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Abstract: To provide the seamless mobility in heterogeneous wireless networks two significant 
methods, Simulated annealing (SA) and genetic algorithms (GAs) are hybrid. In this paradigm, 
vertical handovers (VHs) are necessary for seamless mobility. In this paper, the hybrid algorithm 
has the ability to find the optimal network to connect with a good quality of service (QoS) in 
accordance with the user’s preferences. The intelligent algorithm was developed to provide 
solutions near to real time and to avoid slow and considerable computations according to the 
features of the mobile devices. Moreover, a cost function is used to sustain the chosen QoS 
during transition between networks, which is measured in terms of the bandwidth, BER, ABR, 
SNR and monetary cost. Simulation results presented that choosing the SA rules would minimise 
the cost function and the GA-SA algorithm could reduce the number of unnecessary handovers, 
and thereby avoid the ‘Ping-Pong’ effect. 
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1 Introduction 

In recent decades, we have witnessed the astonishing 
developments in wireless applications, devices and 
networks. In heterogeneous wireless networks (HWN),  
the vertical handover (VH) is an important factor in the 
provision of seamless mobility between varied network 
environments and an essential feature of all next-generation 
all-IP mobile network endeavours. Because no single access 
technology can offer ubiquitous coverage and continuously 
high quality of service (QoS), multimode mobile terminals 
will have to roam between the various accesses technologies 
to retain network connectivity and user satisfaction.  
These heterogeneous wireless access networks classically 
vary in terms of signal strength, coverage, data rate,  
latency and loss rate. VH occurs when a mobile terminal 
decides to switch between networks. The VH process 
comprises three main functions: system discovery, handover 
decision and handover execution. The VH decision is 
important for providing a low cost, highly available  
network environment that can achieve the desired QoS  
or quality of experience (QoE). During the handover 
decision stage, the mobile device decides to which network 
it should connect. 

Many challenges are present in the VH decision  
phase during the handover process. One of the challenging 
problems during VH is the selection of an optimal network 
that maximises the end users’ satisfaction. On the one hand, 
sometimes the terminal is moving rapidly along its route,  
so the algorithms that provide the VH decision phase must 
also be fast and able to give a solution near to real time in 
such dynamic scenarios (the mobility aspect is a key driver 
for future internet, within the field of mobility and 
ubiquitous access to networks). On the other hand, some 
decision algorithms handle many parameters that involve 
quite a lot of floating-point arithmetic calculations, and the 
computational effort increases with the required precision 
for the solutions, the number of QoS parameters or available  
networks discovered during the movement of the terminal.  
A high computational effort is in conflict with the low 
response time restriction, especially taking into account,  

the low-performance processors embedded in many mobile 
devices. 

Hence, there is a critical need to develop effective 
vertical handover decision algorithms (VHDA) that not only 
cultivate a hybrid VHD algorithm that utilises some  
form of intelligence for decision-making but also able to 
dynamically adapt to varying conditions in a timely manner 
given the rapid change in the wireless environment. Some 
VHDA including those involving computational intelligence 
techniques have been proposed, in the current research 
literature. According to Chandralekha and Behera (2010), 
the decision problem is formulated as a group of multi-
objective optimisation problems and simulated using  
genetic algorithms (GAs). The simulation result showed  
that the number of handovers could be minimised if 
optimised network parameter values were taken into 
consideration. 

Another category uses hybrid techniques where the 
algorithm was inspired by the Nash equilibrium (Zhang  
et al., 2013), known from the game theory. This study tried 
to seek a Pareto optimum solution under the Nash 
equilibrium of user utility and network provider utility,  
and used an elitist selection and individual migration of 
multi-objective GA to improve the decision efficiency. 
Jaraiz-Simon et al. (2014) proposed a new model to develop 
intelligent algorithms that avoided the slow and massive 
computations associated with direct search techniques, 
hence reducing the computation time. The authors 
developed an algorithm based on GAs in order to obtain a 
better performance than SEFISA and overcame the 
limitations exposed before, mainly the limitation of the 
number of generations, the appearance of compulsory stop 
criterion, the overflow of search space limits, stagnation of 
optimal solutions along generations and so on. 

According to Lin et al. (1993), the hybridisation of GAs 
with existing algorithms showed better performance when 
compared to either the GAs or the existing algorithms used 
alone (Li and Wei, 2008). As reported by Giupponi et al. 
(2005) and Wilson et al. (2005), there were several existing 
multi-criteria-based algorithms with the aid of artificial 
intelligence tools such as fuzzy logic, neural networks and  
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GAs that suffered from scalability and modularity problems. 
They were unable to cope easily with the increased numbers 
of Radio Access Technologies (RATs) and criteria in  
the HWN. These algorithms took all the inputs from  
the different RATs at once to one fuzzy logic block,  
hence they suffered from scalability and complexity 
problems when more RATs or membership functions  
were added due to the exponential increase on the number 
of inference rules (Giupponi et al., 2005; Wilson et al., 
2005). 

In the context of future wireless networks, many 
analyses, studies and tutorials have been proposed in the 
literature (Ahmed et al., 2014; Movahedi et al., 2012; Paul 
et al., 2011; TalebiFard et al., 2010). These algorithms  
were classified into different groups based on the decision 
technique expended. Rakovic and Gavrilovska (2010) 
proposed a novel method for RAT selection, namely, the 
Hopfield neural network RAT selection mechanism (HRM), 
that utilised the Hopfield neural networks as a strong 
decision-making tool. A new approach using information 
about data rate, monetary cost and received signal strength 
as different parameters to make a handover decision has 
been reported by Çalhan and Çeken (2013a). The main 
weaknesses were exactly linked to the computation of the 
error function and Jacobian inversion for acquiring a matrix 
in which the dimensions were equal to the total of all the 
weights in the neural network. Hence, the requirement for 
memory was very high (Kordos and Duch, 2004; Lera and 
Pinzolas, 2002). Existing algorithms (Çalhan and Çeken, 
2013a) considered service fee, received signal strength 
information (RSSI), user preference, etc. The proposed 
algorithm compared to the traditional RSSI-based 
algorithm, enhanced outcomes significantly for both user 
and network as a consequence of the proposed fuzzy-based 
handover systems (Çalhan and Çeken, 2013b). In terms of 
hybrid categories, Nan et al. (2011) proposed a PSO-FNN-
based VHDA that could make a reasonable handover 
decision intelligently based on the study of network status. 
Liu and Jiang (2012) reported a novel VHDA built on  
fuzzy logic with the assistance of grey theory and dynamic 
weights adaptation. A neuro-fuzzy multi-parameter-based 
VHDA was proposed by Singhrova and Prakash (2012) 
where the results of performance evaluation, carried out by 
a handover quality indicator (used to quantify QoS) which is 
related upon the ‘Ping-Pong’ effect, ESA and throughput, 
proved that the proposed VHDA offered better QoS than 
existing VH methods. Pahlavan et al. (2000) was a good 
representation of the application of a fuzzy logic-based 
normalised quantitative decision algorithm and a differential 
prediction algorithm that had good accuracy. 

Although the VH strategies mentioned above had their 
own advantages, they did not consider the complexity 
conditions of the network selection, and the allocation of 
lower computation cost function was also unreasonable. 
Clearly, the decision process needed to rely on a fast 
intelligent algorithm to perform an accurate decision, and to 
switch to the best candidate network within a very short 
period of time. 

Hence, the objective of this study was to propose  
a novel, hybrid network selection optimisation algorithm 
that too advantage of two existing optimisation methods  
to meet the above-stated requirements. It was expected to 
provide more reliable results than a single run of the  
GA. The combination of SA rules with GA has three 
purposes:  

• to serve as a validation algorithm for the outcome of  
the GA 

• to detect calculation results that are unacceptable,  
i.e., higher than the global optimum 

• to merge new generations of crossover and mutation 
steps. 

In this algorithm, to create new populations, the rules  
of SA were used. The proposed method is a step towards 
future computer-based optimisation methods where huge 
uncertainties by the optimisation algorithm need to be 
avoided. To do this, a GA was combined with the simulated 
annealing (SA) optimisation. The proposed approach 
synthesises the capabilities of both search methods to avoid 
the drawbacks of GA. The combined algorithm differed 
from the already introduced evolutionary search methods in 
which it used a modified, SA optimisation method to 
validate the outcome of the GA. The proposed GA-SA-
based VHDA could make reasonable handover decisions 
intelligently according to the study of network status.  
The cost function was also expected to be minimised by 
choosing the SA rules. Also, this algorithm is expected to 
reduce the number of unnecessary handovers, and hence, 
avoid the ‘Ping-Pong’ effect. The outline of this paper  
is as follows: first, the optimisation problem is described  
in Section 2. Then, the methodology of optimisation 
algorithms are explained in Section 3. The system model is 
described in Section 4. Section 5 provides the calculations 
and discussion of the results. Finally, Section 6 summarises 
the conclusions. 

2 The optimisation problem 

The efficient adjusting of the QoS weights to determine the 
best network among available ones is very significant for 
wireless networks. To find the best network, we need to 
know the merit of each available network. For this purpose, 
we need to design a function or metric to acquire the merit 
of this network. Firstly, a set of weights assigned to each 
one of the QoS parameters is used to measure the quality of 
the network, and they are based on the user’s preferences 
and network characteristics. A general profile that includes 
any QoS parameter can have any weight assigned between  
0 and 1. This measure is given by a function, which is  
called cost function. This function is evaluated in the  
VH decision-making stage. Thus, the optimisation problem 
consists of searching the best solution that, when applied  
to each network, returns the lowest cost to the network, 
which will then be chosen as the best solution for the VH 
decision stage. The GA component assigns a suitable weight 
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(w1, w2, …, wi) for each initial decision according to the 
objective function that is specified by the operator according 
to the importance and sensitivities of the access network 
selection criteria to the different characteristics of a wireless 
heterogeneous environment. 

2.1 Cost function 

The VH cost function is a measurement of the cost utilised 
by handing off to a particular network. It is evaluated for 
each network that covers the service area of a user. The 
network choice that results in the lowest calculated value of 
the cost function is the network that would provide the most 
benefits to the user. As is known, different types of services 
require various combinations of reliability, latency and data 
rate. So, we consider service type as the main metric. Also, 
monetary cost is of major consideration to users, as different 
networks may employ different billing strategies that may 
affect the user’s choice to handover. In terms of network 
conditions, network-related parameters such as available 
bandwidth and network latency may need to be considered 
for effective network usage. Use of network information in 
the choice to handover can also be useful for load balancing 
across different networks. Also, to guarantee the system 
performance, a variety of parameters can be employed in the 
handover decision to guarantee the system performance,  
for example, the bit error rate (BER). Mobile terminal 
conditions also include dynamic factors such as velocity, 
moving pattern, moving histories and location information. 

For any of the service types, two sets of relative 
priorities are defined. These two sets are interface priorities 

and application priorities where relative priorities among 
available interfaces in a device are interface priorities 
(Ahmed et al., 2006) and relative priorities among five types 
of services are application priorities. On the basis of the 
arrangement of the literal priority, scores between 1 and 9 
are assigned automatically at the backend, where 9 denotes 
the most preferred and 1 denotes the least preferred priority. 
Setting priorities among available interfaces in the 
multimode terminal should be an important parameter from 
the user side because, for example, most users may like to 
give the cellular interface the highest priority especially for 
voice applications due to its almost ubiquitous coverage. 
QoS is another important parameter in order to ensure user 
satisfaction to the fullest extent. The user can establish 
preferences for the different QoS parameters depending on 
the service required. The experimentation is more realistic 
considering different sets for the user’s preferences, where 
the QoS parameters that are more important have higher 
values of their weights. The whole process is illustrated in 
Figure 1. 

At this stage, suitable limit values (upper and lower)  
for the five QoS parameters are mapped at the backend  
for each of the five service types. While fixing the limit 
values, it is important to note that high values are not  
always better for all the five QoS parameters. It is  
always preferable to have values as high as possible  
for bandwidth, but as low as possible for delay and BER. 
These values are based on the contexts such as QoS 
requirements of specific service types and interface 
capabilities. 

Figure 1 Interface priorities and application priorities (see online version for colours) 

 
Source: Singh and Mishra (2012), Sourangsu and Rahul (2013), Rakesh and Dalal (2010), Shaddad et al. (2014) 
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At the next stage, ranking of the available networks is 
performed based on the interface priorities scores and 
application priorities scores assigned at stage 1. Consider a 
set of candidate networks S = {s1, …, sN} and a set of QoS 
factors Q = {q1, …, qM}, where N is the number of 
candidate networks and M is the number of QoS factors. 
Also, we consider that each QoS factor has its own weight 
and this weight shows the effect of the factor on network or 
user. So cost function for each network can be calculated 
using equation (1) where WN is calculated by analytic 
hierarchy process (AHP) (Saaty, 1988). This process is 
chosen due to its ability to vary its weighting between each 
factor based on the network conditions and the user 
preferences. 

Interface
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With the above definitions, the AHP method is described as 
follows. 
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Then when each element of the matrix X is divided with the 
sum of its column (4), the normalised relative weight is 
obtained. 
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The normalised matrix X is called wnorm which is shown  
in equation (5). 
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Next, the average values of each row are calculated to give 
the priorities for each factor by equation (6) which is shown 
in equation (7). 
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The normalised vector equation (7) is called the priority 
vector. Since it is normalised, the sum of all the elements in 
priority vector is 1. The priority vector shows relative 
weights among them. 
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The set of QoS is shown by vector QN in equation (8): 

[ ]NQ B E A S C=  (8) 

Which these QoS parameters are as follows: B = available 
bandwidth (Mbps), E = BER (dB), A = available ABR (bps), 
S = signal-to-noise ratio (SNR) (dB) and C = monetary cost 
(eur/MB). At the end, based on equation (1), the cost values 
of each user’s requested services from the network can be 
computed. 

3 Methods 

In this paper, we consider a heterogeneous wireless 
environment with the co-existence of WLANs which are 
faster, high-bandwidth, lower-cost and short-distance access 
and Universal Mobile Telecommunications System (UMTS) 
with slower, higher-cost and long-range access networks 
that are always connected access networks. The algorithm 
can be programmed with small-sized codes, which is  
needed for embedded applications. It must be taken into 
consideration that, these days, there is a demand that mobile 
nodes provide the same performance at a lower price in 
which this can lead to reduced power consumption and  
in the end can improve the performance and mobility.  
We have provided a brief introduction for each algorithm 
and the operation is explained with a pseudo code 
(Appendix A) to facilitate the implementation and use of 
such algorithm by researchers and practitioners and figures 
as a visual aid. Finally, we indicate that our final scheme to 
solve the VH optimisation problem relies on the proposed 
algorithm, due to its better performance, which will be 
shown in the later sections. 
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Figure 2 Flow chart of the genetic algorithm (GA) (see online version for colours) 

 
 
3.1 Genetic algorithm (GA) 

GA search methods are rooted in the mechanisms of 
evolution and natural genetics. The interest in heuristic 
search algorithms with underpinnings in natural and 
physical processes began as early as the 1970s, when 
Holland (1992) first proposed GAs. In the field of artificial 
intelligence, GAs have emerged as powerful tools to solve 
the NP-hard problem. It is very simple to program GA. GAs 
are based on an analogy with the genetic structure and 
behaviour of chromosomes within a population of 
individuals using the following foundations: 

• individuals in a population compete for resources and 
mates 

• those most successful individuals in each ‘competition’ 
will produce more offspring than those individuals that 
perform poorly 

• genes from ‘good’ individuals propagate throughout the 
population so that two good parents will sometimes 
produce offspring that are better than either parent 

• thus each successive generation will become more 
suited to their environment. 

GAs are very popular but they suffer from three  
main problems (Li and Schonfeld, 2015). The first problem 
is mostly related to premature convergence in GA 
optimisation, whereby this problem is a result of high 
reliance on crossover. This can have an effect on the 
population by making the population more homogeneous 
and consequently, the search for the best solution is very 
slow in the mutation step. The second problem of GAs is 
related to the convergence of the optimal solution after 
finding a near-optimal solution. The third problem is the 
high level of memory usage by GAs. Since a GA must keep 
a large population of solutions in its memory, this results  
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in increased memory requirements when the problem 
dimensions increases. The flowchart of the GA is presented 
in Figure 2. 

In this study, we show the hybridisation of GAs-SA  
to improve the performance of a GA for wireless network 
selection optimisation. The idea of this hybrid GSAVHO 
algorithm is to use the SA rules to improve the efficiency of 
the GAs mutation and crossover. Section 4 presents the 
GSAVHO hybrid algorithm with its detailed algorithmic 
steps. 

3.2 Simulated annealing 

Annealing is the cooling process all through which a low 
energy state is achieved in a solid. In the annealing method, 
the solid is first heated and melted at a high temperature,  
in which position all particles move at random. The solid is 
then slowly cooled until the particles place themselves in 
their lowest energy state, which is the ground condition.  
To avoid the resulting crystals from showing defects or  
even lacking all crystalline order, the cooling schedule 
should be sufficiently slow (Van Laarhoven and Aarts, 
1987). In the SA technique, a new solution is created 
through a neighbourhood structure and a generation method.  
The neighbourhood structure states a set of solutions, Ss, 
which is ‘close’ to the present solution, s, in some sense. 
The generation method is a means of choosing a new 
solution from the neighbourhood S, of the solutions. The 
operation of SA is shown in the following steps: 

Step 1: Initialisation: Initialise the iteration count k = 0, and 
the temperature T0 to be sufficiently high. 
Step 2: Repeat for each temperature Tk: Execute Steps 2–4 
until an equilibrium criterion is satisfied. 
Step 3: Neighbourhood solution: Generate a trial solution 
xk+1 in the neighbourhood of the current solution xk. 

Step 4: Acceptance criterion. Let ∆ = f(xk+1) + f(xk) and r is a 
random number uniformly distributed over [0, 1]. If ∆ < 0 
(i.e., the solution is improved), the trial solution is accepted. 

Otherwise, the trial solution is accepted with the probability 
exp(–∆/Tk) > r. 

3.3 Hybrid of Genetic and simulated annealing 
algorithms 

In this work, we have developed an algorithm based on the 
hybridisation of GAs and SA algorithms in order to obtain 
better performance and overcome the limitations of GA 
which has been outlined in Section 3.2. The reasons behind 
the choice of the GA and SA hybrid are because they have 
proven to be efficient and strong in search processes, and 
have produced near optimal solutions, making them suitable 
for solving large combinatorial optimisation problems. 
Unlike the other algorithms, GAs are biologically inspired 
algorithms for conducting random search and optimisation 
guided by the principles of natural evolution and genetics. 
As mentioned before, GA has a strong global search ability 
in solving the aforementioned problems, but also has 
limitations such as a premature and slow convergence  
rate, local optimum and ignoring cooperation between 
populations as well as weak local search ability (Tsai et al., 
2011). On the other hand, SA has strong local search ability 
and no premature problems. Therefore, the hybridisation of 
GA and SA can overcome the limits of each of the two 
methods, bringing into play their respective advantages and 
improve the solving efficiency. 

To hybridise GA with SA, we have used SA rules to 
combine and compare the populations of GA. Figure 3 
shows the workflow of the GA-SA algorithm. In Figure 3, 
P(t) is the main population, Q(t) is the population of 
crossover and R(t) is the population of mutation. The 
integration of Q(t) and R(t) products S(t). In the next step, 
S(t) must be sorted and the sorted population is called S′(t). 
In S′(t), top population are better solutions. In P(t), the 
number of elements are npop (), then we have selected the 
same elements npop () of the top populations of S′(t) and 
labelled them S″(t). Then, the comparison of P(t) and S″(t) 
based on SA r rules is needed. At this stage, the population 
of a new generation has been created. 

Figure 3 Workflow of (GSAVHO) 
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GAs essentially uses three genetic machinists: selection, 
crossover and mutation, which simulate the procedure  
of natural selection and provide them their powerful  
search ability. Subsequently, the main operators have been 
explained: 

Selection: Selection is the process of choosing potentially 
better individuals to form a mating pool. There are many 
selection schemes such as Roulette Wheel selection, 
Boltzmann selection, Rank selection, Tournament selection 
and Elitist selection. Elitist selection is expanded in this 
paper and the latter is used to prevent the best solution 
disappearing in the next generation. The idea of Elitist 
selection is that some of the best performing individuals are 
kept and used to replace the same number of the worst 
individuals in the next generation. That is, the offspring will 
progress to be at least as good as their parents. 

Crossover: The crossover operator simulates the 
development of gene recombination, which aims to pass the 
best genes on to the next generation. Usual crossover methods 
comprise one-point crossover and two-point crossover. 
According to Tsai et al. (2011), two-point crossover is 
greater to one-point crossover; so two-point crossover is 
used in this study. The idea of two-point crossover is that 
two crossover sites are chosen randomly and then the genes 
amongst the two sites in the two parent networks are 
switched. 

Mutation: Mutation is an essential genetic operator that 
raises the variety of the population, even though the 
probability of mutation is minimal. The idea of the mutation 
operator is that with a certain probability and in a way that 
is specific to each individual’s every gene, the gene is 
exchanged with a new gene not contained in the individual. 
Notice that the list of the network must be sorted and it 
should be shown that there are not any duplicate networks in 
the list after the operation. 

Creation of new generation by SA rules: On the basis  
of the literature (Dahal and Chakpitak, 2007; Zameer et al., 
2014), some strategies are proposed to merge the population  
in GAs. In one strategy called predefined shares, each set 
has the same portion and n(pop) is a combination of 
P(t) + Q(t) + R(t) in which P(t), Q(t) and R(t) are the main 
population, crossover population and mutation population, 
respectively. Also, in another strategy, called predefined 
probabilities; each set has the same probabilities for 
integration. In this approach, the total probability of three 
sets is equal to 1. In our strategy, the combination and 
comparison amongst the populations of parents and children 
are based on SA rules. 

The whole population must create at a fixed 
temperature. With this purpose in mind, we defined that in 
the external iteration, the temperature should be decreased. 
In other words, all the processes involved in the creation  
of a new population including crossover and mutation  
were moved into the internal iteration, which was named  
 
 

MaxSubIt () for showing the maximum number of sub-
iterations. We found that the number of parameters 
increased because the parameters of GA and SA should be 
defined, for instance, the initial temperature (T0) and 
reduction rate of temperature was shown with alpha = 0.99, 
and were related to SA. 

 

Also, the number of function evaluations is an effective 
parameter for the comparison between algorithms. The 
efficiency is determined by recording the number of 
function evaluations Nfe for each optimisation algorithm, 
where a low value of Nfe means a higher efficiency.  
This paper has used the number of function evaluations (Nfe) 
to measure the performance of algorithms and defines the 
optimal model to be the one that consumes the fewest (Nfe) 
to solve the problem. For GSAVHO and other algorithms, 
the numbers of function evaluations were calculated by 
equation (9) (Dede and Ayvaz, 2015): 

2fe n n nN G P P= × × +  (9) 

where Gn is number of generations where the best solution 
was obtained and Pn is the number of populations. 

4 System model 

As was discussed in Section 2.1, the cost function  
can measure the quality of each network to establish the 
connections. This metric is able to give the level of merit of 
each available network in a fixed time. This measurement  
is computed from a set of weights assigned to each QoS 
parameter by the AHP method (Ahmed et al., 2006), where 
this allocation can be based on the user’s preferences and 
network conditions. This calculation is shown by the cost 
function (C), which is computed in the VH decision phase. 
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Algorithm 1 GSAVHO pseudo-code 

 
 
We have designed an algorithm based on the hybridisation 
of GAs and SA algorithms called genetic simulated 
annealing vertical handover (GSAVHO). In our algorithm, 
the individuals of a population are vectors of QoS weights, 
which are possible solutions of the optimisation problem. 
The population is initially generated with an even number of 

individuals. Each individual is identified by popij where i is 
the index matching with the number of individuals in the 
population and j is an index that corresponds with a QoS 
parameter. Also, each individual has a set of cost values, 
because there are different available networks. The initial 
population is obtained using random selection. This way, 
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GSAVHO can start from an initial population where the 
individuals represent all the areas of the space of solutions, 
allowing a high degree of diversity for the successive 
evolutions of the population. The GSAVHO operation is 
shown in Algorithm 1. Starting from a determined dataset, 
user’s profile, number of networks and QoS parameters, 
precision level, population size, initial temperature 
(T0 = 10), temperature, reduction rate (alpha = 0.99), 
number of parents (offsprings) (nc = 2*round (pc*nPop/2)), 
number of mutants (nm = round (pm*nPop)), number of 
iterations (Max It = 1000), number of sub-iterations of SA 
(MaxSubIt = 10) (line #1), in (line #2) to avoid ‘Ping-Pong’ 
effect, we need to know whether handover is necessary or 
not. For this purpose, we focus on the SUM of the received 
signal strength in n networks in a time period Ts based on 
equation (10). 

0
SUM

T s

T
T

R
=

=

=∑  (10) 

where s is the number of times that the received signal 
strength is higher than the trigger threshold of the handover 
R in a time period; 0 ≤ T ≤ s; 

SUM/ , no handoff
SUM/ , execute handover

n

n

R n
R n

<
 ≥

 (11) 

By using the above-handover triggering and after checking 
Rn for nth network and comparing with the average RSS of 
networks in the time period s, the ‘Ping-Pong’ effect can be 
prevented. At the end of this calculation, the amount of 
SUM must be reset. The population is initialised (line #3), 
to continue, crossover percentage (pc) and mutation 
percentage (pm) are fixed at this stage (line #4), after 
sorting the population, (line #13). We have defined the  
pre-decision method to filter the requested services of the 
users before sending into the GA unit. Bi and Ri are used  
for the pre-decision stage where they are the available 
bandwidth (B) and received signal strength (R) of the 
candidate networks. They are calculated by following 
equations (12) and (13). 

Bandwidth 2 1D B B= −  (12) 

RSS 2 1D R R= −  (13) 

where DBandwidth is the diversity of available bandwidth 
between networks and DRSS is the diversity of received 
signal strength between the networks. On the basis of the 
following conditions, equation (14): 

Bandwidth

RSS

Bandwidth RSS

if 0 and
0 Import QoS parameters to decision unit

if 0 and 0 No handoff

D
D
D D

>
 >
 ≤ ≤

 (14) 

In continuation, (line #18 till end), we show the related 
stages of our optimisation algorithm that includes the 
crossover, mutation, SA rules, and so on. 

In line 4, the related strategies for mutation and 
crossover are completely explained in Section 3.3. To better 

understanding, we showed the main codes of our algorithm 
in Appendix A. 

The following flowchart presents the main steps of our 
heuristic (Figure 4). 

Figure 4 Flowchart of (GSAVHO) 

 

5 Computational experiments 

5.1 Evaluation of proposed VHO scheme 

To demonstrate the performance of the VHO optimisation  
in HWN, we considered two main experiments: with 
GSAVHO optimisation and with GAVHO optimisation. 
This section focuses on the efficiency of GA-SA as tested 
against the GA algorithm with different QoS parameters. 
The networks characterised by the values of the following 
QoS parameters, are listed in Table 1. In this table, we 
introduce QoS parameters of proposed network selection 
algorithm. The heterogeneous environment may consist of a 
number of different wireless networks. For simplicity, 
without loss-of-generality, we consider a HWN consisting 
of UMTS, Wi-Fi (802.11n), WiMax (802.16) and Wi-Fi 
(802.11ac). 

Table 1 QoS parameters 

Net 
Bandwidth 

(Mbps) 
BER  
(dB) 

Delay  
(ms) 

Security 
level 

Monetary cost 
(eur/MB) 

UMTS 14.4 0.001 19 8 0.9 

Wi-Fi 
(802.11n) 

30 0.01 20 2 0.2 

WiMax 
(802.16) 

75 0.01 30 3 0.3 

Wi-Fi 
(802.11ac) 

72 0.01 15 3 0.2 
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Selection metrics of cellular networks in the heterogeneous 
environment are discussed as follows. Handover delay 
refers to the duration between the initiation and completion 
of the handover process. Handover delay is related to  
the complexity of the VHD process, and reduction of the 
handover delay is especially important for delay-sensitive 
voice or multimedia sessions. If DN consider as the 
normalised handoff delay in handoff transition region then 
for the real time service the normalised handoff delay is as 
follows (Park et al. 2003): 

/N tD N T= ∆  (15) 

where ∆ is the handoff completion time and Tt is the region 
extending from the point at which the power falls below 
threshold for the first time to the point at which power falls 
below threshold permanently. 

For delay-tolerant applications, approximate value of  
the residual bandwidth of the WLAN is evaluated by the 
following formula (16) (Yan et al., 2010): 

Residual bandwidth
throughput (1 channel_utilisation)

1 packet_loss_rate
α= × − ×

× −
 (16) 

where throughput is the throughput that can be shared 
among mobile terminals in the WLAN, channel_utilisation 
is the percentage of time the access point senses the medium 
is busy using the carrier sense mechanism, a is a factor that 
reflects IEEE 802.11 MAC overhead (it is set to 1.25 in  
Lee et al. (2005), and packet_loss_rate is the portion of 
transmitted medium access control (MAC) protocol data 
units (MPDUs) that require retransmission, or are discarded 
as undeliverable. The values of channel_utilisation and 
packet_loss_rate are obtained from the information in the 
beacon frame carrying the QoS basic service set (QBSS) 
load sent by an access point, as defined in IEEE 802.11e 
(Mangold et al., 2003). 

Another metric for network selection algorithm is BER. 
BER is the probability of BER of cellular network present  
in heterogeneous environment. Probability of BER is 
calculated by using equation (17), which depends upon 
signal-to-noise. Probability of BER defined in equation (16) 
is for non-coherent FSK in a white Gaussian noise (Reza, 
2012). 

/2( ) 1BER e
2

i
i i

γγ =  (17) 

where γi is the signal to noise ratio, i = 1, 2, 3 and 4 for 
UMTS, Wi-Fi (802.11n), WiMax (802.16) and Wi-Fi 
(802.11ac) cell environments, respectively. 

On the basis of the obtained results, we can see that in 
GAVHO in first iterations of such as iteration between 2 
and 15, network 3 is selected as best solution then network 1 
is selected as best network. These values show a level of the 
network quality by means of cost function. Figures 5 and 6 
show results based on different QoS parameters, number of 
population equal 8 and iteration 100. 

Several experiments were performed to find the best 
wireless network optimised with the hybridisation of GA 
and SA. The main idea was to achieve a comparison  
of the results obtained with GAVHO optimisation and also 
hybridisation of GA-SA optimisation, for the best network 
selection during VH. As it is mentioned before, each QoS 
factor includes bandwidth, BER, delay, security level and 
monetary cost within own weight affect on network or user. 
The values of the QoS parameters characterise a given 
network and each parameter is combined with own weight, 
also each weight has obtained by AHP method. We selected 
the most main parameters for VH; we then defined and 
simulated a basic scenario and finally by analysing the 
selected parameters, measured and calculated RSS, ABR, 
SNR and throughput. We will explain the details of the 
scenario in the following. 

Figure 5 Results of different parameters found by of GAVHO with iteration = 100 and network’s number = 8 (see online version  
for colours) 
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Figure 6 Results of different parameters found by of GSAVHO with iteration = 100 and network’s number = 8 (see online version  
for colours) 

 

Figure 7 Simulation scenario (see online version for colours) 

 
 
On the GSAVHO algorithm, we have performed 
simulations to show the feasibility of proposed scheme by 
the simulation software QualNet 7.0. Our experiment is  
for the case of a VH between a 3G network and WLANs. 
The scenario simulated in QualNet composed of an UMTS 
BS and IEEE 802.11 APs. The WLAN is based on the IEEE 
802.11b standard, and the physical data rate is 11 Mbps. 
The capacity of a 3G UMTS is 384 kbps. All links except 
wireless links each have a capacity of 100 Mbps. Ad-hoc 
on-demand distance vector (AODV) protocol was used as a 
reactive routing protocol (Royer and Perkins, 1999).  
This protocol offers quick convergence when the ad hoc  
 
 

network topology changes (typically, when a node moves in 
the network). 

As shown in Figure 7, the mobile node can be at a given 
time in the coverage area of an UMTS. However, owing to 
mobility, it can move into the regions covered by more than 
one access network, i.e., simultaneously within the coverage 
areas of, for example, an UMTS BS and an IEEE 802.11 
AP. Multiple IEEE 802.11 WLAN coverage areas are 
usually contained within an UMTS coverage area. Since the 
WLAN1 has lower coverage range, when the mobile user is 
moving out of a WLAN1 area, existence of an accurate and 
timely handoff decision to maintain the connectivity before  
 
 



16 S. Goudarzi et al.  

the loss of the WLAN access is necessary. In continue the 
user move into the regions covered by a UMTS network  
and then user would like to move into a WLAN2 area 
because user wants to achieve a higher QoS at a lowest cost.  
So user changes the connection to the WLAN2. The mobile 
node associated with UMTS or WLANs monitors and 
measures the DBandwidth is the diversity of available 
bandwidth between networks and DRSS is the diversity of 
received signal strength between the networks of nearby 
WLANs/UMTS too check whether or not a access network 
with high data rate is offered. 

The performance of the proposed algorithm has been 
assessed in a scenario when the Mobile Node moves with a 
constant speed along a straight line path from the area 
covered by WLAN1 to the one covered by UMTS then 

roams to the area which covered by WLAN2. Clearly with 
the increase of distance the average of RSS, ABR and SNR 
will be reduced and also BER will be increased.  
By calculating the cost value based on number of iterations, 
the optimal network can be selected as presented in  
Figure 8. 

Where γi is the signal-to-noise ratio, i = 1, 2 and 3 for 
WLANs and UMTS (3G) cell environments, respectively. 
BER: For non-coherent FSK in a white Gaussian noise 
channel, the probability of a bit error is given by: 

/2BER  (1/ 2)( ,e) i
i i

γγ =  (Reza, 2012). Available bit rate 
(ABR): ABRi = bandwidth × log2(1 + SNRi) i = 1, 2, 3, 4 
(Pfister et al., 2001). Signal-to-noise ratio (SNR): 
SNRi = Eb/No (Reza, 2012), Eb is the received energy per bit 
and is noise power of the channel. 

Figure 8 (a) Average RSS vs. distance; (b) available bit rate (ABR) vs. distance; (c) SNR vs. distance and (d) throughput vs. distance  
in cellular heterogeneous environment of WLANs and UMTS (see online version for colours) 

 
 
5.2 Comparison with SEFISA and FMADM 

We have performed performance comparisons between our 
algorithm GSAVHO and other algorithms structured in the  
literature; namely SEFISA and GAVH (Jaraiz-Simon et al., 
2014) and FMADM (Nkansah-Gyekye and Agbinya, 2007). 
In the study by Jaraiz-Simon et al. (2014), two algorithms  
 

were designed to decide the best network to establish 
connection in a VH process; SEFISA is based on the SA 
algorithm and GAVH was developed based on GAs.  
In addition, the FMADM (Nkansah-Gyekye and Agbinya, 
2007) was a fuzzy multiple attribute decision making 
algorithm that selects a suitable wireless access network 
during the VH process. 
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We selected these proposals because this study  
enabled us to compare our heuristic with similar datasets. 
To make fair comparisons, our heuristics have five similar  
QoS parameters in dataset1 and 9 QoS parameters in 
dataset2. We have considered the following datasets for  
the weight ranges of QoS parameters, which are shown  
in Tables 2 and 3. The datasets consist of several  
networks characterised by the following QoS parameters: 
B = bandwidth (kbps), E = BER (dB), D = delay (ms), 
S = (dB), C = cost (eur/MB), L = network latency (ms), 
J = jitter (ms), R = burst error, A = average retransmissions/ 
packet, P = packet loss (%), G = received signal strength 
indication RSSI (dBm), N = network coverage area (km), 
T = reliability, W = battery power requirement (W) and 
V = mobile terminal velocity (m/s). Among these 
algorithms, the one based on the hybridisation of GA  
and SA (GSAVHO) demonstrated the best performance,  
in terms of precision and cost function. 

Table 2 Simulation results corresponding to the best costs  
for GAVH, SEFISA, GA and GSAVHO for number 
of networks = 4, number of QoS = 5 (dataset 1) 

 B E D S C 

NN = 1 0.44 0.02 0.5 0.02 0.02 

NN = 2 0.54 0.36 0.02 0.07 0.01 

NN = 3 0.48 0.50 0.04 0.02 0.02 

NN = 4 0.34 0.68 0.02 0.04 0.02 

Best cost SEFISA 1.89 

 GAVH 5.77 

 GSAVHO 4.7248e-6 

Standard deviation SEFISA N/A 

 GAVH N/A 

 GSAVHO 0.0430 
 

Table 3 Simulation results corresponding to the best costs for FMADM and GSAVHO for number of networks = 3 and number of  
QoS = 9 (dataset 2) 

 N L T B W V S G C 

NN=1 1.82 0.54 2.46 1.10 0.44 2.46 2.46 2.46 0.54 
NN=2 0.04 0.09 0.04 0.45 0.04 0.04 0.07 0.04 0.21 
NN=3 0.46 0.02 0.02 0.46 0.02 0.02 0.02 0.14 0.28 
Best cost FMADM 0.799 
 GSAVHO 4.6861e-06 
Standard deviation FMADM N/A 
 GSAVHO 0.0044 

 
6 Conclusion 

Our goal was to achieve an optimised GSAVHO with a 
small cost function, and for this reason the SA rules were 
not changed and we proposed an optimisation for GA where 
only combination and comparison among populations  
of parents and children were based on the SA rules.  
The proposed approach performed well in several test 
problems in terms of the number of cost function 
evaluations required, the quality of the solutions found,  
the average of the function evaluation numbers and the 
average of cost functions. Several experiments were 
performed for the optimisation of the VHDA-making 
algorithms with GA and the hybridisation of GA-SA in 
HWN. The results obtained were analysed and compared, 
and it was found that the GSAVHO had a lower cost 
function when compared to the GAVHO. Simulation  
results indicated that our proposed VHDA was able to 
minimise the cost function, reduce the number of 
unnecessary handovers, avoid the ‘Ping-Pong’ effect and 
select the best access network that was optimised to network 
conditions, QoS requirements, mobile terminal conditions, 
user preferences and service cost. 
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