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hysteresis using Nonlinear AutoRegressive
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Abstract
Identification of robotic systems with hysteresis is the main focus of this article. Nonlinear AutoRegressive eXogenous input
models are proposed to describe the systems with hysteresis, with no limitation on the nonlinear characteristics. The article
introduces an efficient approach to select model terms. This selection process is achieved using an orthogonal forward
regression based on the leave-one-out cross-validation. A sampling rate reduction procedure is proposed to be incorporated
into the term selection process. Two simulation examples corresponding to two typical hysteresis phenomena and one
experimental example are finally presented to illustrate the applicability and effectiveness of the proposed approach.
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Introduction

Hysteresis, a memory-dependent, multivalued relation

between input and output, is often observed in many

robotic systems. The system may exhibit a path-

dependent pattern, where multiple outputs are associated

with increasing or decreasing but the same input and form a

loop under cyclic excitation. It exists in many applications,

such as actuators and sensors involving smart materials

(e.g. piezoelectrics1,2 and magnetostrictive materials3,4)

which possess the property of hysteresis in the reaction,

and some special robotic systems with hysteretic dynamics

like aerial vehicles.5 The control of these robots is difficult

due to the presence of the high nonlinearity. Such nonli-

nearity turns to be a limitation of open-loop operations in

high-precision applications, results in instabilities in

closed-loop operation, and degrades the tracking perfor-

mance even with the use of feedback control in tracking

control application.6,7 It presents challenges in both

analysis and controller design of robotic systems with

hysteresis. A mathematical model, therefore, is required

to predict and control the behavior of the robotic systems

containing hysteresis.

Modeling of hysteresis has in recent years attracted

increasing attention in various areas of robotics research,

such as friction compensation, control of rubber tube actua-

tor, elastic robot joints, and so on. Many researchers have

studied this phenomenon, and many mathematical models

have been developed to grasp the dynamic features of
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hysteresis phenomenon.8–11 Two of the most popular mod-

els are explained in detail in the following sections.

Preisach model

It was originally developed in the 1930s for magnetic hyster-

esis and is widely used to describe the hysteresis characteris-

tics of smart materials12–14 in recent years. It has attracted

considerable interest. Preisach model is a weighted superpo-

sition of simple independent delayed relays g�� ½u�with�; �

corresponding to up and down switching values, respec-

tively.15 This model can be mathematically expressed as

yðtÞ ¼
ZZ
���

�ð�; �Þg�� ½u�ðtÞ d� d� (1)

where y(t) and u(t) are the output and input at time t,

respectively. �ð�; �Þ is known as Preisach density (distri-

bution) function, which weights the single relay units in the

�; � � plane and defines the shape of hysteresis curve. The

model is regarded as a general description of hysteresis

phenomenon with two properties: the casual property and

rate-independent property. That is, the output of the model

has no relation with future inputs and does not depend on

derivatives of the input.

Bouc–Wen model

It was originally proposed by Bouc (1967) and subse-

quently generalized by Wen (1976). The model has been

widely used in the field of structural engineering, which

provides reasonable accuracy in the deterministic and

stochastic dynamic analyses. The Bouc–Wen model is

formulated from mathematical analysis of the character-

istic response properties. It is given by the following

differential equation

_y ¼ � _x� �j _xjjyj��1
y� g _xjyj� (2)

with � > 0; � þ g > 0; � � g � 0; � > 1. The shapes of

hysteresis loops depend on the choice of the loop para-

meters. In general, �; �; g influence the loop size, � the

smoothness. The Bouc–Wen model has many advantages.

A notable advantage of this model is its capability to cap-

ture large numbers of patterns of hysteresis loops with

various physical characteristics related to the hysteretic

behavior, such as degradation of strength and stiffness,16

pinching effect,17 and asymmetry of the peak restoring

force.18 Another advantage of the model is its computa-

tional simplicity because only one auxiliary nonlinear dif-

ferential equation is needed to describe the hysteretic

behavior, and the model can be used to analyze the

response of the robotic system under any excitation once

the parameters have been identified.

Since the nonlinearity of hysteresis may show totally

different properties for robotics of different areas, it is

impossible to find one accurate model suitable for all types

of robotic systems with hysteresis, which not only exists in

robot sensors with smart materials but also robot dynamics.

The hysteresis can be generally classified into two major

categories: static hysteresis and dynamic hysteresis. The

former is rate independent, which means there is no corre-

lation between the behavior and the variation rate of input,

like the phenomenon corresponding to the Preisach model;

while the latter is rate dependent, which depends on the

variation rate of input, like the features captured by the

Bouc–Wen model.

The purpose of this article is to propose a generalized

model with a clear structure in some straightforward way,

which can be used to model robotic systems with hysteresis

with no limitations on the nonlinear characteristics. The

existing models are mostly continuous-time models,10,12,15

and the mathematical expressions are complicated, such as

(1) and (2). One major shortcoming to the use of the

continuous-time models is the difficulty of controller

design due to the complicated form of the robotic model.

Another shortcoming is lack of generalization capability.

The nonlinearity and mechanism of hysteresis is different

for robotics of different areas. The continuous-time models

are given based on parameters with physical meaning,

which analyze the mechanism for hysteresis of the partic-

ular robot. In addition, continuous-time model is not

always available after theoretical analysis of the complex

system. Then, discrete-time models can be considered. In

practical application, discrete-time observations are

obtained and the identification technique is realized by

digital computer, so discrete-time models are more conve-

nient in the identification procedure. The authors come up

with the idea to use the discrete-time Nonlinear AutoRe-

gressive with eXogenous input (NARX) model to describe

the input–output relationship of robotic systems with hys-

teresis. The NARX model can exhibit a wide range of non-

linear behaviors with different properties such as chaos and

bifurcations19 and can be easily identified. The model

structure is constructed in a linear-in-parameter form,

which solves the difficulty of controller design.

The article is organized as follows: The NARX model is

reviewed in the second section, and analysis for modeling

robotic systems with hysteresis is made afterward. The

third section introduces the orthogonal forward regression

(OFR) algorithm for term selection. The fourth section is

devoted to show the limitations of the OFR algorithm, and

then an improved model selection procedure with new cri-

teria is developed to solve the problems. Typical simulation

examples are discussed in the fifth section, together with

the detailed derivations and performance analysis. Experi-

mental example of unmanned aerial vehicle is given in the

sixth section. Finally, some concluding remarks are drawn

and the limitations of potentially applying the polynomial

NARX model to hysteresis identification are discussed in

the seventh section. For the sake of easy implementation of

digital computers, all the signal processing derived here are

based on the discrete-time case.

2 International Journal of Advanced Robotic Systems



The NARX model

The NARX representation has attracted considerable inter-

est in modeling nonlinear systems, and many relevant anal-

ysis tools and identification algorithms have been

developed in recent years.20–23 The NARX model is an

extension of the linear ARX model. The AR model is used

when current output is dependent only on the previous out-

puts, and the ARX model is used when there is exogenous

input given to the AR model, as shown in Figure 1.

The NARX model is defined as

y½n� ¼ f ðy½n� 1�; . . . ; y½n� ny�; u½n� 1�; . . . ; u½n� nu�Þ þ e½n�
(3)

where y[n] and u[n] are the output and input of the

system, respectively; ny and nu are the maximum lags

for system output and input, respectively; f ð�Þ is a non-

linear function which needs to be identified from given

observed data; e[n] is the prediction error, which is

thought to be a zero mean noise sequence when f ð�Þ
gives the reasonable description of the nonlinear relation

between the output and input. As mentioned in the

Introduction, hysteresis is a multivalued and nonsmooth

relation between input and output; however, when

the input is expanded from u[n] to x[n], where

x½n� ¼ ½y½n� 1�; . . . ; y½n� ny�; u½n� 1�; . . . ; u½n� nu��,
corresponding to the definition of NARX model with

high-dimensional input spaces, the relationship f ð�Þ will

turn to be a smooth single-valued mapping, which brings

a lot of convenience in the determination of the non-

linear function.

The smooth single-valued function f ð�Þ is often con-

structed by a linear-in-parameter form, using a variety of

basic functions �ið�Þ, which can be expressed in the regres-

sion form

y½n� ¼
Xnm

i¼1

�i�iðx½n�Þ þ e½n� (4)

where x½n� ¼ ½y½n� 1�; . . . ; y½n� ny�; u½n� 1�; . . . ; u½n� nu��,
�iði ¼ 1; 2; . . . ; nmÞ are unknown parameters, and nm is

the number of model terms potentially involved. The

linear-in-parameter model is widely applied for system

identification in many industrial areas, because simple

algorithms like least squares method can be used for

parameter estimation. If �ið�Þ is a polynomial function,

the model can be given as24

y½n� ¼
Xl

m¼0

Xm

p¼0

Xny

n1¼1

. . .
Xnu

nm¼0

�p;m�p½n1; . . . ; nm�

�
Yp

i¼1

y½n� ni�
Ym

i¼pþ1

u½n� ni� þ e½n�
(5)

where l is the degree of the polynomial model defined as

the maximum order of model terms. Corresponding to (4),

�ð�Þ is thus of the form

�ð�Þ ¼
Yp

i¼1

y½n� ni�
Ym

i¼pþ1

u½n� ni�
 

p ¼ 0; 1; . . . m;

ni ¼
1; 2; . . . ; ny i � p

0; 1; . . . ; nu i > p
; m ¼ 0; 1; . . . ; l

!(

(6)

Most nonlinear models (e.g. the Volterra series model)

only consider the input data to the system as the input to the

model. The amount of model terms is sometimes very

large; otherwise, the model cannot guarantee the approxi-

mation accuracy. The NARX model, however, adds the

historical output data to the input variables of the model.

The model terms decrease significantly, because the histor-

ical output information contains some nonlinear character-

istics of the system. So, the NARX model can give a

simpler structure for the complex systems. In continuous-

time models (1) and (2), integral and differential calculus is

needed which adds noise to the identification procedure, as

a result algorithm complexity is increased to ensure the

accuracy. The NARX model avoids the problem. The

discrete-time data can be used directly to approximate

the continuous-time system with good performance. The

NARX model decomposes the system into a linear segment

and a nonlinear segment. The linear segment represents the

influence of historical data which deals with problem of

rate dependence, while the nonlinear segment (e.g. poly-

nomial form) corresponds to the static nonlinear mapping.

The clear structure makes it easier for control design.

OFR algorithm

From (6), it can be easily found out that the total number of

terms increases rapidly with the maximum lag nu; ny and

degree l. In most application situations, however, only a

small percent of the total terms are confirmed to be signif-

icant to the performance of the model, so it is necessary to

find a method to select model terms. On one hand, redun-

dant terms must be abandoned to avoid overfitting, on the

other hand, the model should be as simple as possible, on

the basis of containing key model characteristics of the

robotic system. Model structure selection turns out to be

a key task in the identification process. The main step of the

method is to define a criterion for indicating the signifi-

cance of each term �ð�Þ. Several criteria have been pro-

posed in the literature for NARX models.25 One of the

most widely used is the error reduction ratio (ERR) based

on the OFR algorithm.26 The authors of this article also use

Figure 1. The ARX model.
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it as a reference of the final chosen term detection method.

The vector Φj is constructed using the result of the jth

model term �jð�Þ from given data at each time. Then the

jth error reduction ratio, ERRj (also called the squared cor-

relation coefficient), is defined as

ERRj ¼ CðY;ΦjÞ ¼
hY;Φji2

hY;YihΦj;Φji
¼ ðYTΦjÞ2

ðYTYÞðΦj
TΦjÞ

¼

XN

i¼1
yi�

i
j

� �2

XN

i¼1
yi

2
XN

i¼1
ð�i

jÞ
2

(7)

The ratio provides an effective means to measure the

dependency between the output and each term of the model.

Then the significant terms can be selected out gradually based

on the OFR algorithm. The procedure is described as follows.

Step 1. Select out the term with the largest ERR.

l1 ¼ arg max
1�j�nm

fCðY;ΦjÞg (8)

Then the first significant term can be selected as

w1 ¼ �l1
.

Step j. Let rj represent the residual output vector of the

model in the jth step. It is given by

rm ¼ rm�1 �
rm�1wm�1

wT
m�1wm�1

wm�1 (9)

In the first step, r0 ¼ Y. Select out the term with the

largest ERR in the remaining terms.

lj ¼ arg max
i 6¼lkð1�k�j�1Þ

fCðrj;ΦiÞg (10)

Then the jth significant term can be selected as wj ¼ �lj
.

The procedure terminates at the Mth step. M is deter-

mined by the terminating condition. For simple situations,

it can be given as

1�
XM
i¼1

ERRi < � (11)

where ERRi equals Cðri;ΦliÞ derived in each step, and � is

the desired error tolerance.

Extension to the OFR algorithm

Limitations of the OFR identification approach

As shown in the third section, the form only considers the

tolerance in the identification procedure when all the data

are used for fitting. The model usually shows a bad perfor-

mance when used on future data sets.27 However, in order

to be generally used, a model must have good extrapolation

properties. It is necessary to split the data into two

subsamples: a fitting sample and a validation sample. The

fitting sample is used to measure the significance of model

terms, while the validation sample is used to terminate the

procedure. The fitting sample must contain the key charac-

teristics of the robotic system to ensure that the model

identified using the data has the ability to perform the hys-

teretic behavior with expected properties.

Since the NARX model takes the output history as part

of variables in the model, it results in some drawbacks. The

model works only when the historical outputs of the robotic

system are available. If the output of the robotic system is

not measurable in the procedure, the model terms that con-

tain the output need to be calculated by the estimated result

of the previous steps, then the system error will be accu-

mulated, leading to inaccuracy in the model.

The data used for identification procedure is obtained

from the continuous-time system through periodic sampling

u½n� ¼ ucðnTÞ; y½n� ¼ ycðnTÞ (12)

where uc(t), yc(t) are the continuous-time input and output

signals, respectively, and T is the sampling period. T has a

tremendous influence on the effectiveness of the final

model. The coefficients of the overall model are depen-

dent on the choice of the sampling rate. Practical experi-

ence has shown that the mainly influence of sampling rate

on modeling is the coefficients of model terms but not the

model structure apart from the effects of oversampling.28

Data oversampling will bring numerical problems for

nonlinear model structure selection. When the T is

chosen to be too small, the fitting data will be so intensive

that x[n] (x½n� ¼ ½y½n� 1�; . . . ; y½n� ny�; u½n� 1�; . . . ;
u½n� nu��) are highly correlated, which will cause poten-

tial problems in distinguishing the significance of model

terms. In particular, the output can be extrapolated by the

outputs of earlier time as

y½n� ¼ y½n� 1� or

y½n� ¼ 2y½n� 1� � y½n� 2�
(13)

Then the model finally identified is always a combina-

tion of expressions in (13) with a random rule. As a result of

that, the model only displays the linearized characteristics

at every point, incapable of representing the nonlinear

properties of robotic systems with hysteresis. Even if the

final model doesn’t end up in the linear form for Ts is small,

the ERR of term y[n � 1] is close to 1, while the terms

determined by input history, like u[n � 1], u[n � 2], have

extremely low ERRs, which will lead to wrong results in

the following steps of the OFR procedure after y[n � 1] is

selected, since the precision of orthogonalization is influ-

enced profoundly by the noise of data, owing to the strong

correlation between model terms. The sampling period,

however, cannot be large, in case some important nonlinear

information is missed resulting in low approximation accu-

racy to continuous-time system, especially when rapid

change exists in the robotic system.
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The PRESS statistic

A commonly used criterion in data splitting is the predic-

tion error sum of squares (PRESS).29 The procedure of

leave-one-out cross validation goes like this: remove one

observation at a time, use the removed observation as vali-

dation point and the remaining N� 1 observations as fitting

sample, then estimate the coefficients and evaluate the

deleted response ŷð�iÞ
n ½i� from the estimated model at

x ¼ xi, repeat this process on all points and finally get

PRESS residual, defined as

PRESS½n� ¼
XN

i¼1

½y½i� � ŷð�iÞ
n ½i��2

¼
XN

i¼1

½"ð�iÞ
n ½i��2

(14)

where "
ð�iÞ
n ½i� is the predicted residual evaluated at the ith

point with the fitting sample of size N � 1. Obviously, the

computation is complex for the model is to be fitted for N

times. Researchers have done much work to simplify the

procedure. When using the relationship between the

PRESS residual and the ordinal residual, the PRESS

reduces to

PRESS½n� ¼
XN

i¼1

"½i�
1� hii

� �2

(15)

where hii represents the prediction variance, given by

hii ¼ xi
0ðX0XÞ�1xT (16)

An important property of hii can be easily derived as

XN

i¼1

hii ¼
XN

i¼1

xi
0ðX0XÞTxi

¼
XN

i¼1

tr xi
0ðX0XÞTxi

¼
XN

i¼1

tr xixi
0ðX0XÞT

¼ tr
XN

i¼1

xixi
0

 !
ðX0XÞT

¼ n

(17)

When N >> n,30

PRESS½n� �
XN

i¼1

"2½i�
ð1� n=NÞ (18)

This approximation significantly reduces computational

complexity of PRESS.

Considering the problems for model structure selec-

tion, a model identified using a finite data set may not

have good performance over the fitting data, so the

measure of model accuracy has to depend on an additional

data set. The cross-validation way helps a lot for the

model generalization when substituting the terminating

condition of expression (11) with the PRESS statistic in

the ORF algorithm. Moreover, the estimated function f̂

of (3) provides higher accuracy as the complexity of f̂

increases, which is mainly determined by n, the total num-

ber of the polynomial NARX model terms. This may

cause overfitting to the noise in y[n]. From the simplified

expression of PRESS in (18), we can see that the criterion

avoids the overfitting phenomenon efficiently because the

value of PRESS will increase as n increases owing to the

existence of �n in the denominator.

Sampling rate reduction

Following the discussion in “The PRESS statistic” section,

the sampling rate must be determined under full consider-

ation of the dynamic characteristics of the data to guarantee

that the OFR procedure can capture the main nonlinear

effects of the robotic system. When the sampling period

is too small, the nonlinear effects will appear to be local

linearization, and the OFR procedure will be disturbed by

the form of (13). So in situations of very small sampling

period, the authors suggest using the improved algorithm

followed by sampling rate reduction (SRR) procedure. A

decimator in Figure 2, that is, a system with a low-pass

filter followed by compression, is required for SRR by

integer factor L.

The maximum relative deviation (MRD) and the maxi-

mum relative error (MRE) are is proposed as the criteria for

choice of L in this article. For the new discrete-time data

after decimation, with the new sampling period of T 0

(¼LT), MRD is given as

MRD½T 0� ¼ max
1�k�N=L

ðy0½k þ 2� þ y0½k�Þ=2� y0½k þ 1�
y0½k þ 1�

� �
(19)

where y0[k] ¼ y[Lk] is the output of the new discrete-time

data. Then the inferior limit of L can be determined by

1� MRD½T 0� < � (20)

where 0 < � < 1 is the expected confidence level. If MRD

doesn’t satisfy the inequality, the output y0[n] can be

directly derived from the past two points y0[n � 1] and y0[n
� 2], that is, the linear relationship in (13) can already

reach the requirement of modeling accuracy. The nonlinear

information, thus, is not necessary to be contained in the

model. However, models which capture little nonlinear

Figure 2. Decimator for sampling rate reduction by L.
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characteristics cannot present the nonlinear properties of

the robotic system and, certainly, have no significance for

controller design in practice.

Then the procedure with SRR is given. First, evaluate

the sampling rate 1/T of the original data set D0 by the value

of MRD. If the value is smaller than 1� � or very close to

it, we may use the following procedure to handle the over-

sampling data. The data rate is reduced by increasing inte-

ger factor Li (Li ¼ 2, 3, 4, . . . ) using a decimator, and

the value of MRDi for each new data set Di with the data

rate 1/Ti (Ti ¼ LiT) is calculated. Note that the MRDi value

is getting bigger as Li increases, which means local linear

regression has less influence on model fitting, whereas

some important nonlinear characteristics may be aban-

doned in the remaining data by the decimator when Li

increases to some extent. So the authors propose the MRE

to measure the importance of the information missed due to

decimation by Li, defined as

MRE½Li� ¼

max
1�k�N�Li

����� ðy½k� þ y½k þ Li�Þ=2� y½k þ Li=2�
y½k þ Li=2�

����
�

Li ¼ 2; 4; 6; . . .

max
1�k�N=Li�1

(���� ðy½k� þ y½k þ Li�Þ=2�
�

y½k þ ðLi þ 1Þ=2� þ y½k þ ðLi � 1Þ=2�
�
=2�

y½k þ ðLi þ 1Þ=2� þ y½k þ ðLi � 1Þ=2�
�
=2

����
�
; Li ¼ 3; 5; 7; . . .

8>>>>>>><
>>>>>>>:

(21)

where y[k] is the output of original data set D0. The superior

limit of decimation factor L is determined by

1� MRE½Li� > � (22)

where 0 < � < 1 is the expected confidence level. We can

choose an appropriate value of L based on the two restric-

tions in (20) and (22). Then the sampling rate is adjusted

to 1/(LT). The model structure is finally selected by the

OFR algorithm with the PRESS statistic following this

SRR procedure.

Simulation studies

This section investigates the efficiency and performance

of the polynomial NARX model for the identification of

robotic systems with hysteresis, by applying the OFR

algorithm with the PRESS statistic following SRR proce-

dure to two typical examples. The first example is a static

hysteresis, given by a simulated Preisach model, while the

latter is a dynamic hysteresis, given by a simulated Bouc–

Wen model.

A simulated Preisach model

Consider a Preisach model described by the expression as

follows

yðtÞ ¼
ZZ
���

�ð�; �Þg�� ½u�ðtÞ d� d� þ �ðtÞ (23)

where g��½u� is assumed to be bounded as Figure 3(a),

�; � � plane is given as Figure 3(b), �ð�; �Þ is assumed

to be constant, namely, given as a uniform distribution, and

�ðtÞ is a Gaussian white noise of zero mean and variance

s2 ¼ 0:01. The model is simulated by setting the input

signal u(t) as an increasing sequence from �0.5 to 0.5

followed by a decreasing sequence from 0.5 to �0.5 with

period 0.01 s, and 202 input–output data point are

collected.

The model terms �ð�Þ in (4) are chosen to be polynomial

functions in (6) determined by the following element:

x½n� ¼ ½y½n� 1�; y½n� 2�; y½n� 3�; u½n�; u½n� 1�; u½n� 2�;
u½n� 3��, which is the input to the NARX model. First, the

SRR procedure is used to adjust the data rate. The values of

MRD and MRE in the decimation process are summarized

in Table 1.

The confidence level is usually expected to be 95% in

practice, corresponding to � in expressions (20) and (22),

then the decimation factor L can be set to be 11, 12, and 13

according to the results of the SRR procedure. The PRESS

values (Table 2), by the OFR algorithm, with different L,

over the data set of different size accordingly, are calcu-

lated for different model length n.

The PRESS statistic suggests choosing 8 model terms

over training data with L¼ 11 in the SRR procedure, 8 or 9

model terms for L ¼ 12, and 9 model terms for L ¼ 13, and

the model terms selected out are almost the same as shown

in Table 3.

The effect of data rate in modeling the robotic systems

with hysteresis is sufficiently shown in the results in Table

3. The parameters in the model, but not the model structure,

have the strong dependence on the sampling rate. The pro-

cess also verifies the significance of the SRR procedure and

finally shows a good performance for modeling the simu-

lated Preisach model using a polynomial NARX model,

which proves that the proposed method is effective for

modeling robotic systems with static hysteresis like mag-

netostrictive actuators.
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A simulated Bouc–Wen model

Consider a Bouc–Wen model described in (2), where

� ¼ 1; � ¼ 1; g ¼ 1; � ¼ 4: The model is simulated by set-

ting the input signal u[n] as a sinusoidal wave and 101

input–output data point are collected. The SRR procedure

is not needed, since the sampling rate is low, and the value

of MRE doesn’t satisfy the inequality of (22) at L ¼ 2. The

leave-one-out cross-validation is carried out directly

without the SRR procedure. The input to the model is cho-

sen to be x½n� ¼ ½y½n� 1�; y½n� 2�; y½n� 3�; u½n�; u½n� 1�;
u½n� 2�; u½n� 3��, and the polynomial degree is chosen

to be l ¼ 3. The result of the PRESS statistic is shown

in Figure 4.

It is clear that the model length is best to be 11. The

model by choosing 11 model terms is finally identified as

y½n� ¼ 0:3236y3½n� 1� � 0:4363u½n� 3�
þ 0:0183u2½n� 3�y½n� 3� � 0:2970u½n� 2�
þ 0:6885y½n� 3� � 0:1873u½n� 1�
þ 0:1577u2½n� 2�y½n� 2� þ 0:0251u3½n� 3�
þ 0:7538u½n� � 0:1152u2½n� 1�y½n� 1�
� 0:0148u½n� 1�y2½n� 1�

(24)

The model structure identified by the OFR algorithm

based on the PRESS statistic is in agreement with tradi-

tional modeling assumptions. Figure 5 displays the perfor-

mance of (24) over the test data set consisting of 120 points.

The continuous line is the real values from the simulated

Bouc–Wen model, while the dashed line is the estimated

output from the NARX model in (24). The relative error of

each point is calculated to test the model validity, and the

results are given in Figure 6, where the two horizontal lines

indicate the desired error tolerance of 5%. The jumping

phenomena can be ignored directly, because it is the result

of zero values of y[n] in the denominator. Clearly, the

model validity tests are well satisfied.

Figure 3. Elements for model in (23): (a) g�� ½u� and (b)
�; � � plane.

Table 1. Evaluation for L in the SRR procedure.

Li MRD MRE Li MRD MRE

2 0.0129 0.0028 9 0.0425 0.0296
3 0.0155 0.0050 10 0.0480 0.0343
4 0.0192 0.0091 11 0.0534 0.0383
5 0.0233 0.0124 12 0.0589 0.0429
6 0.0276 0.0170 13 0.0631 0.0467
7 0.0324 0.0208 14 0.0711 0.0510
8 0.0372 0.0256 15 0.0745 0.0547

SRR: sampling rate reduction; MRD: maximum relative deviation; MRE: the
maximum relative error.

Table 2. PRESS values for different model length.

n PRESS (L ¼ 11) PRESS (L ¼ 12) PRESS (L ¼ 13)

6 0.0114 0.0087 0.0062
7 0.0107 0.0085 0.0063
8 0.0106 0.0080 0.0060
9 0.0114 0.0080 0.0059
10 0.0117 0.0088 0.0062
11 0.0126 0.0096 0.0064
12 0.0131 0.0109 0.0081
13 0.0149 0.0137 0.0110

PRESS: prediction error sum of squares.

Table 3. The term selection results based on the data with different L.

Iter. Regressors Parameters (L ¼ 11) Parameters (L ¼ 12) Parameters (L ¼ 13)

1 y2ðt � 1Þ 0.0631 0.0657 �0.2019
2 uðtÞ 0.3232 0.3627 0.3871
3 uðt � 3Þ �0.1703 �0.1924 �0.1921
4 u2ðtÞ �0.3914 �0.0936 �0.1171
5 uðtÞuðt � 3Þ �0.2066 0.1854 0.2293
6 u2ðt � 3Þ – �0.0967 �0.1056
7 u3ðtÞ 0.5929 �0.0513 �0.0758
8 u2ðt � 1Þ 0.1577 – 0.0433
9 yðt � 3Þ 0.9664 1.0881 1.1669
Average relative error 0.0015 0.0014 3.3633E�4
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Experimental result

This section aims at illustrating the effectiveness of the

NARX model and the accuracy of above explained

identification method. For this purpose, we employ an

unmanned aerial vehicle for research. The mass and

geometric characteristics are shown in Table 4.

In general situations of steady flights with small angle of

attack, the models for aerodynamic forces and moments are

linear to the state variables. However, for the flights with

large angles of attack and sideslip or high angular rates, the

forces and moments demonstrate hysteresis effects. The

test data of longitudinal large-amplitude sinusoidal motions

is investigated. Preisach model cannot apply to this situa-

tion, because the hysteresis is relevant to the angular rate.

Bouc–Wen model is also inappropriate, because the differ-

ential operator on aerodynamic forces and moments will

lead to an accumulation of errors. In the study by Green-

well,5 a reduced-frequency model is discussed, which was

proposed for modeling the hysteresis nonlinearity in aerial

vehicle. Comparison of the NARX model and the reduced-

frequency model is shown in Figure 7 based on the test data

of the normal force coefficient CN and the angle of attack �
with the frequency of 0.4 Hz. The NARX model and the

proposed identification approach can be applied to the

unmanned aerial vehicle with a high precision.

Conclusions

The polynomial NARX model has been considered for

modeling robotic systems with hysteresis. The model

term selection problem has been investigated for using

polynomial NARX models. A critical analysis of the stan-

dard OFR algorithm has shown some limitations, partic-

ularly when the sampling rate is high. The terminating

condition for the OFR algorithm has been modified. The

sampling rates over a reasonable range affect the para-

meter estimates but not affect the model structure. A SRR

procedure is proposed based on calculating the MRD and

MRE. The applicability and effectiveness of the SRR

procedure for term selection have been demonstrated by

two simulated examples and one experimental example.

Another important property of using polynomial

NARX models for hysteresis identification is that few

Figure 5. Model performance on the test data.

Figure 4. The PRESS statistic versus the model length. PRESS:
prediction error sum of squares

Figure 6. Model validity tests for (24).

Table 4. Mass and geometric characteristics of the model.

Parameter Value

Mass �8 kg
Length 1.1825 m
Wingspan 0.8475 m
Wing area 0.304688 m2

Mean aerodynamic chord 0.4269 m
Center of Gravity (CG) location 33.37 (% m.a.c.)
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assumption or priori knowledge about the robotic system

is needed. When the robotic system is appeared to have a

complex noise model, the NARX models should be

extended to the nonlinear autoregressive moving average

with exogenous variables models.

As a final remark, it should be pointed out that the

proposed modeling approach for robotic systems contain-

ing hysteresis is not viable for the situation that the previ-

ous output data are not available in the process. One

solution to this problem is to use the estimated values from

the previous steps. However, the solution will cause a step-

wise accumulation of errors, owing to the sensitivity of the

iteration process to initial condition, so a compensation

measure is needed to guarantee the accuracy.
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