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ABSTRACT Mobile crowdsensing (MCS) is a new sensing framework that empowers normalmobile devices
to participate in sensing tasks. The key challenge that degrades the performance of MCS is selfish mobile
users who conserve the resources (e.g., CPU, battery, and bandwidth) of their devices. Thus, we introduce
energy harvesting (EH) as rewards into MCS, and thus provide more possibilities to improve the quality of
service (QoS) of the system. In this paper, we propose a game theoretic approach for achieving sustainable
and higher quality sensing task execution in MCS. The proposed solution is implemented as a two-stage
game. The first stage of the game is the system reward game, in which the system is the leader, who allocates
the task and reward, and the mobile devices are the followers who execute the tasks. The second stage of
the game is called the participant decision-making game, in which we consider both the network channel
condition and participant’s abilities. We analyze the features of the second stage of the game and show that
the game admits a Nash equilibrium (NE). Based on the NE of the second stage of the game, the system
can admit a Stackelberg equilibrium, at which the utility is maximized. Simulation results demonstrate that
the proposed mechanism can achieve a better QoS and prolong the system lifetime while also providing a
proper incentive mechanism for MCS.

INDEX TERMS Task execution, energy harvest, game theory, mobile crowdsensing.

I. INTRODUCTION
Nowadays smartphones have changed people’s daily lives.
The functions of smartphones become increasingly powerful
every day, and they have rich sensory capabilities. Smart-
phones not only allow us to communicate with each other
but also offer the possibilities of sensing the environment and
collecting, processing and sharing information. These tech-
nologies empower the development of mobile crowdsensing
(MCS). MCS is widely applied in our daily lives and in areas
such as environment monitoring, personal healthcare, virtual
reality entertainment, transportation monitoring and smart
city applications [1]–[4]. It has the advantages of mobility,
scalability and cost effectiveness, comparing to the tradi-
tional Internet of things. Moreover, the integration of human

intelligence into the mobile sensing and computing process
is also a special aspect of MCS. This means that people can
decide how to and when to be a member of MCS.

For a typical MCS procedure, first, the MCS server will
publish the sensing task to a special area. Then, the participant
recruiting procedure based on performance, reputation etc.,
will be triggered. All participants will begin to execute the
sensing task: sensing, executing sensing data and returning
the results to the server. When the sensing task is relatively
easy, sensing and executing will not cause the heavy con-
sumption of energy or other resources by the mobile devices.
However, when a tough sensing task is allocated, such as
multimedia data sensing and mining, participants know they
have to spend more resources to accomplish the task, so some
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of them may choose to leave without a proper task execution
plan and incentive mechanism.

Incentive mechanism is the most important issue which
needs to be considered in MCS. A proper incentive mecha-
nism can make sure the participants in MCS to donate their
resource to achieve a common interest. To simulate mobile
user to become a participant and remain the number of the
participants, researchers have designed extensive method to
provide the incentive mechanism. They adopt money, repu-
tation and credit as reward to participants to guarantee the
sensing quality [5], [6].

In our work, energy harvesting (EH) is envisioned as a
promising way to address the challenge of incentive mech-
anism. EH can capture recyclable external energy, including
solar, indoor lightening, vibrational, chemical and human
motion energies [7]. The utilization of EH devices in MCS
will provide new features, such as self-sustainability, cover-
age of sensing area and the quality of sensing result. In this
paper, we adopt EH devices in MCS. The system will use the
energy that can be harvested by the participants as a reward.

In the traditional MCS sensing task execution, partici-
pants only can choose to be a member and donate their own
resource or choose not to be involved at all. However the
traditional method may reduce the possibility of a potential
participant by only two choices: to do or not to do. In our
work, we introduce computation offloading [8], [9] into MCS
sensing task execution. Thus, the participants can make dif-
ferent choices by analyzing their resource. In addition of EH,
participants’ battery can be maintained and the sensing life of
the system can be prolonged.

In this paper, we adopt a game theoretic solution to address
the reward-aided sensing task execution in MCS, in addition
to the QoS and system lifetime of MCS. Game theory focuses
on the features of participant competition and interactions
[7], [10], [11]. In an MCS sensing environment, any action
taken by a participant affects the decisions of others in the
mobile network. Thus, game theory is a natural mathemat-
ical approach for studying this interaction. In this paper,
the Stackelberg leadership model is a promising way to pro-
vide an incentive mechanism and solve the reward allocation
problem, which enables the system and the participants to
maximize their utilities at the same time [12], [13].

In this paper, we study the issue of reward-aided sensing
task execution, in addition to sustainable system lifetime
in MCS, and model it as a two-stage Stackelberg game.
EH as a reward will also act as the incentive mechanism
in MCS. This approach will reduce the energy consumption
of mobile users. By giving different participants different
rewards, this approach helps to control the sensing quality of
the data. In summary, the contributions of this paper are as
follows:
• Reward-aided sensing task execution game formu-
lation: The proposed Stackelberg game consists two
parts. The first stage of the game is a system reward
game (SRG). In the SRG, the system that allocates the
tasks and reward is the leader, and the mobile devices

that execute the tasks are the followers. The second
stage of the game is called a participant decision-making
game (PDG); both the system and mobile devices are
players in the second stage. The strategy of the system
is the optimal reward, and the optimal strategy of the
participants is how to execute the task.

• Properties of the game: The PDG in the framework
ensures that the SRG has an optimal result. Because
the sub-game has an NE, all the mobile devices can
achieve a mutual satisfaction. As a result of the sub-
game, the participants inMCSwill be separated into two
groups: those who offload the task and those who exe-
cute the task locally. Based on their different decisions
in sensing task execution, the system will allocate the
reward to different participants.

• Reward-aided sensing task execution mechanism
and main algorithms: The proposed Stackelberg game
is achieved by two main algorithms, which operate in
tandem: In PDG, algorithm1 takes communication inter-
ference, computation time and energy into account and
achieves the Nash equilibrium of the decision-making
game. In SRG, based on the result of algorithm1, algo-
rithm 2 can achieve the optimal reward amount and
allocate the reward.

The remainder of this paper is organized as follows.
In section II, we discuss the related works. The system
model is introduced in section III. The Stackelberg game
and reward-aided sensing task execution mechanism are pre-
sented in sections IV and V, respectively. The performance
and simulation of the mechanism are analyzed in section VI.
In section VII, we conclude the paper.

II. RELATED WORK
The incentive mechanism and sensing quality play crucial
roles in MCS. Related works have showed different incen-
tive mechanisms: they adopt money, reputation and credit as
rewards for participants [5], [6].

In [14], two types of incentive mechanisms are introduced:
a user-centric model based on the Stackelberg game and a
system-centric model based on auction. Kantarci et al. [15]
proposed a new crowdsensing framework, namely, social net-
work assisted trustworthiness assurance (SONATA), which
aims to maximize the crowdsensing platform utility and min-
imize the manipulation probability through vote-based trust-
worthiness analysis in a dynamic social network architecture.
Reference [16] designed an inventive mechanism for discrete
crowdsensing in which each user has a uniform sensing
subtask length. The objection of this work is to maximize
the platform utility and achieve perfect Bayesian equilib-
rium. Reference [17] studied the incentive mechanisms for
a novel Mobile Crowdsensing Scheduling problem, which
achieved desirable truthfulness, individual rationality and
computational efficiency. However there is no work which
takes energy as a reward in MCS. In our work, energy plays
a significant role in MCS, because energy as a reward can
guarantee the quantity of the participants, and then sustain
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the coverage of sensing area, all these improve the QoS
in MCS.

For the sensing quality of MCS, Jin et al. [18] pro-
posed a reverse auction approach for the incentive mech-
anism of MCS based on quality of information (QoI).
Marjanović et al. [19] presented a framework for green
mobile crowdsensing that utilized a quality-driven sensor
management function to continuously select the k-best sen-
sors for a predefined sensing task. In [20], a novel approach
was proposed that uses the techniques of evolutionary algo-
rithms to determine the optimal trade-off between data quality
and cost. In our work, we adopt computation offloading as an
additional option for the participants. Computation offload-
ing makes it possible to execute heavy sensing task in the
cloud and return the result directly back to the server. Bud-
gets in MCS is also an essential parameter when MSC plat-
formmaximizes the sensing quality. Reference [21] proposed
a novel task allocation framework called CrowdTasker for
MCS. CrowdTasker aims to maximize the coverage quality
of the sensing task under a budget constraint by greedy
algorithm. References [22] and [23] proposed a framework to
achieve the optimal coverage quality under budget constraint.

For EH, this approach is widely applied in many scenar-
ios in wireless sensor networks [24]–[27]. Wang et al. [28]
studied joint channels and power allocation to improve the
energy efficiency of user equipment by analyzing their bat-
teries. Mao et al. [29] investigated a green mobile-edge
computing system with energy harvesting devices and devel-
oped an effective computation offloading strategy. In [30],
a tractable model was developed for analyzing the perfor-
mance of downlink heterogeneous cellular networks with
both power-grid-connected base stations and energy har-
vesting small cell access points. In [31], energy harvest-
ing has also been taken into consideration in cognitive
radio sensor networks (CRSNs). It addressed a network
utility maximization problem which is greatly impacted by
sampling rate control and channel access schedule, under
the harvested energy, channel capacity and interference
constraints.

Our work is inspired by the works on the interference
among the users in mobile networks and a game theoretic
approach for maximizing the system utility [14], [32]. How-
ever, our work differs the above mentioned related works
in the following ways: (a) we consider interference among
participants in MCS to propose an efficient sensing task exe-
cution approach. (b) we adopt EH as a reward in the incentive
mechanism, which prolongs the system lifetime of MCS.
(c) our work faces a multi-parameter environment where the
participants’ information is multi-dimensional.

III. SYSTEM MODEL
We introduce the system model of MCS in this section.
As shown in Fig. 1, we consider in a framework that consists
of a set of participants P = {1, 2, . . . , p},where participant
i will be assigned a sensing task Ti = {Bi,Di} to be exe-
cuted, which is published by the system. Here, Bi denotes

FIGURE 1. Mobile crowdsensing with energy harvesting scenario.

the data size of the computation input data (which including
the sensing data and the execution code), and Di denotes the
required CPU cycles of participant i. There is a wireless base
station that allows participants to offload computations to the
cloud. Participants in MCS can decide whether to execute
locally or to offload the task to the cloud via the wireless
network. We denote by di as the sensing task execution
decision of participant i. Specifically, we have di = 0 if the
participant will execute the sensing task locally, and di = 1
if the participant chooses to offload the task. The decision
profile is d = {d1, d2, . . . dn}. In this scenario, EH is a
special feature of the MCS participants. Hence, the sensing
task execution model, EH model and network conditions in
MCSwill be discussed. We will focus on the efficient sensing
tasks execution procedure and the energy-aided incentive
mechanism in MCS.

A. TASK EXECUTION MODEL
In MCS, there are two potential ways to execute the sensing
tasks. Participants can choose either of them to maximize
their utility. In this section, we introduce the sensing task
execution model in MCS.

1) LOCAL EXECUTION MODEL
We consider each i ∈ P has a sensing task Ti, which is
published by the system. We will discuss execution delay and
energy consumption of the local execution model.

For local execution, a participant will execute the task with
the local resources of the mobile device and generate the
sensing result ri with data size Bri , B

r
i can be larger or smaller

than the sensing task size Bi based on the sensing task. The
computational capacity of the participant i is denoted as Fi.
The local execution delay T l1i and energy consumption E l1i
can be expressed as follows:

T l1i =
Di
Fi

(1)

E l1i = ϕDi (2)

where ϕ = KF2
i denotes the energy consumption per CPU

cycle, K is energy coefficient based on the structure of the
chips [33]. In sensing result transmission process, the trans-
mission delay T l2i and energy cost E l2i can be expressed as
follows:

T l2i =
Bri
Ri

(3)
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where Ri is the data transmission rate of participant i. Based
on (3), we can have the energy consumption of the result
transmission stage.

E l2i = Pi
Bri
Ri

(4)

wherePi is the transmission power of participant i. According
to (1), (2), (3) and (4) we can obtain the local sensing task
execution cost C l

i as:

C l
i = w1(T

l1
i + T

l2
i )+ w2(E

l1
i + E

l2
i )

= w1(
Di
Fi
+
Bri
Ri

)+ w2(ϕDi + Pi
Bri
Ri

) (5)

where w1,w2 ∈ (0, 1) are the coefficients of the execu-
tion delay and energy consumption. Ri is the data rate for
participant i that we simply assume is the same to every
local execution participant due to the interference can be
discarded. A participant will compute the sensing cost before
deciding whether to execute the sensing task locally or in
the cloud. Note that execution delay and energy consumption
are parameters with different scales, so we will use a nor-
malization method to convert the parameters into a common
scales.

2) CLOUD EXECUTION MODEL
In the cloud execution model, the sensing task will be exe-
cuted in the cloud. For this procedure, the cost of cloud execu-
tion includes two parts: the delay contributed by transmission
in the network and execution in the cloud and the energy
consumption of offloading the sensing task. The execution
delay of the cloud execution model is denoted as T oi , which
is given by

T oi =
Bi
Ri(d)

+
Di
Fci

(6)

where Ri(d) is different from Ri in (4), because interference
will happen when participants decide to offload the sensing
task. And Fci is the computational ability of the cloud which
we assume the system will offer every participant the same
computation ability. We denoted the energy consumption in
the cloud execution model as Eoi :

Eoi = Pi ·
Bi
Ri(d)

(7)

According to (6) and (7), we can compute the cost of the cloud
execution, which is denoted as Co

i :

Co
i = w1(

Bi
Ri(d)

+
Di
Fci

)+ w2 Pi
Bi
Ri(d)

(8)

B. NETWORK MODEL
Due to the scenario of MCS, when a big amount of mobile
devices begin to offload the sensing task to the cloud,
the communication interference among the participants need
to be considered about. In the mobile network, the base
station can manage the communications of all mobile users,
including uplink and downlink communications. The data

FIGURE 2. Stackelberg game.

transmission rate of participant i is a logarithmic function of
SINR. SINR is denoted as γi(d) [32], [34]

Ri(d) = f (γi(d))

= f (
PiHi,b

σ 2 +
∑

m∈P,m 6=i,dm=1 PmHm,b
)

= W log2(1+
PiHi,b

σ 2 +
∑

m∈P,m6=i,dm=1 PmHm,b
) (9)

where Pi and Hi,b represent the transmission power of par-
ticipant i and channel gain between the participant i and
base station, respectively; σ 2 denotes the noise power level,
including noise power and interference power. According
to the equations above, if too many participants decide to
offloading the sensing task, SINR will decrease, interference
will incur and lead to low data rates, which negatively affect
MCS. Thus in the offloading phrase, the interference needs
to be taken into consideration.

IV. REWARD-AIDED SENSING TASK EXECUTION GAME
In MCS, the system is interested in maximizing its utility
while publishing the tasks and rewards for the participants.
At the same time, the participants who own the mobile
devices are both selfish and rational; hence, they also want
to maximize their own utility. The participant must compute
the cost of execution based on communication interference,
energy consumption and battery level. If the system will give
him a reward that is not less than the cost, then he will
participate in MCS. Firstly in our work, we assume that the
system would like to have more participants to offload the
sensing task to the cloud, due to the capacity of the cloud
and the transmission delay of local execution. Thus there
will be more reward that will be allocated to the offloading
participants.

The proposed reward-aided sensing task execution mech-
anism is achieved by Stackelberg game, where the system
is the leader who moves first in the game and the partici-
pants are the followers. In Stackelberg game, there are two
stages: an SRG, in which the system provides reward for
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TABLE 1. Notation and descriptions.

users who participate in computation and a PDG, in which
participants can decide by themselves whether to offload the
sensing task or execute it locally according to the reward from
the system. In order the solve the whole Stacketlberg game,
we need to solve the second stage of the game (PDG) first
based on the reward from the system [35].

Before starting, there are several important questions
regarding the game, the first of which is how to choose a rea-
sonable Utility Function (UF). After a UF has been selected,
we must determine what kind of strategy a participant can
choose to maximize or minimize the UF; in another words,
what is the best response of a participant? Moreover, will a
stable state (NE) exist for all the participants? If the system
can achieve NE, will it be unique? In this section, we will
address several important questions while formulating the
two-stage game.

A. UTILITY FUNCTIONS
1) STAGE ONE OF STACKELBERG GAME
In an SRG, the leader is the system, who makes the first move
in the game, and the followers are the mobile users. The UF of
the system is the cost of the system after allocating the reward
to the participants, which can be formulated as

US =
p∑
i=1

EiI(di=1) +
p∑
i=1

E ′i I(di=0) (10)

where I is an indicator function, if di = 1 is true, then the
indicator function is true and vice versa. In equation (10),
Ei denotes as the reward for offloading participants and E ′i
as the reward to local participants. E ′i = εEi for local
participants where ε is constant. In the first stage of Stack-
elberg game, the goal is to minimize the cost of the system,

which implies

min
d,Ei

US

s.t. Ei ≥ Eoi ∀i ∈ P
E ′i ≥ E

l1
i + E

l2
i ∀i ∈ P (11)

2) STAGE TWO OF STACKELBERG GAME
The participant i’s utility function is the profit he can make by
obtaining reward from the system minus the cost of sensing
task executions

UP
i =

{
Ei − Co

i if di = 1
E ′i − C

l
i if di = 0

(12)

where Ei and E ′i are different rewards he can obtain from
different sensing task execution plan. In the second stage of
Stackelberg game, the utility function of participant should
be maximized for each participant.

max
d

UP
i (13)

B. GAME FORMULATION AND PROPERTY
Definition 1 (Stackelberg Equilibrium): (d∗,E∗i ) is a Stack-
elberg Equilibrium for the proposed game if it satisfies the
following conditions for any value of (d,Ei)

US (E∗i , d
∗) ≥ US (Ei, d∗)

UP
i (d
∗
i , d−i) ≥ UP

i (d
′
i , d−i) (14)

According to definition 1, the Stackelberg Equilibrium can
be obtained as follow: in PDG, equilibrium depends on the
followers’ optimal response of sensing task execution plan
where theywill obtain the optimal strategy profile d∗. In SRG,
system uses the optimal strategy profile of PDG to obtain the
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optimal reward E∗i for the participants. Therefore, we need to
analysis the PDG first, to solve the SRG.

First, we define the Best Response (BR) in the PDG. The
BR is a central concept in game theory. It is a strategy that
produces the maximum profit for a player in the game, given
the other players’ strategies.
Definition 2 (Best Response in a Decision-Making Game):

Participant i’s strategy d∗i is the Best Response to strategies
d−i of other participants, if

UP
i (d
∗
i , d−i) > UP

i (d
′
i , d−i) ∀di ∈ d, d∗i 6= d ′i (15)

In a PDG, all the participants will act according to their
BR when playing the game. Hence, the PDG will eventually
reach a stable point, which we call it NE.

C. SOLUTION OF STACKELBERG GAME
1) STAGE2 – PDG
In order to solve the Stackelberg game, we apply backward
induction. First we need to solve the second stage of the game.
We take the reward Ei and E ′i as given in stage 2.
Theorem 1 (Best Response Strategy): According to Defi-

nition 2 and the action profile of participant i is di = {0, 1},
where 0 means local execution and 1 means cloud execution.
Here wewill discuss which action of the participant is the best
response towards to other participants’ actions. We assume
the best response of participant i is d∗i , according to the fixed
strategy profile d−i of other participants. Thus we have

UP
i (d
∗
i , d−i) =

{
Ei − Co

i + U
P
i (d−i) if d∗i = 1

E ′i − C
l
i + U

P
i (d−i) if d∗i = 0

(16)

in BR d∗i 6= d ′i , thus we assume when d∗i = 1, we obtain

UP
i (1, d−i) > UP

i (0, d−i)

where we have

Ei − Co
i + U

P
i (d−i) ≥ E ′i − C

l
i + U

P
i (d−i)

Co
i − C

l
i ≤ Ei − E ′i

on the other hand, when d∗i = 0, we have

Co
i − C

l
i ≥ Ei − E

′
i (17)

As it shows in (17), we need to discuss the relation between
C l
i and C

o
i . According to (5) and (8), we have the left side

of (17)

w1(
Bi
Ri(d)

+
Di
Fc

)+ w2 Pi
Bi
Ri(d)

− C l
i

where we can find out the data rate when participants offload
the sensing task to the cloud will strongly effect the cost of
sensing task execution. Based on (9) when all the participants
want to offloading the task, theywill suffer a high interference
in the channel. This will cause the increasing of the cost of
offloading. Thus in PDG, the best response is when partici-
pants try to choose the cloud execution, which implies

d∗i =

{
1 if Co

i − C
l
i ≤ Ei − E

′
i

0 otherwise
(18)

To simplify the problem, we assume all the participants
are homogenous, which means they are under the same chan-
nel condition and same transmission power, thus P1H1,s =

P2H2,s = . . . = PpHp,s = k . Based on d∗i = 1 is the the
best response of participants i. According to (9) and (18),
we obtain

0 <
p∑
i=1

kI(di=1) ≤
k

2

w1Bi+w2BiPi

(Cli+Ei−E
′
i−w1

Di
Fci

)W
− 1

− σ 2 (19)

When
∑p

i=1 kI(di=1) is out of the range of (19), the utility
function will decrease, so the participants will choose to exe-
cute locally. We can obtain the threshold of strategy profile
d∗ of the participants

p∑
i=1

I(di=1) =
1

2

w1Bi+w2BiPi

(Cli+Ei−E
′
i−w1

Di
Fci

)W
− 1

−
σ 2

k
(20)

2) STAGE1 – SRG
From Stage2, we obtain the optimal strategy profile d∗. Now
we will solve Stage1. According to (10) and (19), in addition
with E ′i = εEi, we obtain

min
d∗,Ei

n∑
i=1

EiI(di=1) +
n∑
i=1

εEiI(di=0)

= (
1

2
Ai

Bi+CiEi − 1
−
σ 2

k
)Ei

+ (n− (
1

2
Ai

Bi+CiEi − 1
−
σ 2

k
))εEi

= (1− ε)(
1

2
Ai

Bi+CiEi − 1
−
σ 2

k
)Ei

+ εnEi (21)

where

Ai = w1Bi + w2BiPi

Bi = (C l
i − w1

Di
Fci

)W

Ci = (1− ε)W

and n is the total number of the participants in MCS.
In Stage1, we want to find out the smallest value of function
(24).Thus, the derivative of (24) is

d(US )
d(Ei)

=
(1− ε)(2

Ai
Bi+CiEi − 1)

(2
Ai

Bi+CiEi − 1)2

+

AiCiln2(1− ε)Ei2
Ai

Bi+CiEi 1
(Bi+CiEi)2

(2
Ai

Bi+CiEi − 1)2

− [(1− ε)
σ 2

k
− εn] (22)
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where ε ∈ (0, 1),Ai,Bi,Ci > 0. And then we need to discuss
about the second derivative of (23), namely

d2(US )
d(Ei)2

=
d

d(Ei)
[
(1− ε)(2

Ai
Bi+CiEi − 1)+

(2
Ai

Bi+CiEi − 1)2

+

AiCiln2(1− ε)Ei2
Ai

Bi+CiEi 1
(Bi+CiEi)2

(2
Ai

Bi+CiEi − 1)2
] (23)

According to (23), we can easily find out d
2(US )
d(Ei)2

is positive,
thus (22) is concave. Setting the first derivative of US to 0,
we obtain the estimated Ei

Emini =
Ai − Bi

Ci(σ
2

k −
εn
1−ε )
−
Bi
Ci

(24)

According to the range of Ei, namely

Ei =

{
max[Eoi ,E

l1
i + E

l2
i ] if Emini < Eoi , (E

l1
i + E

l2
i )

Emini else

(25)

According to (25), we can obtain the optimal reward from
system to every participants individually based on how the
participants execute the sensing task.

D. ENERGY HARVEST MODEL
Nowwe introduce the battery level update of each participant
after reward allocated. The mobile devices in the MCS are
equipped with EH components.

We use ECi , Ei, E
N
i , E

I
i and EBi to denote the energy con-

sumption, the energy that can be harvested as reward, the new
energy level, the initial energy level and battery capability
of the participants, respectively. According to (2), (4), (7),
we have

ECi =

{
Eoi
E l1i + E

l2
i

(26)

According to energy aided reward in MCS, we have

ENi =

{
EBi if E Ii − E

C
i + E

H
i ≥ E

B
i

E Ii − E
C
i + E

H
i otherwise

(27)

Equation (27) shows the new battery level of participants after
energy harvesting.

V. REWARD-AIDED SENSING TASK EXECUTION
MECHANISM
In this section, we introduce the reward-aided sensing task
execution mechanism and the main algorithms. We suppose
that the system publishes a sensing task that requires the
mobile devices in the specific area to record a video for data
mining.

A. MECHANISM DESIGN
• The system will announce the task to all the participants
in the specific area, including all the parameters of the
sensing task (the size of the task, required CPU, etc.) and
the reward to the participants based on different sensing
task execution plan;

• Based on the parameters of the sensing task, the param-
eters of the participants (battery level, bandwidth, data
plan, and CPU), the channel in the mobile network
and the reward, the participants will decide whether to
execute the sensing task locally or offload it to the server;

• The system will allocate the rewards to different par-
ticipants based on the sensing task execution plan. The
participants will get the energy and renew their battery
level;

• The cost of system is optimized and the lifetime of the
system will be prolonged.

B. MAIN ALGORITHMS
Based on Theorem 1, Algorithm 1 is designed to achieve opti-
mal strategy profile in PDG. In other words, after algorithm 1
has been carried out, all the participants will be separated
into two groups. In this algorithm, first the cost of execu-
tion will be calculated and then will be ranked in ascending
order; then, based on the best response, the participants will
make different decisions. Here in Algorithm1, we obtain the
optimal decision profile for the stage 1 of Stackelberg game.
Algorithm 2 determines the reward that will be allocated
to the participants. It is based on the utility functions of
the SRG.

Algorithm 1 Participators Decision-Making Game
1: Input: metrics of channel, task, participators’ ability and

reward
2: Output: d∗

3: Let Co
i [c

o
1 . . . c

o
i ], C

l
i [c

l
1 . . . c

l
i] and d[d1 . . . di] be new

arrays
4: Let i = 1
5: for i = 1 to n do
6: Ci = Co

i − C
l
i

7: end for
8: Sort Ci in ascending order
9: Let j = 1
10: for j = 1 to n do
11: if

∑n
i=1 kI(di=1) ≤

k

2

w1Bi+w2BiPi
(Cli+Ei−E

′
i−w1

Di
Fci

)W
−1

− σ 2 then

12: dj = 1
13: d∗ = dj

⋃
d

14: end if
15: end for

Here, we analyze the battery levels of all the participants
to determine whether the proposed mechanism can achieve
a longer system lifetime. Although system lifetime is an
important parameter in MCS, there has been little work in
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Algorithm 2 System Reward Allocation
1: Input: d
2: Output: reward Ei and the new battery level ENi
3: Let reward = 1
4: for i = 1 to n do
5: if di 6= 0 then
6: i++
7: end if
8: end for
9: Ei = max( Ai

σ2
k −

εn
1−ε

−
Bi
Ci
,Pi

Bi
Ri(d)

, 1
ε
(ϕDi + Pi

Bri
Ri
)

10: for j = 1 to n do
11: if di = 1 then
12: E Ii − E

C
i + Ei

13: else
14: E Ii − E

C
i + εEi

15: end if
16: end for

this area. Therefore, a deeper collaborative approach for
energy harvesting in MCS will be developed in the future
work.

VI. PERFORMANCE EVALUATION
We evaluate the performance of the reward-aided sensing task
execution mechanism and its algorithms by performing sim-
ulations. The simulation results are obtained using MATLAB
on a computer with Intel i5 at 1.3 GHz.

A. SIMULATION SETUP
We simulate an MCS environment that consists of 20 par-
ticipants with a sensing task with a data size of 420KB
and 1000 Megacycles of required CPU. The computational
capability of each participant is randomly selected from 1.0,
0.8 and 0.5 GHz. The bandwidth of the channel is set as
5.5 MHz, the transmission power is 100 mWatts, and the
background noise is −100 dBm. The capability of the cloud
is 100 GHz.

To represent the sensing quality, we proposed the sensual-
ity metric to measure the QoS of the system [36], which is
denoted by ψ

ψ =

∑p
i=1 σ1F

c
i I(di=1) +

∑p
i=1 σ2FiI(di=0)

Expected
(28)

where Expected is the expected quality level of the MCS
system; here, we set Expected = 100. The QoS index
indicates howMCS executes the sensing task; since the cloud
has more computation power for better executing the sensing
task, we set 1 > σ1 > σ2 > 0.

B. PERFORMANCE EVALUATION OF THE
REWARDED-AIDED SENSING TASK
EXECUTION MECHANISM
The following simulation results provide an insight into
the performance of the reward-aided sensing task execution

FIGURE 3. System/ participants utility and task size.

mechanism. The metrics that interest us include the utilities
of the system and participants, system lifetime and sensing
quality, along with the effects of the numbers of participants,
sensing task size and reward. The performance of the pro-
posed mechanism is also compared with that of traditional
MCS sensing task execution strategy, in which all tasks are
sensed and executed locally. In addition to the local strategy,
we also adopt a non-cooperative game as a new compari-
son [37]. In a non-cooperative game, based on equation (12)
the participant’s utility function, the participants will compete
according to a fixed reward tomaximize the utility by offload-
ing sensing task. Thus, we set a non-cooperative algorithm
and local sensing task execution as the benchmarks.

FIGURE 4. System utility and participants.

In Fig. 4, we show the utilities of system and participants
in the scenario in which the MCS system consists of 20 par-
ticipants and a set reward, along with a task size range from
0 KB to 5000 KB. According to the figure, when the task size
is small, the values of the utilities are stable because most of
the participants will execute a small task locally. As the task
size increases, the participants’ utility decreases, while the
system’s utility increases. Note that the system’s and partic-
ipants’ utilities intersect when the task size is approximately
1250 KB, which means that in this scenario, the task size
is optimal for the MCS system. Compared to the proposed
mechanism, the utility of the traditional sensing task execu-
tion method is much smaller due to the low computational
capability.
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FIGURE 5. System lifetime and task size.

FIGURE 6. System lifetime and reward.

FIGURE 7. System lifetime and participants.

System lifetime is a crucial metric in MCS and can
indicate how healthy an MCS is. In this paper, we adopt
the reward-aided mechanism to prolong the system lifetime
of MCS. We define that the system lifetime in terms of
the lowest battery level of the participants. Figs. 5 and 6
show the impacts of the sensing task size, reward and num-
ber of participants, respectively, on system lifetime. Fig. 5
shows the result of both mechanism, with and without
energy harvesting. The proposed mechanism achieves a
slower decrease and a better lifetime than the other meth-
ods. Fig. 7 shows that with the same reward, the proposed
mechanism achieves a longer lifetime than the traditional
one and non-cooperation game. Fig. 7 also shows how
the number of participants affects the system lifetime.

As the number of participant increases, the system life time
stabilizes.

FIGURE 8. Sensing quality and reward.

Fig. 8 shows the relation between reward and sensing
quality. According to the figure, the sensing quality increases
when the reward increases because more participants will
offload the sensing task for execution, which achieves bet-
ter quality. However, after a certain point, as the reward
increases, the sensing quality does not change. This is due to
the interference of the channel, as no more participants can
offload the sensing task.

VII. CONCLUSION
In this paper, a reward-aided sensing task execution mech-
anism for MCS has been proposed. The proposed mecha-
nism aims to improve the sensing quality and prolong the
system lifetime by assigning energy as a reward to the partic-
ipants. The proposed mechanism adopts game theory to solve
this multi-objective optimization problem. The mechanism
presented in this paper considers both the network channel
conditions and participants’ abilities and adopts energy as
the reward for the participants. Extensive simulations have
demonstrated the advantages of the proposed mechanism,
which yields a better QoS and a longer system lifetime
for MCS.

In future work, we plan to make possible deeper collabora-
tion between energy harvesting andMCS.Wewill investigate
the sensing data and energy transmission in MCS to achieve
a better QoS of MCS.
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