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2. Summary and Learning objectives 

 

The aim of this chapter is to review some of the key research investigating 

how people look at pictures. In particular, my goal is to provide theoretical 

background for those that are new to the field, while also explaining some of the 

relevant methods and analyses.  

I begin by introducing eye movements in the context of natural scene 

perception. As in other complex tasks, eye movements provide a measure of attention 

and information processing over time, and they tell us about how the foveated visual 

system determines what to prioritise. I then describe some of the many measures 

which have been derived to summarize where people look in complex images. These 

include global measures, analyses based on regions of interest and comparisons based 

on heat maps.  

A particularly popular approach for trying to explain fixation locations is the 

saliency map approach, and the first half of the chapter is mostly devoted to this topic. 

A large number of papers and models are built on this approach, but it is also worth 

spending time on this topic because the methods involved have been used across a 

wide range of applications. The saliency map approach is based on the fact that the 

visual system has topographic maps of visual features, that contrast within these 

features seems to be represented and prioritized, and that a central representation can 

be used to control attention and eye movements. This approach, and the underlying 

principles, has led to an increase in the number of researchers using complex natural 

scenes as stimuli. It is therefore important that those new to the field are familiar with 

saliency maps, their usage, and their pitfalls. I describe the original implementation of 

this approach (Itti & Koch, 2000), which uses spatial filtering at different levels of 
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coarseness and combines them in an attempt to identify the regions which stand out 

from their background. Evaluating this model requires comparing fixation locations to 

model predictions. Several different experimental and comparison methods have been 

used, but most recent research shows that bottom-up guidance is rather limited in 

terms of predicting real eye movements. 

The second part of the chapter is largely concerned with measuring eye 

movement scanpaths. Scanpaths are the sequential patterns of fixations and saccades 

made when looking at something for a period of time. They show regularities which 

may reflect top-down attention, and some have attempted to link these to memory and 

an individual’s mental model of what they are looking at. While not all researchers 

will be testing hypotheses about scanpaths, an understanding of the underlying 

methods and theory will be of benefit to all. I describe the theories behind analyzing 

eye movements in this way, and various methods which have been used to represent 

and compare them. These methods allow one to quantify the similarity between two 

viewing patterns, and this similarity is linked to both the image and the observer. 

The last part of the chapter describes some applications of eye movements in 

image viewing. The methods discussed can be applied to complex images, and 

therefore these experiments can tell us about perception in art and marketing, as well 

as about machine vision. 

 

By the end of the chapter, readers should  

• Understand why eye movements are useful for studying natural scene 

perception.  

• Understand some of the measures used for quantifying fixations on images.  
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• Appreciate the theoretical and neural underpinnings of a saliency map 

approach.  

• Understand the Itti and Koch (2000) model of bottom-up visual saliency.  

• Be able to evaluate saliency map models using eye fixation data.  

• Appreciate temporal aspects of eye movements in scene, including fixation 

duration and order 

• Understand scanpaths and why they have been studied.  

• Appreciate comparison methods which look at the scanpath sequence.  

• Be familiar with some of the applications of eyetracking experiments in 

images.  

!  
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3. Introduction 

 

Eye movements are a fundamental part of natural human vision. This is 

particularly true when we consider complex natural scenes, which comprise more 

information than we can take in within a single glance. Due to our sampling of the 

visual field, which is dominated by high acuity at the fovea and decreased resolution 

everywhere else on the retina, we can only inspect our environment in detail by 

moving our eyes and bodies to select different regions of interest. This process of 

actively selecting information gives psychology and neuroscience a uniquely sensitive 

measure about how people perceive and understand images. However, it also creates 

difficulties for a visual brain which has to rapidly orient the eyes based on only 

peripheral information, and then combine the input from multiple fixations so that we 

can understand a scene and act accordingly. 

 

This chapter describes some of the theory and methods used in the study of 

eye movements in complex stimuli. I will focus on two particular sets of theoretical 

questions within this topic, which are related to saliency maps and scanpaths. 

However, this chapter could easily be called “Looking at pictures”, because the 

research and methods being discussed are those where we measure people looking at 

pictures and photographs of scenes. Broadly speaking, the research to be discussed 

tries to describe where people look and in what order. Explaining these two things is 

a complex problem, but it should be easy to see that doing so will involve both the 

visual appearance of items in the scene (e.g., how bright or colourful something is) 

and the knowledge or task of the observer. It is worth bearing in mind, from the 

outset, that these depictions of the world are convenient abstractions for 
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experimenters, but that they may not always reflect the way that we move our eyes in 

the real environment. 

 

When investigating the viewing of static images, most researchers analyse 

saccades and fixations (for background on the properties of saccades, see chapters by 

Pierce et al. and Hutton, this volume). Although scene viewing may elicit other eye 

movement events, such as fixational eye movements and microsaccades (see 

Martinez-Conde & Alexander, this volume), saccades are the main way in which we 

redirect our eye to select particular items. Saccades are easily identifiable from a 

record of eye position samples, because they have a distinct velocity profile such that 

the eye rapidly accelerates to a peak velocity of about 500˚/s. During saccades, vision 

is suppressed (see Greenlee & Kimmig, this volume), and so the processing of visual 

information takes place largely during fixations, where the eye is relatively still. It is 

therefore assumed that the location and duration of fixations reflects what is being 

processed at a given moment in time. This assumption relies on a tight link between 

overt and covert attention. It also neglects the fact that saccades take at least 100ms to 

prepare, which means that at least part of the time during a fixation is devoted to 

saccade programming. However, in complex stimuli it generally makes sense to talk 

about attention and fixation as synonymous (consistent with the Active Vision 

approach: Findlay & Gilchrist, 2003).  

 

Researchers can use the measurement of saccades and fixations in complex 

scenes to answer many different questions about visual attention and information 

processing. The top panel of Figure 1 shows the series of fixations and saccades made 

by a single person viewing a complex scene (despite this sort of diagram, when real 
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saccades are measured with high precision they are not straight and often show 

curvature). It is clear when we repeat this for many people looking at the same image 

(see Figure 1, bottom panel) that there are some consistent patterns in where people 

look. One set of questions, therefore, concerns how to represent and predict these 

patterns. The next section considers a widely used approach to these questions: the 

saliency map approach. 

! !
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Figure 1. When someone views a scene, they make a series of eye movements (top 

panel). These consist of fixations (circles) and saccades (arrows). The fixations have a 

position, a sequential order and a duration (values in milliseconds). Combining the 

fixation locations across many observers reveals variability, but also clustering on 

certain regions (bottom panel). 

!  
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A related but distinct set of questions concerns the order in which people 

attend to different elements of a picture. Investigating this order requires methods for 

comparing and manipulating sequential “scanpaths”, the topic of both classic and 

contemporary research which is discussed in the second half of the chapter. 

 

 

 

!  
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4. Historical Annotations 

 

Although saccades and the “path” followed through an image were familiar to 

early researchers from introspection and observation, it was not until the 20th century 

that eyetrackers were used to measure this with any precision. Researchers often 

chose to focus on simpler and more controlled experiments, and it was only later that 

improvements in technology and computer vision techniques led to more experiments 

with complex images. 

 

Dodge and Cline (1901) are often credited with developing the first optical 

eyetracker, which laid the foundation for tracking based on corneal reflections.  

 

Buswell (1935) used an improved eyetracker at the University of Chicago to measure 

fixations and saccades in two-dimensional images. His observations helped to define 

the enduring questions of how eye movements were related to image content and 

viewer cognition. 

 

Yarbus (1967) used a suction cup to record eye movements over a variety of pictures, 

emphasizing that the active sequence of eye movements changed with the viewer’s 

task. 

 

Noton and Stark (1971) defined the term “scanpath” and incorporated these fixation 

sequences into a detailed computational model which foreshadowed the later focus on 
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eye movements and embodiment (which links perception to physical and motor 

states). 

 

Mackworth and Thomas (1962) developed one of the first mobile eyetrackers. 

Mackworth went on to help conduct several early and important studies on eye 

movements in scene perception (Loftus & Mackworth, 1978; Mackworth & Morandi, 

1968). 

 

Land (1993) conducted several pioneering experiments using mobile eyetracking 

which placed a new emphasis on the importance of action beyond just “looking at 

pictures”.  

 

Itti, Koch and Neibur (1998) and Itti and Koch (2000) presented a fully implemented 

model of visual saliency which could be applied to arbitrary images and tested with 

human fixation data. 

 

Thanks to advances in eyetracking technology, computing and image 

processing, it has never been easier to measure fixation locations from an observer 

viewing a digital image. Modern research investigating how people look at pictures 

uses a range of devices, measures and models. This chapter reviews two general 

frameworks for analyzing and explaining the resulting data (saliency maps and 

scanpaths), and I begin the next section with a review of how we can quantify looking 

behaviour. 

!  
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5. Spatial analysis of fixations: Saliency and saliency maps 

 

Answering the question “Where do people fixate?” 

 

 This section considers a particularly influential way of representing and 

explaining where people look in complex stimuli, with reference to the features in the 

image. Before discussing this approach in detail, it is worth specifying some of the 

different measures that researchers typically use to quantify where participants look. 

Table 1 describes some of these measures, their definitions and the way that they are 

commonly interpreted. These measures are not exhaustive, and different terms are 

sometimes used for the same measure. This means that it is important for researchers 

to clearly define their dependent variables when reporting results. 

!  
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Measure Definition Interpretation 

Trial level measures   

Average saccade amplitude 
The mean (or sometimes median) amplitude of all saccades made, in 

degrees of visual angle 

Greater values = larger shifts between points of interest in a 

given scene 

Fixation dispersion or 

“spread” 

The standard deviation of all x and/or y fixation coordinates, in degrees 

of visual angle 
Greater values = fixations which are more spread out in space 

Region of interest measures   

Probability of fixation 
A binary, yes/no variable representing whether or not a region has been 

fixated at least once in a viewing episode 

Regions which are fixated have received more attention than 

those which are not 

First fixation time / number 
The time / ordinal fixation number at which the first fixation on a 

region occurs 

Lower values = region which is fixated earlier and prioritised 

by attention 

Number of fixations (on a 

region) 
The total number of fixations landing within a region of interest 

Greater values = more interest or attention devoted to this 

region 

First fixation duration The duration of the first fixation on a region of interest 
Greater values = more extensive or elaborate processing of 

the region on the first look 

First gaze duration 
The sum duration of all fixations made on a region of interest on the 

first pass (i.e., before exiting this region) 

Greater values = more extensive or elaborate processing of 

the region on the first look 

Total gaze duration / 

inspection time 

The sum duration of all fixations made on a region of interest, including 

refixations 

Greater values = more extensive or elaborate processing of 

the region over an extended period 

 

Table 1. Some of the most commonly used measures for quantifying where people look in images.



16#

The measures in Table 1 can be aggregated to give a summary description of 

the fixation patterns from many participants and trials. Most modern eyetrackers 

come with software for automatically calculating these statistics. The process for 

deriving these measures is straightforward and consists of allocating each fixation to a 

region of interest, based on the (x, y) screen coordinates of the fixation. The region of 

interest might be defined by a bounding box (most easily, a rectangle), or by a circle 

with a given centre and radius (thus including all fixations within a certain distance of 

that point). For example, Figure 2 shows one of the stimuli used in Foulsham and 

Underwood (2007). In this picture, we identified two regions of interest: a key object 

(a piece of fruit) and a region containing the brightest, most salient features in the 

image. Figure 2 shows how three measures can be calculated for each person viewing 

this image (see also Table 1). The probability of fixation merely records whether a 

given area of interest has been fixated or not (1 or 0). When averaged across the two 

example participants, region A (the apple) has a fixation probability of 1.0 because it 

was fixated by 100% of the observers. Region B (the lamp) has a fixation probability 

of 0.5 because only half of the observers looked at this region. The other measures in 

Figure 2 show that region A is first inspected after 4.5 fixations, and attracted 1.5 

fixations, on average.  In Foulsham and Underwood (2007), the same regions were 

present across many pictures in the experiment, and because all participants viewed 

all these pictures, measures could be averaged across images and then across 

participants to derive a description of the general tendency for people to look at either 

of these key areas.  

#  
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Figure 2. A region of interest analysis with two regions (A and B, see top left panel) 

and example eye movements from two participants, P1 and P2 (bottom panels). The 

top right panel shows some statistics for each region and participant. For example, 

region B is fixated by P2 but not by P1, giving a (mean) fixation probability of 0.5.   

P1 P2 

Regions of 
interest 

A 

B 

Probability 
of fixation 

First fixation 
number 

Number of 
fixations 

P1 1 5 1 

P2 1 4 2 

Mean 1.0 4.5 1.5 

P1 0 - 0 

P2 1 2 2 

Mean 0.5 2 1 

B 

A 
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One might well ask why so many measures are necessary to represent where 

people look. In some cases, several measures will yield the same conclusions. This 

may be because the measures are formally identical (e.g., the total gaze duration and 

the sum of all the fixation durations); because they are logically related (e.g., making 

a greater number of fixations must also mean making a greater number of saccades); 

or because they are merely correlated (e.g., it is normally, but not always, the case 

that a greater number of fixations corresponds to a longer total gaze duration).  

It is important to remember that whichever measures are used, they are 

attempting to condense an (often complex) set of spatiotemporal patterns. The actual 

measures to analyse, which will reflect the hypotheses of the particular study, should 

be chosen with care. Figure 3 depicts some of the questions that researchers should 

ask themselves when choosing which measures to use. Referring back to Figure 2, we 

can see some of the subtleties in using these statistics to compare regions of interest. 

In one case, there is a region which is fixated by both participants (region A). How 

early and how frequently this region is inspected can be quantified by calculating the 

first fixation number and the number of fixations on this item. However, these 

measures may not make sense if a region is rarely fixated. Calculating the first 

fixation number is only possible if the region has been inspected at least once (and so 

there is a missing value for participant P1 looking at region B, see Figure 2). Here it 

might be more useful to quantify the region fixation probability. 
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Figure 3. A flowchart depicting some of the ways in which researchers can select eye movement measures that answer their research question.
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Now that we have discussed some measures of how much a particular region 

or object is attended to, we can consider how to explain this in terms of a 

representation of the features in the scene: a saliency map. This approach has been 

highly influential because it allows researchers to analyse complex natural scenes and 

relate them to eye movements in a principled way. The underlying image processing 

techniques are often freely available and relatively easy to use, which means that 

investigators in a range of fields can produce predictions for their stimuli. For 

example, users in marketing might wish to determine the saliency of an advertisement 

before measuring how often observers look at this item. Alternatively, a researcher 

might want to measure saliency so that they can control for the visual properties of 

two regions of interest in an experiment (meaning that any differences in how these 

are inspected must be due to cognitive factors). In the next sections, I discuss the 

theoretical and methodological background for the saliency map approach. This 

involves background work in the psychophysics and computational neuroscience of 

attention. Much of this material is technical, and there remain debates about how best 

to compute saliency, and whether it actually tells us anything about fixations. 

However, many of the concepts and methods involved will apply to any spatial model 

of eye movements in scenes. 

 

 

The concept of a saliency map is founded on classic theories of attention 

 

The term “saliency map” (or “salience map”) has its roots in attempts to 

produce a computational model of visuospatial attention. Based on experiments 
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investigating visual search, and under the framework of feature integration theory, 

Treisman and Gelade (1980) described the process by which an observer can select a 

single object amongst an array. When simple features define the target, such as when 

one has to find a red square among many blue squares, it “pops out” and is found very 

easily. It is straightforward to imagine a control mechanism which could code for the 

colour at each location, and filter out only the region where colour = “RED”. But how 

might such a mechanism be implemented in the case of more complex “conjunction” 

targets, such as a red square amongst red circles and blue squares? The solution in 

Treisman’s model was a “master map” which combined the different basic features 

(colours, orientations and intensities) which were present at each location. The 

effortful shifting of attention while looking for the target is then determined by 

scanning of the master map. 

A master map which combines multiple features into an abstract 

representation of attentional priority has been a fixture in subsequent work on 

attention and search. In Wolfe’s (1994) Guided Search model, an “activation map” 

carries out the same function, prioritising (i.e., ranking) those locations in a search 

task that are most likely to contain the target. The activation map is therefore the 

mechanism by which preattentive, parallel processing of basic features is combined 

with top-down control in order to guide attention. Koch and Ulman (1985), 

meanwhile, called the combined representation guiding attention a “saliency map”. 

Koch and Ulman’s conceptual paper described the saliency map as a topographical 

representation which could explain selective attention in a way that was plausible 

given primate neurophysiology. Importantly, the saliency map was seen as an “early” 

visual representation which was based mostly on simple visual features. The focus of 
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attention was then determined by a “winner-take-all” process which selects the most 

salient location. 

 

 

The brain may represent saliency 

 

 The topographical organisation of neurons in the early visual system was well 

known to those theorizing about attention in the 1980s. Single cell recording in 

cortical areas such as V1 showed that neurons were highly spatially selective, coding 

for particular features, and providing the foundation for a set of basic feature maps. 

However, it subsequently became clear that elsewhere in the brain there are cells 

which respond differently to the same stimuli, depending on the current attentional 

priority. For example, the superior colliculus is crucially involved in the control of 

eye movements. The activity of cells in this part of the midbrain does not just depend 

on whether there is a visual stimulus in their receptive field. Instead, cell responses 

are enhanced when observers are planning to make a saccade to this stimulus 

(Goldberg and Wurtz, 1972). Thus, deploying attention and eye movements to a 

certain location increases activity in colliculur neurons coding for this location. 

 Beyond the general attentional modulation of visual responses, there is 

mounting evidence that frontal and parietal areas involved in the control of eye 

movements can be thought of as implementing a saliency map (see Treue, 2003). For 

example, microstimulation of the frontal eye fields is associated with increased 

responding in spatially selective regions of V4 (Moore & Armstrong, 2003). Thus, the 

neural activity integrates relevance—signified by the process of preparing an eye 

movement—with visual distinctiveness. Modern neuroscience has provided 
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increasing evidence for spatial priority maps in frontal and parietal areas of the brain, 

as well as increasingly sophisticated discussions about how these are involved in the 

guidance of behaviour more generally (see Bisley & Goldberg, 2010; Zelinsky & 

Bisley, 2015, for recent reviews). 

It should be clear from this background research that the term saliency map 

has been used in multiple, overlapping ways: as an abstract, master map for 

attentional priority; as a neural mechanism for combining visual activity; as a bottom-

up predictor of where people will look; and as any heat map type representation of 

fixations (see Textbox 1). These terms have not always been applied consistently, and 

so it is important for researchers to provide a precise definition. However, the main 

focus of this section will be a particular style of computational model of visual 

saliency which has been widely used, and which provides an estimate of the bottom-

up feature contrast in complex stimuli. 
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Textbox 1: Heat maps and fixation distributions 

It is often useful to represent the distribution of fixations across an image by 

presenting a heat map: a spatial density plot showing how frequently each part of the 

picture has been inspected. The discrete fixations are first transformed into a 

continuous distribution, often by convolving a binary map with a symmetrical 

Gaussian function. This can also be thought of as iteratively adding a “blob” at the 

location of each fixation. The standard deviation (σ) of the Gaussian affects the 

granularity of the heat map (Fig. A), and should be chosen to reflect error in eye 

position and the size of the fovea (e.g., 1 degree of visual angle). The result can be 

plotted as an “attentional landscape” with “peaks” or “hotspots” showing the places 

which are fixated most often.   

There are a number of somewhat arbitrary factors that can be changed when 

making such maps. As well as σ, some researchers represent fixation duration (by 

scaling the height of the Gaussian), and some may produce heat maps for each 

participant which are then averaged. 

Wooding (1995) and Le Meur and 

Baccino (2013) describe heatmaps in 

more detail. 

 

 

Fig. B. An attentional landscape 
from the same fixations in Fig A. 

Fig. A. The same fixations, convolved with 
two differently sized functions. The resulting 
heatmaps are plotted over the original image. 

 

0 

1 Fixation 
density 
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The Itti and Koch saliency map model 

 

Why is it that some regions are inspected more than others? One possibility is 

that there might be a set of visual features, which can be identified before the 

planning of an eye movement, and which signal those regions that should be 

prioritised for attention and fixation. A likely candidate feature is contrast, in the 

general sense that something which stands out from its background might be worth 

looking at, just as a feature search target pops out in simple visual search. This idea 

underlies the concept of visual saliency that was explicitly modelled by Itti, Koch and 

Neibur (1998), and then applied to eye movements by Itti and Koch (2000, 2001).  

Itti and Koch built on the work of Koch and Ulman (1985), who were inspired 

by both human psychophysics and primate physiology, and implemented a 

computational model which combined bottom-up visual features using image 

processing. Unlike the simple case of searching for a red square amongst blue 

squares, the problem of extracting and combining features from a natural scene 

quickly becomes complex. Itti and Koch (2000) proposed a series of steps, 

implemented and released as a programming toolkit, which could take any arbitrary 

digital image as input (see Figure 4 for an example, and http://ilab.usc.edu for 

downloads and software). 

The first step extracts basic visual features at a range of spatial scales. Each 

feature is associated with a map, with the value at each point in the map representing 

the presence of that feature at that location. In static images, colour, intensity and 

orientation features are extracted using spatial filters (whereas flicker and motion 

channels are also available in dynamic stimuli). For example, the intensity map 

simply represents the amount of light at each point in the image, with black regions 
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having low intensity and very bright regions having high intensity. Colour features are 

combined to compute colour opponency, while the orientation channel is assembled 

from edge detectors of different orientations. In order to identify such features at both 

coarse and fine scales, maps are derived from progressively sub-sampled versions of 

the image.  

The second step is to combine the resulting scaled feature maps in a way 

which highlights feature contrast. This is accomplished through a centre-surround 

arrangement which pits fine and coarse feature maps against each other. The result is 

a “conspicuity map” for each feature, where the locations with the strongest activation 

are those with features which stand out from the surrounding background. An 

important consideration for the particular computational implementation at this point 

is how to combine different features. Should something colourful be given the same 

priority as something which is brighter than it’s background? Although several 

solutions to this are possible, in Itti & Koch’s implementation there is normalisation 

and between-feature competition, such that if there is greater contrast in one feature 

dimension then it will be emphasised at the expense of features with lower contrast. 

After normalisation, the conspicuity maps are added together to give an overall 

saliency map, with “hotspots” showing the most salient regions with the highest 

feature contrast. 

The last step of the model, which makes it particularly suited to applying to 

eye movement research, is that it uses the saliency map to make explicit predictions 

about the locations which will be selected by covert and overt attention. Attention 

moves to the most salient location via a winner-take-all network. The saliency of this 

location is then suppressed (in a way similar to “inhibition of return”, the mechanism 

proposed by Posner et al., 1985, for explaining delayed orienting to previously 
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attended locations). This allows the focus of attention to shift to the next most salient 

region. 

The Itti and Koch saliency model has been very widely cited and applied to 

many different problems in human vision and computer science (see Borji & Itti, 

2013, for a recent review). Its success can be attributed to the fact that it produces 

real, tractable predictions for any arbitrary visual stimulus, with the algorithms for 

producing these predictions freely available. I will now describe some of the practical 

considerations involved in computing a saliency map, before discussing the 

experiments that have been carried out to test this model with human eye movements. 

At this point it is important to note that there are now many different “saliency 

map models”. In the almost 20 years since the original Itti and Koch (2000) model 

was proposed, it has been regularly revised and improved. Several different 

implementations have been released, which may differ in both algorithmic detail and 

actual predictions. Other researchers have proposed different underlying features, or 

tried to incorporate aspects such as depth or motion. In many cases it is also possible 

to incorporate some “top-down” modulation, where the model learns or is given 

information about which features are important (for example by adding a face 

detector, or training a model to look for a certain object). All of this means that it is 

important for researchers to be specific about what model and implementation is 

being used, and with which settings.  

Table 2 describes some of the related, bottom-up models which have been 

published, with particular emphasis on those which are available to download (for a 

much more exhaustive list, see Borji & Itti, 2013; For model evaluations, see 

Kumerer et al., 2015). Critically, many of the methods I will describe next can be 

applied to any of these models. Moreover, many of the principled criticisms that have 
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been levied at the saliency map approach are problematic for any model which is 

based solely on bottom-up features. 

#  
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Figure 4. An example of applying the Itti and Koch (2000) saliency map model to a 

complex image, the “most-tweeted photo ever” from the 2014 Academy Awards. The 

image is analysed within three different feature channels which are combined in a 

centre-surround fashion to highlight feature contrast. The resulting saliency map 

predicts a series of attended locations through a winner-take-all (WTA) process with 

inhibition of return (IOR). Salient locations include the black-and-white contrast of a 

tuxedo and a conspicuous red dress. 

Original image 

Saliency map 

Colour Intensity Orientation 

Spatial filters, centre-surround competition 

WTA 

IOR 

Predicted locations 
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Model& Noteworthy&features& URL&

Itti#et#al.,#(1998;#Itti#&#Koch,#

2000)#saliency#map#model#

Original#model#implemented#in#C++#as#part#of#the#

iNVT#toolkit#

http://ilab.usc.edu/toolkit/#

#

Walther#&#Koch#(2006)#saliency#

toolbox##

Implements#Itti#model#but#also#aims#to#identify#and#

parse#“proto#objects”#

http://www.saliencytoolbox.net#

#

Harel#et#al.,#(2006)#graphTbased#

visual#saliency##

Uses#graphical#models#to#identify#conspicuous#

regions.#Code#also#includes#Itti#model.#

http://www.vision.caltech.edu/~harel/sha

re/gbvs.php#

Itti#&#Baldi#(2006)#Bayesian#

model#of#surprise#

Defines#saliency#mathematically,#according#to#change#

in#prior#beliefs.#Tested#with#eye#movements#in#video.#

http://ilab.usc.edu/surprise/##

Bruce#&#Tsotsos#(2005)#AIM:#

Attention#based#on#Information#

Maximization#

Uses#measure#from#information#theory#to#define#

salient#regions.#Applied#to#visual#search#(with#topT

down#information)#

http://www.cs.umanitoba.ca/~bruce/data

code.html##

Le#Meur#et#al.,#(2006)# Using#Itti#model#as#a#baseline,#introduces#more#

detailed#stages#to#mimic#human#visual#system.#

Code#not#readily#available,#but#see#

http://people.irisa.fr/Olivier.Le_Meur/##

Zhang#et#al.,#(2009)#SUN:#

Saliency#Under#Natural#statistics#

Defines#local#saliency#in#Bayesian#terms.#Combines#

this#with#topTdown#information.#

http://cseweb.ucsd.edu/~l6zhang/code/i

magesaliency.zip##

Judd#et#al.,#(2009)# Introduces#a#widelyTused#eyetracking#dataset#and#

uses#machine#learning#to#identify#lowTlevel#features#at#

fixation#(as#well#as#midT#and#highT#level#features#such#

as#horizon#and#face#detectors).#

http://people.csail.mit.edu/tjudd/WherePe

opleLook/index.html##

Vig#et#al.,#(2014)#Ensembles#of#

Deep#Networks#

Uses#“deep#learning”#to#learn#the#optimal#bottomTup#

features#for#fixation.#Currently#one#of#the#best#

performing#models#(Kummerer#et#al.,#2015).#

http://coxlab.org/saliency/##

Table&2.#A#selection#of#“saliency#models”#which#build#on#the#ideas#from#Itti#and#Koch#(2000).#



31#

Guidelines for eye movement researchers computing a saliency map 

 

It is clear from Table 2 that there are a bewildering number of models 

available, and this is not the place for considering them all in detail. One of the major 

contributions of the modelling community working on saliency maps is that there is a 

large amount of open data and code available. I recommend that interested readers try 

out some of the software available. Although the original version requires some 

knowledge of command line programming and C++, several user-friendly toolboxes 

have also been developed.  For example, Figure 4 was created using Version 3.0 of 

the Saliency Toolbox (Walther & Koch, 2005; 2006). The Graph-Based Visual 

Saliency implementation by Harel et al., (2006) also provides an implementation of 

saliency which is relatively easy for beginners to try. Both toolboxes run within 

MATLAB (Mathworks) and provide a set of functions, documentation and a 

graphical user interface. In this section I will offer some brief guidelines for eye 

movement researchers wishing to use such functions with complex images. 

The first step in generating saliency map predictions is to load in a digital 

image for the stimulus. One way of thinking about this simulation is that the model 

should receive the same visual input as the human observer. Thus the image used 

should be the same as that seen by participants. The size of the image is one of many 

things which can change the specific output of the model, as well as affecting the 

length of time taken for the simulation to be complete. Some models may treat 

grayscale and colour images differently, and it is useful to know how the images are 

encoded (e.g., as an RGB image).  

Next, the image is passed to the saliency functions for analysis. In some cases 

the processing involved is considerable, meaning that it can take some time. 
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Typically, model output includes a continuous map of the image, where each pixel 

represents the saliency of the corresponding point in the image. This map can be 

displayed as a heatmap. However, it is important to be clear how this map is scaled, 

and the colours that are used in displaying it (for example, how is the minimum or 

maximum value in the map displayed?).  

It is particularly important to understand how the images are scaled so that one 

can compare the saliency map output to objects in the image or fixated locations (see 

next section). It is also important to understand that the model essentially pits 

different parts of an image against each other, calculating the relative saliency of each 

region. Thus, if the research question requires comparing between different objects, 

both objects need to be present in the same image. It may not be straightforward to 

compare the saliency maps of two different images, particularly if they show very 

different variances in terms of the features present and their spatial distribution. 

This description was written as a practical guide for people who want to 

produce saliency-based predictions for a particular image. However, as we shall see in 

subsequent sections, the saliency map model is not without its critics. Moreover, it is 

regrettable that there are multiple free parameters which can be changed, many of 

which are not specified by authors using this software, which may lead to problems 

replicating the results. It is therefore useful for researchers to experiment with 

different settings and be clear which differences in saliency are robust and which are 

highly sensitive to changes in model parameters.  

#
 

Testing the saliency map model: Multiple methods, none perfect 
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The Itti and Koch (2000) model was billed as a mechanism for shifts of overt 

and covert attention, making it ideal for producing bottom-up predictions for eye 

movements in complex stimuli. In this section, I will describe some of the ways in 

which these predictions have been tested. To begin, we should bear in mind that the 

model produces both a continuous spatiotopic map, representing the saliency of each 

location, and a simulated series of attention shifts. Both of these outputs can be used 

to test the model directly, and these tests fall into three main groups. 

The first type of analysis examines the strength of the activation in a feature or 

saliency map at each fixated location. If the saliency map is a good prediction of the 

regions which will be inspected, then fixations will select the locations with high 

values, and avoid those locations where saliency is low. To perform this analysis, we 

can take the saliency value from each fixated location and average it across multiple 

fixations and participants. The saliency map is often represented at a lower spatial 

scale (i.e., it is smaller and represents regions more coarsely than the original image), 

and so locations will need to be scaled appropriately so that the correspondence 

between points in the image and on the map is maintained. This is normally just a 

case of determining the size of the saliency map relative to the image and then scaling 

position coordinates accordingly. Rather than relying on exact fixation coordinates, 

one could also take all the values from a small region around fixation, perhaps within 

1 degree of visual angle, compensating for potential errors in eye position 

measurement, and for the fact that the fovea takes in information from an extended 

area. These values could be averaged (or summed), or the maximum value could be 

taken. When evaluating saliency values, it is important to consider the way the map is 

scaled or normalized (e.g., what is the minimum and maximum value in the map, and 

how distributed are these values), and differences in the distribution of saliency can 
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make it difficult to compare between different images. If the saliency map is 

conceptualized as a probability distribution, then all the values will be positive and 

sum to 1. Other implementations will have a fixed range (e.g., between 0 and 1, or 

between 1 and 255 which is common in 8-bit digital images). One way to take these 

into account is to calculate what Peters et al., (2005) dub the normalized scanpath 

salience (NSS; see Figure 5A). To compute this measure, the saliency map is 

normalized by subtracting the mean saliency across all locations and dividing by the 

standard deviation of saliency values. This produces a z-score, and thus shows how 

many standard deviations a particular location is above chance. Using a standard 

saliency model to predict fixations in outdoor images, Peters et al. reported a mean 

NSS of 0.69 which was far greater than that expected by chance (an NSS of 0). 

The second type of analysis compares the overall distribution of many 

fixations with the saliency map, in a manner similar to a correlation. If the model is 

predicting where people look, then there should be a positive relationship between 

saliency and fixation density. Le Meur and Baccino (2013) give a useful summary of 

some of the steps and metrics used in this type of analysis, and they also provide some 

computer code for these analyses. One initial approach is to convert a list of fixation 

locations (e.g., those from multiple participants viewing over an extended period of 

time) into a continuous fixation density distribution. Such distributions can be 

represented as heatmaps, showing the relative frequency with which different regions 

are inspected (refer back to Textbox 1). Comparing a saliency map and a fixation 

distribution can be as simple as calculating a Pearson correlation coefficient between 

the two. If points with high saliency are also locations with a high density of fixations 

then the correlation between the two distributions will be positive. However, because 

the distributions involved may violate parametric assumptions, it is preferable to use a 
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non-parametric method for comparing the probability distributions. One such metric 

is the Kullback-Liebler (K-L) divergence. The K-L divergence is a measure from 

information theory which quantifies the difference between two probability 

distributions. The result is a score—the number of bits—indicating how different the 

two distributions are, with a score of 0 indicating identical distributions. A better 

match between a saliency map and a fixation distribution would give a lower K-L 

divergence. This metric is discussed in detail by Tatler et al., (2005), who were also 

among the first to use the signal detection methods which have become standard in 

those evaluating saliency models.  

The signal detection approach uses the saliency map to discriminate between 

fixated and non-fixated locations, by applying a threshold. Locations with saliency 

higher than the threshold are classified as fixated points, and the threshold is 

gradually increased, allowing the hits (correctly identified fixation locations) and false 

alarms (non-fixated locations classified as fixated) to be tallied. For example, at a low 

threshold many locations will be selected, leading to many false alarms (as well as 

some hits). At a high threshold, only the most salient locations will be classified as 

fixated, and if the saliency map is a very good predictor of fixation these will all be 

hits. Using the rates of hits and false alarms at each threshold, a receiver operating 

characteristics (ROC) curve is plotted, and the area under this curve (AUC) quantifies 

how well the saliency map can discriminate fixated locations (see Figure 5B). This 

method is robust to differences in the distribution of saliency in fixated and non-

fixated locations, and does not rely on parametric assumptions. Critically, because the 

ROC method is based on the ranks of all the points in the map (i.e., the point with the 

highest saliency, followed by the next highest, and so on), it is not affected by any 

monotonic scaling of the actual values. A saliency map which provides no 
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information about fixated locations will lead to an AUC of 0.5. Another advantage of 

this method, widely used in computer vision, is that it can de-confound effect size and 

statistical significance. For example, Tatler et al., (2005) report an AUC of 0.57 for 

the predictiveness of a luminance saliency map. This value was statistically very 

different from chance (according to bootstrapped confidence intervals), but it also 

leaves much of the difference between fixated and non-fixated locations unexplained 

(57% is by no means an impressively large effect). 

#  
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#
#
Figure 5. An example of three different ways to compare fixations on a scene to a 

saliency map. In A), we take the average of the z-transformed map value at each 

location. In B), an ROC curve is plotted by applying a variable threshold to the map 

and observing the correctly predicted fixated locations (hit rate) and the false 

positives. Alternatively, salient regions of interest can be identified from those areas 

selected by the model, and compared to areas that are not (C). The methods are 

applied to the six example fixations in each case.   
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These general analyses are useful for comparing fixations and saliency over an 

entire image in a theory-neutral way. However, often researchers are interested in 

certain objects or regions which have a particular significance based on theory or 

application. The third type of analysis uses the sequence of saliency-predicted shifts 

of attention to identify key regions in the image, and then determines how often these 

regions are fixated. For example, in Figure 2 I described an experiment where “target” 

objects were made more or less salient by placing them in different visual settings. 

The relative saliency of target objects was determined via the model, according to the 

number of simulated shifts of attention that were made before they were selected. For 

example, one might classify a “high saliency” object as one which is selected by the 

model very early (on the first or second simulated fixation). Such objects could be 

compared to “low saliency” or “control” objects which were not selected by the 

model after ten shifts of attention. This approach has a number of advantages. First, it 

tests one of the key strengths of the saliency map model, as proposed by Itti and Koch 

(2000), which is that it predicts an actual sequence of fixations and not just a 

continuous map. Second, it makes it possible to compare between targets which have 

been matched in other ways (such as according to their semantic meaning by virtue of 

being the same type of object). As we shall see, the failure of correlational approaches 

to take semantics into account has led to difficulties in evaluating the saliency map 

model. In Foulsham and Underwood (2007), we found that in the absence of a 

strongly constrained task, objects (pieces of fruit) which were more salient according 

to the model were more likely to be fixated and were fixated earlier.  Figure 5C gives 

another example of comparing the fixations on salient and non-salient regions. 

When evaluating these analyses, we often have to compare the results to some 

kind of null hypothesis, indicating the relationship that we would expect if saliency 
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does not predict fixation. For example, the NSS compares saliency at fixation with the 

average saliency across the whole image, and the AUC compares fixated locations 

with all other non-fixated locations in the image. However, because neither fixations 

nor saliency are uniformly distributed, comparing against a “chance” distribution 

which samples uniformly across locations is problematic. The issue is that such a 

comparison assumes that all parts of an image are equally likely to be fixated. As we 

shall see, this may have caused the role of saliency to be overestimated because 

fixations in the centre of an image are credited to salient features when in fact this is a 

generic spatial bias which is manifested regardless of the scene.  Eye movements 

across many different images are systematically biased to particular spatial locations 

in a variety of ways (see Textbox 2). Whichever metric is used for comparing saliency 

models and fixations, the best approach is to select a comparison distribution which 

reflects the general spatial biases inherent in eye movements across images. For 

example, rather than comparing saliency at fixated locations to the average across the 

whole scene, they can be compared to values from a “shuffled” dataset which uses 

positions selected by human fixations in other images. This shuffled dataset thus 

reproduces the image-general spatial biases, ensuring that only predicting fixation 

patterns on a specific image is credited to the saliency or feature-based model. 

Alternatively, one can use a generic, non-uniform comparison distribution (such as 

that recommended by Clarke & Tatler, 2014, which models the general central bias 

seen in image viewing).  
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Textbox 2: Systematic patterns in scene viewing are not random 

Tatler and Vincent (2009) showed that we can predict fixation locations just 

by knowing how the eyes move in general. This is because, regardless of the image, 

observers show systematic biases towards certain locations and saccades. It is 

therefore important to investigate how these biases are related to image content and, if 

they are not, why they arise. 

There is a strong central bias in fixations on a screen (Fig. A). This is 

exacerbated by the practice of cueing participants with a central fixation cross, but 

may also reflect the eyes’ “orbital reserve”. Photographers also often place objects 

and items of interest in the centre. 

Saccades are also biased, occurring most often in horizontal directions (Fig. 

B). This is true even in square images, and follows perception of the layout when the 

scene is rotated (Foulsham et al., 2008). 

There is also a small but consistent bias to 

make an initial saccade to the left (Fig. C). 

##
#

Fig. A. Heat map and histograms showing 
the relative frequency of fixations across 
scene space. 
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Fig. B. Relative frequency of saccades in 
each direction (data in Figs A and B from 
Foulsham & Underwood, 2008). 
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Fig. C. Recent studies reporting a greater 
than average proportion of leftward initial 
saccades. 
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Bottom-up features play only a minor role in the guidance of eye movements 

 

Now that we have discussed methods for testing the predictiveness of the 

saliency map model, how should we judge its success? When doing this, it is useful to 

return to the original paper by Itti and Koch (2000), who defined their model as 

“bottom-up”. Although the distinction between bottom-up and top-down is not always 

clear-cut, their model was meant to simulate early visual processes, and it contained 

no information about the meaning or relevance of scene regions. A glance back at 

Figure 4 will convince the reader that the salient items in the “Oscars selfie” image 

are not necessarily the most interesting, and neither are they the parts of the image 

which one intuits will catch viewers’ attention, because the model knows nothing 

about faces or celebrities. Also, because the traditional saliency map approach 

produces the same predictions regardless of what the viewer is doing, it cannot 

account for any differences in behaviour based on task. These facts were noted by Itti 

and Koch (2000), who acknowledged that it “might be that top-down influences play 

a significant role in the deployment of attention in natural scenes” (p.1502), and that 

this was a key limitation of their model.  

There does appear to be a correlation between fixation and saliency, 

particularly in the contrived case of a “free-viewing” task where participants are 

merely asked to look at an image with minimal task constraints (e.g., Parkhurst et al., 

2002). We have found that saliency at fixation is higher than chance (as did Peters et 

al., 2005), and that highly salient objects are looked at more often than less salient 

objects (Foulsham & Underwood, 2007; 2008). However, it would be incorrect to 

conclude from this that the literature was supportive of a causal relationship between 

saliency and eye movements. In fact, the opposite is true, with most recent research 
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arguing that saliency is insufficient for explaining where we look. Some of the 

limitations of the saliency approach are discussed in detail by Tatler et al. (2011). The 

main criticisms are as follows. 

First, while there may be a correlation between saliency and fixation, this 

correlation is really rather weak, even in ideal circumstances. In terms of the area 

under the ROC curve, values of around 0.6 or 0.7 are most common, meaning that the 

underlying image statistics provide only a modest amount of information about 

fixation selection. Considering that “blind” models which do not have any 

information about image features but only about the systematic way that people move 

their eyes can lead to classification performance of 0.65 (Tatler & Vincent, 2009) or 

0.68 (Ehinger et al., 2009), saliency may not tell us very much extra. Whatever metric 

is used, it is important to benchmark it against the amount of variability that we could 

possibly expect to predict. Because the saliency map model is a normative model, 

which produces the same predictions for everyone, it obviously cannot predict 

individual differences between observers, and neither can it account for any random 

component to fixations. A common approach, therefore, is to express the 

predictiveness of the model as a proportion of the “inter-observer consistency” (i.e., 

the ease with which fixations from a given observer can be predicted by the fixations 

of all other observers). This reflects the fact that what we are really trying to predict is 

the commonalities in looking behavior across people. Peters et al., (2005) report that 

their baseline saliency model gives an NSS of between 39% and 57% of the inter-

observer value. While this is greater than zero, it leaves considerable variance 

unexplained.  

A second problem is that with correlation-type analyses there are numerous 

other factors which might co-occur with saliency and which cause regions to be 
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fixated. In other words, saliency may not actually cause regions to be fixated in the 

first place. Visually salient regions are often also semantically informative 

(Henderson et al., 2007) and contain meaningful objects (Elazary & Itti, 2008). 

Conversely, the regions which are fixated least often—consider the empty patches of 

sky and road in scenes such as Figure 1—are often both non-salient and not of central 

focal importance to the meaning of a scene. We cannot, without systematic 

manipulations, conclude that what makes these regions priorities to fixate is indeed 

their visual saliency. Although it is a matter of current debate, objects which are 

manually identified by humans seem to be fixated more often than predicted by 

saliency, and selected in a way that is more consistent with complex object features 

than simple edge detection (Foulsham & Kingstone, 2013a; Einhauser et al., 2008; 

but, see Borji et al., 2013). There are of course other meaningful objects, such as 

human faces, which appear to be fixated regardless of their visual saliency (e.g., 

Birmingham et al., 2009; See Bischoff et al., this volume). 

The third major issue for saliency map models is that, when participants view 

images under realistic task conditions, saliency seems to play very little role and can 

be immediately overridden. In particular, in visual search, salient regions are 

completely avoided in preference for regions which look like the target, or areas 

where it is likely to appear (Ehinger et al., 2009; Foulsham & Underwood, 2007; 

Henderson et al., 2009). When the task requires fixating a target in a non-salient 

region, this task is completed even on the first fixation (Einhauser et al., 2008). 

Modifying semantically meaningful regions to change their saliency has little or no 

effect on their likelihood of fixation (Nystrom & Holmqvist, 2008). Beyond picture 

viewing, it may be best to conceptualise the “relevance” of a to-be-fixated location as 
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depending, not on visual saliency, but on reward in the context of active tasks 

(Rothkopf et al., 2007). 

As described in Table 2, there has been considerable progress in the 

development of bottom-up saliency models. Several datasets are freely available for 

people to test proposed models and evaluate the results, stimulating a competition 

between models (e.g., the MIT saliency benchmark: http://saliency.mit.edu). 

Recently, this has involved applying more powerful machine-learning or deep-

learning algorithms to learn the optimum features for discriminating fixated and non-

fixated regions (e.g., Vig et al., 2014). Kummerer et al. (2015) develop a principled 

way to compare different models and metrics by quantifying the amount of 

information a model provides, over and above an image-independent baseline. This 

paper shows that bottom-up models are becoming better at predicting where people 

look. On the other hand, it also estimates that the very best performing model can still 

only account for 34% of the information gain which should be explainable based on 

consistency between participants. Thus the saliency map approach is a long way from 

being able to explain patterns in where people look. 

To summarise, then, although the saliency map model may represent a 

plausible and tractable way to estimate bottom-up feature contrast, it is not 

appropriate as a catch-all model for fixations in natural images. It remains an open 

question whether there are real-world situations where we prioritise saliency at the 

expense of relevance. Instead, researchers have focused on modeling top-down 

factors—knowledge of a search target or a scene, and the demands of a task—and 

combining these with visual saliency (Navalpakkam & Itti, 2005; Ehinger et al., 2009; 

Zelinsky, 2008). 

#
# #
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#
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6. Sequential analysis of fixations: Scanpaths and scan patterns 

 

Temporal and sequential analysis of fixations 

 

So far, most of this chapter has dealt with answering questions about where 

people fixate. This is a sensible thing to investigate, because the eyes can only be 

directed at one location at a time and our eyetrackers can measure this with high 

precision. However, this has often led to a separation between analyses focused on 

spatial looking patterns and those based on the timing of where people look. This is 

surprising given that in other domains the question of when the eyes are moved is 

especially important (e.g., in reading; See Hyona & Kakkinen, this volume). In this 

part of the chapter I will describe one way of combining spatial and temporal 

information: by analyzing scanpaths. First, we should consider fixation duration and 

other temporal measures that have been investigated in scene viewing. 

Turning back to Figure 1 at the beginning of the chapter, we can see that each 

fixation on an image has a duration as well as an order in the scanning sequence. 

Typically, fixations on complex images have an average duration of around 300 ms, 

but they can vary considerably between different observers and different images. 

Very short fixations (less than 80 ms or so) are rare and, because it must take longer 

than this for the visual system to program the next saccade, these outliers are 

sometimes excluded. Understanding the causes of the variability in fixation duration 

(what makes some fixations longer than others) is difficult in natural scenes because 

we are rarely in control of precisely where someone is looking or the information 

available at that point. However, with the support of evidence from reading and 
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picture viewing it is generally assumed that longer fixations reflect more difficult, 

more extensive, or more effortful processing of the details at that location. For 

example, objects which are out-of-place are associated with longer fixation durations 

(Underwood & Foulsham, 2006), and fixations are longer on average when trying to 

remember the details of a scene than when searching around for a specific object 

(Mills et al., 2011). Conversely, we would not expect fixation duration to be 

associated with superficial visual properties of an object which do not change its 

meaning (and hence in Foulsham & Underwood, 2007, we found that salient objects 

were fixated earlier but not for a longer duration). 

There are a number of difficulties with analyzing fixation durations for 

particular areas of interest in complex scenes. One issue is that, although it is 

normally a safe assumption that fixation duration reflects processing at the current 

location, in some cases prolonged fixation duration may indicate covert scanning or 

changes in the periphery. Another is that objects are often fixated more than once, and 

so it is really the cumulative time spent on an object which is a better measure of 

processing (see Figure 3). Multiple, consecutive fixations on an object are normally 

described as a “gaze” (but also as a “dwell” or a “run”), and thus the first gaze 

duration describes the sum duration of all fixations before moving the eyes away from 

a particular region of interest. The pattern of fixations and refixations may be 

complex. For example, participants might make a short initial fixation near an object, 

before making a small “corrective” saccade to a better position for a longer fixation. 

The interaction of fixation position on an object and fixation duration has been of 

recent interest for several researchers (Foulsham & Kingstone, 2013a; Nuthmann & 

Henderson, 2010). 
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A good way to introduce some control into experiments in scene perception is 

by using gaze-contingent displays, where parts of the scene are changed in real time 

and in response to eye movements. Henderson and Pierce (2008) masked the scene at 

a critical point during a saccade and observed the results on the following fixation 

(the “scene onset delay” paradigm). Surprisingly, they observed that not all fixations 

were affected by this change. Thus, although some fixations were under direct control 

in response to what the observer could currently see, others were “pre-programmed”. 

Such evidence has been used by Nuthmann et al. (2010) to propose a model of 

fixation durations in scenes which is driven by the underlying saccade programming. 

Participants in scene viewing experiments often view a picture for several 

seconds at a time. As we might expect if observers are learning about the image and 

changing their priorities, eye movements may change over this period. For this 

reason, some researchers choose to look specifically at the first few fixations, arguing 

that this is the point when participants are drawn to certain details for the first time. 

Fixations in the first 1 to 2 seconds of the viewing period tend to have a shorter 

average duration (and these are associated with larger average saccades; Unema et al., 

2005). It has been proposed that such changes reflect a switch between “ambient” or 

“global” exploration and “focal” or “local” scanning. However, it is not known how 

ubiquitous these patterns are or how they are related to scene content. 

 It is clear from the research reviewed in this section that it is important to 

think about when fixations are made, as well as where. Rather than aggregating across 

a number of fixations made at different times, we can also examine the presence of 

particular sequential patterns in where observers look. This is discussed in the 

following sections. 
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Classic research emphasized cognitive constraints on scanning patterns 

 

The focus of recent research on visual saliency and other image-based 

accounts of fixation is curious, because classic research emphasised the opposite: that 

where we look and the order in which we look there is determined top-down. Buswell 

(1935) and Yarbus (1967) studied participants’ eye movements while viewing 

paintings and images. They found that people tended to look at semantically 

meaningful regions: faces, objects and details important for understanding the scene. 

As we discussed in the previous section, it is unlikely that a purely saliency-based 

account of where people look can explain the concentration of fixations on such 

items. Moreover, Yarbus is often credited with showing that the pattern of eye 

movements made depended on the task that the participant was performing (although 

Buswell had in fact already observed this). In particular, Yarbus showed observers the 

same painting (Ilya Repin’s An Unexpected Visitor) with a number of different 

questions in mind. In a widely-reproduced figure, he depicted the series of fixations 

and saccades made in these different conditions, confirming that the viewing pattern 

in each case was very different. For example, when asked to give the ages of the 

people depicted in the scene, most fixations were on the faces of these characters. In 

contrast, when asked to “estimate the material circumstances of the family”, many 

more fixations were made on the paintings, furniture and decoration in the room. 

Therefore the places where people looked were selected according to the information 

required by the task. 

Yarbus’ illustrations place a key emphasis on both where the observers were 

looking and the order in which they look there. Indeed, as discussed by Tatler et al., 

(2010) in their review of Yarbus’ impact, he was particularly interested in the way 
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that eye movement scanning might be cyclical or idiosyncratic. When dividing up the 

viewing of an image into different time slices, he claimed that observers repeated a 

pattern of inspection. For example, when looking at a face, participants would iterate 

through the key features (eyes, mouth, nose) before starting again. Although different 

participants tended to look at similar locations, when the same person looked at an 

image on multiple occasions the resulting scanning patterns were even more alike. 

In this section of the chapter, I will review methods and theory which examine 

these “scanpaths” or “scan patterns” in more detail. As we shall see, this goes beyond 

merely describing what is looked at, to quantifying the sequence of eye movements as 

a whole. 

 

 

Scanpath theory links eye movements to a cognitive model for visual recognition 

 

As we have seen, the viewing patterns of a number of people looking at an 

image may cluster on certain regions of detail. What determines the order or temporal 

structure of their fixations? Noton and Stark (1971) advanced the theory that the 

execution of a sequence of eye movements is intimately bound up in the processes of 

encoding and recognizing an image. Noton and Stark were influenced by Yarbus’ 

observation of cyclical and repeating eye movements, and they used recordings from 

those inspecting simple line drawings. In particular, in each observer’s pattern of 

inspection they claimed to see a “scanpath”: a “fixed path, followed intermittently but 

repeatedly by a subject’s eye while he views a pattern” (p. 933). This observation was 

based on judging the similarity within and between viewers, and in particular on 

recordings from the same person looking at the same image on two occasions. Noton 
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and Stark proposed that some elements of an individual’s scanpath was repeated on 

subsequent viewings. 

This qualitative observation was used to support a theory of human pattern 

recognition. According to “scanpath theory”, when a visual pattern is encountered for 

the first time, its local features are stored in memory. Crucially, these sensory 

memory traces are combined with a representation of the eye movements made to 

view the pattern—a motor memory trace. The result is a sensorimotor network: a 

series of connections between nodes representing features and those representing the 

eye movements. When the pattern is encountered again at a later date, this network is 

reactivated, so that successive eye movements in the sequence are repeated, and the 

visual features are verified against the memory trace. 

On the one hand, scanpath theory was an overly simplistic and impractical 

account of how people see and remember. It is not clear how features are integrated, 

or how such networks could scale up to all the different sorts of patterns that we can 

recognize, and all the situations in which we view them. On the other hand, it pre-

dated much more modern accounts of embodied perception, such as Barsalou (1999), 

which see motor simulation as a crucial part of perception. For those interested in eye 

movements, the notion of scanpaths as generated top-down, based on individual 

memories and representations is a radically different approach to the research on 

visual saliency discussed in the first part of this chapter. 

 

Methods for scanpath comparison 

 

I began this chapter by discussing some methods for quantifying the eye 

movements from multiple observers looking at an image. In general, these methods 
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were based on the spatial position of fixations. For example, heatmaps tell us 

something about the spatial spread and consistency of fixations, and how they align 

with items in the scene. If we are interested in the order in which certain regions are 

fixated, one option is to evaluate measures of fixation timing (e.g., how early objects 

get fixated in different scenes or conditions, see Table 1 and Figure 2). However, this 

requires clear regions of interest and analyses only a small number of fixations (i.e., 

those which land on the regions). They are also generally aggregated across many 

trials and observers. If scanpaths really do feature predictable sequences of fixations, 

then these methods will probably not be able to detect them. 

An alternative way of analyzing scanpaths is to compare them more 

holistically, over space and time. The central problem here is how to take two 

scanpaths (A and B) and compute their pairwise similarity. This problem has been 

addressed in detail by several authors (Privatera & Stark, 2000; Foulsham & 

Underwood, 2008; Dewhurst et al., 2012; Cristino et al., 2010; See Bischoff et al., this 

volume). 

 Perhaps the most straightforward approach would be to measure the linear 

distance between the fixations in each scanpath. Similar scanpaths will contain 

fixations which are close to each other in space. This is the approach that was taken 

by Mannan et al., (1995) when they studied fixations in pictures with various levels of 

image manipulation. But to which of the fixations in scanpath B should a given 

fixation in scanpath A be compared? There are a number of options (the closest, the 

average of all others, that which occurred at the same time), but all of these result in 

un-intuitive values when there are big differences in the distributions of the fixations 

in A and B. Moreover, measuring linear distance cannot easily take into account the 
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sequence of the fixations, meaning that two scanpaths which visit the same locations 

in a completely different order will seem highly similar. 

Instead, a range of authors have proposed scanpath comparison methods based 

on aligning fixation sequences (see Textbox 3, and Bischoff et al., this volume). 

These have the advantage that they represent both spatial and sequential aspects of the 

scanpaths. However, they can be complex to calculate, and there is currently no clear 

consensus on which method to use. The preferred analysis will depend on whether 

there are clear regions of interest and the aim of the comparison. Whichever method is 

chosen, it is important to evaluate similarity values with care. Often, the aim of the 

analysis is to investigate whether scanpaths are more (or less) similar than some kind 

of chance or baseline expectation. Because of the global biases discussed earlier in the 

chapter, scanpaths will probably be similar, to a certain degree, even when they 

originate from different scenes and observers. A good approach, therefore, is to also 

compute some control comparisons, against which the experimental values can be 

evaluated.
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Textbox 3: Sequential scanpath comparison

Several of the scanpath 

comparison algorithms that have been 

developed are based on the “string 

edit” or Levenshtein distance, which 

was applied to eye movements by 

researchers such as Brandt and Stark 

(1997). First, scanpaths are coded as 

sequences of characters based on 

regions of interest (Fig. A). Then, the 

similarity between these sequences is 

quantified by calculating the number of 

steps or edits required to transform one 

into the other. 

#

#

Cristino et al., (2011) proposed a 

more sophisticated approach 

(ScanMatch) which takes into account 

fixation durations and spatial and non-

spatial relationships between ROIs. 

#
#

#

#
Dewhurst et al., (2012), 

described an alternative (MultiMatch), 

which aligns and compares scanpaths 

as simplified vectors. This allows 

scanpaths to be compared across 

multiple dimensions. Both ScanMatch 

and MultiMatch are available as 

MATLAB toolboxes (Fig. B).# 

A B C D E 

F G H I J 

K L M N O 

P Q R S T 

U V W X Y 

 F U X X N J  ! F H V X J = 3 edits 

A = Menu 1 

B =  
Submit button 

C = Footer 

A C B ! A C B = 0 edits 

Fig. A. Two scanpaths are compared as 
strings, using either a grid or predetermined 
regions of interest. 

Fig. B. ScanMatch and MultiMatch 
toolboxes give similarity scores for a pair of 
scanpaths. 
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Tests of scanpath theory confirm that participants are idiosyncratic in where 

they look 

 

Now that we have considered how scanpaths can be represented and 

compared, we can return to the central predictions of scanpath theory: i) that 

participants will repeat eye movement sequences when recognizing a previously seen 

image; and ii) that this recapitulation will trigger successful recognition. Noton and 

Stark (1971) addressed i) by making qualitative judgements about the similarity of 

scanpaths at encoding and test. Subsequent work used transition matrices or the string 

edit distance to quantify similarity, confirming that there was some similarity between 

viewings (Stark & Ellis, 1981; Choi, Mosely & Stark, 1991). However, these 

experiments used rather simple stimuli and few observers, and it was not clear how 

the similarity measurements should be interpreted. 

In Foulsham and Underwood (2008) and Foulsham et al., (2012), we returned 

to the question of scanpath similarity, using 45 complex natural scenes which were 

viewed by 21 observers as part of a memory test. Figure 6 shows an example of the 

resulting scanpaths. Using a variety of different comparison methods, we confirmed 

earlier reports that participants did show some similarity between viewings. This 

similarity was certainly not 100%, and because the image is the same, any differences 

must be due to memory and the demands of the task. However, scanpaths from the 

same person viewing the same image were more similar than two different people 

viewing the same image. In this sense, the eye movements of a particular individual 

seem to be idiosyncratic. 

#  
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#
#
#
Figure 6. An example of two scanpaths made by the same person viewing the same 

scene, once while learning the image (a), and once when recognizing it later during a 

memory test (b). Figure redrawn from Foulsham et al. (2012). Note that in this figure 

fixation duration is represented by the size of the circles. 

 

#  

a) Scanpath at encoding b) Scanpath at test

c) Simplified scanpath vectors
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It is clear that the scanpaths made by the same person viewing an image on 

multiple occasions are not identical, and indeed, it is possible for people to recognize 

some images without making any eye movements. Therefore the strong version of 

scanpath theory can be rejected. Moreover, the modest similarity that does occur 

could be caused by a variety of factors: the re-presentation of salient items; a 

consistent reaction to scene elements; or idiosyncratic, systematic tendencies in eye 

movements which persist over time. So what of prediction ii) above, that eye 

movement recapitulation enhances recognition memory? The evidence that images 

with closely repeating scanpaths are recognized more accurately is inconclusive 

(Foulsham et al., 2012). It is also not clear whether repeating eye movements could be 

said to be causing memory, or the other way around. A much better test of the role of 

eye movements in image memory, therefore, is to manipulate scanpaths and observe 

the results. 

 

Manipulating scanpaths can affect memory 

 

Scanpaths in picture viewing arise when participants freely view an image, 

and thus they provide a measure of unconstrained, natural behavior. However, often a 

researcher may need to introduce constraints, so that information in the image is 

acquired in a certain order or central and peripheral material is controlled. 

Manipulating fixations in natural images can therefore be a useful tool. One 

possibility is to use a gaze-contingent procedure, which changes presentation based 

on voluntary eye movements. For example, Zelinsky and Loschky (2005) investigated 

memory in scenes by ending the trial when a certain number of objects had been 

fixated. Foulsham et al., (2013) used “moving windows” of different shapes to 
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encourage a different pattern of scanning, with vertical “slits” leading to more vertical 

eye movements.   

Holm and Mantyla (2007) coerced participants viewing landscape paintings to 

follow a certain scanpath. Observers were required to fixate a sequence of dots, 

superimposed on the image. Later on in the experiment, looking back to the same 

locations was associated with explicit recognition. In Foulsham and Kingstone 

(2013b), we used a similar technique to probe the causal role of eye movements, 

providing a direct test of scanpath theory. In our first experiment, we manipulated the 

scanpath during the learning phase of the experiment, as had been done by Holm and 

Mantyla. Rather than freely viewing each image, participants saw a series of square 

patches, one at a time, which simulated a sequence of fixations. After viewing 48 

scenes in this fashion, there was a memory test where the task was to indicate whether 

the displayed image had appeared in the first half of the experiment. During this “test” 

block, the full scenes were displayed and the question was whether unconstrained eye 

movements would follow the sequence from that image in the learning block. The 

results showed that indeed the imposed scanpath affected viewing at test, but only 

when the image was subsequently recognized correctly. 

In subsequent experiments, we reversed the procedure, allowing free viewing 

during the learning phase but constraining the scanpath at test (Foulsham & 

Kingstone, 2013b, Experiments 2-5). This meant that the sequence of fixations at test 

could be manipulated to be either the same as those made by that observer when first 

seeing the image, or drawn from different locations. These experiments were 

technically challenging and required that the fixations be written to a data file during 

the learning phase, and then retrieved to constrain the test phase. If repeating a 

scanpath really activates a stored memory of the pattern, then we would expect 
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recognition of previously seen images to be better when we forced participants to look 

at the image in the same sequence as they had on the first encounter. This was the 

case when recognition was compared with a condition presenting random patches. 

However, when the control condition presented patches from the eye movements 

made by another individual, or the same fixation locations but in a scrambled order, 

there was no memory advantage. In other words, there is not anything especially 

useful about repeating your own scanpath, in its set order. Fixations select memorable 

locations, but in the case of complex scenes replaying a scanpath does not seem to 

have a clear causal affect on memory in the way proposed in scanpath theory. 

 

 

Eye movements provide information about recognition and imagery 

 

Scanpath theory seems to be unable to account for the particular relationship 

between eye movements and memory observed in Foulsham and Kingstone (2013b), 

because it places special importance on one’s own scanning pattern, which we found 

does not necessarily enhance memory. Eye movements vary in multiple ways, and 

although some of this variability appears to be systematic within an observer, 

supporting a link with memory processes has proven difficult. However, scanpaths 

clearly are useful measures, both for characterising viewing patterns in a holistic 

fashion and for investigating memory. At the most basic level, eye movements and 

attention are gatekeepers to our sensory input, and so they must constrain what we 

end up seeing and storing in memory. Eye movements and memory continue to be 

explored in a variety of stimuli, particularly in face recognition (Althoff & Cohen, 

1999; Schwedes & Wentura, 2012). 



59#

Scanpath theory and methods have also been applied to visual imagery, where 

there continues to be a debate about the extent to which eye movements are 

functional. In a typical experiment, participants view an image or other spatial pattern, 

and they then visualise or imagine this image later while looking at a blank screen. In 

these conditions, observers seem to spontaneously make eye movements, which may 

partially reflect items in the remembered image. Laeng and Teodorescu (2002) and 

Johansson et al., (2012) argued that preventing eye movements during retrieval led to 

poorer imagery, although it is not always clear whether the precise pattern of eye 

movements made is important for functional benefits. 

#  
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7. Applications and implications 

 

This chapter has described a range of methods for investigating eye 

movements in scenes through region-of-interest analyses, comparisons with saliency 

maps, and quantifying scanpaths. Because the focus has been on relatively complex 

stimuli which vary across many dimensions, these techniques are well suited to 

applying to a range of different contexts. Eyetracking has become a popular tool for 

researchers far beyond the traditional realm of cognitive psychology and vision, and 

here I will mention a few particularly active interdisciplinary topics. 

 

 

Perception of art 

 

Like Yarbus and Buswell, some of my examples have been drawn from 

experiments where participants viewed works of art (e.g., Box 1, which shows 

Gainsborough’s painting Mr and Mrs Andrews). As with more theoretical work in 

scene perception, eyetracking experiments with art have addressed the consistency 

between observers, as well as how this may be affected by the techniques of the artist 

and viewer expertise. 

Moving beyond the truism that people look at areas of detail in a painting, 

DiPaola, Riebe and Enns (2010) investigated the subtle techniques that Rembrandt 

and other artists use to guide the eyes. DiPaola et al. selectively modified the 

rendering of portraits to test the idea that artists enhance the detail of one side of the 

face in order to induce a particular viewing pattern. Sure enough, participants spent 

more time on a textured eye region than on the other side of the face, and this affected 
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judgements of the quality of the art. Thus artists may have evolved techniques which 

affect eye movements, and this may even be true in the colour balance of abstract 

artworks (Nodine, Locher & Krupinski, 1993). 

Eyetracking has also been used to evaluate the viewer’s experience of looking 

at a piece of art. Nodine et al., (1993) were among the first to investigate how artistic 

training might affect this experience as well as viewing patterns. The results 

suggested that untrained viewers focus more on individual objects, while experts were 

more sensitive to composition. This was reflected in more “specific” scanpaths 

targeted at relationships between objects. More recent work has shown that 

artistically-trained individuals spend more time on structural features (Vogt & 

Magnussen, 2007). Naïve observers may also change their gaze patterns when 

speaking about their interpretation of a painting, becoming more systematic (Klein et 

al., 2014). Thus eye movements continue to show promise in this interdisciplinary 

field. Indeed, eyetracking has even been incorporated into a large exhibition in an art 

gallery, resulting in data from thousands of visitors (Wooding, 2000). 

 

Marketing and websites 

 

There is now a large industry which seeks to evaluate and improve marketing 

materials by using techniques from visual attention research and eyetracking (see 

section D of this volume). In advertisements, experimental research has often looked 

at the way in which observers scan combined text and images. For example, Rayner et 

al. (2001) found that people normally first read the text associated with print 

advertisements, before looking at the product image. Wedel and Pieters (2008) 

provide a useful review of how eyetracking has been applied to marketing, as a now 
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dominant measure of the attention paid to branding. Although it is clear that there are 

things that marketers can do to increase the attention paid to their advertisements 

(e.g., by making the brand and advertisement larger), the impact on actual purchasing 

is less persuasive. Current research using eyetracking to investigate marketing has 

also investigated sequential scanpaths (Pieters, Rosbergen & Wedel, 1999) and the 

role of bottom-up saliency (Van der Lans, Pieters & Wedel, 2008). Moreover, the 

central fixation bias appears to have an effect on the products which are noticed and 

ultimately chosen (Atalay et al., 2012). 

The visual exploration of websites has also provided a measure for marketers. 

For example, a large number of studies and findings are discussed by Nielsen and 

Pernice (2010). Among the most popular claims from this research are that 

participants show an “F-shaped” pattern when reading web content (distinguished by 

a large horizontal exploration which tapers off further down the page) and that 

observers frequently ignore advertisements (“banner blindness”). More relevant for 

the present chapter, both saliency and scanpaths have been investigated in the context 

of websites (Holmberg et al., 2014; Josephson & Holmes, 2002). 

 

 

Computer vision 

 

Computational models of visual saliency, benchmarked against human eye 

movement data, continue to be extremely popular in a range of computer vision 

applications. Borji and Itti (2013) review some of the many models that have been 

developed, along with their applications. Because it is assumed that fixation (and 

attention) is the first stage in cognitive processing, visual saliency may help build 
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computers which can recognize objects (Walther et al., 2005). Saliency can also be 

the first step in processes of image and video segmentation. 

Interestingly, the focus on eye movements has both influenced and been 

influenced by developments in robotics. In particular, the acknowledgement that 

artificial visual systems benefitted from an active sensor (which moves like the eye), 

contributed to the complementary movements known as Active Vision (Ballard, 1991; 

Findlay & Gilchrist, 2003). Saliency has been implemented as a way for robots to cut 

down on their visual input and learn to move and localize themselves in space (e.g., 

Siagan & Itti, 2009). 

#  
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8. Conclusions and limitations 

 

In this chapter, I have discussed eyetracking results from people looking at 

pictures, and I have done so largely within the framework of saliency and scanpaths. 

Visual saliency provides an explicit and implemented model of going from simple 

visual features to predictions for complex scenes and images. However, it is clearly 

also a very limited approach for describing actual eye movement behavior. The weak 

empirical effects of saliency on fixations do, however, allow us to focus on ways of 

representing and manipulating task knowledge so that more explicit predictions can 

be made about where people will look in a given situation.  

Eye movement data can be challenging to analyse. The research I have 

discussed shows that we should not forget the many ways that eye movements over 

pictures may vary, in terms of fixation position, saccade directions and so on. One 

often comes back to the observation that eye movements are very far from being 

uniformly distributed across a display, and this systematicity comes from both the 

stimulus and the observer. In particular, researchers should be mindful that some 

“ways of looking” may emerge more often, based purely on biases in the oculomotor 

system (the origins of which may be learned or biological). Although there does not 

appear to be a straightforward relationship between memory and scanpaths, there is a 

regular and idiosyncratic component to the way that we move our eyes. 

There are of course limitations to the scope of what I have discussed, and to 

the conclusions which can be made from observing eye movements in scenes. There 

are many other descriptions of individual differences, emotional states and task 

instructions making a difference to where people look in images, and these fall under 

the general umbrella of top-down attention. It remains to be seen whether or not these 
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effects interact with visual saliency. Although most research on scene perception has 

been carried out with healthy, typical observers, complex images have also been used 

to investigate neuropsychological and developmental disorders (e.g., Freeth et al., 

2011; Foulsham et al., 2009; Tseng et al., 2013). 

Recording where people look in complex images can tell us a lot about 

attention and cognitive processing, but it cannot tell us everything. Fixation and 

attention are not synonymous. Covert attention can certainly be allocated separately 

from fixation, but there are few studies examining this in complex stimuli, and thus its 

role in naturalistic viewing is unknown. Importantly, we should also be cautious at 

using results from picture-viewing to make conclusions about attention in the real 

world. The vast majority of the research that I have described uses small, static 

scenes, presented without context in a highly constrained setting. In other words, it is 

far removed from the real world, which contains cues such as sound and motion and 

in which observers are immersed and free to move, where concepts such as a “central 

bias” may be meaningless. Nevertheless, those continuing to investigate looking at 

pictures will find much to discover. 
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9. Suggested readings 

 

Henderson (2003) gives a good summary of the basic methods and findings in 

scene perception. 

 

Foulsham (2015) reviews the state of the art regarding eye movements in 

scene perception, covering some of the same material as this chapter but with more 

detail and scope. 

 

Itti and Koch (2001) provide a comprehensive introduction to computational 

modeling of attention, including a shorter description of their saliency map model. 

 

Tatler et al., (2011) provide a detailed critique of saliency models and the 

picture viewing paradigm. 

 

Le Meur and Baccino (2013) summarise some of the commonly used methods 

for comparing fixations and model predictions. 

 

Holmqvist et al., (2013) is a detailed textbook on eye movement methodology, 

with particularly comprehensive coverage of scanpath comparison and other 

measures.  



67#

10. Questions for discussion 

 

Why are there so many measures based on eye movements in scenes? Are they 

all necessary? 

 

What is the best way of defining “saliency” in terms of eye movement 

control? 

 

How useful is the Itti and Koch saliency map model for predicting human eye 

movements? 

 

Is analysis of scanpaths necessary for investigating cognition and scene 

perception?  

 

Are scanpaths random? If not, why? 

 

What can experiments investigating eye movements in scene perception tell 

researchers working in marketing and other applied domains? 
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