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Abstract—Pareto dominance-based multiobjective optimization
has been successfully applied to constrained evolutionary
optimization during the last two decades. However, as another
famous multiobjective optimization framework, decomposition-
based multiobjective optimization has not received sufficient
attention from constrained evolutionary optimization. In this
paper, we make use of decomposition-based multiobjective
optimization to solve constrained optimization problems (COPs).
In our method, first of all, a COP is transformed into a
biobjective optimization problem (BOP). Afterward, the trans-
formed BOP is decomposed into a number of scalar optimization
subproblems. After generating an offspring for each subprob-
lem by differential evolution, the weighted sum method is
utilized for selection. In addition, to make decomposition-
based multiobjective optimization suit the characteristics of
constrained evolutionary optimization, weight vectors are elabo-
rately adjusted. Moreover, for some extremely complicated COPs,
a restart strategy is introduced to help the population jump out
of a local optimum in the infeasible region. Extensive exper-
iments on three sets of benchmark test functions, namely, 24
test functions from IEEE CEC2006, 36 test functions from
IEEE CEC2010, and 56 test functions from IEEE CEC2017,
have demonstrated that the proposed method shows better or
at least competitive performance against other state-of-the-art
methods.
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I. INTRODUCTION

MANY scientific and engineering optimization problems
can be formulated as constrained optimization problems

(COPs) [1], [2]. Without loss of generality, a COP can be
described as

minimize f (�x), �x = (x1, . . . , xD) ∈ S, Li ≤ xi ≤ Ui

subject to: gj(�x) ≤ 0, j = 1, . . . , l

hj(�x) = 0, j = l + 1, . . . , m

where f (�x) is the objective function, �x is the decision vector
(a solution or an individual), xi is the ith dimension of �x, D is
the number of dimensions, Li and Ui are the lower and upper
bounds of xi, respectively, S = ∏D

i=1 [Li, Ui] is the decision
space, gj(�x) is the jth inequality constraint, l is the number of
inequality constraints, hj(�x) is the (j − l)th equality constraint,
and (m − l) is the number of equality constraints.

For COPs, the degree of constraint violation of �x on the jth
constraint is expressed as follows:

Gj(�x) =
{

max
(
0, gj(�x)

)
, 1 ≤ j ≤ l

max
(
0, |hj(�x)| − δ

)
, l + 1 ≤ j ≤ m

(1)

where δ is a positive tolerance value to relax equality con-
straints. Afterward, the degree of constraint violation of �x on
all constraints is calculated as follows:

G(�x) =
m∑

j=1

Gj(�x) (2)

�x is called a feasible solution if G(�x) = 0; otherwise, it is
called an infeasible solution. The goal of solving a COP is to
locate the feasible optimum.

In the community of evolutionary computation, there has
been an increasing interest in applying evolutionary algo-
rithms (EAs) to solve COPs. In order for EAs to deal
with COPs, constraint-handling techniques should be inte-
grated. In principle, EAs aim to generate offspring while
constraint-handling techniques are in charge of comparing
individuals. The last two decades have witnessed the suc-
cessful applications of multiobjective optimization to design
constraint-handling techniques. In multiobjective optimization-
based constraint-handling techniques, a COP is first trans-
formed into a multiobjective optimization problem (MOP).
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Then, multiobjective optimization techniques are used to com-
pare individuals. In this paper, multiobjective optimization-
based constraint-handling techniques are briefly classified into
three categories: 1) standard multiobjective optimization meth-
ods; 2) standard biobjective optimization methods; and 3) gen-
eralized multiobjective optimization methods. The standard
multiobjective optimization methods transform a COP into an
MOP with (m + 1) objectives, i.e., (f (�x), G1(�x), . . . , Gm(�x)).
Multiobjective optimization-based constraint-handling tech-
niques at the early stage always fall into this category [3], [4].
Under this condition, the transformed MOP always involves
more than two objectives. As we know, MOPs with more
than two objectives usually exhibit complicated properties.
Consequently, the transformed MOP is also very difficult to be
tackled as the original COP. In contrast, the standard biobjec-
tive optimization methods consider the degree of constraint
violation, i.e., G(�x), as another objective function in addi-
tion to the original objective function f (�x). Interestingly, most
of the recent multiobjective optimization-based constraint-
handling techniques belong to this category [5]–[9]. Different
from the above two categories, the generalized multiobjective
optimization methods introduce other additional objective
functions or constraints [10], [11].

It can be found that most of the existing multiobjective
optimization-based constraint-handling techniques are
based on Pareto dominance [12], in which Pareto domi-
nance is viewed as the criterion to compare individuals.
Note, however, that decomposition is another famous
multiobjective optimization framework [13]–[15]. Its out-
performed performance has been demonstrated in a lot
of literature, such as [16]–[18]. Different from Pareto
dominance-based multiobjective optimization, decomposition-
based multiobjective optimization decomposes an MOP
into a set of scalar optimization subproblems, where each
subproblem is assigned a weight vector. Afterward, these
subproblems are optimized in a collaborative manner. Such a
framework exhibits numerous advantages for solving MOPs.
By decomposing an MOP into a set of scalar optimization
subproblems, every two solutions are comparable. Hence,
a certain degree of selection pressure can be guaranteed.
Besides, it is well-known that decomposition-based frame-
work is more efficient than nondominated sorting [13], [19].
Moreover, by adjusting the weight vectors, search biases can
be incorporated. Note that these search biases are crucial when
taking advantage of multiobjective optimization to tackle
COPs [20], [21]. However, little effort has been devoted to
making use of the above advantages of decomposition-based
multiobjective optimization for constrained evolutionary
optimization.

Motivated by the above considerations, this paper makes
an attempt to tailor decomposition-based multiobjective
optimization to solve COPs. In our method, a COP is first
converted into a biobjective optimization problem (BOP)
(f (�x),G(�x)). Afterward, this BOP is decomposed into NP
scalar optimization subproblems. Each individual in the pop-
ulation is associated with a subproblem and is evolved along
the direction defined by the weight vector of this subprob-
lem. After generating an offspring for each subproblem by

differential evolution (DE), the weighted sum method is
employed to compare individuals. To make decomposition-
based multiobjective optimization suit the properties of COPs,
a weight vector adjusting strategy is designed. Furthermore,
a restart strategy is introduced to cope with extremely
complicated constraints. By the above process, an alterna-
tive constrained optimization EA (COEA), i.e., DeCODE, is
proposed. Note that DeCODE is different from the constrained
decomposition-based multiobjective optimization algorithm
introduced in [22]. The algorithm in [22] utilizes constrained
optimization to improve the decomposition-based method for
multiobjective optimization. On the contrary, DeCODE applies
the decomposition-based method to solve COPs.

The main contributions of this paper are summarized as
follows.

1) The idea of decomposition-based multiobjective
optimization is thoroughly investigated for constrained
evolutionary optimization.

2) A weight vector adjusting strategy is designed to make
the decomposition-based multiobjective optimization
suit the properties of COPs.

3) We develop a search algorithm to strike a balance
not only between diversity and convergence, but also
between constraints and objective function.

4) A restart strategy is introduced to find feasible solutions
for some COPs with extremely complicated constraints.

To be specific, in the theoretical aspect, the relationship
between decomposition-based multiobjective optimization and
constrained evolutionary optimization is analyzed. Besides, the
weight vectors which are beneficial to solve COPs are clarified.
Furthermore, how to achieve the tradeoff between constraints
and objective function in a search algorithm is illustrated. In
the practical aspect, systematic experiments on three bench-
mark test suites from IEEE CEC2006, IEE CEC2010, and
IEEE CEC2017 have demonstrated that DeCODE is effective
and efficient for solving various kinds of COPs.

The rest of this paper is organized as follows. Some pre-
liminary knowledge is introduced in Section II. Section III
conducts a brief survey of utilizing multiobjective optimization
for constrained evolutionary optimization. The details of the
proposed DeCODE are given in Section IV. Section V pro-
vides the empirical study. Finally, Section VI concludes this
paper.

II. PRELIMINARY KNOWLEDGE

Since decomposition-based multiobjective optimization is
applied for constrained evolutionary optimization in this
paper, some basic concepts of multiobjective optimization
and the framework of decomposition-based multiobjective
optimization are briefly introduced in this section.

A. Related Concepts of Multiobjective Optimization

In general, an MOP is formulated as follows:

minimize �f (�x) = (f1(�x), . . . , fn(�x)) (3)

where �x = (x1, . . . , xD) ∈ S is a D-dimensional decision vector
and �f (�x) is the objective vector involving n objective functions.



Several related concepts of multiobjective optimization are
presented below.

1) Pareto Dominance: A decision vector �x = (x1, . . . , xD)

is said to Pareto dominate another decision vector �y =
(y1, . . . , yD), denoted as �x ≺ �y, if ∀i ∈ {1, . . . , n}, fi(�x) ≤ fi(�y)
and �f (�x) �= �f (�y).

2) Pareto Optimum: A decision vector �x∗ is called a Pareto
optimal solution, if it is not Pareto dominated by any other
decision vectors.

3) Pareto Set: The Pareto set PS is a set of all Pareto
optimal solutions.

4) Pareto Front: The Pareto front is the image of the Pareto
set in the objective space, i.e., PF = {�f (�x)|�x ∈ PS}.

The principal task of multiobjective optimization is to seek
a reasonable approximation of the Pareto set/front.

B. Framework of Decomposition-Based Multiobjective
Optimization

Decomposition-based multiobjective optimization is very
popular for solving MOPs [13]. Its framework with the
weighted sum method [23] is described as follows [19].

Step 1 (Initialization):
Step 1.1: Set the archive which is used to store nondomi-

nated solutions as an empty set: EP = ∅.
Step 1.2: Initialize a uniform spread of NP weight vec-

tors: WV = {�λ1, . . . , �λNP}, where �λi = (λi,1, . . . , λi,n),
i ∈ {1, . . . , NP}.

Step 1.3: Calculate the mating neighborhood Bm(i) which
includes Tm indexes and the replacement neighborhood Br(i)
which includes Tr indexes for each weight vector �λi (i ∈
{1, . . . , NP}).

Step 1.4: Generate a random population consisting of NP
individuals: P = {�x1, . . . , �xNP}, and evaluate the population:
FV = {�f (�x1), . . . , �f (�xNP)}.

Step 1.5: Calculate the weighted sum of the population:
WS = {gws(�x1|�λ1), . . . , gws(�xNP|�λNP)}, where

gws(�xi|�λi) =
n∑

j=1

λi,jfj(�xi), i ∈ {1, . . . , NP}. (4)

Step 2 (Population Updating): For i = 1, . . . , NP do
Step 2.1: Generate an offspring �y for �xi by executing the

search algorithm on several individuals selected based on
Bm(i).

Step 2.2: Evaluate �y: �f (�y) = {f1(�y), . . . , fn(�y)}.
Step 2.3: For each index j ∈ Br(i), if gws(�y|�λj) ≤ gws(�xj|�λj),

set �xj = �y, �f (�xj) = �f (�y), and gws(�xj|�λj) = gws(�y|�λj).
Step 2.4: Remove all the solutions Pareto dominated by �y

from EP, and add �y into EP if no solutions in EP Pareto
dominate �y.

Step 3 (Stopping Criterion): If the stopping criterion is
satisfied, then stop and output EP; otherwise, go to step 2.

The above procedure explicitly decomposes an MOP into
NP scalar optimization subproblems via the weighted sum
method, as shown in (4). Each subproblem is associated with
an individual and is optimized by making use of the informa-
tion from its neighboring subproblems. The main idea behind
decomposition-based multiobjective optimization is that the

optimal solutions of neighboring subproblems should be close
to each other and any information from one subproblem should
be helpful for optimizing another subproblem.

III. PREVIOUS WORK

A considerable number of multiobjective optimization-
based constraint-handling techniques have been proposed dur-
ing the last two decades. As mentioned previously, they
are divided into three kinds in this paper: 1) standard
multiobjective optimization methods; 2) standard biobjec-
tive optimization methods; and 3) generalized multiobjective
optimization methods.

1) Standard Multiobjective Optimization Methods: This
kind of methods aims at optimizing (f (�x), G1(�x), . . . , Gm(�x))
simultaneously. Coello Coello et al. [24], [25] carried out
a series of pioneer work on generalizing the classical
multiobjective optimization EAs [26], [27] to solve COPs.
Ray et al. [3], [28] calculated three ranks, which include the
rank of objective function, the Pareto rank of constraints, and
the Pareto rank of the combination of objective function and
constraints. These three ranks are utilized to select solutions in
a collaborative way. Angantyr et al. [29] proposed a constraint-
handling technique which is a variant of a multiobjective
real-coded genetic algorithm. In this method, the rank of
objective function and the Pareto rank of constraints are calcu-
lated separately. Subsequently, these two ranks are aggregated
together by the feasible proportion, i.e., the percentage of fea-
sible solutions in the population. Aguirre et al. [4] modified the
famous Pareto archived evolutionary strategy [30] to deal with
COPs. In this method, the constrained search space is shrunk
dynamically to focus the search effort on specific areas of the
feasible region. Besides, an adaptive grid is utilized to store
solutions.

2) Standard Biobjective Optimization Methods: The aim
of this kind of methods is to optimize the BOP (f (�x), G(�x)).
Zhou et al. [31] defined the individual’s Pareto strength, which
is based on Pareto dominance. Afterward, a new real-coded
genetic algorithm based on Pareto strength and minimal gen-
eration gap model is devised. In 2006, Cai and Wang [5] made
use of Pareto dominance to compare individuals. Moreover,
an infeasible solution archiving and replacement mechanism
is proposed to drive the population approaching or landing in
the feasible region quickly. Later, they improved this infea-
sible solution archiving and replacement mechanism based
on multiobjective optimization and proposed CMODE [7].
In 2007, Wang et al. [6] proposed a hybrid COEA, called
HCOEA, which effectively combines Pareto dominance with
global and local search models. In [8], HCOEA is improved by
dynamically implementing the global and local search models.
In 2008, Wang et al. [32] divided the constrained optimization
process into three phases. In the first phase, a selection strat-
egy is designed based on Pareto dominance. Subsequently,
several COEAs adopt or improve this three-phase-based
method [33]–[36]. Similarly, Venkatraman and Yen [37]
proposed a two-phase-based method to tackle COPs. In phase
one, a COP is considered as a constraint satisfaction problem.



In phase two, the famous nondominated sorting genetic algo-
rithm II (NSGA-II) [38] and a niching scheme are combined to
calculate the fitness value. Masuda and Kurihara [39] exploited
the multiobjective optimization particle swarm optimization
to solve COPs. In this method, only several Pareto optimal
solutions with the least degree of constraint violation will
be preserved if the number of Pareto optimal solutions
exceeds a predefined threshold. In addition, a novel global
best selection technique and a diversity preservation strategy
are proposed. Deb and Datta [40] applied NSGA-II to esti-
mate the penalty factor. This paper theoretically analyzes the
relationship between the lower bound of the penalty factor
and the slope of the Pareto front at the point of G(�x) = 0.
Based on such analysis, the penalty factor is obtained. This
method is further improved by estimating the penalty factor of
each constraint separately [41]–[43]. Jiao et al. [9] proposed a
novel selection strategy based on multiobjective optimization.
In this method, Pareto dominance is used to classify dominated
and nondominated solutions. Li and Zhang [21] pointed out
that Pareto dominance lacks search biases toward constraints,
which may lead to the inferior performance of a COEA.
Afterward, the b-dominance is presented by introducing search
biases into the conventional Pareto dominance.

3) Generalized Multiobjective Optimization Methods:
Watanabe and Sakakibara [44] presented two methods to trans-
form a COP into an MOP: the first one considers a penalty
function as an additional objective function and the second
one adds noise to the original objective function or decision
variables. Dong and Wang [10] converted a COP into the
following BOP: (f (�x) + εG(�x), G(�x)). The theoretical anal-
ysis reveals that when ε tends to infinity, this BOP has the
unique Pareto optimal vector, which exactly corresponds to
the optimal solution of a COP. They claimed that this BOP
could be solved by a traditional multiobjective optimization
EA without biases. In the implementation phase, ε exponen-
tially increases and Pareto ranking is employed as the selection
criterion. Xu et al. [11] proposed a novel multiobjective model
with helper objective functions for constrained optimization.
In addition to (f (�x), G(�x)), an auxiliary objective function
is constructed. Then a three-objective-based CMODE [7] is
implemented. The experimental results show that the helper
objective function is able to improve the performance of
CMODE. Gao et al. [45] recast a COP as (G1(�x), . . . , Gm(�x))
with one constraint. In this method, the original objective
function value is restricted to be less than a value which is
set adaptively. Based on this formulation, a novel pair-wise
comparison strategy is proposed. Li et al. [46] reformulated
a COP as (f (�x), G1(�x), . . . , Gm(�x)) with dynamic constraints.
Note that the original constraints are still kept into consider-
ation in this method. To construct the dynamic environment,
all constraints are bounded by a value which decreases with
the increase of generation. Very recently, a general framework
based on this idea is proposed to solve COPs in [47].

All the above-mentioned multiobjective optimization-based
constraint-handling techniques are based on Pareto dominance
due to the fact that Pareto dominance serves as the compari-
son criterion. As another generic multiobjective optimization
framework, decomposition-based multiobjective optimization

Fig. 1. Principle of (f (�x), G(�x)).

has been gaining increasing attention for solving MOPs,
nevertheless, it has scarcely been applied for constrained
evolutionary optimization. Recently, Peng et al. [48] took
advantage of the Tchebycheff decomposition approach to
solve COPs. In this method, N weight vectors are used to
select N promising infeasible solutions, and the remaining
(NP − N) candidate solutions are selected based on the fea-
sibility rule [49]. The parameter N is adjusted according
to the feasible proportion. This method focuses on balanc-
ing diversity and convergence. However, another key issue
of constrained evolutionary optimization, i.e., the tradeoff
between constraints and objective function, is neglected to
some degree. Besides, it only utilizes the Tchebycheff decom-
position approach and the advantages of decomposition-based
multiobjective optimization are not fully explored (such as
the collaborative evolution of NP scalar optimization subprob-
lems). The experimental results reveal that the performance of
this method is limited on some complicated test functions from
IEEE CEC2006 and IEEE CEC2010.

The above survey motivates us to further explore the poten-
tial of decomposition-based multiobjective optimization for
solving COPs.

IV. PROPOSED METHOD

A. DeCODE

In DeCODE, a COP is transformed into the BOP
(f (�x), G(�x)). The principle of this BOP is depicted in
Fig. 1 [7], where the Pareto set is mapped to the Pareto front,
all the feasible solutions are mapped to the solid segment,
and the feasible optimum is mapped to the intersection of the
f -axis and the Pareto front. It is easy to derive that the search
space S is mapped to points on and above the Pareto front.

DeCODE maintains a population of NP individuals, i.e.,
P = {�x1, . . . , �xNP}, their objective function values, i.e.,
{f (�x1), . . . , f (�xNP)}, and their degree of constraint violation,
i.e., {G(�x1), . . . , G(�xNP)}. The framework of DeCODE is
described as follows.

Step 1 (Initialization):
Step 1.1: For each i ∈ {1, . . . , NP}, set Bm(i) =

{1, . . . , NP}, Br(i) = {i}, and flag = 0.
Step 1.2: Initialize a set of NP weight vectors, i.e., WV =

{(λ1, 1 − λ1), . . . , (λNP, 1 − λNP)}, where {λ1, . . . , λNP} are
uniformly generated between 0 and η, and initialize η = 1.



(a) (b) (c)

Fig. 2. Weight vectors with λ distributed between 0 and 1. (a) 0 ≤ λ ≤ 1. (b) λopt < λ ≤ 1. (c) 0 < λ ≤ λopt .

Step 1.3: Generate a random population with NP indi-
viduals: P = {�x1, . . . , �xNP}, and evaluate P: FV =
{(f (�x1), G(�x1)), . . . , (f (�xNP), G(�xNP))}.

Step 2 (Population Updating):
Step 2.1: Generate an offspring population OP =

{�y1, . . . , �yNP} by executing the search algorithm.
For i = 1, . . . , NP do
Step 2.2: Evaluate �yi: (f (�yi), G(�yi)).
Step 2.3: For the index in Br(i) (i.e., i), if gws(�yi|(λi, 1 −

λi)) ≤ gws(�xi|(λi, 1 − λi)), set �xi = �yi, f (�xi) = f (�yi), and
G(�xi) = G(�yi).

Step 3: Execute the weight vector adjusting strategy to
adjust η adaptively, and generate a set of NP weight vectors,
i.e., {(λ1, 1 − λ1), . . . , (λNP, 1 − λNP)}, by utilizing η.

Step 4: Executing the restart strategy.
Step 5 (Stopping Criterion): If the stopping criterion is

satisfied, then stop and output the feasible solution with the
smallest objective function value; otherwise, go to step 2).

As the above description, DeCODE shares the same frame-
work with decomposition-based multiobjective optimization
except for steps 3 and 4. Step 3 is designed to make
decomposition-based framework suit the properties of COPs.
In addition, step 4 is developed to cope with extremely com-
plicated constraints. Due to its numerous advantages, such
as ease of implementation, powerful search ability, and few
algorithm-specific parameters, DE is employed to design the
search algorithm in this paper. It is worth noting that prior to
calculating the weighted sum of �xi, its objective function value
and degree of constraint violation are normalized as follows:

f norm(�xi) = f (�xi) − fmin

fmax − fmin
(5)

Gnorm(�xi) = G(�xi) − Gmin

Gmax − Gmin
(6)

where fmin and fmax are the minimum and maximum objective
function values in P, respectively, and Gmin and Gmax are the
minimum and maximum degree of constraint violation in P,
respectively.

Afterward, the weighted sum of �xi is calculated as follows:

gws(�xi
∣
∣(λi, 1 − λi)

) = λif
norm(�xi) + (1 − λi)G

norm(�xi) (7)

where

λi = i

NP
· η. (8)

Remark 1: Compared with conventional mathematical pro-
gramming methods, the advantages of DeCODE are summa-
rized as follows.

1) Since DeCODE is population-based, it is more robust.
2) DeCODE does not impose strong assumptions, such

as linearity, convexity, and differentiability on objective
function and constraints, which makes it applicable to
diverse kinds of COPs.

Remark 2: Compared with other COEAs, the advantages of
DeCODE are twofold.

1) It shares the same framework with decomposition-based
multiobjective optimization. Thus, the superiorities of
the decomposition-based method (such as efficiency and
collaborative evolution) can be inherited. Besides, the
valuable knowledge developed for decomposition-based
multiobjective optimization can be borrowed to further
improve DeCODE.

2) The weighted sum method is easy to implement.
Moreover, it provides an effective way for constrained
optimization. The reason is explained in the follow-
ing. The aim of constrained optimization is to locate
the feasible optimum on the Pareto front (as shown
in Fig. 1), rather than a set of Pareto optimal solu-
tions uniformly distributed on the whole Pareto front.
Hence, the transformed BOP can be regarded as a BOP
with a discrete Pareto optimal solution. As analyzed
in [13], the weighted sum method is more effective
than the Tchebycheff decomposition approach on the
multiobjective 0-1 knapsack problem, which also has
discrete Pareto optimal solutions.

In the following sections, the weight vector adjusting
strategy, the search algorithm, and the restart strategy are
introduced sequentially.

B. Weight Vector Adjusting Strategy

The transformed BOP is optimized under the framework
of decomposition-based multiobjective optimization. When a
general BOP is solved, a set of representative solutions, the
image of which is uniformly distributed on the whole Pareto



Fig. 3. Dynamic changing trajectory of η with α = 0.5 and � = 30.

front, is desired. Hence, a set of uniformly distributed weight
vectors across the whole objective space is always main-
tained, where different weight vectors are expected to locate
different points on the Pareto front. However, when the trans-
formed BOP is solved, only the feasible optimum, which is the
intersection of the f -axis and the Pareto front, is wanted. This
difference indicates that a set of weight vectors for seeking
the whole Pareto front is not suitable for locating the single
feasible optimum. To address this issue, a weight vector adjust-
ing strategy is designed to generate proper weight vectors for
locating the feasible optimum.

In multiobjective optimization, it is well-known that a Pareto
optimal solution of an MOP, under mild conditions, is the
optimal solution of the weighted sum scalar optimization sub-
problem with a weight vector (λ, 1−λ) [13], [23]. Besides, as
described in Fig. 2(a), the slope of the tangent at the image of
this Pareto optimal solution in the objective space is [(λ−1)/λ]
and the corresponding direction vector is (λ − 1,−λ) [23].
Furthermore, if the Pareto front is convex and differentiable,
the slope of the tangent will increase monotonously with the
increase of G [50]. That is to say, the bigger the value of G
of a Pareto optimal solution, the bigger the value of the slope
[(λ−1)/λ]. Because [(λ−1)/λ] increases monotonously with
the increase of λ, it is easy to know that the bigger the value
of G, the bigger the value of λ, and vice versa.

Assuming that (λopt, 1 −λopt) is the weight vector attached
to the feasible optimum, whose G is equal to 0, then the weight
vector set {(λ, 1 − λ)|0 < λ ≤ 1} can be divided into two
subsets as shown in Fig. 2(a), i.e., {(λ, 1 − λ)|0 < λ ≤ λopt}
and {(λ, 1 − λ)|λopt < λ ≤ 1}. The properties of these two
subsets can be summarized as follows.

1) As shown in Fig. 2(b), the weight vector (λ, 1 − λ)

with λ ∈ (λopt, 1] will locate a Pareto optimal solu-
tion with G > 0. That is to say, the weight vector with
λ ∈ (λopt, 1] cannot achieve the feasible optimum.

2) As shown in Fig. 2(c), the weight vector (λ, 1 − λ)

with λ ∈ (0, λopt] will seek a feasible solution first.
Subsequently, guided by objective function (i.e., the
f -axis), this feasible solution will approach the fea-
sible optimum. To sum up, the weight vector with
λ ∈ (0, λopt] could achieve the feasible optimum finally.

Based on the above analysis, a set of weight vectors
(λi, 1 − λi)(i ∈ {1, . . . , NP}), where λi is generated between
0 and λopt, would be helpful to achieve the feasible optimum.
However, it is not easy to generate such a set of weight vec-
tors accurately due to the fact that λopt is problem-dependent

Algorithm 1: Weight Vector Adjusting Strategy
1 Set WV = ∅;
2 if flag == 0 then
3 if t

T ≤ p then
4 ε = ε0(1 − t

T )cp;
5 else
6 ε = 0;

7 Calculate FeaPro of the population;
8 if FeaPro ≥ 0.85 then
9 ε = 0;

10 if Gmin ≥ ε then
11 flag = 1;
12 η = 10−18;
13 else
14 η = 1

1+e�(t/T−α)
;

15 else
16 η = 10−18;

17 for i = 1 to NP do
18 λi = i

NP · η;
19 WV = WV ∪ (λi, 1 − λi);

and cannot be known beforehand. In this paper, a simple yet
effective method is proposed to approximate this set of weight
vectors by decreasing the parameter η dynamically accord-
ing to the famous sigmoid function, which has been widely
employed in the community of evolutionary computation [19]

η = 1

1 + e�(t/T−α)
(9)

where t is the current generation number, T is the maximum
generation number, and � and α are two critical parameters
to control the decreasing trend of η. As shown in Fig. 3, η

decreases in accordance with the sigmoid curve as the gen-
eration increases. At the early stage, η is very likely to be
bigger than λopt. In this case, the weight vectors can be divided
into two sets: one includes weight vectors with λ ∈ (0, λopt],
and the other contains weight vectors with λ ∈ (λopt, 1]. As
discussed above, the first set of weight vectors can steer the
solutions approaching the feasible optimum. Although the sec-
ond set of weight vectors is not able to locate the feasible
optimum directly, it can introduce the information of objec-
tive function, as shown in (7). Such information is beneficial
to promote the exploration in the infeasible region [51]–[53].
At the later stage, η will be smaller than λopt. In this case, all
of the generated weight vectors can motivate their solutions to
find the feasible optimum. In summary, during the evolution,
decreasing η based on (9) is a suitable way to generate a set
of weight vectors, which has the potential to find the feasible
optimum gradually.

As shown in (9) and Fig. 3, η decreases slowly at the early
stage. When λopt of a COP is tiny, η may be larger than it for a
relatively long period. Meanwhile, the number of weight vec-
tors with λ ∈ (λopt, η] would be much more than the number
of weight vectors with λ ∈ (0, λopt]. Consequently, accord-
ing to (7), much information of objective function will be
used. Under this condition, much effort would be devoted to
exploring the region around the Pareto front while neglecting
the feasible optimum. To remedy this weakness, η should be
truncated to a small value to suit λopt. As stated previously,
we cannot know the value of λopt a priori, which signifies



that we cannot know whether η needs to be truncated or not.
Hence, a proper indicator should be used to reflect whether
decreasing η according to (9) is suitable for the considered
COP. Intuitively, if the decreasing manner of η is suitable for a
COP, the degree of constraint violation would decrease consis-
tently. Thus, we try to set a target level of degree of constraint
violation at each generation. Once the target level cannot be
satisfied, we consider that decreasing η according to (9) is not
suitable. Under this condition, η is truncated to an extremely
small value to guarantee that the number of weight vectors
with λ ∈ (0, λopt] is as many as possible. By this way, the
feasible optimum could be achieved.

To set the target level at each generation, based on [51], the
ε level controlling method is utilized here

ε =
{

ε0
(
1 − t

T

)cp
, if t

T ≤ p
0, otherwise

(10)

cp = − logε0 + β

log(1 − p)
(11)

where ε0 is the initial level, β is set to 6 in this paper, and
p is an important parameter to control the target level at each
generation. Similar to [51], in order to improve the usability,
if the feasible proportion, i.e., FeaPro, exceeds FP (i.e., 0.85),
ε is set to 0. As shown in (10), ε decreases with the increase
of generation.

The whole process of the weight vector adjusting strategy
is described in Algorithm 1. As shown in Algorithm 1, ε is
the target level at each generation and Gmin ≥ ε means that
the target level cannot be fulfilled. Besides, η is truncated to
an extremely small value ηL (i.e., 10−18) rather than 0. In this
case, the information of objective function can be utilized to
some extent.

C. Search Algorithm

When a search algorithm is designed for constrained
optimization, it is expected to make a tradeoff not only
between convergence and diversity, but also between con-
straints and objective function. In this paper, two DE trial
vector generation strategies are integrated to achieve this goal,
which are described below [54], [55].

1) DE/rand-to-best/1/bin

�vi = �xr1 + F · (�xbest − �xr1

) + F · (�xr2 − �xr3

)
(12)

ui,j =
{

vi,j, if randj < CR or j = jrand

xi,j, otherwise.
, j = 1, . . . , D

(13)

2) DE/current-to-rand/1

�ui = �xi + rand · (�xr1 − �xi
) + F · (�xr2 − �xr3

)
(14)

where �xi, �vi, and �ui are the ith target vector, the ith
mutant vector, and the ith trial vector, respectively, xi,j,
vi,j, and ui,j are the jth dimension of them, respectively,
�xr1 , �xr2 , and �xr3 are three mutually different individu-
als randomly selected from the population, �xbest is the
individual with the best performance, F is the scaling
factor, CR is the crossover control parameter, and jrand

is a random integer chosen from {1, . . . , D}.

Algorithm 2: Search Algorithm
1 Set OP = ∅;
2 for i = 1 to NP do
3 Calculate f norm(�xi) and Gnorm(�xi) according to (5) and (6), respectively;

4 for i = 1 to NP do
5 Randomly select a F value from the pool {0.6, 0.8, 1.0};
6 Randomly select a CR value from the pool {0.1, 0.2, 1.0};
7 if rand < t

T then
8 Set WSi = ∅;
9 for j = 1 to NP do

10 WSi = WSi ∪ gws(�xj|(λi, 1 − λi));

11 Select �xbest based on WSi;
12 Select �xr1 , �xr2 , and �xr3 from the population;
13 Generate an offspring �ui according to (12) and (13);
14 else
15 Select �xr1 , �xr2 , and �xr3 from the population;
16 Generate an offspring �ui according to (14);

17 OP = OP ∪ �ui;

With respect to (12), the information of the best individ-
ual is utilized to generate a mutant vector. Consequently,
the convergence can be accelerated via this strategy. Besides,
in terms of (14), �xi learns the information of a randomly
selected individual �xr1 . Therefore, this strategy can promote
the diversity.

These two strategies are combined in the following man-
ner. For each individual, DE/rand-to-best/1/bin is executed
with the probability (t/T) while DE/current-to-rand/1 is con-
ducted with the probability [1 − (t/T)], where t and T are
the current and maximum generation number, respectively. At
the early stage, (t/T) is small. So DE/current-to-rand/1 will
be used more frequently for exploration. At the later stage,
(t/T) becomes large. Thus, DE/rand-to-best/1/bin will be uti-
lized more often for exploitation. By this manner, the tradeoff
between convergence and diversity can be achieved.

How to select the best individual in (12) has a direct effect
on the tradeoff between constraints and objective function. In
general, to achieve such a tradeoff, much information of objec-
tive function should be preferred at the early stage while little
information of objective function should be favorable at the
later stage. It is because much information of objective func-
tion is beneficial to promote the exploration in the infeasible
region [51]–[53], while little information of objective func-
tion can promote the convergence to the feasible optimum.
In this paper, the best individual is selected according to the
weighted sum. First, the normalized objective function value
and degree of constraint violation are calculated for each indi-
vidual according to (5) and (6), respectively. Afterward, a set
of weighted sum is obtained on the basis of λi

WSi = {
gws(�x1|(λi, 1 − λi)), . . . , gws(�xNP|(λi, 1 − λi))

}
.

(15)

Finally, the individual with the minimum value in WSi is
selected as the best individual for �xi. By doing this, each indi-
vidual �xi can evolve along its own direction defined by the
weight vector (λi, 1−λi). By making use of the weight vector
adjusting strategy illustrated in Section IV-B, the information
of objective function can be utilized properly and a tradeoff
between constraints and objective function can be achieved.



TABLE I
MAXIMUM NUMBER OF FUNCTION EVALUATIONS

MaxFEs AND POPULATION SIZE NP

Therefore, the above process is able to strike a tradeoff
not only between convergence and diversity but also between
constraints and objective function. In addition, two control
parameters in DE, i.e., F and CR, are set in the same way
as in [54]. The details of the search algorithm are summarized
in Algorithm 2.

D. Restart Strategy

In practice, some COPs may involve complicated con-
straints with strong nonlinearity and multimodality. Due to
the complex infeasible region formed by these constraints, the
population is very easy to stagnate. To address this issue, a
restart strategy is introduced [55].

Before applying the restart strategy, one needs to answer
a fundamental question: how to judge whether the popula-
tion has already stagnated in the infeasible region or not.
Intuitively, if the population converges to a small region in the
infeasible region, the difference among the individuals will be
tiny. Consequently, the individuals will have the similar degree
of constraint violation or objective function values. Thus, we
can conclude that the population has stagnated in the infeasible
region when the following two conditions are satisfied.

1) All the individuals are infeasible.
2) All the individuals have the similar degree of con-

straint violation or objective function values, i.e., the
standard deviation of the degree of constraint violation
or objective function values is less than a predefined
threshold μ.

Once these two conditions have been detected, the restart
strategy will be triggered—all the solutions in the population
will be regenerated from the decision space randomly. The
reasons for regenerating the population randomly are twofold.
First, if the population has stagnated in the infeasible region,
the information contained by the population is not useful for
searching for the optimal solution. Second, a possible way to
avoid stagnation is to exploit the feedback information from
the evolution to guide the optimization. However, under this
condition, more storage space is required. More importantly, it
is not easy to decide what feedback information is promising.

Apparently, the threshold μ is critical to the restart strategy.
A too big μ may lead to a wrong decision on the stagnation,
which has a negative impact on convergence. On the contrary,
a too small value cannot detect the stagnation timely, which
would waste computational resources to some extent. Thus, it
should be set carefully. We have investigated the setting of μ

in the empirical study.

V. EMPIRICAL STUDY

A. Benchmark Test Functions and Parameter Settings

Three sets of benchmark test functions were employed
to demonstrate the performance of DeCODE. The first set
includes 24 test functions from IEEE CEC2006 [56], the sec-
ond set contains 18 test functions with ten-dimensions (10D)
and 30-dimensions (30D) from IEEE CEC2010 [57], and the
third set involves 28 test functions with 50-dimensions (50D),
and 100-dimensions (100D) from IEEE CEC2017 [58]. Note
that these three sets of test functions exhibit various difficult
properties, such as strong nonlinearity, tiny feasible region,
and rotated landscape. Thus, they are able to provide a sys-
tematic assessment on the performance of DeCODE. More
details about these three sets of test functions are referred
to [56]–[58].

The maximum number of functions evaluations MaxFEs and
the population size NP are described in Table I. Note that NP
is varied with different test sets and is related to the dimension
of the search space. Following the suggestions in [56]–[58],
25 independent runs were performed for each test function. In
addition, the tolerance value δ for equality constraints was set
to 10−4. For DeCODE, ε0 was set to min(εL, Gmax0), where
Gmax0 is the maximum degree of constraint violation in the ini-
tial population and εL = 10D/2 is used to avoid a too large ε0.
Moreover, � in the sigmoid function, α in the sigmoid func-
tion, p in the ε level controlling method, and μ in the restart
strategy were set to 30, 0.75, 0.85, and 10−6, respectively.

B. Experiments on the 24 Benchmark Test Functions From
IEEE CEC2006

First, DeCODE was evaluated on the 24 benchmark test
functions from IEEE CEC2006. Its performance was compared
with four state-of-the-art COEAs with various constraint-
handling techniques: CMODE [7], NSES [9], DW [48], and
FROFI [54]. Note that CMODE and NSES are methods based
on Pareto dominance. It can be known from [56] that it is
extremely difficult to locate the optimum of g22 and there are
no feasible solutions for g20. Thus, these two test functions
were not considered here. The experimental results over 25
independent runs are summarized in Table II, where “Mean
OFV” and “Std Dev” denote the average and standard devi-
ation of objective function values over 25 runs, respectively.
Due to the fact that the true optimum of each test function
has been provided in [56], we can define a successful run as
follows. A run for a test function is successful, if and only
if f (�xbest) − f (�x∗) < 10−4, where �x∗ is the optimum provided
in [56] and �xbest is the best feasible solution provided by a
method. In Table II, “*” denotes that a method can satisfy the
successful condition over all 25 runs for a test function.

It can be seen from Table II that among the five compared
methods, CMODE, NSES, FROFI, and DeCODE can success-
fully obtain the optima of all test functions. However, DW
cannot find the optimum of g17 consistently. In summary, the
experimental results validate that DeCODE yields better or
similar performance compared with other four competitors on
the 24 test functions from IEEE CEC2006.



TABLE II
EXPERIMENTAL RESULTS OF DECODE AND FOUR OTHER SELECTED METHODS OVER

25 INDEPENDENT RUNS ON 22 TEST FUNCTIONS FROM IEEE CEC2006

TABLE III
EXPERIMENTAL RESULTS OF DECODE AND FIVE OTHER SELECTED METHODS OVER

25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 10D FROM IEEE CEC2010

TABLE IV
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR DECODE

AND FIVE OTHER SELECTED METHODS ON 18 TEST FUNCTIONS

WITH 10D FROM IEEE CEC2010

C. Experiments on the 18 Benchmark Test Functions With
10D and 30D From IEEE CEC2010

Subsequently, 36 complicated test functions from IEEE
CEC2010 were taken into account. Due to the fact that the
optimal solutions of these test functions are unknown, the aver-
age and standard deviation of objective function values over
25 runs were taken as the comparison criteria. Five state-of-
the-art methods with various constraint-handling techniques

TABLE V
RANKING OF DECODE AND FIVE OTHER SELECTED METHODS

BY THE FRIEDMAN’S TEST ON 18 TEST FUNCTIONS

WITH 10D FROM IEEE CEC2010

were selected as the competitors: ITLBO [59], FROFI [54],
CACDE [60], AIS-IRP [61], and DW [48]. The experimen-
tal results of ITLBO and FROFI can be available from our
previous study. So the Wilcoxon’s rank sum test at a 0.05
significance level was used to compare DeCODE with each
of ITLBO and FROFI. We can just obtain the average and
standard deviation of objective function values of CACDE,



TABLE VI
EXPERIMENTAL RESULTS OF DECODE AND FIVE OTHER SELECTED METHODS OVER

25 INDEPENDENT RUNS ON 18 TEST FUNCTIONS WITH 30D FROM IEEE CEC2010

TABLE VII
RESULTS OF THE MULTIPLE-PROBLEM WILCOXON’S TEST FOR DECODE

AND FIVE OTHER SELECTED METHODS ON 18 TEST FUNCTIONS

WITH 30D FROM IEEE CEC2010

AIS-IRP, and DW from their original papers. Thus, the t-test at
a 0.05 significance level was adopted to compare each of them
with DeCODE. Furthermore, to compare these six methods
simultaneously, the multiple-problem Wilcoxon’s test and the
Friedman’s test were implemented via KEEL software [62].
Note that the Bonferroni–Dunn method was selected as the
post-hoc method of the Friedman’s test.

Regarding the test functions with 10D, the average and stan-
dard deviation of objective function values over 25 runs, results
of the multiple-problem Wilcoxon’s test, and results of the
Friedman’s test are summarized in Tables III–V, respectively.
In Table III, “∇” denotes that feasible solutions cannot be
found by a method consistently over 25 runs, and “−”, “+”,
and “≈” represent that the performance of the correspond-
ing competitor is worse than, better than, and similar to that
of DeCODE in terms of the Wilcoxon’s rank sum test/t-test,
respectively. As shown in Table III, DeCODE performs bet-
ter than ITLBO, FROFI, CACDE, AIS-IRP, and DW on five,
six, five, 12, and eight test functions, respectively. In contrast,
these five competitors outperform DeCODE on four, two, four,
six, and six test functions, respectively. Note that DW can-
not find any feasible solution on C11 and the experimental
results of C11 are not provided in its original literature. In
Table IV, all the R+ values are bigger than the R− values,
which reflects that the performance of DeCODE is superior to
that of five other competitors. Moreover, DeCODE achieves
the first rank in the Friedman’s test. Therefore, the experi-
mental results demonstrate that DeCODE outperforms the five

TABLE VIII
RANKING OF DECODE AND FIVE OTHER SELECTED METHODS

BY THE FRIEDMAN’S TEST ON 18 TEST FUNCTIONS

WITH 30D FROM IEEE CEC2010

other competitors on the 18 test functions with 10D from IEEE
CEC2010.

In terms of the test functions with 30D, the average and
standard deviation of objective function values over 25 runs,
results of the multiple-problem Wilcoxon’s test, and results
of the Friedman’s test are reported in Tables VI–VIII, respec-
tively. Note that, since the experimental results of DW on 30D
cannot be obtained from the original paper [48], we removed
DW and added CMODE [7] as a compared method. As shown
in Table VI, DeCODE outperforms ITLBO, FROFI, CACDE,
AIS-IRP, and CMODE on nine, five, 13, 14, and 16 test
functions, respectively. However, ITLBO, FROFI, CACDE,
AIS-IRP, and CMODE cannot surpass DeCODE on more than
two test functions. In Table VII, all the R+ values are big-
ger than the R− values, which reflects that the performance of
DeCODE is better than that of the five competitors. Moreover,
the significant difference at α = 0.1 can be observed in all
cases and the significant difference at α = 0.05 can be found
in four cases, i.e., DeCODE versus ITLBO, DeCODE ver-
sus CACDE, DeCODE versus AIS-IRP, and DeCODE versus
CMODE. From Table VIII, DeCODE ranks the first according
to the Friedman’s test. Considering the experimental results,
we can conclude that DeCODE has an edge over the five
competitors on the 18 test functions with 30D from IEEE
CEC2010.

To test the computational efficiency of DeCODE, its com-
putational time was compared with CMODE, whose source



code can be obtained online, on the 36 test functions from
IEEE CEC2010. Note that CMODE is a Pareto dominance-
based method. The experiments were performed on a computer
with Intel Core i7-3770 (3.40 GHz) processor and Windows10
(64 bit) system. These two algorithms were programmed in
MATLAB. The computational time provided by DeCODE is
139.55 s and 429.55 s for the 18 test functions with 10D and
30D over one run, respectively. The corresponding computa-
tional time resulting from CMODE is 200.84 s and 653.44 s,
respectively. Thus, DeCODE is more efficient than CMODE,
which also verifies that the decomposition-based framework is
more efficient than nondominated sorting [13], [19].

In view of all the above experimental results, DeCODE
shows overall better performance than the five competitors.

D. Experiments on the 28 Benchmark Test Functions With
50D and 100D From IEEE CEC2017

The 28 test functions with 50D and 100D from IEEE
CEC2017 [58] were adopted to further evaluate DeCODE’s
performance on high-dimensional COPs. The two best algo-
rithms, i.e., LSHADE44 [63] and UDE [64], in the IEEE
CEC2017 competition were selected as the competitors.
We compared DeCODE with each of LSHADE44 and
UDE according to the ranking procedure provided in IEEE
CEC2017.

1) Rank the methods based on the feasible rate (FR),
which denotes the percentage of runs where at least one
feasible solution is found.

2) Then rank the methods according to the average degree
of constraint violation (voi).

3) Finally, rank the methods in terms of the average
objective function value.

To compare these three algorithms concurrently, we first
ranked them on each test function according to the above
procedure. Afterward, the total rank on all test functions
was calculated. The experimental results are summarized
in Table S-1 in the supplementary material. As shown in
Table S-1, the total ranks of DeCODE on the 28 test functions
with 50D and 100D are 45 and 44, respectively. Compared
with DeCODE, the corresponding total ranks achieved by both
LSHADE44 and UDE are larger. Therefore, DeCODE is bet-
ter than LSHADE44 and UDE on these 56 test functions,
which means that DeCODE has good scalability in solving
high-dimensional COPs.

E. Effectiveness of the Weight Vector Adjusting Strategy

As introduced in Section IV-B, the weight vector adjusting
strategy is used to generate proper weight vectors for locating
the feasible optimum of a COP. To investigate the effectiveness
of this strategy, five variants of DeCODE were implemented
by setting η to five fixed values, i.e., η = 0.1, η = 0.3, η =
0.5, η = 0.7, and η = 1.0. The performance of DeCODE
and these five variants was evaluated on the 18 test functions
with 30D from IEEE CEC2010. Similar to Section V-C, the
average and standard deviation of objective function values
were recorded. In addition, if an algorithm fails to find at least

one feasible solution consistently over 25 runs, the feasible rate
was provided.

The Wilcoxon’s rank sum test at a 0.05 significance level
was used for performance comparison. The experimental
results are summarized in Table S-2 in the supplementary
material. As shown in Table S-2, DeCODE performs better
than its five variants on 13, 14, 10, seven, and five test func-
tions, respectively. However, these five variants cannot surpass
DeCODE on more than one test function. The experimental
results validate that the weight vector adjusting strategy plays
a key role in making the decomposition-based framework suit
the properties of COPs.

F. Effectiveness of the Search Algorithm

We implemented six variants of DeCODE, where six
different search algorithms were adopted. To be specific,
in DeCODE-ConCon, the best individual in DE/rand-to-
best/1/bin was selected based on G(�x). In DeCODE-ConObj,
the best individual in DE/rand-to-best/1/bin was selected
according to f (�x). In DeCODE-Con and DeCODE-Obj, only
DE/rand-to-best/1/bin was used. Note that the best indi-
vidual was selected based on G(�x) in DeCODE-Con and
based on f (�x) in DeCODE-Obj, respectively. In DeCODE-Div,
DE/current-to-rand/1 was employed as the search algorithm
while DE/rand/1/bin was used as the search algorithm in
DeCODE-rand1. These six variants were evaluated on the 18
test functions with 30D from IEEE CEC2010. The experi-
mental results are collected in Table S-3 in the supplementary
material. Note that the performance of these six variants was
compared with that of DeCODE based on the Wilcoxon’s rank
sum test at a 0.05 significance level.

From Table S-3, DeCODE outperforms the six variants on
six, two, 14, eight, 18, and 16 test functions, respectively.
However, no variant can provide better results on more than
two test functions than DeCODE. By comparing DeCODE
with DeCODE-ConCon and DeCODE-ConObj, it can be seen
that properly utilizing f (�x)/G(�x) is critical to a search algo-
rithm. That is to say, the tradeoff between constraints and
objective function is critical. By comparing DeCODE with
DeCODE-Con, DeCODE-Obj, DeCODE-Div, and DeCODE-
rand1, we can find that the tradeoff between diversity and
convergence is also important for a search algorithm. In sum-
mary, the effectiveness of the proposed search algorithm has
been confirmed.

G. Effectiveness of the Sigmoid Function

As described in Section IV-B, the sigmoid function con-
trols the decreasing trend of η. As we know, the linear
function and the exponential function are two other popular
functions that can be used to control a dynamic parame-
ter. To this end, we implemented two variants of DeCODE,
i.e., DeCODE-Lin and DeCODE-Exp, which made use of the
linear function [i.e., η = 1 − (t/T)] and the exponential func-
tion (i.e., η = [e30(1−t/T) − 1]/(e30 − 1)), respectively. The
performance of DeCODE, DeCODE-Lin, and DeCODE-Exp
was evaluated on the 36 test functions from IEEE CEC2010.



TABLE IX
EXPERIMENTAL RESULTS OF DECODE AND DECODE-WOR OVER 25

INDEPENDENT RUNS ON THREE TEST FUNCTIONS

The experimental results are summarized in Table S-4 in the
supplementary material.

As shown in Table S-4, compared with DeCODE-Exp,
DeCODE shows better performance on more test functions
in terms of both 10D and 30D. Although DeCODE-Lin
performs better than DeCODE on the 18 test functions
with 10D, it is worse than DeCODE on the 18 test func-
tions with 30D. Moreover, DeCODE-Lin cannot consistently
find feasible solutions on C05 with 30D. Therefore, the
experimental results verify the advantage of the sigmoid
function.

H. Effectiveness of the Weighted Sum Method

We compared DeCODE with another variant, i.e.,
DeCODE-Tch, where the weighted sum method was replaced
with the Tchebycheff decomposition approach. Both DeCODE
and DeCODE-Tch were evaluated on the 36 test func-
tions from IEEE CEC2010 and the experimental results
are summarized in Table S-5 in the supplementary mate-
rial. As shown in Table S-5, DeCODE-Tch cannot beat
DeCODE on any test function while DeCODE provides bet-
ter results on ten test functions. The experimental results
reflect the superiority of the weighted sum method for con-
strained optimization, which is in line with the analysis in
Section IV-A.

I. Effectiveness of the Restart Strategy

In order to validate the effectiveness of the restart strategy, a
competitor called DeCODE-WoR was implemented by remov-
ing the restart strategy from DeCODE. The 36 test functions
from IEEE CEC2010 were used to produce the experimental
results.

Similar to Section V-E, the average and standard devia-
tion of objective function values and the feasible rate were
recorded. Significant difference can be observed on three test
functions, i.e., C11 with 30D, C12 with 30D, and C17 with
30D, based on the Wilcoxon’s rank sum test at a 0.05 sig-
nificance level. The experimental results of these three test
functions are summarized in Table IX.

As shown in Table IX, on C11 with 30D, C12 with 30D,
and C17 with 30D, DeCODE-WoR tends to be trapped in
the infeasible region. Specifically, DeCODE-WoR converges
to a local optimum in the infeasible region on these three test
functions over six, one, and five runs, respectively.

In summary, the restart strategy can help the population
jump out of the infeasible area where it has stagnated.

Remark 3: In Section S-I in the supplementary material,
we also analyzed the effect of the parameter settings on the
performance of DeCODE by extensive experiments.

VI. CONCLUSION

This paper further developed the potential of decomposition-
based multiobjective optimization for constrained evolutionary
optimization. In this paper, a COP was first transformed
into a BOP. Thereafter, the transformed BOP was opti-
mized under the decomposition-based framework. In order
to make decomposition-based multiobjective optimization suit
the properties of COPs, a weight vector adjusting strategy was
proposed. In addition, DE was used to design the search algo-
rithm. Moreover, a restart strategy was introduced to tackle
COPs with complicated constraints. By the above process, an
alternative COEA, i.e., DeCODE, was presented. Extensive
and systematic experiments verified that the following.

1) The weight vector adjusting strategy is an effec-
tive way to adapt decomposition-based multiobjective
optimization for COPs, by producing appropriate weight
vectors.

2) The restart strategy improves DeCODE’s ability to
find feasible solutions for COPs with complicated
constraints.

3) DeCODE shows superior performance against some
state-of-the-art COEAs including Pareto dominance-
based methods on three sets of benchmark test functions.

In the future, it is interesting to extend DeCODE to solve
constrained MOPs. Note that, as an EA, the optimality and
convergence of DeCODE cannot be theoretically guaranteed as
conventional mathematical programming methods, especially
in the scenarios which have high requirements for real-time
performance and optimality [65], [66]. In the future, we will
try to investigate COEAs from theoretical aspects.

The MATLAB source code of DeCODE can be down-
loaded from Y. Wang’s homepage: http://www.escience.cn/
people/yongwang1/index.html.
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