ** N/I *

[25]
H-shaped microstrip

patch
4.4×5.5×0.13 59.2-64.1 10.1 N/I * N/R ** N/I *

[26]

Planar aperture on
LTCC having open cavity,

cross-strip, feeding network
and meshed ground

12×12×1.13 55.2-65.6 12.1 N/I * N/R ** N/I *

This work
Microstrip antenna

with rectangular loop
and U-patches

14×10×1.15 55-64.8 10.6 12.0 74 63

* The paper does not investigate human body effects on the antenna.
** The authors have not reported this value.

works excellently in body-mounted configurations. Though,
the gain and efficiency values in off-body (fee space) con-
ditions are not the highest, they are greater than [21]–[23]
and [25]. This comparison clearly shows the advantages of
the proposed antenna for wearable applications at 60 GHz.

V. CONCLUSION

A novel patch-like antenna is presented for the BCN
operation at millimetre-wave frequency band centred at 60
GHz. The proposed antenna has a simple structure and
low profile realised through encompassing two U-shaped
patches by a rectangular loop on a two-layer FPCB. A
prototype of the antenna has been fabricated and tested
for off-body (free space) and various on-body placements.
The proposed antenna has achieved a bandwidth of 9.8
GHz covering frequencies from 55 GHz to 64.8 GHz, a
peak gain of 10.6 dBi with good radiation coverage and
radiation efficiency of 74% in off-body scenario. A good
agreement between the simulated and measured results has
been observed.

Though, the antenna has experienced detuning, pattern
degradation and drop in the efficiency in the on-body
placements with antenna-body gap of 0 mm and 1 mm,
it performed excellently when positioned at a distance of
6 mm from the human body surface replicating typical
body-mounted scenarios. The antenna has exhibited a gain
of 12.1 dBi and efficiency of 63% for this on-body place-
ment. The antenna has also successfully established a good

wireless link for on-off body LOS, on-off body NLOS and
body-to-body communication scenarios with a path gain of
-43 dB, -55 dB and -52 dB, respectively. Consequently, this
very low profile antenna is a well-suited candidate for body-
centric wireless devices and IoT applications operating at
millimetre-wave frequencies .
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