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On the Capacity of Vector Gaussian Channels With
Bounded Inputs

Borzoo Rassouli and Bruno Clerckx

Abstract—The capacity of a deterministic multiple-input
multiple-output (MIMO) channel under the peak and average
power constraints is investigated. For the identity channel matrix,
the approach of Shamai et al. is generalized to the higher dimen-
sion settings to derive the necessary and sufficient conditions for
the optimal input probability density function. This approach
prevents the usage of the identity theorem of the holomorphic
functions of several complex variables which seems to fail in
the multi-dimensional scenarios. It is proved that the support of
the capacity-achieving distribution is a finite set of hyper-spheres
with mutual independent phases and amplitude in the spherical
domain. Subsequently, it is shown that when the average power
constraint is relaxed, if the number of antennas is large enough,
the capacity has a closed form solution and constant amplitude
signaling at the peak power achieves it. Moreover, it will be
observed that in a discrete-time memoryless Gaussian channel,
the average power constrained capacity, which results from a
Gaussian input distribution, can be closely obtained by an input
where the support of its magnitude is a discrete finite set. Finally,
we investigate some upper and lower bounds for the capacity of
the non-identity channel matrix and evaluate their performance
as a function of the condition number of the channel.

Index Terms—Vector Gaussian channel, peak power con-
straint, discrete magnitude, spherical symmetry

I. INTRODUCTION

The capacity of a point-to-point communication system
subject to peak and average power constraints was investigated
in [1] for the scalar Gaussian channel where it was shown
that the capacity-achieving distribution is unique and has
a probability mass function with a finite number of mass
points. In [2], Shamai and Bar-David gave a full account
on the capacity of a quadrature Gaussian channel under the
aforementioned constraints and proved that the optimal input
distribution has a discrete amplitude and a uniform indepen-
dent phase. This discreteness in the optimal input distribution
was surprisingly shown in [3] to be true even without a
peak power constraint for the Rayleigh-fading channel when
no channel state information (CSI) is assumed either at the
receiver or the transmitter. Following this work, the authors in
[4] and [5] investigated the capacity of noncoherent AWGN
and Rician-fading channels, respectively. In [6], a point to
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point real scalar channel is considered in which sufficient
conditions for the additive noise are provided such that the
support of the optimal bounded input has a finite number
of mass points. These sufficient conditions are also useful in
multi-user settings as shown in [7] for the MAC channel under
bounded inputs.

The analysis of the MIMO channel under the peak power
constraints per antenna is a straightforward problem after
changing the vector channel into parallel AWGN channels and
applying the results of [1] or [2]. Recently, the vector Gaussian
channel under the peak and average power constraints has be-
come more practical by the new scheme proposed in [8]. More
specifically, this scheme enables multiple antenna transmission
using only one RF chain and the peak power constraint (i.e.,
a peak constraint on the norm of the input vector rather than
on each antenna separately) is the very result of this single
RF chain. The capacity of the vector Gaussian channel under
the peak and average power constraints has been explored in
[9] and [10]. However, according to [11], it seems that the
results in the higher dimension settings are not rigorous due
to the usage of the identity theorem for holomorphic functions
of several complex variables without fulfilling its conditions.
As shown by an example in section IV of [11], a holomorphic
function of several complex variables can be zero on Rn, but
not necessarily zero on Cn. Since Rn is not an open subset
of Cn, the identity theorem cannot be applied. To address this
problem, the contributions of this paper are as follows.

• For the identity channel matrix, the approach of [2] is
generalized to the vector Gaussian channel in which the
complex extension will be done only on a single variable
which is the amplitude of the input in the spherical
coordinates. The necessary and sufficient conditions for
the optimality of the input distribution are derived and
it is proved that the magnitude of the capacity-achieving
distribution has a probability mass function over a finite
number of mass points which determines a finite number
of hyper spheres in the spherical coordinates. Further,
the magnitude and the phases of the capacity-achieving
distribution are mutually independent and the phases
are distributed in a way that the points are uniformly
distributed on each of the hyper spheres.

• It is shown that if the average power constraint is relaxed,
when the ratio of peak power to the number of dimensions
remains below a certain threshold (≈ 3.4), the constant
amplitude signaling at the peak power achieves the ca-
pacity.

• It is also shown that for a fixed SNR, the gap between the
Shannon capacity and the constant amplitude signaling
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decreases as O( 1
n ) for large values of n, where n denotes

the number of dimensions.
• Finally, the case of the non-identity channel matrix is

considered where we start from the MISO channel and
show that the support of the optimal input does not neces-
sarily have discrete amplitude. Afterwards, several upper
bounds and lower bounds are provided for the general n
by m MIMO channel capacity. The performance of these
bounds are evaluated numerically as a function of the
condition number of the channel.

The paper is organized as follows. The system model and
some preliminaries are provided in section II, respectively. The
main result of the paper is given in section III for the identity
channel. The general case of the non-identity channel matrix
is briefly investigated in section IV. Numerical results and the
conclusion are given in sections V and VI, respectively. Some
of the calculations are provided in the appendices at the end
of the paper.

II. SYSTEM MODEL AND PRELIMINARIES

In a discrete-time memoryless vector Gaussian channel, the
input-output relationship for the identity channel is given by

Y(t) = X(t) + W(t), (1)

where X(t), Y(t) (∈ Rn) denote the input and output of the
channel, respectively. t denotes the channel use and {W(t)}
is an i.i.d. noise vector process with W(t) ∼ N(0, In) which
is independent of X(t) for every transmission t. 1

The capacity of the channel in (1) under the peak and the
average power constraints is

C(up, ua) = sup
FX(x):‖X‖2≤up, E(‖X‖2)≤ua

I(X; Y), (2)

where FX(x) denotes the input cumulative distribution func-
tion (CDF) of the input vector, and up, ua are the upper bounds
for the peak and the average power, respectively. Throughout
the paper, any operator that involves a random variable reads
with the term almost-surely (e.g. ‖X‖2

a.s.
≤ up)2.

It is obvious that

sup
FX(x):‖X‖2≤up, E(‖X‖2)≤ua

I(X; Y) ≤ sup
FX(x):E(‖X‖2)≤min(up,ua)

I(X; Y).

Therefore, a trivial upper bound for the capacity is given by

C(up, ua) ≤ CG =
n

2
ln

(
1 +

min(up, ua)

n

)
, (3)

where CG is achieved by a Gaussian input vector distributed
as N

(
0,

min(up,ua)
n In

)
.

We formulate the optimization problem in the spherical
domain. The rational behind this change of coordinates is due
to the spherical symmetry of the white Gaussian noise and the
constraints which, as it will be clear, enables us to perform

1It is obvious that the m-dimensional complex AWGN channel can be
mapped to the channel in (1) with n = 2m.

2More precisely, let Ω be the sample space of the probability model over

which the random vector X is defined. ‖X‖2
a.s.
≤ up is equivalent to Pr{ω ∈

Ω| ‖X(ω)‖2 ≤ up} = 1.

the optimization problem only on the magnitude of the input.
By writing the mutual information in terms of the differential
entropies, we have

I(X; Y) = h(Y)− h(Y|X) = h(Y)− n

2
ln 2πe,

where the entropies are in nats. Motivated by the spherical
symmetry of the white Gaussian noise and the constraints, Y
and X can be written in spherical coordinates as

Y = Ra(Ψ) , X = Pa(Θ),

where R and P denote the magnitude of the output and
the input, respectively. Ψ = [Ψ1,Ψ2, . . . ,Ψn−1]T and Θ =
[Θ1,Θ2, . . . ,Θn−1]T are, respectively, the phase vectors of the
output and the input, in which Ψi, Θi ∈ [0, π](i ∈ [1 : n− 2])
and Ψn−1,Θn−1 ∈ [0, 2π). a(φ) = [a1(φ), . . . , an(φ)]T is a
unit vector in which

ak(φ) =

{
cosφk

∏k−1
i=1 sinφi k ∈ [1 : n− 1]∏k−1

i=1 sinφi k = n
. (4)

As it will become clear later, this change of coordinates
prevents the usage of the identity theorem for holomorphic
functions of several complex variables. The optimization prob-
lem in (2) is equivalent to

C(up, ua) = sup
FP,Θ(ρ,θ):P 2≤up, E(P 2)≤ua

h(Y)− n

2
ln 2πe.

(5)
The differential entropy of the output is given by

h(Y) = −
∫
Rn
fY(y) ln fY(y)dy

= −
∫ ∞

0

∫ π

0

. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0

fY(y(r, ψ)) ln fY(y(r, ψ))| ∂y

∂(r, ψ)
|dψdr

= −
∫ ∞

0

∫ π

0

. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0

fR,Ψ(r, ψ) ln
fR,Ψ(r, ψ)

| ∂y
∂(r,ψ) |

dψdr

= h(R,Ψ) +

∫ ∞
0

fR(r) ln rn−1dr

+

n−2∑
i=1

∫ π

0

fΨi(ψi) ln sinn−i−1 ψidψi, (6)

where | ∂y
∂(r,ψ) |(= rn−1

∏n−2
i=1 sinn−i−1 ψi) is the Jacobian of

the transform. The conditional pdf of R,Ψ conditioned on
P,Θ is given by

fR,Ψ|P,Θ(r, ψ|ρ, θ) =
1

(
√

2π)
n e
− r

2+ρ2−2rρaT (θ)a(ψ)
2 rn−1

×
n−2∏
i=1

sinn−i−1 ψi. (7)

From (7), the joint pdf of the magnitude and phases of the
output is

fR,Ψ(r, ψ) =

∫ ∞
0

∫ π

0

. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0

fR,Ψ|P,Θ(r, ψ|ρ, θ)dnFP,Θ(ρ, θ),

(8)
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in which FP,Θ(ρ, θ) denotes the joint CDF of (P,Θ). By
integrating (8) over the phase vector ψ, we have

fR(r) =

∫ ∞
0

L(r, ρ)fP (ρ)dρ, (9)

where 3

L(r, ρ) =

∫ π

0

. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0

fR,Ψ|P,Θ(r, ψ|ρ, θ)dψn−1 . . . dψ1.

It is obvious that

h(R,Ψ) ≤ h(R) +

n−1∑
i=1

h(Ψi) ≤ h(R) +

n−2∑
i=1

h(Ψi) + ln 2π,

(10)
where the first inequality is tight iff the elements of
{R,Ψ1, . . . ,Ψn−1} are mutually independent, and the second
inequality becomes tight iff Ψn−1 is uniformly distributed over
[0, 2π). From (6) and (10),

h(Y) ≤ h(R) +

n−2∑
i=1

h(Ψi) +

∫ ∞
0

fR(r) ln rn−1dr

+

n−2∑
i=1

∫ π

0

fΨi(ψi) ln sinn−i−1 ψidψi + ln 2π. (11)

For the sake of readability, the following change of variables
is helpful

V =
Rn

n
, Ui =

∫ Ψi

0

sinn−i−1 δdδ , i ∈ [1 : n− 2]. (12)

Since R ≥ 0 and Ψi ∈ [0, π](i ∈ [1 : n−2]), it is easy to show
that the two mappings R→ V and Ψi → Ui (defined in (12))
are invertible. Also, the support set of Ui is SUi = [0, αi]

where αi =
√
πΓ(n−i2 )

Γ(n−i+1
2 )

(the Gamma function is defined as

Γ(t) =
∫∞

0
xt−1e−xdx.) From (9), the pdf of V is 4

fV (v) = fV (v;FP ) =

∫ ∞
0

Kn(v, ρ)dFP (ρ), (13)

where the notation ;FP in fV (v;FP ) is to emphasize that V
has been induced by FP . Not that the integral transform in (13)

3The reason that L(r, ρ) is not a function of the phase vector θ is due to
the spherically symmetric distribution of the white Gaussian noise. In other
words, L(r, ρ) is the integral of the Gaussian pdf N(x, I) over the surface
of an n-sphere with radius r which is invariant to the position of x as long
as ‖x‖ = ρ, i.e.

L(r, ‖x‖) =

∫
‖y‖=r

e−
‖y−x‖2

2

(
√

2π)n
dy =

e−
r2+‖x‖2

2

(
√

2π)n

∫
‖y‖=r

ex
tydy

which is constant on ‖x‖ = ρ. (9) implies that in the AWGN channel in (1),
fR(r) is induced only by fP (ρ) and not fΘ(θ).

4The existence of fV (v) is guaranteed by the Gaussian distribution of the
additive noise.

is invertible as shown in Appendix D. The kernel Kn(v, ρ) is
given by

Kn(v, ρ) =
L( n
√
nv, ρ)

( n
√
nv)n−1

=

∫ π

0

. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0

1

(
√

2π)
n e
− ( n
√
nv)2+ρ2−2 n

√
nvρaT (θ)a(ψ)

2

.

n−2∏
i=1

sinn−i−1 ψidψn−1 . . . dψ1 (14)

= e−
( n
√
nv)2+ρ2

2


In

2
−1(ρ n

√
nv)

(ρ n
√
nv)

n
2
−1 ρv 6= 0

1

Γ(n2 )2
n
2
−1 ρv = 0

,∀n ≥ 2,

(15)

where Iα(.) is the modified bessel function of the first kind and
order α. The calculations are provided in Appendix A. Note
that Kn(v, ρ) is continuous on its domain. The differential
entropy of V is

h(V ) = h(V ;FP )

= −
∫ ∞

0

fV (v;FP ) ln fV (v;FP )dv

= −
∫ ∞

0

fR(r) ln
fR(r)

rn−1
dr. (16)

The differential entropy of Ui is given by

h(Ui) = −
∫
SUi

fUi(u) ln fUi(u)du

= −
∫ π

0

fΨi(ψi) ln
fΨi(ψi)

sinn−i−1 ψi
dψi , i ∈ [1 : n− 2].

(17)

Rewriting (5), we have

C(up, ua) = sup
FP,Θ(ρ,θ):P 2≤up,E[P 2]≤ua

h(Y)− n

2
ln 2πe

≤ sup
FP,Θ(ρ,θ):P 2≤up,E[P 2]≤ua

h(V ;FP ) +

n−2∑
i=1

h(Ui)

+ (1− n

2
) ln 2π − n

2
(18)

≤ sup
FP (ρ):P 2≤up,E[P 2]≤ua

h(V ;FP ) +

n−2∑
i=1

lnαi

+ (1− n

2
) ln 2π − n

2
, (19)

where (18) results from (11), (16) and (17). (19) is due to
the fact that since SUi (the support of Ui) is bounded, h(Ui)
is maximized when Ui is uniformly distributed. It is easy
to verify that if the magnitude and phases of the input are
mutually independent with the phases having the distributions
as

Θn−1 ∼ U [0, 2π) , fΘi(θi) = α−1
i sinn−i−1 θi , i ∈ [1 : n−2],

(20)
the magnitude and phases of the output become mutually
independent with the phases having the distributions as

Ψn−1 ∼ U [0, 2π) , fΨi(ψi) = α−1
i sinn−i−1 ψi , i ∈ [1 : n−2],

(21)
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where αi =
√
πΓ(n−i2 )

Γ(n−i+1
2 )

. In other words, having the input
distribution

FP,Θ(ρ, θ) =
θn−1

2π
FP (ρ)

n−2∏
i=1

∫ θi

0

α−1
i sinn−i−1 θdθ (22)

results in

FR,Ψ(r, ψ) =
ψn−1

2π
FR(r)

n−2∏
i=1

∫ ψi

0

α−1
i sinn−i−1 ψdψ.

(23)
The above result can be easily checked either by solving
for fR,Ψ(r, ψ) in (8) or by the fact that the summation
of two independent spherically symmetric random vectors is
still spherically symmetric.5 Also, note that having Ψi (i =
1, . . . , n − 2) distributed as in (21) implies uniform Ui on
[0, αi] (i = 1, . . . , n − 2). It can be observed that the input
pdf in (22) makes the inequalities in (18) and (19) tight.
Since the constraint is only on the magnitude of the input
and fV (v) is induced only by fP (ρ), it is concluded that
the optimal input distribution must have mutually independent
phases and magnitude with the phases being distributed as in
(20). Therefore,

C(up, ua) = sup
FP (ρ):P 2≤up,E[P 2]≤ua

h(V ;FP )

+

n−2∑
i=1

lnαi + (1− n

2
) ln 2π − n

2
. (24)

Before proceeding further, it is interesting to check whether
the problem in (24) boils down to the classical results when
the peak power constraint is relaxed (i.e., up →∞). From the
definition of V ,

E[V
2
n ] =

1
n
√
n2
E[n+ P 2].

This can be verified by a change of variable (i.e., V = Rn

n )
and using the derivative of (112) (in Appendix D) with
respect to β. Therefore, when up → ∞, the problem in (24)
becomes maximization of the differential entropy over all the
distributions having a bounded moment of order 2

n which is
addressed in Appendix B for an arbitrary moment. Substituting
m with 2

n and A with n+ua
n√
n2

in (92), the optimal distribution
for V is obatined and from (13), the corresponding fP∗(ρ)
has the general Rayleigh distribution as

fP∗(ρ) =
n
n
2 ρn−1e−

nρ2

2ua

2
n−2

2 u
n
2
a Γ(n2 )

,

which is the only solution, since (13) is an invertible transform
(see Appendix D). Furthermore, it can be verified that the
maximum is

C(∞, ua) =
n

2
ln(1 +

ua
n

), (25)

which coincides with the classical results for the identity
channel matrix [12].

5The magnitude and the unit vector of a spherically symmetric random
vector are independent and the unit vector is uniformly distributed on the unit
ball. It can be verified that this property is equivalent to the vector having the
distribution of (23) in spherical coordinates.

Similar to [1] and [2], we define the marginal entropy
density of V as

h̃V (x;FP ) = −
∫ ∞

0

Kn(v, x) ln fV (v;FP )dv, (26)

which satisfies

h(V ;FP ) =

∫ ∞
0

h̃V (ρ;FP )dFP (ρ).

(26) is shown to be an invertible transform in Appendix D and
this property will become useful later on.

III. MAIN RESULTS

Let εP denote the set of points of increase6 of FP (ρ) in the
interval [0,

√
up]. The main result of the paper is given in the

following theorem.
Theorem. The supremization in (24), which is for the

identity channel matrix, has a unique solution and the optimal
input achieving the supremum (and therefore the maximum)
has the following distribution in the spherical coordinates,

F ∗P,Θ(ρ, θ) =
θn−1

2π
F ∗P (ρ)

n−2∏
i=1

∫ θi

0

α−1
i sinn−i−1 θdθ, (27)

where F ∗P (ρ) has a finite number of points of increase (i.e., εP∗
has a finite cardinality). Further, the necessary and sufficient
condition for F ∗P (ρ) to be optimal is the existence of a λ(≥ 0)
for which

h̃V (ρ;F ∗P ) ≤ h(V ;F ∗P ) + λ(ρ2 − ua) , ∀ρ ∈ [0,
√
up] (28)

h̃V (ρ;F ∗P ) = h(V ;F ∗P ) + λ(ρ2 − ua) , ∀ρ ∈ εP∗ . (29)

Note that when the average power constraint is relaxed (i.e.,
ua ≥ up), λ = 0.

Proof. The phases of the optimal input distribution have
already been shown to be mutually independent and have
the distribution in (20) being independent of the magnitude.
Therefore, it is sufficient to show the optimal distribution of
the input magnitude. This is proved by reductio ad absurdum.
In other words, it is shown that having an infinite number of
points of increase results in a contradiction. The detailed proof
is given in Appendix C.

Remark 1. When the average power constraint is relaxed
(i.e. ua ≥ up), the following input distribution is asymptoti-
cally (upn → 0) optimal

F ∗∗P,Θ(ρ, θ) =
θn−1

2π
u(ρ−√up)

n−2∏
i=1

∫ θi

0

α−1
i sinn−i−1 θdθ,

(30)
where u(.) is the unit step function. Further, the resulting
capacity is given by

C(up, up) ≈
up
2

when
up
n
� 1.

Later, in the numerical results section, we observe that the
density in (30) remains optimal for the non-vanishing ratio
up
n when it is below a certain threshold.

6A point Z is said to be a point of increase of a distribution if for any
open set Γ containing Z, we have Pr{Γ} > 0.
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Proof. Since the density in (30) has spherical symmetry, it is
sufficient to show that F ∗∗P (ρ) = u(ρ−√up) is optimal when
up
n → 0. From (3), we have

lim
up
n →0

C(up, ua) ≤ up
2
. (31)

The CDF F ∗∗P (ρ) = u(ρ−√up) induces the following output
pdf

fV (v;F ∗∗P ) = Kn(v,
√
up) = e−

( n
√
nv)2+up

2
In

2−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2−1

.

(32)
When up

n is small, the entropy of V is given by (35) on top
of the next page. In (33), we have approximated the modified
bessel function with the first two terms in its power series
expansion as follows

In(x) ≈ xn

Γ(n+ 1)2n
(1 +

x2

4(n+ 1)
) ,

x

n
→ 0.

In (34), we use the approximation ln(1+x) ≈ x (x� 1) and
in (35), the higher order term is neglected. Given the input
distribution F ∗∗P , the achievable rate with small ratio up

n is
given by (see (24))

lim
up
n →0

h(V ;F ∗∗P )+

n−2∑
i=1

lnαi+(1− n
2

) ln 2π− n
2

=
up
2
, (36)

where we have used the fact that

n−2∑
i=1

lnαi = − ln Γ(
n

2
) +

n− 2

2
lnπ.

From (36) and (31), it is concluded that the pdf in (30) is
asymptotically optimal for up

n � 1 when up ≤ ua. Note
that the distribution in (30) is not the only asymptotically
optimal distribution. There are many possible alternatives, one
of which, for example, is the binary PAM in each dimension
with the points −

√
up
n and

√
up
n which can be verified to

have an achievable rate of up
2 when up

n � 1. Specifically, in
the low peak power regime (up � 1), a sufficient condition
for the input distribution to be asymptotically optimal is as
follows. First, it has a constant magnitude at √up. Second, its
Θ1 is independent of (P,Θ2, . . . ,Θn−1) and has a zero first
Fourier coefficient i.e.,∫ π

0

ejθfΘ1(θ)dθ = 0. (37)

The claim is justified by noting that fulfilling the second con-
dition results in the spherical symmetric output distribution of
(23) as follows. Using the approximation ex ≈ 1+x (x� 1),
at small values of up, (7) can be approximated as

fR,Ψ|P,Θ(r, ψ|ρ, θ) ≈ 1

(
√

2π)
n e
− r

2+ρ2

2 (1 + rρaT (θ)a(ψ))

× rn−1
n−2∏
i=1

sinn−i−1 ψi. (38)

If Θ1 is independent of (Θ2, . . . ,Θn−1, P ), substituting (38)
in (8) results in

fR,Ψ(r, ψ) ≈
∫ ∞

0

∫ π

0

. . .

∫ π

0︸ ︷︷ ︸
n−3 times

∫ 2π

0

∫ π

0

1

(
√

2π)
n e
− r

2+ρ2

2 rn−1

× (1 + rρaT (θ)a(ψ))

n−2∏
i=1

sinn−i−1 ψi

dFΘ1
(θ1)dn−1FP,Θn−1

2
(ρ, θn−1

2 ) (39)

where θn−1
2 = (θ2, θ3, . . . , θn−1). If Θ1 has a zero first Fourier

coefficient, due to the structure of a(θ) (see (4)), we have∫ π

0

aT (θ)a(ψ)dFΘ1
(θ1) = 0.

Therefore, (39) simplifies as

fR,Ψ(r, ψ) ≈
∫ ∞

0

1

(
√

2π)
n e
− r

2+ρ2

2 rn−1
n−2∏
i=1

sinn−i−1 ψidFP (ρ)

which implies that when up → 0, having Θ1 independent of
all other spherical variables with a zero first Fourier coefficient
results in the output distribution in (23) which makes the
inequalities (18) and (19) tight. Finally, fulfilling the first
condition (i.e., having a constant magnitude at √up) validates
the previous reasoning starting from (32).

The asymptotic optimality of the constant-magnitude sig-
naling in (30) can alternatively be proved by inspecting the
behavior of the marginal entropy density h̃V (ρ;FP ) when up

n
is sufficiently small. From (13)

fV (v;FP )→ e−
( n
√
nv)2

2

Γ(n2 )2
n
2−1

∫ ∞
0

e−
ρ2

2 dFP (ρ)︸ ︷︷ ︸
constant = C

when
up
n
→ 0.

Therefore,

h̃V (ρ;FP ) = −
∫ ∞

0

e−
( n
√
nv)2+ρ2

2
In

2−1(ρ n
√
nv)

(ρ n
√
nv)

n
2−1

ln fV (v;FP )dv

→
∫ ∞

0

e−
( n
√
nv)2+ρ2

2
In

2−1(ρ n
√
nv)

(ρ n
√
nv)

n
2−1

[
( n
√
nv)2

2

+ ln

(
Γ(n2 )2

n
2−1

C

)]
dv

=
ρ2 + n

2
+ ln

(
Γ(n2 )2

n
2−1

C

)
(40)

It is obvious that (40) is a (strictly) convex (strictly) increasing
function. Hence, the necessary and sufficient conditions in (28)
and (29) are satisfied if and only if the input has only one point
of increase at √up which proves the asymptotic optimality of
(30) for up

n � 1 and ua ≥ up.

Remark 2. For a fixed SNR, the gap between Shannon
capacity and the constant amplitude signaling decreases as
O( 1

n ) for large values of n.

Proof. By writing the first two terms of the Taylor series
expansion of the logarithm (i.e., ln(1 + x) ≈ x− x2

2 , x� 1),
we have

when n→∞ ,
n

2
ln(1 +

up
n

) ≈ up
2
−
u2
p

4n
.
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lim
up
n →0

h(V ;F ∗∗P ) = lim
up
n →0

−
∫ ∞

0

fV (v;F ∗∗P ) ln fV (v;F ∗∗P )dv

= lim
up
n →0

∫ ∞
0

e−
( n
√
nv)2+up

2
In

2−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2−1

[
( n
√
nv)2 + up

2
− ln

(
In

2−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2−1

)]
dv

=
n

2
+ ln

(
Γ(
n

2
)2

n
2−1

)
+ lim

up
n →0

{
up −

∫ ∞
0

e−
( n
√
nv)2+up

2
In

2−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2−1

ln

(
1 +

up( n
√
nv)2

2n

)
dv

}
(33)

=
n

2
+ ln

(
Γ(
n

2
)2

n
2−1

)
+ lim

up
n →0

{
up −

up
n

(
n+ up

2
)

}
(34)

=
n

2
+ ln

(
Γ(
n

2
)2

n
2−1

)
+
up
2
. (35)

From (34), the achievable rate obtained by the constant enve-
lope signaling is

when n→∞ , I(X; Y) ≈ up
2
−
u2
p

2n
.

This shows that the gap between achievable rate and the
Shannon capacity decreases as

u2
p

4n (= O( 1
n )), when n goes

to infinity.

While remark 2 shows an asymptotic behavior of the gap,
the following remark provides an analytical lower bound for
any values of n.

Remark 3. The following lower bound holds for the capac-
ity of constant amplitude signaling.

sup
FX(x):‖X‖2=up

I(X; Y) ≥ n− 1

2
log

1 +
2

2
n−1−1up

e
[
(n− 1)Γ(n−1

2 )
] 2
n−1


(41)

Proof. Let X′ and X′ be defined as

X′ = [X1, X2, . . . , XN−1, 0]
T
, Y′ = [Y1, Y2, . . . , YN−1, 0]

T
.

(42)
Due to the Markov chain X′ ↔ X ↔ Y ↔ Y′ and the fact
that ‖X‖2 = up implies ‖X′‖2 ≤ up, we can write

sup
FX(x)

‖X‖2=up

I(X; Y) ≥ sup
FX′ (x

′):‖X′‖2≤up
I(X′; Y′)

= sup
FX′ (x

′):‖X′‖2≤up
h(Y′;FX′)

− n− 1

2
log 2πe

≥ sup
FX′ (x

′):‖X′‖2≤up

n− 1

2
log
(

2
2

n−1h(X′) + 2πe
)

− n− 1

2
log 2πe (43)

=
n− 1

2
log

1 +
2

2
n−1−1up

e
[
(n− 1)Γ(n−1

2 )
] 2
n−1


(44)

where in (43), the (n − 1)-dimensional EPI has been used7

and (44) is due to the fact that for the (n − 1)-dimensional
vector X′, we can write

sup
FX′ (x

′):‖X′‖2≤up
h(X′) = log

(
2(πup)

n−1
2

(n− 1)Γ(n−1
2 )

)
, n ≥ 2

(45)
whose proof follows the same steps from (72) to (77) with
λ = 0 and a = n

(
√
up)n .

The asymptotic decrease of the gap in remark 2 can be
alternatively proved by using the lower bound in (44) which
is provided in Appendix E.

Remark 4. When ua < up, the following input distribution
is asymptotically (ua → 0) optimal

F ∗∗P,Θ(ρ, θ) =

[
(1− ua

up
)u(ρ) +

ua
up
u(ρ−√up)

]
× θn−1

2π

n−2∏
i=1

∫ θi

0

α−1
i sinn−i−1 θdθ (46)

and the resulting capacity is given by

C(up, up) ≈
ua
2

when ua � 1.

Proof. The proof is given in Appendix F.

Remarks 1 and 4 are essential for the initial stage of the
simulation results when either ua or up are assumed to be
very small at first and afterwards they are increased gradually
by a step size.

Remark 5. The fact that the magnitude of the optimal
input distribution has a finite number of mass points remains
unchanged if the average constraint in (2) is generalized as

E(g(P )) ≤ ua (47)

in which g(z) is holomorphic on an open subset D(⊆ C)
which includes the non-negative real line (i.e., R≥0 ⊂ D).

7Note that the reduction of dimensions from n to n−1 in (42) is necessary.
The reason is that the usage of the n-dimensional EPI is not permissible for the
constant amplitude vector, since an n-dimensional vector with a fixed norm
has at most (n − 1) degrees of freedom (or equivalently at most (n − 1)-
dimensional support).
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Proof. The proof is given in Appendix G.

Remark 6. The peak power constraint in (2) can be
generalized to

‖P‖2
a.s.
∈ Dup ⊆ [0, up].

Proof. Since all the conditions (compactness, continuity, etc.)
remain unchanged, the support of the optimal input distribution
will be some concentric shells having the mass points of the
magnitude in Dup .

IV. THE MIMO CASE WITH DETERMINISTIC CHANNEL

First, we consider the multiple-input single-output (MISO)
channel in which (1) changes to

Y (t) = hTX(t) +W (t) (48)

where h(∈ Rn×1) is the deterministic channel vector and
W ∼ N(0, 1). Let Xnew = hTX. The capacity of this channel
under the peak and average power constraints is given by

C(up, ua) = sup
FX(x):‖X‖2≤up,
E[‖X‖2]≤ua

I(X;Y )

= sup
FX(x):‖X‖2≤up,
E[‖X‖2]≤ua

I(X, Xnew;Y ) (49)

= sup
FX(x):‖X‖2≤up,
E[‖X‖2]≤ua

I(Xnew;Y ) + I(X;Y |Xnew)︸ ︷︷ ︸
=0

(50)

= sup
FX(x):‖X‖2≤up,
E[‖X‖2]≤ua

I(Xnew;Y )

≤ sup
FXnew (x):|Xnew|≤

√
up‖h‖,

E[|Xnew|2]≤ua‖h‖2

I(Xnew;Y ) (51)

where (49) is due to the fact that Xnew is a function of X
and (50) is a result of the following Markov chain X −→
Xnew −→ Y . (51) is due to the fact that any input cdf having
the support ‖X‖2 ≤ up and satisfying E[‖X‖2] ≤ ua induces
a cdf for Xnew with the support in [−√up‖h‖,

√
up‖h‖]

and satisfying E[|Xnew|2] ≤ ua‖h‖2. This could be readily
verified by the following convex optimization problem

max
x

hTx

S.t. ‖x‖2 ≤ up

where the maximum is √up‖h‖ and it is achieved when x

is matched to the channel (i.e., x =
√
up

h
‖h‖ ). Further, from

Cauchy-Shwartz inequality, we have

E[|Xnew|2] = E[|htX|2] ≤ E[‖h‖2]E[‖X‖2] ≤ ua‖h‖2
(52)

where the inequalities change to equality iff X is in the
direction of h and E[‖X‖2] = ua.

The supremization in (51) is the same problem of finding
the capacity of a scalar Gaussian channel which has been
addressed in [1] where it was shown that the optimal input
distribution is a pmf over a finite set of points in the interval
defined by the peak power constraint and also it satisfies
the average power inequality with equality. It is obvious that

having X located on the hyperplane hTX = ei (confined in
the ball ‖X‖2 ≤ up) with probability pi results in having
Xnew equal to the mass point ei ∈ [−√up‖h‖,

√
up‖h‖] with

probability pi. If the average power constraint is relaxed (i.e.,
ua ≥ up), the support of the capacity-achieving distribution of
the MISO channel with the input bounded in a ball becomes
a finite number of hyper planes confined in that ball (all
of these hyperplane have the normal vector h). Note that
the discrete amplitude property is no longer a necessity for
the optimal input distribution in contrast to the MIMO with
identity channel. In other words, the necessary and sufficient
condition for the optimality is that X is located on each of
these hyperplanes with the corresponding probabilities. There
is a common characteristic of the optimal input distribution
in both the MIMO (with identity channel) and MISO scenar-
ios which is the fact that the support of the optimal input
distribution does not include any open set in Rn. Finally,
if the average power constraint is active (i.e., ua < up),
the support of the optimal input becomes a finite number of
mass points in the direction of h (from (52) and the fact that
E[|Xnew|2] = ua‖h‖2) and confined in the ball ‖X‖2 ≤ up.

For the general deterministic MIMO channel, we have

Y′(t) = HX′(t) + W′(t) (53)

where H ∈ Rnr×nt denotes the deterministic channel. By an
SVD (i.e., H = DΛNT where D ∈ Rnr×nr , Λ ∈ Rnr×nt ,
N ∈ Rnt×nt ), we get

Ỹ′(t) = DTY′(t) = Λ NTX′(t)︸ ︷︷ ︸
X̃′(t)

+ DTW′(t)︸ ︷︷ ︸
W̃′(t)

. (54)

Let n = rank(H) and Q(t) be the first n elements of the
vector Q̃′(t) (for Q = Y,X and W). It is obvious that (54)
is equivalent to the following

Y(t) = X(t) + N(t) (55)

with the noise distributed as N(0,Σ) where Σ =
diag{λ−2

1 , λ−2
2 , . . . , λ−2

n } and λi (i ∈ [1 : n]) is the ith sin-
gular value of H. Therefore, the capacity of the deterministic
channel in (53) is the same as the capacity of the additive
non-white Gaussian noise channel in (55). It is assumed that
the condition number of H is not unity, since in that case,
it becomes equivalent to the scenario with identity channel
matrix discussed in section II. From now on, we consider
n = 2.

Two possible changes of coordinates are as follows. Moti-
vated by the elliptical symmetry of the noise, X and Y could
be written in the following elliptical coordinates

Y = RΣ
1
2 a(Ψ) , X = PΣ

1
2 a(Θ) (56)

and using a similar approach as in section II, the optimization
problem becomes

C(up, ua) = sup
FP,Θ(ρ,θ):P

2aT (θ)Σa(θ)≤up,
E[P 2aT (θ)Σa(θ)]≤ua

h(V,Ψ;FP,Θ)− ln 2πe, (57)
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where V = R2

2 . The joint entropy of the output variables is
given by

h(V,Ψ;FP,Θ) =

∫ ∞
0

∫ 2π

0

h̃V,Ψ(ρ, θ;FP,Θ)d2FP,Θ(ρ, θ),

(58)
where the joint marginal entropy density writes as

h̃V,Ψ(ρ, θ;FP,Θ) = −
∫ ∞

0

∫ 2π

0

K(v, ψ, ρ, θ)

× ln fV,Ψ(v, ψ;FP,Θ)dψdv, (59)

in which

fV,Ψ(v, ψ;FP,Θ) =

∫ ∞
0

∫ 2π

0

K(v, ψ, ρ, θ)d2FP,Θ(ρ, θ),

(60)
and

K(v, ψ, ρ, θ) =
1

2π
e−v−

ρ2

2 +ρ
√

2v cos(ψ−θ). (61)

Alternatively, due to the spherical symmetry of the constraint,
the input and the output could be written in the spherical
coordinates in which

C(up, ua) = sup
FP,Θ(ρ,θ):P 2≤up,E[P 2]≤ua

h(V,Ψ;FP,Θ)− ln(2πe
√
|Σ|).

(62)
(58) to (60) remain unchanged, while the kernel is given by

K(v, ψ, ρ, θ) =
e−

1
2 [
√

2va(ψ)−ρa(θ)]
T

Σ−1[
√

2va(ψ)−ρa(θ)]

2π
√
|Σ|

.

(63)
Using neither of the above coordinates makes the separation
of the magnitude and the phases possible as done in (10).
This is due to the different symmetries of the noise (elliptical)
and the peak power constraint (spherical). Since the conditions
of compactness, convexity and continuity remain unchanged,
we can only proceed up to the point of writing the necessary
and sufficient conditions for the joint cdf FP,Θ(ρ, θ) to be
the optimal solution. By using the spherical coordinates,
the necessary and sufficient conditions for the optimal input
distribution is given by

h̃V,Ψ(ρ, θ;F ∗P,Θ) ≤ h(V,Ψ;F ∗P,Θ) + λ(ρ2 − ua)

,∀ρ ∈ [0,
√
up],∀θ ∈ [0, 2π), (64)

h̃V,Ψ(ρ, θ;F ∗P,Θ) = h(V,Ψ;F ∗P,Θ) + λ(ρ2 − ua)

, ∀(ρ, θ) ∈ ε∗P,Θ, (65)

where ε∗P,Θ is the set of points of increase in F ∗P,Θ.
To make the problem caused by the different symmetries of

the noise and the constraint more clear, let’s assume λ1 = λ2

(i.e., as in the previous section with identity channel.) In this
case, we rewrite the optimization problem as

C(up, ua) = sup
FP,Θ(ρ,θ):P 2≤up, E[P 2]≤ua

h(V,Ψ;FP,Θ)−ln(2πeλ2
1).

(66)
It is already known that the optimal solution must have inde-
pendent phase and magnitude with the former being uniformly
distributed on [0, 2π). This can alternatively be inferred from
the above necessary and sufficient conditions as follows. Let
f∗P,Θ(ρ, θ) = f∗P (ρ)f∗Θ|P (θ|ρ) denote the (unique) solution of

(66) with ε∗P,Θ as its points of increase. Let the pdf lεP,Θ be
defined as

lεP,Θ(ρ, θ) = f∗P (ρ)f∗Θ|P (θ − ε|ρ),

where ε is a constant arbitrarily chosen from (0, 2π). Let LεP,Θ
be the corresponding CDF. It can be easily verified that

fV,Ψ(v, ψ;LεP,Θ) = fV,Ψ(v, ψ − ε;F ∗P,Θ) (67)

and therefore,

h(V,Ψ;LεP,Θ) = h(V,Ψ;F ∗P,Θ).

Since LεP,Θ satisfies the constraints and the optimal solution
is unique, it is concluded that

f∗P,Θ(ρ, θ) = lεP,Θ(ρ, θ)

which in turn results in

fΘ|P (θ|ρ) = fΘ|P (θ − ε|ρ).

Since ε ∈ (0, 2π) was chosen arbitrarily, we conclude that
fΘ|P (θ|ρ) = fΘ(θ) = 1

2π . The problem in the case when
λ1 6= λ2 is that if the elliptical domain is used, (67) remains
true, but LεP,Θ does not satisfy the spherical constraints any
more, and if the spherical domain is considered, LεP,Θ satisfies
the constraints, but (67) does not hold any longer. Therefore,
in what follows, we provide some upper bounds and lower
bounds for the capacity of the deterministic channel.

1) Bounds based on the cubic constraints: For brevity, let

F(a,b) = {FX(x)|FXi(xi) = 0 for xi < 0,

FXi(xi) = 1 for x2
i ≥ ai,∫

Rn
x2
i d
nFX(x) ≤ bi ,∀i ∈ [1 : n]}

be the set of all CDFs with the cubic constraints defined
by the vectors a and b, respectively. By strengthening
or weakening the constraints of (2), we have

sup
FX(x)∈F1

I(X; Y) ≤ C(up, ua) ≤ sup
FX(x)∈F2

I(X; Y)

(68)
as long as F1 ⊆ {FX(x)|FX(x) = 1 for ‖x‖2 ≥
up,
∫
Rn ‖x‖

2dnFX(x) ≤ ua} ⊆ F2. One possible
choice for F2 is obtained with the enhanced cubic
constraints as follows

F2 = F(up1, ua1)

where 1 is the n-dimensional all-one vector. Also, a
trivial option for F1 would be

F1 = F(
up
n

1,
ua
n

1).

Since the noise elements are independent, we have
n∑
i=1

sup
FXi (xi):|Xi|

2≤upn
E[|Xi|2]≤uan

I(Xi;Yi) ≤ C(up, ua)

≤
n∑
i=1

sup
FXi (xi):|Xi|

2≤up
E[|Xi|2]≤ua

I(Xi;Yi)
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which leads to
n∑
i=1

CS(
λ2
iup
n

,
λ2
iua
n

) ≤ C(up, ua)

≤
n∑
i=1

CS(λ2
iup, λ

2
iua),

in which CS(., .) is the capacity of a scalar AWGN chan-
nel under peak and average power constraints defined
in [1]. The resources could alternatively be allocated
according to the noise covariance matrix Σ such that the
resource of each component is inversely proportional to
its noise variance. Therefore, another possible set for
obtaining a lower bound is

F1 = F(upv, uav)

in which vi =
λ2
i∑n

j=1 λ
2
j

. We name this last set of
constraints as modified cubic constraints.

2) Bounds based on the elliptical constraints: Another
possible set of lower and upper bounds is obtained by
strengthening or weakening the constraints in (57). By
noting that

min{λ−2
1 , λ−2

2 , . . . , λ−2
n } ≤ aT (θ)Σa(θ)

≤ max{λ−2
1 , λ−2

2 , . . . , λ−2
n },
(69)

we get the two following sets of constraints for the lower
and the upper bounds of (57), respectively.

F1 = {FP,Θ(ρ, θ)|P 2 ≤ min{λ2
1, . . . , λ

2
n}up ,

E[P 2] ≤ min{λ2
1, . . . , λ

2
n}ua},

F2 = {FP,Θ(ρ, θ)|P 2 ≤ max{λ2
1, . . . , λ

2
n}up ,

E[P 2] ≤ max{λ2
1, . . . , λ

2
n}ua}.

Following the same approach as in the proof of the theo-
rem, it can be verified that with these sets of constraints,
the lower and the upper bounds results from the input
distributions that have finite number of concentric hyper-
ellipsoids as their support.

3) Bounds based on whitening the noise: Another trivial set
of upper and lower bounds is obtained by whitening the
noise and therefore, making it spherically symmetric. It
is obvious that

sup
Σ=max{λ−2

1 ,...,λ−2
n }I
I(X; Y) ≤ C(up, ua)

≤ sup
Σ=min{λ−2

1 ,...,λ−2
n }I
I(X; Y),

(70)

where the bounds are obtained by distributions that
have finite number of concentric hyper-spheres as their
support as in section III. It can be easily verified that
the bounds in 2) and 3) are actually the same, although
the former is based on weakening or strengthening the
constraint and the latter is based on whitening the noise.

4) Lower bound based on Entropy Power Inequality (EPI):
The mutual information can be lower bounded as

I(X; Y) = h(Y)− 1

2
ln((2πe)n|Σ|)

≥ n

2
ln
(
e

2
nh(X) + e

1
n ln((2πe)n|Σ|)

)
− 1

2
ln((2πe)n|Σ|) (71)

where in (71), vector EPI [13] has been used. In order
to get a lower bound for the capacity, we notice that
the maximization of h(X) under the peak and average
constraints could be written as

sup
FX(x):‖X‖2≤up
E(‖X‖2)≤ua

h(X) = sup
FP (ρ):P 2≤up
E(P 2)≤ua

−
∫ ∞

0

fP (ρ) ln
fP (ρ)

ρn−1
dρ

+

n−2∑
i=1

lnαi + ln 2π. (72)

By the change of variable T = Pn

n , we have

sup
FP (ρ):P 2≤up
E(P 2)≤ua

−
∫ ∞

0

fP (ρ) ln
fP (ρ)

ρn−1
dρ = sup

FT (t):T≤u
n
2
p
n

E(T
2
n )≤ ua

n
2
n

h(T ).

(73)
It can be verified that optimization theory guarantees a
unique solution for (73) and the necessary and sufficient
conditions for f∗T to be the optimal pdf is the existence
of a λ ≥ 0 for which the following inequality holds for

any fT (t) that has its support inside the interval [0,
u
n
2
p

n ]

∫ u

n
2
p
n

0

(ln f∗T (t) + λt
2
n )(f∗T (t)− fT (t))dt ≤ 0. (74)

It is obvious that when ua ≥ nup
n+2 , λ = 0 and the optimal

distribution will be uniform. In the case ua <
nup
n+2 ,

λ 6= 0 and the optimal distribution is given by

f∗T (t) = ae−λt
2
n , t ∈ [0,

u
n
2
p

n
],

or equivalently

f∗P (ρ) = aρn−1e
− λρ2

( n
√
n)2 , ρ ∈ [0,

√
up],

since it satisfies (74) with equality. The two degrees of
freedom a, λ are uniquely obtained by solving the two
following equations:

∫ u

n
2
p
n

0
t

2
n e−λt

2
n dt∫ u

n
2
p
n

0
e−λt

2
n dt

=
ua

n
2
n

(75)

a =

∫ u

n
2
p
n

0

e−λt
2
n dt


−1

. (76)

It can be verified that the left-hand side of (75) is
a strictly decreasing function of λ having the range
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(0,
nup

(n+2)n
2
n

] and by continuity, there exists a unique

λ > 0 that satisfies (75). Substituting this λ in (76)
gives the value of a which results in

h(X) =
λua

( n
√
n)2

+ ln

(
2(
√
π)n

aΓ(n2 )

)
. (77)

Substituting (77) in (71), we get the following lower
bound for the capacity

C(up, ua) ≥ n

2
ln

(
2

2
nπ

(aΓ(n2 ))
2
n

e
2λua

n( n
√
n)2 + 2πe n

√
|Σ|

)
− 1

2
ln((2πe)n|Σ|) (78)

A visual representation of some of the bounds is shown
in figure 1 for n = 2, λ2

1 = 2λ2
2 and ua ≥ up. It is

obvious that the figures inside the circle (which shows the peak
power constraint for the 2-dimensional channel) strengthen the
constraint and those outside the circle weaken it. In figure 1(a),
the two ellipsoids are obtained from (69). In other words the
inner and the outer ellipsoids are given by

aT (θ)Σa(θ) = min{λ−2
1 , λ−2

2 }

and
aT (θ)Σa(θ) = max{λ−2

1 , λ−2
2 },

respectively. The inner and outer squares in figure 1(b) are
[−
√

up
2 ,
√

up
2 ]2 and [−√up,

√
up]

2, respectively. The modi-
fied cubic constraint in figure 1(c) is based on resource alloca-
tion according to the channel gains (i.e.,λ1 and λ2). Channels 1
and 2 have the peak power of λ2

1

λ2
1+λ2

2
up(= 2

3up in this example)

and λ2
2

λ2
1+λ2

2
up(= 1

3up in this example), respectively.

V. NUMERICAL RESULTS

As stated in the Theorem, the magnitude of the optimal
input has a finite number of mass points and the phases are
distributed according to (20). The algorithm 8 for finding the
number, the positions and the probabilities of the optimal mass
points is exactly the same as that explained in [2]. When
the average power constraint is relaxed, figures 2 to 6 show
the capacity of the channel in (2) along with the capacity-
achieving input distribution for different values of n. In these
figures, black, red and green points have their probabilities in
the intervals [0.7, 1], [0.3, 0.7] and [0, 0.3], respectively.

Figure 7 shows the capacity of the four dimensional channel
versus up along with the optimal input for a fixed average
power ua = 10. It is obvious that the capacity saturates at
its conventional value given in (25). This saturation shows
the near-optimal performance of the discrete input for the
conventional unbounded scenario. For example, when n = 4
and ua = 10, the capacity of the channel with unbounded
input (i.e., CG = 2.5055), which is achieved by a generalized
Rayleigh distributed P , can also be achieved with good
approximation (i.e., I(X; Y) = 2.5052) by a pmf having only
three mass points below

√
30.

8The codes for this section are available at
http://www.ee.ic.ac.uk/bruno.clerckx/Research.html .

Figure 8 shows the capacity versus the average power
constraint for a fixed value of the peak power (up = 20).
It is obvious that for ua ≥ up, the average constraint becomes
inactive and the capacity is determined only by up. We have
already shown that when the peak power is very small (i.e.,
up � 1) and ua ≥ up, the optimal input has only one mass
point at ρ =

√
up. Let FP1

denote the cdf of this optimal
input. Therefore,

fV (v;FP1) = Kn(v,
√
up),

h̃V (ρ;FP1
) = −

∫ ∞
0

Kn(v, ρ) ln(Kn(v,
√
up))dv.

When up � 1, the above marginal entropy density is a convex
and increasing function of ρ and satisfies the equality of
(29) (with λ = 0) at ρ =

√
up and the inequality of (28)

at all other points. As up increases, FP1
remains optimal

until it violates the necessary and sufficient conditions. By
observing the behavior of h̃V (ρ, FP1), it is concluded that
as up increases, the first point to violate the necessary and
sufficient conditions will happen at ρ = 0. Therefore, the
peak power threshold utp for which FP1

remains optimal (when
ua ≥ up) is obtained by solving the following equation for utp

h̃V (0;FP1
) = h(V ;FP1

). (79)

By solving (79) numerically, the values of the peak power
threshold are obtained for different values of n as shown in
figure 9. For example, for n = 4, utp ≈ 12.81 which means
that when the peak power is below 12.81, the support of the
optimal input has only one hyper-sphere, and at this threshold
it gets another mass point at zero as already shown in figure
4. For n = 20, when up ≤ 66, constant amplitude signaling
is optimal which is consistent with figure 6. From figure 9, it
can be observed that the ratio up

n does not necessarily need
to be vanishingly small to guarantee the optimality of FP1

.
Specifically, for the ratios of up

n below (approximately) 3.4,
FP1

remains optimal.
It has already been shown that when the number of antennas

is above a certain threshold, constant amplitude signaling at
the peak power (i.e., ‖X‖ =

√
up) becomes optimal. Figure 10

compares the achievable rate of the constant amplitude signal-
ing 9at the peak power with the capacity of the channel (with
the constraint ‖X‖2 ≤ up) and the unbounded Gaussian input
having an average power of up. As it can be observed, when
the number of antennas is sufficiently large, constant amplitude
signaling is not only optimal but also it has a performance
close to that of the unbounded Gaussian signaling.

Figures 11 and 12 demonstrate the bounds for the determin-
istic MIMO channel in (53) for two values of the condition

9The rate has been obtained by numerical evaluation of

sup
FX(x):‖X‖2=up

I(X;Y) = −
∫ ∞
0

e−
( n
√
nv)2+up

2

In
2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1
×

ln

(
e−

( n
√
nv)2+up

2

In
2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

)
dv

−
n

2
ln(2e) + ln 2.
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Elliptical constraints

Peak power constraint
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up

(a) Elliptical Constraints

X1

X
2
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up
√

up

Peak power constraint

Cubic constraints

(b) Cubic Constraints

X1

X
2

√

up
√

up

Peak power constraint

Modified cubic constraint

(c) Modified Cubic Constraint

Fig. 1: Weakening or strengthening the peak power constraint for n = 2 and λ2
1 = 2λ2
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Fig. 2: Capacity vs. up for n = 1 (ua ≥ up), and the optimal input mass points.



12

−10 0 10 17.78
0

0.5

1

1.5

2

2.5

3

 

 

peak power constraint (dB)

C
a
p
a
c
i
t
y
 
(
n
a
t
s
/
c
h
a
n
n
e
l
 
u
s
e
)

(a) Capacity

−10 0 10 17.78
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

SNR(dB)

‖X
‖

(b) Optimal Input Distribution

Fig. 3: Capacity vs. up for n = 2 (ua ≥ up), and the optimal input mass points.
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Fig. 4: Capacity vs. up for n = 4 (ua ≥ up), and the optimal input mass points.
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Fig. 5: Capacity vs. up for n = 10 (ua ≥ up), and the optimal input mass points.

number of the channel. It can be observed that the gap
between the elliptical lower and upper bound increases with
the condition number. This is intuitively justified by noting
that the elliptical bounds converge to the actual capacity of
the channel when the condition number approaches unity. For
large values of the condition number, the lower bound obtained
by modified cubic constraints performs better than the equal
resource allocation at small values of the peak power. Finally,
it is important to note that although the lower bound obtained

by EPI is loose in these two figures, it becomes asymptotically
tight for large values of up. It can be easily verified by the
fact that when the average power constraint is relaxed, we
have λ = 0 and a = n

u
n
2
p

in (77). When up → ∞ the lower

bound in (78) gets arbitrarily close to h(X) in (77) which is
obviously an upper bound for the capacity. This justifies the
asymptotic tightness of the bound resulted from EPI at large
values of up.



13

−10 0 10 17.78
0

2

4

6

8

10

12

14

 

 

peak power constraint (dB)

C
a
p
a
c
i
t
y
 
(
n
a
t
s
/
c
h
a
n
n
e
l
 
u
s
e
)

(a) Capacity

−10 0 10 17.78

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

SNR(dB)

‖X
‖

(b) Optimal Input Distribution

Fig. 6: Capacity vs. up for n = 20 (ua ≥ up), and the optimal input mass points.
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Fig. 7: Capacity vs. up for n = 4 (ua = 10), and the optimal input mass points.
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Fig. 8: Capacity vs. ua for n = 4 (up = 20), and the optimal input mass points.

VI. CONCLUSION

We have shown that the capacity-achieving distribution of
the vector Gaussian channel with identity channel matrix under
the peak and average power constraints has a finite number of
mass points for its amplitude and the points are uniformly
distributed on the hyper-spheres determined by the amplitude
mass points. It was shown that when the peak power is the
only active constraint, constant amplitude signaling at the peak
power is optimal when the number of dimensions is above a

threshold. Finally, some upper and lower bounds were given
for the general deterministic channel and their performance
was evaluated numerically as a function of the condition
number of the channel.

The results of the paper could be applied to the MIMO
communication systems with only one single RF chain at
the transmitter which is of great interest and necessitate the
peak power constraint. The importance of the results becomes
more pronounced in the massive MIMO settings, where it
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√
up) when the average power

constraint is relaxed.

was shown that the capacity has a closed form solution and
no computer program is needed to find the optimal input
distribution.

APPENDIX A
DERIVATION OF (15)

The following lemma is useful in the sequel.
Lemma 1. Let a and b be two real numbers with a > 0.

Also, let N0 be the set of non-negative integers. Then,∫ 1

−1

In(a
√

1− u2)(
√

1− u2)ne−budu

=
√

2πan
In+ 1

2
(
√
a2 + b2)

(
√
a2 + b2)n+ 1

2

, n =
k

2
, ∀k ∈ N0.

(80)

Proof. By using [14, pp. 698], (80) could be shown for n = 0.
Also, by some manipulation, (80) holds true for n = 1

2 , 1,
3
2 .
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Fig. 11: Bounds for the capacity of the deterministic MIMO
channel (λ2

2 = 2λ2
1 = 1).
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Fig. 12: Bounds for the capacity of the deterministic MIMO
channel (λ2
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1 = 1).

For general n, we use induction as follows. Denote the left-
hand side of (80) by Qn. It is shown that if (80) is true for n,
it will also be true for n+ 1

2 . In other words, if

Qn =
√

2πan
In+ 1

2
(
√
a2 + b2)

(
√
a2 + b2)n+ 1

2

(n ≥ 3

2
), (81)

then

Qn+ 1
2

=
√

2πan+ 1
2
In+1(

√
a2 + b2)

(
√
a2 + b2)n+1

. (82)

By using the recursive identity for the bessel function (i.e.,
Iα(z) = Iα−2(z)− 2(α−1)

z Iα−1(z)), we have

Qn+ 1
2

=

∫ 1

−1

In− 3
2
(a
√

1− u2)(
√

1− u2)n+ 1
2 e−budu

−
2(n− 1

2 )

a
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×
∫ 1

−1

In− 1
2
(a
√

1− u2)(
√

1− u2)n−
1
2 e−budu

=

∫ 1

−1

In− 3
2
(a
√

1− u2)(
√

1− u2)n+ 1
2 e−budu

− 2(n− 1

2
)
√

2πan−
3
2
In(
√
a2 + b2)

(
√
a2 + b2)n

, (83)

where in (83), we have used (81). From (81), we have

Qn− 1
2

=
√

2πan−
1
2
In(
√
a2 + b2)

(
√
a2 + b2)n

. (84)

By taking the derivative of (84) with respect to a and using
the identity I ′α(z) = 1

2 (Iα−1(z) + Iα+1(z)) for α 6= 0, we
have∫ 1

−1

In− 3
2
(a
√

1− u2)(
√

1− u2)n+ 1
2 e−budu+Qn+ 1

2

= 2
√

2π
∂

∂a

{
an−

1
2
In(
√
a2 + b2)

(
√
a2 + b2)n

}
.

(85)

Solving for Qn+ 1
2

in (83) and (85) results in

Qn+ 1
2

=
√

2πan−
1
2
∂

∂a

{
In(
√
a2 + b2)

(
√
a2 + b2)n

}

=
√

2πan+ 1
2
In+1(

√
a2 + b2)

(
√
a2 + b2)n+1

, (86)

where in (86), we have used the identity d
dx{

In(x)
xn } = In+1(x)

xn .
This completes the proof of lemma.

(15) is equivalent to∫ π

0

. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0

1

(
√

2π)
n e

xaT (θ)a(ψ)
n−2∏
i=1

sinn−i−1 ψidψn−1 . . . dψ1

=


In

2
−1(x)

(x)
n
2
−1 x 6= 0

1

Γ(n2 )2
n
2
−1 x = 0

∀n ≥ 2.

(87)

If x = 0, it is obvious that the left-hand side of (87) is the
hyper-surface area of an n-sphere with unit radius (= 2π

n
2

Γ(n2 ) )
divided by (

√
2π)n which results in the value shown on the

right-hand side. Therefore, we consider x 6= 0. It is obvious
that (87) is valid for n = 2. Denote the left-hand side of (87)
by Wn and assume it is valid for n ≥ 2. It can be verified that

Wn+1 =

∫ π

0

In
2−1(x sin θ sinψ)

√
2π(x sin θ sinψ)

n
2−1

sinn−1 ψex cos θ cosψdψ

=

∫ 1

−1

In
2−1(x sin θ

√
1− u2)

√
2π(x sin θ)

n
2−1

(
√

1− u2)
n
2−1e−x cos θudu

(88)

=
In−1

2
(x)

(x)
n−1

2

(89)

where in (88), u = − cosψ and in (89), we have used lemma
1. This completes the proof of (87).

APPENDIX B

Proposition. Let X be a non-negative random variable and
m ∈ R+. The following optimization problem

sup
FX(x):E[Xm]≤A

h(X), (90)

has a unique solution. Further, the maximum is

Γ(m+1
m )

Γ( 1
m )

− ln

m
m

√
Γ(m+1

m )

Γ( 1
m )A

Γ( 1
m )

 , (91)

and is achieved by the following distribution

fX∗(x) =

m m

√
Γ(m+1

m )

Γ( 1
m )A

Γ( 1
m )

e
−

Γ(m+1
m

)

AΓ( 1
m

)
xm

. (92)

Proof. Let Ω denote the set of all probability density functions
on the non-negative real line. It can be shown that Ω is
convex and compact in the Levy metric. Further, the following
function

L(fX(x)) = h(X)− λ(

∫ ∞
0

xmfX(x)dx−A)

is for λ ≥ 0, a continuous, weakly differentiable and strictly
concave function of fX(x) having the weak derivative at
f0
X(x) as

L′f0
X(x)(fX(x)) =

∫ ∞
0

(ln f0
X(x) +λxm)(f0

X(x)− fX(x))dx.

Therefore, the Lagrangian optimization guarantees a unique
solution for (90) and the necessary and sufficient condition
for fX∗(x) to be the optimal solution is the existence of a
λ ≥ 0 for which L′fX∗ (x)(fX(x)) ≤ 0 ∀fX(x) ∈ Ω. It

can be verified that for λ =
Γ(m+1

m )

AΓ( 1
m )

, the distribution in (92)
results in L′fX∗ (x)(fX(x)) = 0 which satisfies the necessary
and sufficient conditions. Hence, the pdf in (92), which has the
differential entropy in (91), is the unique solution of (90).

APPENDIX C
PROOF OF THE THEOREM

Let Fup denote the space of all cumulative distribution
functions satisfying the peak power constraint, i.e.

Fup = {FP (ρ)|FP (ρ) = 0 ∀ρ < 0 , FP (ρ) = 1 ∀ρ ≥ √up}.

The metric space (Fup , dL) is convex and compact ([15], [3,
Appendix I]) where dL denotes the Levy metric [16] (note that
the proof of the compactness in [3] relies only on the average
power constraint). The differential entropy h(V ;FP ) : Fup →
R is continuous ([15], [2, Proposition 3], [3, Appendix I],
[6, Proposition 1]) (note that the proof of continuity in [6] is
more general in the sense that it does not rely on the Schwartz
properties), strictly concave and weakly differentiable ([15],
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[2, Proposition 4], [3, Appendix II], [6, Proposition 2]) and
has the weak derivative at F 0

P given by

h′F 0
P

(V ;FP ) = lim
ζ→0

h(V ; (1− ζ)F 0
P + ζFP )− h(V ;F 0

P )

ζ

=

∫ √up
0

h̃V (ρ;F 0
P )dFP (ρ)−h(V ;F 0

P ),∀FP ∈ Fup .

The average power constraint is denoted by

G(FP ) =

∫ √up
0

ρ2dFP (ρ)− ua ≤ 0.

It is obvious that G : Fup → R is linear and weakly
differentiable having the weak derivative at F 0

P given by

G′F 0
P

(FP ) = G(FP )−G(F 0
P ) ,∀FP ∈ Fup .

Since h(V ;FP ) and G(FP ) are concave maps from Fup to R,
Lagrangian optimization [17] guarantees a unique solution for
(24) and the necessary and sufficient condition for FP∗ to be
the optimal solution is the existence of a λ(≥ 0) such that∫ √up

0

(h̃V (ρ;FP∗)− λρ2)dFP (ρ) ≤ h(V ;FP∗)− λua,

∀FP ∈ Fup . (93)

It can be shown that (93) is equivalent to (28) and (29) ([1,
Corollary 1]). In order to show the finiteness of the cardinality
of εP∗ , we extend the marginal entropy density in (26) to the
complex domain i.e.,

h̃V (z;FP ) = −
∫ ∞

0

Kn(v, z) ln fV (v;FP )dv , z ∈ C.
(94)

Proposition 1. The kernel Kn(v, z) is an entire function in
z for every v.

Proof. This can be verified by the fact that the real and
imaginary parts of K(v, z = x + jy) have continuous partial
derivatives and satisfy the Cauchy-Riemann equations which
leads to its holomorphy over the complex plane. As a result,
by Cauchy’s theorem, for every rectifiable closed curve γ in
C, ∫

γ

Kn(v, z)dz = 0. (95)

Proposition 2. The marginal entropy density h̃V (z;FP ) is
an entire function.

Proof. First, we show the continuity of h̃V (z;FP ). Let
{zm}∞1 be a sequence of complex numbers converging to
z0. Since Kn(v, z) is holomorphic (see Proposition 1), it is
continuous. Therefore,

lim
m→∞

Kn(v, zm) ln fV (v;FP ) = Kn(v, z0) ln fV (v;FP ).

Because the kernel is continuous and Kn(v,+∞) = 0, it is
also bounded (i.e., 0 ≤ Kn(v, ρ) < ∞ for all ρ ∈ R≥0.)
The continuity and boundedness of the kernel guarantees the
continuity of fV (v;FP ) given in (13) by the application of

Lebesgue’s dominated convergence theorem. This allows us
to write

0 < e−
( n
√
nv)2+up

2
1

Γ(n2 )2
n
2−1

≤ min
ρ∈[0,

√
up]
Kn(v, ρ)

≤ fV (v;FP )

≤ max
ρ∈[0,

√
up]
Kn(v, ρ)

≤ e−
( n
√
nv)2

2
In

2−1(up n
√
nv)

(up n
√
nv)

n
2−1

<∞, (96)

since In(x)
xn (x > 0) is a strictly increasing function. Therefore,

| ln fV (v;FP )| ≤ ( n
√
nv)2 + up

2
+ | ln(

In
2−1(up n

√
nv)

(up n
√
nv)

n
2−1

)|

≤ ( n
√
nv)2 + up

2
+ up

n
√
nv + ln(Γ(

n

2
)2

n
2−1)

(97)

≤ ( n
√
nv)2

2
(1 + up) + up + ln(Γ(

n

2
)2

n
2−1)

(98)

where in (97), we have used the inequality

Iν(x)

xν
<

coshx

2νΓ(ν + 1)

x>0
<

ex

2νΓ(ν + 1)
, (99)

which was proved in [18]. From (98), it can be verified that

|h̃V (zm;FP )|

≤
∫ ∞

0

|e−
( n
√
nv)2+z2m

2 ||
In

2−1(zm n
√
nv)

(zm n
√
nv)

n
2−1
|| ln fV (v;FP )|dv

≤ |e−
z2m
2 |
∫ ∞

0

e−
( n
√
nv)2

2
In

2−1(|zm| n
√
nv)

(|zm| n
√
nv)

n
2−1
| ln fV (v;FP )|dv

(100)

≤ |e
|zm|2−z2m

2 |
(

(|zm|2 + n)

2
(1 + up) + up

+ ln(Γ(
n

2
)2

n
2−1)

)
(101)

<∞

where in (100), we have used the fact that |In(z)| ≤ In(|z|)
and in (101) the upper bound in (98) has been used. Since the
absolute value of the integrand of h̃V (zn;FP ) is integrable,
by Lebesgue’s dominated convergence theorem, we have

lim
m→∞

h̃V (zm;FP ) = lim
m→∞

∫ ∞
0

Kn(v, zm) ln fV (v;FP )dv

=

∫ ∞
0

lim
m→∞

Kn(v, zm) ln fV (v;FP )dv

=

∫ ∞
0

Kn(v, z0) ln fV (v;FP )dv

= h̃V (z0;FP )
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which proves the continuity of h̃V (z, FP ). Let ∂T denote an
arbitrary triangle in the complex plane. We can write,∫
∂T

h̃V (z;FP )dz = −
∫
∂T

∫ ∞
0

Kn(v, z) ln fV (v;FP )dvdz

= −
∫ ∞

0

∫
∂T

Kn(v, z)dz ln fV (v;FP )dv

(102)
= 0 (103)

where (102) is allowed by Fubini’s theorem, because for a
given rectifiable triangle ∂T∫

∂T

|h̃V (z;FP )|dz <∞.

(103) is due to the holomorphy of Kn(v, z) (see (95)).
Therefore, by Morera’s theorem (with weakened hypothesis),
it is concluded that h̃V (z;FP ) is holomorphic on the entire
complex plane.

Alternatively, the holomorphy of the marginal entropy den-
sity can be proved as follows. The following integral

h̃V (z;FP ) = −
∫ ∞

0

Kn(v, z) ln fV (v;FP )dv

is uniformly convergent for all z ∈ K (where K is a compact
subset of C) in the sense that for ∀δ > 0, there exists some
real number L0 such that

| −
∫ L2

L1

Kn(v, z) ln fV (v;FP )dv| < δ,

for ∀L1, L2 satisfying L0 < L1 < L2. Therefore, by the
differentiation lemma [19], h̃V (z;FP ) is holomorphic on the
complex plane.

If εP∗ has infinite number of points, since it is a bounded
subset of the real line (⊆ [0,

√
up]), it has an accumulation

point in R by Bolzano-Weierstrass theorem [20]. Hence,
according to (29), the two holomorphic functions h̃V (z;FP∗)
and h(V ;FP∗) + λ(z2 − ua) become equal on an infinite set
that has an accumulation point in C. Therefore, by the identity
theorem for holomorphic functions of one complex variable
[19], the two functions are equal on the whole complex plane,
i.e.

h̃V (z;FP∗) = h(V ;FP∗) + λ(z2 − ua) , ∀z ∈ C,

which results in

h̃V (ρ;FP∗) = h(V ;FP∗) + λ(ρ2 − ua) , ∀ρ ∈ R. (104)

In the following, we show that (104) leads to a contradiction.
1) λ = 0. In this case, in which the average power

constraint is relaxed, (104) results in

fV (v;FP ) = e−h(V ;FP∗ ), (105)

which is a constant and is guaranteed by the invertibility
of (26) to be the only solution. The uniform distribution
in (105) cannot be a legitimate pdf for V on the non-
negative real line. This contradiction can be observed in

an alternative way. By noting that from (105) and (13),
if fV (v;FP ) is to be constant (shown by C), then

fP (ρ) = Cρn−1, ρ ≥ 0,

which is the only solution for fP (ρ) by the invertibility
of (13). Again, it is not a legitimate pdf for ρ and
obviously violates the peak power constraint.

2) λ > 0. In this case (104) holds iff

fV (v;FP ) =
2(
√
λ)n

Γ(n2 )
e−λ( n

√
nv)2

, (106)

which also holds iff

fP (ρ) = (

√
λ

1− 2λ
)n
ρn−1e−

λ
1−2λρ

2

Γ(n2 )
, (107)

with λ =
Γ(n2 +1)

Γ(n2 )(ua+n
2 ) . It is obvious that for 0 < λ < 1

2 ,
the solution in (107) violates the peak power constraint
and for λ > 1

2 , no legitimate fP (ρ) results in (106). For
λ = 1

2 , fP (ρ) = δ(ρ) which implies a unit mass point at
zero. This, of course, contradicts the first assumption of
FP∗ having infinite points of increase and also results
in C(up, ua) = 0.

Therefore, the magnitude of the optimal input has a finite
number of mass points. This completes the proof of the
theorem.

APPENDIX D
TWO INVERTIBLE TRANSFORMS

In this section, we show that the two following integral
transforms are invertible (i.e., one-to-one),

q(v) =

∫ ∞
0

Kn(v, ρ)t(ρ)dρ, (108)

w(ρ) =

∫ ∞
0

Kn(v, ρ)g(v)dv, (109)

where t is allowed to have at most an exponential order and
g a polynomial with a finite degree, so that the transforms
exist. The invertibility of (108) and (109) is equivalent to
the invertibility of (13) and (26), respectively. The following
lemma will be helpful in the sequel.

Lemma 2. The kernel function Kn(v, ρ) satisfies the two
following equations,∫ ∞

0

Kn(v, ρ)ρn−1e−sρ
2

dρ =
e−

s
2s+1 ( n

√
nv)2

(
√

2s+ 1)n
, (110)∫ ∞

0

Kn(v, ρ)e−s(
n
√
nv)2

dv =
e−

s
2s+1ρ

2

(
√

2s+ 1)n
, (111)

where s ≥ 0.

Proof. From the properties of probability density functions,∫
Rn

1

(
√

2πσ2)n
e−
‖y−x‖2

2σ2 dy = 1.

By writing y and x in spherical coordinates (i.e., y ≡ (r, ψ)
and x ≡ (ρ, θ)), and by substituting β = 1

2σ2 and α = ρ
σ2 , we

get (112) on top of the next page.
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∫ ∞
0

∫ π

0

. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0

e−βr
2+αraT (θ)a(ψ)rn−1

n−2∏
i=1

sinn−i−1 ψidψn−1dψn−2 . . . dψ1dr = (

√
π

β
)ne

α2

4β . (112)

By using (112) and by change of variables, (110) and (111)
are obtained.

In order to show the invertibility of (108), it is sufficient to
show that the following∫ ∞

0

Kn(v, ρ)t(ρ)dρ = 0, (113)

results in t(ρ) = 0. From (113), we have∫ ∞
0

∫ ∞
0

Kn(v, ρ)t(ρ)dρe−s(
n
√
nv)2

dv = 0 s ≥ 0.

By changing the order of integration, which is allowed here
by Fubini’s theorem, and by (111),∫ ∞

0

t(ρ)
e−

s
2s+1ρ

2

(
√

2s+ 1)n
dρ = 0, s ≥ 0,

which results in∫ ∞
0

t(
√
x)√
x
e−µxdx = 0, µ ∈ [0,

1

2
). (114)

Again, by extending µ to the complex domain, it is easy to
verify that the left-hand side of (114) is holomorphic on the
complex plane. Since this holomorphic function is zero on an
infinite set ([0, 1

2 )) which has an accumulation point in C, it
is zero on the whole complex plane and consequently the real
line by the identity theorem. Therefore,∫ ∞

0

t(
√
x)√
x
e−µxdx = 0, µ ∈ R,

which results in t(ρ) = 0. The uniqueness of this solution
results from the invertibility of Laplace transform (by con-
sidering the non-negative values for µ). It is obvious that the
same approach can be carried out to show the invertibility of
the transform (109). Alternatively, the following property of
the kernel function

Kn(v, ρ) = Kn(
ρn

n
, n
√
nv)

could be used in (108) to show the invertibility of (109).

APPENDIX E
ALTERNATIVE PROOF FOR REMARK 2

From [21] and [22], we have10

Γ(x+ 1) <
√
π(
x

e
)x(8x3 + 4x2 + x+

1

30
)

1
6 . (115)

Let f(n) , 2e
[

(n−1)
2 Γ(n−1

2 )
] 2
n−1

. From (44), we can write

CG ≥
n− 1

2
log

(
1 +

up
f(n)

)
≥ n− 1

2
log

(
1 +

up
F (n)

)
,

10Tighter bounds for Gamma function can be found in [23].

in which F (n) is an upper bound for f(n) and is obtained
from (115) as

F (n) = 2e

[
(n− 1)

2

√
π

(
n− 3

2e

)n−3
2
(

8(
n− 3

2
)3

+4(
n− 3

2
)2 +

n− 3

2
+

1

30

) 1
6

] 2
n−1

.

The behavior of F (n) as n goes to infinity can be obtained
as follows.

lim
n→∞

ln
F (n)

2e
= lim
n→∞

n− 3

n− 1
ln(

n− 3

2e
)

+ lim
n→∞

2

n− 1
ln

[
(n− 1)

2

√
π

(
8(
n− 3

2
)3

+4(
n− 3

2
)2 +

n− 3

2
+

1

30

) 1
6

]
= +∞.

Therefore, up
F (n) goes to zero with n, and from the expansion

of ln(1 + x) when x� 1, we can write

lim
n→∞

n− 1

2
ln

(
1 +

up
F (n)

)
= lim
n→∞

up(n− 1)

2F (n)

≥ lim
n→∞

up(n− 1)

2(n+ 25)
, (116)

where in (116), we have used the fact that for n ≤ 1010, it
can be verified that n < F (n) < n + 25. The gap between
CG and constant amplitude signaling can be written as

lim
n→∞

{CG − sup
FX(x):‖X‖2=up

I(X; Y)} ≤ lim
n→∞

up
2

(
1− n− 1

n+ 25

)
=

13up
n+ 25

,

which completes the proof.

APPENDIX F
PROOF OF REMARK 3

We have

C(up, ua) ≤ C(∞, ua) =
n

2
ln(1 +

ua
n

),

and

lim
ua→0

C(up, ua) ≤ ua
2
. (117)
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The CDF F ∗∗P (ρ) = (1 − ua
up

)u(ρ) + ua
up
u(ρ − √up) induces

the following output pdf

fV (v;F ∗∗P ) = (1− ua
up

)Kn(v, 0) +
ua
up
Kn(v,

√
up)

= (1− ua
up

)
e−

( n
√
nv)2

2

Γ(n2 )2
n
2−1

+
ua
up
e−

( n
√
nv)2+up

2
In

2−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2−1

= (1− ua
up

)
e−

( n
√
nv)2

2

Γ(n2 )2
n
2−1

[
1 +

ua
up − ua

×
e−

up
2 Γ(n2 )2

n
2−1In

2−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2−1

]
.

When ua is small, the entropy of V is given by (121) on the
next page.

The six terms in (120) are obtained by multiplying the
terms in the brackets of (119) in order. In (121), we have
neglected the last higher order term in (120) and have used
the approximation ln(1− x) ≈ −x when x� 1. Therefore,

lim
ua→0

h(V ;F ∗∗P )+

n−2∑
i=1

lnαi+(1− n
2

) ln 2π− n
2

=
ua
2
. (122)

(122) and (117) show the asymptotic optimality of the distri-
bution in (46).

APPENDIX G
PROOF OF REMARK 4

Since
√
z is holomorphic on the complex plane excluding

the non-positive real line (i.e., the domain where the principal
branch of the complex logarithm function is holomorphic),
g(
√
x) has the following power series expansion about ε > 0

g(
√
x) =

∞∑
m=0

gm(x− ε)m =

∞∑
m=0

g̃mx
m, (123)

where its interval of convergence is (0,∞). Assuming infinite
number of mass points, with the constraint in (47), (104)
changes to

h̃V (ρ;FP∗) = h(V ;FP∗) + λ(g(ρ)− ua) , ∀ρ ∈ R (124)

or equivalently

−
∫ ∞

0

Kn(v, ρ) ln fV (v;F ∗P )dv = λg(ρ) + h(V ;F ∗P )− λua,

∀ρ ∈ R. (125)

Multiplying both sides of (125) by ρn−1e−sρ
2

(s ≥ 0) and
integrating with respect to ρ gives

−
∫ ∞

0

ln fV (v;F ∗P )
e−

s
2s+1 ( n

√
nv)2

(
√

2s+ 1)n
dv

=

∫ ∞
0

[λg(ρ) + h(V ;F ∗P )− λua]ρn−1e−sρ
2

dρ,

where we have used the transform in (110). By a change of
variables as v = t

n
2

n and x = ρ2, we have

−
∫ ∞

0

ln fV (
t
n
2

n
;F ∗P )t

n
2−1 e−

s
2s+1 t

(
√

2s+ 1)n
dt

=

∫ ∞
0

[λg(
√
x) + h(V ;F ∗P )− λua]x

n
2−1e−sxdx.

(126)

By substituting (123) in (126), we get

−
∫ ∞

0

ln fV (
t
n
2

n
;F ∗P )t

n
2−1 e−

s
2s+1 t

(
√

2s+ 1)n
dt

=

∞∑
m=1

g̃mΓ(n2 +m)

s
n
2 +m

+
[h(V ;F ∗P )− λua + λg̃0]Γ(n2 )

s
n
2

.

Taking the inverse transform gives the unique solution as

ln fV (
t
n
2

n
;F ∗P ) =

∞∑
m=0

cmt
m,

where the coefficients are obtained from the set of equations
in (127) on the next page.

If there is no solution satisfying (127), (124) does not hold,
which is the desired contradiction. However, in the case of
having a solution for the coefficients in (127), we have

fV (v;F ∗P ) = e
∑∞
m=0 cm( n

√
nv)2m

. (128)

In the case cm = 0 (m ≥ 1), fV becomes a constant
on the non-negative real line which cannot be a probability
density function. The case cm = 0 (m ≥ 2) does not
result in a legitimate pdf, either (see (106) and its following
discussion.) For the remaining case of having at least one non-
zero cm(m ≥ 3), (128) leads to a contradiction as follows. Let
m∗ = maxm{m|cm 6= 0}. If cm∗ > 0, (128) is not integrable
over the non-negative real line, hence, it is not a pdf. However,
if cm∗ < 0, no FP (ρ) can result in fV , since from (96),

f−1
V (v;FP ) = O(e

( n
√
nv)2

2 ), (129)

while the behavior of the inverse of (128) is different from
(129) as v goes to infinity. Therefore, it is concluded that
(128) cannot be resulted by any FP (ρ) due to its behavior at
large v. This implies that the discrete nature of the magnitude
of the optimal input distribution does not change when the
average constraint is generalized to (47).
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