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Abstract

The Generalized Second Price (GSP) auction is the primargicauused for monetizing the use
of the Internet. It is well-known that truthtelling is not @minant strategy in this auction and that
inefficient equilibria can arise. Edelman et al. (AER, 20@ag Varian (1310, 2007) show that an
efficient equilibrium always exists in the full informaticetting. Their results, however, do not extend
to the case with uncertainty, where efficient equilibria migot exist.

In this paper we study the space of equilibria in GSP, and tifyahe efficiency loss that can arise
in equilibria under a wide range of sources of uncertaintywall as in the full information setting.
The traditional Bayesian game models uncertainty in theatans (types) of the participants. The
Generalized Second Price (GSP) auction gives rise to agiuftim of uncertainty: the selection of
quality factors resulting in uncertainty about the behawgidhe underlying ad allocation algorithm. The
bounds we obtain apply to both forms of uncertainty, and abest in the sense that they apply under
various perturbations of the solution concept, extendinbdels with information asymmetries and
bounded rationality in the form of learning strategies.

We present a constant bourl927) on the factor of the efficiency losprice of anarchy of the
corresponding game for the Bayesian model of partial infdgiom about other participants and about ad
quality factors. For the full information setting, we proaesurprisingly low upper bound df282 on
the price of anarchy over pure Nash equilibria, nearly matgh lower bound of..259 for the case of
three advertisers. Further, we do not require that the systaches equilibrium, and give similarly low
bounds also on the quality degradation for any no-regrenieg outcome. Our conclusion is that the
number of advertisers in the auction has almost no impadi@ptice of anarchy, and that the efficiency
of GSP is very robust with respect to the belief and ratigpalssumptions imposed on the participants.
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1 Introduction

The sale of advertising space on the Internet, or AdAuctiemthe primary source of revenue for many
providers of online services. According to a recent repb®l,[$25.8 billion dollars were spent in online
advertisement in the US in 2010. The main part of this revermmees from search advertisement, in which
search engines display ads alongside organic searchste$tk success of this approach is due, in part, to
the fact that providers can tailor advertisements to theniinins of individual users, which can be inferred
from their search behavior. A search engine, for examplecbaose to display ads that synergize well with
a guery being searched. However, such dynamic provisioromaeat complicates the process of selling
ad space to potential advertisers. Each search query gemeranew set of advertising space to be sold,
each with its own properties determining the applicabitifydifferent advertisements, and these ads must
be placed near-instantaneously.

The now-standard mechanism for resolving online searclerddgment requires that each advertiser
places aid that represents the maximum she would be willing to pay ifexr aficked her ad. These bids
are then resolved in an automated auction whenever ads beedisplayed. By far the most popular bid-
resolution method currently in use is the Generalized S&&ite (GSP) auction, a generalization of the
well-known Vickrey auction. In the GSP auction, there ardtiple ad “slots” of varying appeal (e.g. slots
at the top of the page are more effective). In two seminal rzapdelman et all [11] and Varian [36] propose
a simple model of the GSP auction that we will also adopt is fl@per. They observe that truthtelling is
not a dominant strategy under GSP, and GSP auctions do nartadigrguarantee the most efficient outcome
(i.e., the outcome that maximizes social welfare). Newets, the use of GSP auctions has been extremely
successful in practice. This begs the questiare there theoretical properties of the Generalized Second
Price auction that would explain its prevalence2delman et al.[[11] and Varian [36] provide a partial
answer to this question by showing that, in the full inforimatsetting, a GSP auction always has a Nash
equilibrium that has same allocation and payments as the M&hanism. [11] and [36] give only informal
arguments to justify the selection of envy-free equilibria

We argue that the Generalized Second Price auction is bedtletbas a Bayesian game of partial
information. Modeling GSP as a full information game asssithat each auction is played repeatedly with
the same group of advertisers, and during such repeatedhadyids stabilize. The resulting stable set of
bids is well modeled by a full information Nash equilibriuifhe analyses of Edelman et al. [11] and Varian
[36] provide important insight into the structure of the G&FRtion under this assumption. However, the set
and types of players can vary significantly between rounds @5P auction. Each query is unique, in the
sense that it is defined not only by the set of keywords invdkealso by the time the query was performed,
the location and history of the user, and many other fact®esrch engines use complex machine learning
algorithms to select the ads, and more importantly to deterrmppropriate quality scores (or factors) for
each advertiser for a particular query, and then decidetwdrdeertiser to display. This results in uncertainty
both about the competing advertisers, and about qualitpfe.cWe model this uncertainty by viewing the
GSP auction as a Bayesian game, and ask: what are the thabptiperties of the Generalized Second
Price auctiortaking into account the uncertainty that the advertisexefa

Bounding the quality of outcomes: Price of Anarchy. To answer the question above, we offer a quanti-
tative understanding of the inefficiencies that can arige®#® auctions, using a metric known as Brice

of Anarchy We show that the welfare generated by the auctioanypequilibrium of bidding behavior is
at least a%-fraction of the maximum achievable welfare (i.e., the wedfthe auction could generate know-
ing the player types and quality factors in advance). Thaevafn measures the robustness of an auction



with respect to strategic behavior: in the worst case, howhman strategic manipulation harm the social
welfare. The closer) is to 1, the more robust the auction is. An auction that always gaaesrefficient
outcomes at equilibrium would have price of anarchy equéal ¥e bound the inefficiency of the outcomes
both in the Bayesian version of the game as well as the fulrimfition game, and extend the analysis also
for learning outcomes.

We develop a general technique for bounding the inefficiasfcgutcomes that allows us to do this
in the most general setting, even in Bayesian games withipfeylicorrelated sources of uncertainty. Our
framework ofsemi-smootigames is an extension of Roughgarden’s [31] smoothnesgfvark, that allows
dealing with correlated distributions. Correlated digitions are an important feature of the GSP model,
especially when modeling quality factors, as the same fftdst clickability and hence the quality factors
for all advertisers. (For instance, an ad shown to a bot willget a click independent of the advertiser.)

For mechanisms that are not dominant strategy truthfud,BISP auctions, price of anarchy analysis is a
powerful tool for quantifying the potential loss of efficgnat equilibrium. We conduct this analysis both in
a full information setting without uncertainty (in whichefprice of anarchy is surprisingly small, indicating
a loss of at mos22% of the welfare), but also in a setting with uncertainty anceey\general information
structure, in which we prove that the price of anarchy id btlunded by a small constant. This shows
that while the GSP auction is not guaranteed to be efficieigt,d reasonably good design, as remarkably,
the welfare loss of these auctions is bounded by a value the dot depend on the number of players,
the number of advertisements for sale, or the prior didfiobg on player types. In contrast, the variant
of the Generalized Second Price auction that orders adeestby their bid ignoring quality factors, which
has been historically used by Yahoo!, results in a qualisg lproportional to the range of quality factors,
while randomly assigning advertisers to slots can resudtloss of efficiency proportional to the number of
advertisers.

One feature of our results is that they hold for a variety ofleis regarding the rationality and the beliefs
of the players. This robustness is particularly importanarge-scale auctions conducted over the Internet,
where assumptions of full information and/or perfect nadility of the participants are unreasonably strong.

The GSP auction and sources of uncertainty. By far the most popular auction method currently in use
for search ads is the Generalized Second Price (GSP) auatgeneralization of the well-known Vickrey
auction. The GSP auction is invoked every time a user quarkeyword of interest; it is a repeated auction
in which players repeatedly bid for ad slots. However, miogetquilibrium strategies in a repeated game
of this nature is notoriously difficult, and results in a gawi¢h a plethora of unnatural equilibria due to
the possibility of bids representing threats for futurends, optimal exploration of the bidding space, and
so on. A common simplification used in the literature is tou®on auctions for a single keyword, and to
suppose that players will quickly learn each others’ vatuest and reach a stationary equilibrium. Under
this assumption, the stationary equilibrium would coroegp naturally to a Nash equilibrium in the full
information, one-shot version of the GSP auction [12]. & Haerefore become common practice to study
pure, full information equilibria of the one-shot game, aspproximation to expected behavior in the more
general repeated game [11] 836, 28].

In reality, however, the set and types of players can vanmyifstgintly between rounds of a GSP auction:
each query is unique, in the sense that it is defined not onlthéyset of keywords invoked but also the
time the query was performed, the location and history ofuber, and many other factors. Tiwentextis
taken into account by an underlyirgl allocation algorithmwhich is controlled by the search engine. The
ad allocation algorithm not only selects which advertisgil participate in an auction instance, but also
assigns auality factorto each advertiser. As a first approximation we can think efdhality factor as



a score that measures how likely that participant’s ad velchicked for that query. These quality factors
are then used to scale the bids of the advertisers. Thessdsols are known asffective bidswhich
can be viewed as bids derived from a similarly-modifegtkctive type Under our assumption that quality
factors measure clickability, the effective type of an atiger is the expected valuation of displaying the ad
(valuation of the ad times its likelihood of getting a clicRhe effective bid and effective type of a player are
therefore random variables, which can be thought of as tiginat valuations multiplied by quality scores
computed exogenously by the search engine. Athey and Nekif@&] point out that the uncertainty in
quality factors produces qualitative changes in the atreadf the game. Thus, even if players converge to a
stationary bidding pattern, the resulting equilibrium mainbe described as the outcome of a full information
game.

We model the uncertainty about the effective types of atharg as a Bayesian, partial information
game. That is, the inherent uncertainty due to context amddhallocation algorithm can be captured via
prior distributions over effective types, even when the titpes of all potential competitors are fully known.
The appropriate equilibrium notion is then the Bayes-Naghliérium with respect to these distributions.
Our model allows arbitrary correlations between the typesquality factors. The uncertainty of ad quality
and allocation mostly comes from the query context, and éi&nbest modeled by correlated distributions
of types and ad quality. Search engines use complex maarangithg algorithms to compute quality factors
based on all available information about the context, wimgeome is hard to predict for the advertisers.
Search engines share distributional information aboutitguactors with advertisers. We model this by
assuming that the advertisers are aware of the distribati@uality factors. Further, we also assume that
the quality factors computed by the search engine correspractly to the clickability of the ad.

Summarizing, there are two main sources of uncertainty:fitbeis about the quality factors that the
search engine attributes to each advertiser and the sesaubut the valuations (types) of the players.
These sources are different in nature: each advertisermmeddédge of (and can condition her behavior on)
her own type, whereas quality factors are fully exogenousama only revealed ex post.

Asymmetric information. There are different types of players in advertising marketsich may have
differing levels of information about their competitors.eVdssume all players know their own valuations
correctly, but some smaller players (such as individuakaibers) might be clueless about the valuations of
the other players and expected behavior of quality scork#e wthers (say bidding agencies or large com-
panies with web advertising departments) may have a mudtérhetderstanding of how individual rounds
of the auction will proceed. Even among this latter grouffedint advertisers may have access to differ-
ent information. We can model such information asymmetniegiving each player access to an arbitrary
player-specific signal that can carry information aboutdffective types of the auction participants. Our
bounds on social efficiency in the Bayesian model hold inrggttwith such asymmetry in information.

Learning players. So far we have considered equilibria of the auction gamelyxirgg equilibria makes
the strong assumption that players reach equilibrium plagarning outcomes provide a very appealing
generalization. A now standard model considers a repeatesion of the game, and assumes that players
employ strategies that give them vanishingly smediret over time. Roughly speaking, such a model as-
sumes that players observe the bidding patterns of othdrenadify their own bids in such a way that their
long-term performance is at least as good as a single opsireiegy chosen in hindsight. Notice that if all
players employ the same (possibly randomized) strateggdh eound, the resulting stable strategies form a
Nash equilibrium. Therefore, the no-regret assumptiorepéated play is a generalization of the notion of
Nash equilibrium. Further, there are many simple biddingtsgies that yield vanishing regret over time, as



discussed below. The no-regret assumption does not retpair@layers follow one of these algorithms; in
fact, good play can result in better utility than simply regpret, e.q., if the player can anticipate the behavior
of other players. Rather, the assumption models a naturahgdity: if there is a consistently good strategy
players will attempt to learn this over time, and do at leaswall (or better) as this good fixed strategy.
In this sense, the no-regret assumption aims to capturetiiion that players attempt to learn beneficial
bidding strategies over time, while also providing a gelimation of Nash equilibrium play. We view the
existence of simple learning algorithms as supportingabkgimption. If all players have no-regret this will
cause the empirical distribution of the bids to converge tmarse correlated equilibrium of the game, a
slight generalization of the well-known correlated edurilim.

We therefore assume that the players use algorithms to lemvrto best bid given their valuation and
signal, and achieve vanishing regret over time. In otherdsofor each possible valuation and signal,
repeated auctions allow players to learn how to best bigh¢gikito account the varying bids of other players,
and the uncertainty about quality factors, other playeafiiations, and bidding strategies. We will consider
the quality degradation of the average social outcome wheegers employ strategies with small regret.
Blum et al. [6] introduced the terfrice of Total Anarchyor this analog of the price of anarchy.

Approximate rationality. One of the fundamental assumptions in auction analysisaisathplayers are
perfectly rational utility optimizers. However, in reglifand especially in large online settings), it is natural
to assume that some fraction of the players participatirmmiadvertising auction might have unsophisticated
bidding strategies. In fact, some players may not even glaguailibrium in the single-shot approximation
of the GSP auction, or may only be able to find strategies tleapproximately utility-maximizing. We
discuss the robustness of our bounds to the presence ofpligeing with limited (or no) rationality. As
we shall see, the GSP auction has the property that its sgeltdre guarantees degrade continuously when
our assumptions about the rationality of the players asxesl.

1.1 Ourresults
We present the following results.

e Our main result is a bound on the Bayesian price of anarchyhGSP auction. Specifically, we
show that the price of anarchy is at m@s927, meaning that the social welfare in any Bayes-Nash
equilibrium is at leastl /2.927 of the optimal social welfare. Notice that this is an unctindal
bound, as we make no assumptions on the distribution on ti@uprofiles and quality factors (it
can, for example, be correlated) or on the number of playestots. In the main part of the paper,
we prove weaker bounds for both the full information and tleydsian game, and only sketch the
stronger bounds. We believe that the weaker bounds arestiteg in their own right, and show the
main techniques of the paper in a way that is easier to readiefée the details of the stronger bounds
to the Appendix.

Perhaps just as important as the bound, however, is thglti@ward and robust nature of the GSP
auction. In particular, our results extend to provide thenesavelfare guarantees for outcomes of
no-regret learning: the average social welfare when ptapéay repeatedly in order to minimize
total regret, in a Bayesian setting, is withinl g2.927 factor of the optimal social welfare. In fact,
some of our bounds for learning outcomes require only traptayers have no regret for a particular
natural strategy of shading their bids. The bounds contiod®ld even if players have asymmetric
access to distributional information, in the form of exogeasly provided signals. It also degrades
continuously in the presence of approximately rationaygia or a small fraction of irrational players
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as explained in AppendixID. The results also extend to the w&en possible bid space is discretized
(i.e., players need to bid in integer number of pennies)s €hse is interesting both as in practice bids
do come from such a discrete space, and also as in the disasae the existence of Nash equilibria
is guaranteed. In fact, using a result of Athey [2] and Re®},[B the discrete case if player types

and quality factors are drawn independently, one can alew shat the existence of pure strategy
equilibria that are monotone in the types is guaranteed.

e We achieve the bounds on the solution quality by identifygngroperty that encapsulates some of
the insight. Roughgardeh [31] identified a class of gamesththdermedsmoothgames, defined via
a similar property that is used to bound the price of anardlg.identify a stronger property, semi-
smoothness, that is satisfied by the GSP auction, and iggséroough to also imply price of anarchy
bounds even in the Bayesian setting with arbitrarily cewed types.

e We provide improved results for the case where there is nertaiaty, which is the traditional setting
studied in [11/ 36]. If valuations and quality factors areefix we prove that the social welfare in
any pure Nash equilibriums within a factor of1.282 of the optimal one and show that this bound is
essentially tight by providing a lower bound b259. Also, we show a bound &.310 for coarse cor-
related equilibria; as discussed above, this implies theedaound on the social welfare for learning
outcomes when players with fixed (effective) types mininttagr regret in a repeated auction. This
bound 0f2.310 holds for mixed Nash equilibria as well.

1.2 Related work

Due to their central role in Internet monetization, spoadosearch auctions have received considerable
attention in the past years. From the optimization persgecthey were first considered by Mehta et
al. [26]. A classical game-theoretical modeling of spordosearch auctions was proposed simultaneously
by Edelman et al/[11] and Varian [36]. See the surveys of leaktal. [20] and Maille et al/ [25] for an
overview of subsequent developments.

The model we adopt follows [11, B6]. In those two seminal papte authors notice that even though
truthtelling is not a dominant strategy under GSP, the fidthimation game always has a Nash equilibrium
that has same allocation and payments as the VCG mechanimy fdcus on a subclass of Nash equilibria
which is calledenvy-free equilibrian [11] andsymmetric equilibrian [36]. They show that such equilibria
always exist and are always efficient. In this class, an dideerwould not be better off after switching
bids with the advertiser just above her. Note that this isrenger requirement than in Nash equilibria,
which are defined considering only unilateral deviationgheyadvertisers, and if an advertiser unilaterally
switches to a slot with higher click-through-rate, she pay@e than the advertiser at that slot paid. In
[11,12,36], informal arguments are presented to justiygblection of envy-free equilibria, but no formal
game-theoretical analysis is done. We believe it is an itapbrquestion to go beyond this and prove
efficiency guarantees for all Nash equilibria. Lahai€ [19paconsiders the problem of bounding the social
welfare obtained at equilibrium, but restricts attentiontlte special case that click-through-rates decay
exponentially along the slots with a factor§1f Under this assumption, Lahaie proves a price of anarchy of
min{3,1— $}.

Gomes and Sweeney [16] study the GSP auction in the Bayesitimgs where player types are drawn
from independent and identical distributions (without sidiering the uncertainty due to quality factors).
They show that, unlike the full information case, there may exist symmetric or socially optimal equi-
libria in this model, and obtain sufficient conditions orcklthrough-rates that guarantee the existence of



a symmetric and efficient equilibrium. Athey and Nekipel@} $tudy the effect of uncertainty of quality
factors both from a theoretical and an empirical perspectiv

The study of price of anarchy for non-truthful auction maetkms (especially in the Bayesian setting)
was initiated by Christodoulou et al.|[9] and developed irtien and Borodin[[23], Lucier [22], and most
recently in the work of Bhawalkar and Roughgarden [5]. Tolibst of our knowledge, the current paper is
the first one in which the price of anarchy bounds hold wheggslaaluations are drawn from a correlated
distribution. In truthful mechanism design, the study afretated valuations has a long history — see Cremer
and McLean([10] for an early reference.

The study of regret-minimization goes back to the work of kRamon repeated two-player games [17].
Since then, a number of simple algorithms (to be thought afiaptive procedures) that guarantee no-regret
have been proposed in the literature. Initial work in thisagfiocused on the stronger requirement of finding
simple adaptive procedures through which the play congetgéhe set of correlated equilibria, requiring
that players have a stronger form of no-regret that is caltedternal regret (see the survey by Blum and
Mansour [7] for a discussion of such procedures and a cosgdri Foster and Vohra [14] obtained such a
procedure, and Fudenberg and Leving [15] presented aediffene. Hart and Mas-Collel’s regret matching
strategy [[18] or the multiplicative weight updating stgteof [21] (see alsol]1]) are two procedures that
become especially simple when used to guarantee only metrégs opposed to no internal regret). These
classical learning algorithms assume that players leattomes and strategies of all participants in each
round, but have also been extended to situations where im reamnd, a player observes only her own
outcome, or even realizations of her outcome in case it idaawized. We refer to Auer et al_|[4] for a
detailed discussion on this matter.

Adaptive procedures that guarantee no-regret define alpddgodnverges to the set of coarse correlated
equilibria. Blum et al.[[6] apply regret-minimization toelstudy of inefficiency in repeated games, coining
the term “price of total anarchy” for the worst-case ratibAmen the optimal objective value and the average
objective value when players minimize regret.

Roughgarden_ [31] identifies a class of games that he temwothgames where the price of anarchy
and price of total anarchy are identical. See &lso [27] aB#i f8r subsequent refinements. Since the initial
conference versions of our Bayesian bound of [24] and [8)idRgarden [32] and independently Syrgkanis
[34] show that the bounds proved via smoothness also extetitetBayesian price of anarchy assuming
a variant of the smoothness assumption (called universabtmess in[[34]) if player types are drawn
from independent distributions. See [35] for such an extengeorem without the stronger assumption.
In this paper we isolate a stronger property related to shmasis that encapsulates many of the insights
that drive our bounds and allows us to extend our bounds éB#yesian price of anarchy with correlated
distributions.

Some of the results in this paper appeared in preliminaryecence versions. Paes Leme and Tardos
[29] study equilibria of GSP auctions and give upper boundshe price of anarchy in pure, mixed, and
Bayesian strategies; achieving boundsl dfi8, 4, and8, respectively. Lucier and Paes Leme]l[24] and
Caragiannis et all [8] improve these boundsits and3.037 respectively for Bayesian games, ahds2
and2.31 for pure Nash and learning outcomes for full information gar(as well as mixed Nash equilibria),
and extend them to apply to equilibria with correlated vatmes and learning outcomes. Here we further
improve the bounds, present and also improve the proofseseed the results to games with uncertainty
about quality factors in addition to player types.



2 Model and Equilibrium Concepts

We consider an auction with advertisers and slotdl. Each advertiset has a private type;, representing
her valuation per click received. The sequewce (v4,...,v,)is referred to as thiype profile(or valuation
profile). We will write v_; for v excluding theith entry, so that = (v;, v_;).

An outcomeis an assignment of advertisers to slots. An outcome candwed as a permutation
with 7 (k) being the advertiser assigned to stot The probability of a click depends on the slot as well
as the advertiser shown in the slot. We use the model of delpachck probabilities. We assume slots
have associatedick-through-ratesor; > oo > ... > «,, and each advertiséthas aquality factor+y; that
reflects the clickability of the ad. When advertiges assigned to thg-th slot, she gets;~; clicks.

A mechanism for this auction elicits a bigde R := [0, co) from each advertiser which is interpreted
as atype declaration, and returns an assignment as welli@e aper click for each advertiser. If advertiser
i is assigned to slotat a price ofp;, herutility is a;v;(v; — p;), which is the number of clicks received times
profit per click. Thesocial welfareof outcomer is SW (m, v,v) = 3, ajvx(;)vx(j), the total value of the
solution for the participants. The social welfare also aejseon the click-through-rates;, but throughout
the paper we will assume they are fixed and common knowledgkas a result we suppress them in the
notation. The optimal social welfare @PT(v,v) = max, SW (x,v,7), the welfare generated by the
socially efficient outcome. Note that the efficient outcomgsadvertisers by thegffective valuesy;v;,
and assigns them to slots in this order. The effective vadmebe thought of as the expected value of showing
the ad in a slot with click-through-rate equalito

We focus on a particular mechanism, the Generalized Secood &uction, which works as follows.
Given bid profileb, we define thesffective bidof advertiseri to be~;b;, which is her bid modified by her
quality factor, analogous to the effective value definedzab@he auction sets(k) to be the advertiser with
the kth highest effective bid (breaking ties arbitrarily). Tigtthe GSP mechanism assigns slots with higher
click-through-rate to advertisers with higher effectives Payments are then set according to critical value:
the smallest bid that guarantees the advertiser the samé\dhen advertiser is assigned to slot (that is,
whenw (k) = 4), this critical value is defined as

Yr(k+1)
Di " br(k+1)
where we takeh, 1 = 0. We will write u;(b,~) for the utility derived by advertisei from the GSP
mechanism when advertisers bid accordingto

ui(b,v) = az—147i(vi — Pi) = Qx=1(3) [ViVi = Vn(x=1(0)41) br(r—1(1)+1))-

Notice thatr is a function ofb,~ as well. In places where we need to be more explicit, we wiitevr
m(b,~, j) to be the advertiser assigned to sidty GSP when quality factors areand the advertisers bid
according tdb. We will also writea (b, ~, 7) for the slot assigned to advertisgragain when advertisers bid
according tob and quality factors are. In other wordsg (b, v,-) = 7~ !(b,~,-). We writer*(b_;,~, )
to be the advertiser that would be assigned to gibadvertiser:i did not participate in the auction. When
b and~ are clear from the context, we writdi) ando (¢) instead ofr (b, v, i) ando (b, ~, ). We will also
write v(v,~y) for the optimal assignment of slots to advertisers for védwaprofile v, so thatv(v,, 1) is
the slot that would be allocated to advertisén the optimal assignm%t

"We note that we can handle unequal numbers of slots and averby adding virtual slots with click-through-rate zero
virtual advertisers with zero valuation per click.

2\We note that, since GSP makes the optimal assignment forem diid declaration, we actually have thatv,~,) and
o(v,~,1) are identically equal. We definemainly for use when emphasizing the distinction betweenfizient assignment for
a valuation profile and the assignment that results from engiid profile.
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We will consider rational behavior under various modelshefinformation available to the advertisers.
In general, the advertisers are engaged as players in a gdmediby the auction mechanism; each of them
aims to select a bidding strategy that maximizes her utilitythe following, we use the terms advertiser
and player interchangeably. We group our models into fddrmation and partial information ones. In all
models we assume that the valugsare fixed and commonly known to all players. In our full infa@ton
settings, we assume that the quality factgras well as the valuation profileare also common knowledge.
In our Bayesian setting of partial information, we assurna the profile of quality factors is unknown to
all players, and the type; is private knowledge known only to playgrbut they are randomly drawn from
a commonly known joint distributioiF, G) of quality factors and valuation profiles. It will turn outath
bidding more than one’s true typeverbidding is a dominated strategy in the mechanism we consider. So,
we will focus on non-overbidding (or conservative) playesese Sectioh 213 for a discussion.

2.1 Full information setting

In the full information setting, the valuation profileand quality factorsy; are fixed and common knowl-
edge. We will therefore tend to drop dependencies d&rom our notation when working in the full infor-
mation setting. In this setting, @ure strategyfor playeri is a bidb; € R,. We say that the bid profilb is
a(pure) Nash equilibriunif there is no deviation from which the player can profit, ifer all b, € R,

u;(bi, b_;) > u;(b;, b_;).

It is known that a pure Nash equilibrium always exists in #a#ting [11/ 36]. We can therefore define the
(pure) Price of Anarchyo be
OPT(v)
sSup =~
vibeNE SW(m(b),v)

where NE is the set of pure Nash equilibria (assuming no adeiry; see Section 2.3).
Similarly, amixed strategys a randomized bid;, which is a distribution over possible bids. A mixed
Nash equilibrium is a profile of bid distributiorts such that for ali and all alternative strategi®$

Ep [ui(bi, b-i))] > Eplus(bi, bs))].

Note that, unlike more general solution concepts we wilktdss in a while, the bid distributions of different
players at a mixed Nash equilibrium are independent. We el¢fia(mixed) Price of Anarchyo be the
worst-case ratio between optimal social welfare and egpesbcial welfare in GSP across all valuation
profiles and all mixed Nash equilibria:

- OPT(v)
vhens En[SW (w(b), v)]’

2.2 Bayesian setting

In the Bayesian setting of partial information, we suppdeg the valuation profile and the quality factors
are drawn from a publicly known (possibly correlated) jaligtribution (F, G). A strategy for playei is a
(possibly randomized) mappirtg : R — R, mapping her type; to a bidb;(v;). Notice that a player is
not able to condition her bid on the quality factors, since theyanly known to the search engine, and not
to the advertisers.



We writeb(v) = (by(v1),...,by(v,)) to denote the profile of bids that results wiers applied to type
profile v. We then say that strategy profiteis a Bayes-Nash equilibrium for distributiols G if, for all 7,
all v;, and all alternative strategié$

Ev_; b [ui(bi(vi), b_i(v_i), y)|vi] = Ey_, ~plui(0;(vi), b_i(v_i),7)lvi].

That is, each player maximizes her expected utility by middin accordance with strategy(-), assuming
that the other players bid in accordance with stratebies-), where expectation is taken over the distribu-
tion of the other players’ types conditioned gnany randomness in their strategies, and the quality factor
We define thBayes-Nash Price of Anarchg be

sup Ey,[OPT(v,7)]
F.G,b(-)eBNE Ev v, b(v) [SW (7 (b(V),7), v, 7)]

where BNE is the set of all Bayes-Nash equilibria (again m&sg no overbidding; see below).

2.3 No overbidding

It is important to note that, in both the full information aBdyesian settings, any btgd > v; is dominated

by the bidb; = v; in the GSP auction. If by bidding; > v;, the next highest effective bid is greater than
~;v3, then the player gets negative utility. If on the other hahd, next highest effective bid is smaller or
equal thany;v;, then biddingb; = v; would get the same slot and payment. Based on this, we make the
following assumption for the rest of the paper:

Assumption: Players areconservativeand do not employ overbidding strategies in GSP auctionss Th
means that for pure strategies < v;, for mixed strategie®(b; > v;) = 0, and for Bayesian strategies
P(bl(vl) > ’UZ') = ( for all Vi«

We use this assumption to rule out unnatural equilibria inchvtadvertisers apply certain dominated
strategies. We remark that, in these equilibria, the segidflare may be arbitrarily worse than the optimal.
It is therefore necessary to exclude such dominated siest@gorder to obtain meaningful bounds on the
price of anarchy. We note, however, that this phenomenoatispecific to the GSP auction: such degenerate
equilibria exist even in the Vickrey auction for a single dowhere truthful bidding is a weakly dominant
strategy. Since the Vickrey auction is a special case of GfsRams (where one slot hag = 1, all other
slots haver; = 0 and all quality factors have; = 1), this issue carries over to our setting. Consider the
example of a single-item Vickrey auction, where truthfulding ofb; = v; is a weakly dominant strategy.
Yet with overbidding, there are equilibria where an arbitalayer bids excessively high (and hence wins),
while everyone else bid8. If the player bidding high has a low valuation, this resuttsa high price
of anarchy. Note, however, that this Nash equilibrium seeenyg artificial as it depends crucially on the
low valuation player using the dominated strategy of owlnig. Indeed, such an advertiser is exposed
to the risk of negative utility (if some other advertiser suts a new bid between her valuation and bid)
without any benefit. We therefore take the position that gihers will avoid such dominated strategies
when participating in the GSP auction.

2.4 Signals and information asymmetry

We define an extension of the setting above, incorporatingye&ian version of information asymmetry. In
this model, each player’s type consists of a sigharawn from an arbitrary signal spade The signal of
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playeri includes her valuation;(s;) and can contain other privately-gained insight that refthesplayer
1's conditional distribution over the space of other playgnses and quality factors. The signals and quality
factors come from a publicly known joint distributidi”, G), which can be arbitrarily correlated.

In this model, a strategy is a bidding function that mapsa signal, to a distribution of possible bids.
The bid profileb is a Bayes-Nash equilibrium in the asymmetric informatioode if, for all ¢ and all
alternative bidding function;’,

Es_, »,b[wi(bi(5:),b_i(S-i),7)|8i] > Bs_, 5 b[ui(bi(si), bi(s-:),7)]s:]
In this model, the Price of Anarchy is defined as

. s [OPT(v(5),1)]
F/.G,b(-)éeBNE Eg Y,b(s )[SW(TF(b(S)7 /7)7 V(S)> /7)]

where BNE is the set of Bayes-Nash equilibria with respedidtribution ¥’ over signals, with no overbid-
ding.

The presence of signals captures the notion that some edverinight have a better potential to infer
the other advertisers’ valuations than others, or may bewed with privileged information. We do note,
however, that players do know their own valuatianés;), and also are aware of the profile of bidding
strategiesh(-) and the distributior¥’, so that players can rationalize about the effects of signpbn the
bidding behavior of their opponents.

2.5 Repeated auctions and regret minimization

We now consider the GSP auction in a repeated-game settintbisimodel, the GSP auction is rdh> 1
times. We will distinguish between two variants of this miodke full information model and the model
with uncertainty.

Full information model. Each round of the GSP auction occurs with the same slots ayénsl The
valuation profilev of the players and the quality factors do not change betweamds, but the players are
free to change their bids. We writéfor the bid of player on roundt. We referto aD = (b',... b7, ..)
as an (infiniteeclaration sequencesiven declaration sequenég we will write DT to mean the prefix of
D of lengthT'; thatis,D” = (b',...,b"). Given a (finite or infinite) declaration sequenewe will write
(D) for the sequence of permutations generated by GSP on Inptlihe average social welfare generated
by GSP on a finite input sequeng¥’ of lengthT"is SW (n(DT),v) = L =1, SW(x(b?),v). The aver-
age social welfare generated by GSP on an infinite input segue is then defined to b8 W (7(D),v) =
lim infr_, o SW(7(DT), v).

The full range of equilibria in such a repeated game is vely, 50 we restrict ourselves to a particular
non-equilibrium form of play that nevertheless capturesitiuition that players learn appropriate bidding
strategies over time, without necessitating convergemeestationary equilibrium.

We say that declaration sequenbe= (b!,... b”,...) minimizes external regrdor playeri if, for
any fixed declaratio#,
> wi(dl,bhy) =) (b, bl,) + R(T)
t<T t<T

where R(T')/T — 0 asT grows large. That is, a8 grows large, the utility of playef in the limit is
no worse than the utility of the optimal fixed strategy in Higiht. ThePrice of Total Anarchyjg] is the
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worst-case ratio between optimal social welfare and theageesocial welfare obtained by GSP across all
declaration sequences that minimize external regret fpilaters. That is, the price of total anarchy is

uy OPT(¥)
b SW(r(D),v)

where the supremum is taken over (infinite) declaration eecges that minimize external regret for all
players.

To this point we have not discussédw the players achieve vanishing regret, and indeed our sesult
are agnostic to this process. There are many known leartgugithms that guarantee vanishing regret
asT goes to infinity. These algorithms require only that a playleserves her realized payoff after each
round. That is, to facilitate learning it is enough if playesee whether or not their ad was clicked and, if
so, the price of the click. In particular, they do not needearh outcomes or bids of other players, nor
even the actual slot their ad was placed in. For an extengeaigssion on no-regret algorithms with limited
feedback, we refer to Auer et al.l[4]. Further, it is knowntttiee price of total anarchy is closely related
to an equilibrium notion for the single-shot game known a&rse correlated equilibrium. We discuss this
relationship further in Sectidn 5.1.

Learning with uncertainty. Next we describe our model of learning in repeated GSP agtidith un-
certainty. In this model, each round of the GSP auction aaith the same slots, but the valuation profile
v and quality factorsy are redrawn from{F, G) on each rourl These changes to ad quality and types
can be thought of as being due to the context of the searcly thegrinitiates each auction instance, which
can change between rounds. As before, learning requirggtuat players observe their own outcome each
round, and not the results for other players. l.e., a plag@mis whether or not her ad was clicked, and if so
the price per click, but does not necessarily observe tremmas or bids of other players nor the realization
of v. We again refer to Auer et al.[[4] for a discussion of no-régigorithms with limited feedback.
Suppose that each player has a finite type ﬂ)aﬂﬁ v, 4! be the type profile and quality factors drawn
atroundt. Given a declaration sequenBeand typep; for player:, we denote by (i, 9;) the subsequence of
D consisting of the set of rounds in which playevas typei;, i.e., I(i, ;) = {t;v! = 9;}. DefineI” (i, 3;)
analogously with respect tB”. Given a sequence of type profiles and quality factors thaesent the
realization of these random quantities over the rounds @fatliction, we say that playeérhas vanishing
regret in declaration sequengéeif player i has vanishing regret (in the sense of the full informatiomgn
on the subsequenddi, v;) of D for each possible typg,. Formally:

tEIT(Z',f)Z') tEIT(Z',f)Z')
for R(T)/T — 0asT — oo. Notice that since'’ is independently and identically distributed in each rqund
we have| 17 (i, 7;)| — oo asT — oo. Now, we can define thBrice of Total Anarchy with uncertaings:
sup limsup ZtST OPT(v',7)
Mh D Tooo 2oy SW(m(b!At), vi4t)

As in the full information setting, there is a relationshigtlween regret minimization under uncertainty
and coarse correlated equilibria with uncertainty. Notedacer, that the speed of learning now depends on

3In fact, we can also think of the set of players as changingamh eound: if playei is assigned typé on a given round, this
can be interpreted as playenot being present in that round.
“For instance, one could assume that valuations are boumdkemhaltiples of some arbitrarily small increment.

12



the time needed for the empirical distribution of iid sanspfe’, v) to resemble the original distribution
and for learning algorithms to guarantee low regret witthipgobability. We discuss this in more detail in
Sectior{ 5.P.

3 Semi-Smooth Games and the Price of Anarchy with Uncertaint

Our main result is a bound on the price of anarchy for the Gaized Second Price auction with uncertainty.
Recall that our model captures two types of uncertaintyettamnty for player types and uncertainty about
quality factors. Further, our result holds even in the pneseof information asymmetry in the form of
personalized signals available to the pIaﬁanor simplicity of presentation, we focus on the setting veher
there are no signals and player valuations and quality feacoe drawn from a known joint distribution
(F, G).

Theorem 3.1 The price of anarchy of the Generalized Second Price auatiith uncertainty is at most
2.927. That is, for any fixed click-through-rates, ... , o, any joint distribution(F, G) over valuation
profiles and quality factors, and any Bayes-Nash equilitria,

1

By [SW (r(b,7). v, )] = 5o

EyA[OPT(v,7)].

Semi-smooth games and the price of anarchy. Our proof is based on an extension of a proof technique
introduced by Roughgarden [31], which he calls smoothnégsbegin by reviewing this notion briefly in
the context of a general game. ltedlenote the (fixed) player types in a game, &ra pure strategy profile
for the players, and Idt;(t, h) denote the utility of playei with player types, and strategy profil&. Let
sw(t, h) denote the social welfare generated by strategy prbfilndsw*(t) the maximum possible social
welfare. Roughgarden definés, 1)-smooth games as games where for all pairs of pure stratedyegr

h, h’, and any (fixed) vector of typds we have

ZU (t,hi,hy) > X sw(t,h’) — p - sw(t, h).

Roughly speaking, smoothness captures the property tisitaifegy profileh’ results in a significantly
larger social welfare than another strategy prdfiJéhen a large part of this gap in welfare is captured by
the marginal increases in the utility of each individualyglawhen unilaterally switching her strategy from
It is not hard to see that GSP does not satisfy this definitanafl pairs of strategy profileh, h’.
However, we argue that GSP is smooth with respectparsicular (possibly randomized) strategy profile
h', as defined by Nadav and Roughgarden [27], that can be usethysr® unilaterally to improve the
efficiency of GSP whenever its allocation resulting from agpstrategy profilda is highly inefficient. Note
that unlike [27] we require improvement relative to the aboptimumsw*(t) and not relative taw(t, h'),
i.e., we will not assume thatw(t,h’) is (close to) the maximursw*(t). Further, we will show that there
exists such a strategy profité where the strateght of a player depends only on the type of the player. We
call games that satisfy this stronger requirement semietimo

®In the presence of additional signals, we can assume thalsiglso encodes the valuation of the player, i.e., that plager
valuation for a click when she receives sigrals v; (s;), and in this case, signals and quality factors are drawn &&mown joint
distribution(F’, G). Our statement and proof carry over to this case with sttiighiard modifications.
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Definition 3.2 (semi-smooth games)\Ve say that a game iS\, .1)-semi-smooth if for each playeri there
exists some (possibly randomized) strateffy) (depending only on the type of the player) such that,

Y B Uit Bi(ti), hoi)] = A sw*(t) — - sw(t, ),

for every pure strategy profila and every (fixed) type vector The expectation is taken over the random
bits of h/,(¢;).

Analogous to Roughgardenis [31] proof (see also Nadav angyRyarden[27]), semi-smoothness also
immediately implies a bound on the price of anarchy with utadety even when the types are arbitrarily
correlated.

Lemma 3.3 If a game i\, )-semi-smooth and its social welfare is at least the sum gfldneers’ utilities,
then the price of anarchy with uncertainty (and informatasymmetries) is at moét. + 1) /).

Proof. Consider a game in the Bayesian setting where player tygesrawvn from a joint probability
distribution and leth be a Bayes-Nash equilibrium for this game. By the definitibrthe Bayes-Nash
equilibrium, we have thaE¢ , w[U;(t, h)[t;] > E¢ , n[Ui(t, R;(t;),h_;)|t;] for every value the random
variable h;(t;) may take. HenceE , n[Ui(t,h)[t;] > B¢, nEp i, [Ui(t, hi(t:), h—;)[t;]. Now taking
expectation ovet;, we getE¢ n[U;(t, h)] > E¢ nEy(,)[Us(t, hi(t:), h—;)]. By summing over all players,
and using the fact that the social welfare is at least the slutheoplayers’ utilities, as well as the semi-
smoothness property, we have

E¢n[sw(t,h)] > Et,h[ZUi(tah)]

v
=
N
=
=
=
=
&
—~
o
S
—
S+
:_/
if
N

> Egn[A-sw*(t) — p- sw(t, h)]
AE¢[sw* (t)] — pE¢ n[sw(t, h)].

Note that the third inequality follows by applying the sesmioothness property for every fixed type vector
and every pure strategy profile that are simultaneous owsarh the random vectotsandh. The last
inequality impliesE [sw*(t)] < “T“Et,h[sw(t,h)], as claimed. |

We remark that the proof holds without significant changegdfadd information asymmetries in the
game, i.e., if we assume that each player gets signals Weslrber type and refine her knowledge on the
probability distributions of the types of the other play€Fle only change required is to define an extended
type for each player, consisting of the player’s origingdeéycomposed with that player’s signal, and use it
in place of the original type.

A particular strength of Lemmna_3.3 lies in the fact that it gmavide bounds on the efficiency loss for
Bayesian games even with correlated types (and, as we wilbser in Section]5, under even more general
equilibrium concepts) by examining substantially mordrieted settings. In the context of GSP auction
games, it allows us to focus on identifying a (possibly randed) deviating bid strategy for each player
(i.e., a bidb; for each playe¥) so that the semi-smoothness inequality holds for everyl figduation vector
v and pure bidding profile. By Lemmd 3.8, this then immediately implies a bound on theeggof anarchy
of GSP auction games with uncertainty and information asgirigs.
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Remark 3.4 Itis maybe easier to interpret a deterministic special chsemmd 3.8 where we require that
Definition[3.2 holds for deterministic bids (). As a warmup in analyzing the GSP auction, we will show
in Claim[3.6 that the bid#] = 1v; can serve to prove that the GSP auctiofili2, 1)-smooth, and hence
has a price of anarchy of at most 4. This bound of 4 on the pfiemarchy shows that if the social welfare
is less than a quarter of the maximum possible, there is @&playho can deviate td, = %vi, a natural
shading of her bid, and improve her utility.

To improve the bound we will consider a deviating bjd= 6 - v; for other constant8 < (0, 1). In fact,
we will need to consider a randoénrather than a constant one. There are two ways to understahdas
random bid: a direct conclusion is that sampléthgccording to the prescribed distribution produces a good
deviation in expectation, whenever welfare is low. But magbmore natural interpretation is through the
lenses of therobabilistic methodused in combinatorics to show that a certain object exigtsowt finding
it explicitly. If there exists a randomized deviatibn= 6 - v; that improves playei’s utility, this implies
that there exists a deterministic fld; that improves playei’s utility.

The randomization on selecting the bif)(-) in Definition[3.2 gives us more flexibility to prove the
semi-smoothness inequality with good paramekessdy, by defining appropriately the density function of
R’s.

Price of anarchy of GSP auctions. First note that, technically speaking, the GSP auction da¢sm-
mediately fit into the framework of semi-smoothness: ads@rtpayoffs depend on random quality factors
which may be correlated with the type profile. However, ttogational technicality is easily addressed by
expressing advertiser utilities in expectation over qualcores. That is, expressing utilities in the GSP auc-
tion in the notation of general games, we haiév,b) = E, [u;(b,~)|v]. Since quality factors affect the
social welfare as well, we havev*(v) = E,[OPT(v,~)|v] andsw(v,b) = E,[SW (7 (b,v), Vv, y)|v].

We are ready to prove that GSP auction games are semi-smiWettart by presenting a slightly weaker
version of Theorem 311, where we prove a bound.o64. Then we sketch the proof of the improved bound
of 2.927, which is more technically involved. Details of the proohdae found in AppendikA.

Lemma 3.5 The GSP auction game (& — 1, 1)-semi-smooth.

Proof. We begin by rewriting the definition of semi-smoothness mniotation of GSP auctions. The GSP
auction game gl — %, 1)-semi-smooth if and only if, for each valuation profitethere exists a (possibly
randomized) bid profild’ (with ¢, depending only on the valuation of playgrsuch that, for every bid
profile b,

ZE%IJ,’L- [ui(b§>b—i>7)|v] > (1 - é) EW[OPT(V77)|V] - EV[SW(W(b77)>V>’7)|V]' (l)

We will actually establish the stronger property that thisguality holds foall ~, and not only in expecta-
tion.

ZEUL_ [ui (b, b_s,7)] > <1 - é) OPT(v,v) — SW(w(b,7),v, 7). )

The desired inequality {1) will then follow by takingl(2) ixgectation over the choice af (whose distri-
bution may depend on the valuation profie

Before establishing inequalitiZl(2), we will prove the eveeaker statement that the GSP auction game
is (1/2,1)-semi-smooth (which implies a bound 4bn the price of anarchy with uncertainty).
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Claim 3.6 The GSP auction game {$/2, 1)-semi-smooth.

Proof. Choose a vectov of fixed valuations, a pure bidding profilg and quality factorsy. Consider a
(deterministic) deviating bid, = v; /2 for each playei. We distinguish between two cases (recalling that
v(7) is the slot assigned to playém the efficient allocation gives and~):

e If by bidding b; playeri gets slot(i) or better, thenu; (b}, b_;,v) > a,;)vivi/2, as the paymeng;
cannot exceed her effective bid.

e If by bidding b playeri gets a slot lower than(i), then the effective value of the playefv (7)) in
slotv(7) is at leasty;v; /2, as we assume no overbidding.

We conclude that, in either case,

wi (b, b, y) > Q) Vi) 2 — (i) V(i) Vr(w(i)) -

Summing over all players, and noticing the; a;vx()vru) = SW (7 (b,7),v,7), while >, a, ;) vivi =
OPT(v,v), we arrive at the claimed bound that the GSP auction gartig'#s 1)-semi-smooth:

St boi7) > JOPT(v,7) — SW(x(b,7),v,7).

Notice that the proof uses a single Nash inequality: thatlaggni would be better off changing her
bid to b, = v;/2, bidding half her valuation, a natural shading of her vaaratAs we will see in Sectiohl 5,
the bound will also apply to learning outcomes under the sagsemption of not regretting this single
alternative.

Now we return to proving th¢l — é, 1) semi-smoothness. To do this, consider a randomizedhid
rather than the deterministic bid tf = v; /2 considered above, that offers a more sophisticated bidista
strategy. We consider a random strategy where plagbiades her bid randomly to a value in the interval
[0,v5(1 — ¢)], where bidb; is a random variable with densitf(y) = ;= for y € [0,v;(1 — ¢)] and
f(y) = 0 otherwise. We will show that '

1
By [ui (b, b-i,7)] > (1 - g) A (i) ViVi = Qi) Ya(v(i)) Or (v (i) - ()

Like in the proof of Claini.3.6, by summing expressidh (3) férieand using the fact thdt. ;) < v, ;) by
the non-overbidding assumption, we obtain that the gar(ﬂaw’s%, 1)-semi-smooth.
It remains to derive equatiohl(3). We have that

Ey [ui(0;, b—is )] > By lagyvi(vi — b)) 1{7ib; > Va(u(i) br(wiy }]

1
dy
Yy

vi(l—%)
= /O @) Yi(vi — ) H{viy > ’Yn(u(i))bw(u(i))}vi —

1\ ) i
= hYi |vi|1—— ) — (v (i
(i)Y [U < e> )

1
> (1 - g) Q () ViVi — (i) Yr (i) O (v (i)
which implies [8), completing the proof of Lemial3.5. [ ]
Combining Lemmak 313 aind 3.5, we get the claimed bound onribe @f anarchy.
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Theorem 3.7 The price of anarchy of the Generalized Second Price auctith uncertainty (and with
information asymmetries) is at maxtl — 1/e)~! ~ 3.164.

To prove Theoreri 31 we will need to extend semi-smoothngessially tailored to the GSP auction
game. In addition to working more carefully on optimizinghstants, we want to highlight two ideas: First,
note that the payment of the player in slas a;vx(;4+1)br(i+1), @nd this payment also contributes to the
social welfare. Using that is monotone decreasing, we can add a tesm ;) b(;) to social welfare (in
addition to the advertisers’ utility) for all slots excepiettop one. Second, the player in the top slot can
obtain a stronger bound on her utility by considering thei@en | = v;. (For all other players bidding
too close tay; endangers getting a higher slot at too high a price, but ihpleyyer does not face this danger.)
We will use these ideas in Sectibh 5 to improve our bound orehming outcomes for full information
games. The details of the more complicated improved bounthéoBayesian case are found in Appendix
Al

Discretization of the bidding space. Analogous results also hold when the possible bid spacesis di
cretized (i.e., players need to bid in integer number of p)nWith a finely enough discretized bid space,
the players could approximately follow the bidding strégésgused in the above proofs, as well as in the
proofs in AppendiX_A. The Nash property then implies that $hene bound holds at the equilibria with a
small loss due to the discretization. Recall that this cadmih of practical relevance, and using a result of
Athey [2] and Reny[30], in the discrete case if player typed quality factors are drawn independently, the
existence of pure strategy equilibria that are monotonbertypes is also guaranteed.

In order to illustrate this point, we show how to adapt Leninf&ahd Theorerh 3.7 to the case where
possible bids are discrete. Assume bigmust be in the finite séf. x = {0, ¢, 2¢, ..., K¢} for some large
integer K. We also need to assume thids small compared to the valuations. We will assume that%
and all types in the support of the distribution are> 1. We show that:

Lemma 3.8 The GSP auction game with discretized bid(is— %)(1 —e€), 1 — ec)-semi-smooth assuming
€ < % andv; > 1 for all i. That is, there is a deviatiol(, from the discrete spacg. x that satisfies the
semi-smoothness inequality.

Proof. The proof follows from a small modification of Lemrha 3.5. Téave considered the deviation
where a player with valuatiom; samples a bid from the distribution with densityf(y) = Uil_y for

y € [0, (1 — L)v;]. In this setting, bids must lie iff. 5, S0 we use a rounded version instedld= ¢ - [41.
This change increases the probability thjzg > Yr(w(i)) br(v(i))» DUt decreases the expressign- b] inside
the integral. This decrease, however, is bounded sincdds tbat

. _ec.[¥
minivl ‘ (JZ(I—E

) >1—ce.
y Vi — Y (%

Using the same calculation as in the proof of Lenima 3.5, wéhgét

- 1
By, fui(V, b-i,7)] = (1 —ee) (1 - g) (i) ivi — (1 = €€)ay, () Yr(u(i))br(v(i)) -

Using this Lemma_3]8 we immediately get the following theore
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Theorem 3.9 The price of anarchy of the Generalized Second Price augtitnuncertainty and discretized
bids is at most1l + ) - (1 — 1)1 = 3.16 + O(e), assuming that bids lie ofi. x = {0, ¢, 2e,. .., Ke},

l—ce

for a large integerK ande < 1/e, and that, for each player, v; > 1.

4 Pure Nash Equilibria in the Full Information Setting

In this section we turn our attention to the full informatisetting, where the quality factorsare fixed and
common knowledge. Without loss of generality we can assumaeyiv; > ~yovo > ... > y,v,. In this
setting the strategy of a player is a single bjd= [0, v;], again assuming that players do not overbid. Our
main result in this setting is the following:

Theorem 4.1 The (pure) price of anarchy of the Generalized Second Pricztian in the full information
setting is at most.282. In other words, for any fixed click-through-rates valuation profilev, and quality
factors+, if b is a bid profile in pure Nash equilibrium, the$iV (7 (b),v) > 14z - OPT(v) ~ 0.78 -
OPT(v).

The bound above is very close to being tight, since we carbéxdrn example witt8 players and slots
for which there is an equilibrium where the gap between thar@ social welfare and the social welfare in
equilibrium is1.259. Also, we can show the following slightly stronger bounddsmall number of players
and slots. Notice however that the bound in Thedrerm 4.1 helglsrdless of the number of slots.

Theorem 4.2 For 2 players an@ slots, the price of anarchy is exactly25. For 3 players and3 slots, the
price of anarchy is exactly.259. By exactlywe mean that there is a particular GSP auction game with an
equilibrium matching this bound.

Proof. Here we give an example with two slots that yields price ofremal.25. In AppendiX B, we show
that this is worst possible, and show the bound for 3 slots.

For two slots, consider an example with two players with &ibns 1 andl/2 respectively, quality
factorsy; = 72 = 1, and two slots withhy = 1 andas = 1/2. The bidsb; = 0 andb, = 1/2 are at
equilibrium, resulting in a social welfare @f while the optimal social welfare it 25. [

The full proof of Theoreni 4]1 can be found in Appenfix B. Herstéad, we present the proof of a
weaker bound that highlights the intuition underlying cesult that GSP equilibria have good social welfare
properties.

Theorem 4.3 The (pure) price of anarchy of the Generalized Second Prigtian in the full information
setting is at mos2.

The proof is based on the conceptvadakly feasible allocationsRecall that each bid profilb defines
an allocationr that is a mapping from slots to players [n] — [n].

Definition 4.4 (weakly feasible allocations)We say that an allocation is weakly feasiblaf the following
holds for each pait, j of slots:
j (@) V(s
%y Jr@)Un() > 1. (4)
Qi () Vn(5)

18



We also use the termveak feasibility conditiono refer to inequality[(4).

The concept of weakly feasible allocations is a relaxatibthhe concept of Nash equilibrium. We adopt
this terminology to denote it is a weakening of the feadipdionditions for Nash equilibrium. This concept
encapsulates the fact that an allocation in equilibriumnoame too far from the optimal. The optimal
allocation is such that (i) = i, since both{«;} and{~;v;} are sorted. If an allocation is not optimal, then
two slotsi < j have advertisers assigned to them such#itat > 7 (5), i.e., they are assigned in the wrong
order. Equation{4) implies that at least one of the two saiaat least /2, and hence whenever advertisers
are assigned in the non-optimal order, then either (i) theadwvertisers have similar effective values for a
click, or (ii) the click-through-rates of the two slots aretwery different; in either case their relative order
does not affect the social welfare very much.

Lemma 4.5 If b is a Nash equilibrium of the GSP auction game, then the indlatlecationr satisfies the
weak feasibility condition.

Proof. If j < i the inequality is obviously true. Otherwise consider theypl~(j) in slot j. Sinceb is a

Nash equilibrium, the player in slgtis happy with her outcome and does not want to increase héo badte

slotd, $0:aj (Vr(j)Vr(j) ~ Va(i+1)br(i+1) 2 A(Vr () Vn(i) — V(i) br(i) ) SINCEDr(j41) 2 0 aNAbr(y) < vr(y)

then: () vn(j) 2 i(Vr(5) Vr() = V(i) Vr(i))- u
Given Lemma 45, the proof of Theorém¥.3 follows almostatiye

Proof of Theorem[4.3. Taking j = o(i) in the definition of weakly feasible allocations, we get that
Qg(3)ViVi T QiVr(i)VUn(s) = @i7ivi- NOW, summing this for each playérwe get

2- SW(r(b),v) =D appVivi + > iYa)Uniy = > civivy = OPT(v).

To prove Theorerm 411 we proceed by induction on the numbdotsf. SGiven an allocatiorr, consider
the directed grapty () that has one node for each slot, and a directed edge for ewettiadri that connects
the node corresponding to sloto the node corresponding to stet!(i). When the allocation is optimal,
this graph consists of self-loops. In genef@{;r) consists of a set of disjoint cycles, however, without loss
of generality, we can assuntg(r) is a single cycle. We obtain the improved bound by considefaur
nodes in the neighborhood of notlén this cycle, and separately considering cases dependitigecorder
of the effective values of the corresponding players. Thaildeof the proof can be found in Appendix B.

5 Quality of Learning Outcomes in GSP

In this section, we bound the average quality of outcomesra@paated play of a GSP auction game where
players employ strategies that guarantee no externalregtgoth the full information setting and the setting
with uncertainty, we can reduce the problem over declara#muences to a problem over distributions. This
will allow us to adapt our earlier bounds on the price of ahgritom Section§]3 and 4 to bound the price
of total anarchy. As in previous sections, we show simple iahdtive bounds in this section, and defer
improved and more complex bounds to the appendix.
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5.1 Learning in the full information setting

We will first focus upon the full information setting of the B%uction. Recall that, in this model, the
valuation profilev and quality factorsy are fixed and common knowledge. As in the previous section, we
will assume thaty;v; > vve > ... > Y,Un.

We will begin by proving a relationship between the priceatét anarchy and the set obarse corre-
lated equilibriafor the GSP auction in the full information model. Given auatlon profilev, a distribution
D over bid profiles is called a coarse correlated equilibriim i

Eb~p[ui(b)] = Ebp|u;i(b, b-;)], Vi, b;.

As we shall show, the price of total anarchy can be boundedhsgidering the social welfare generated at
any coarse correlated equilibrium.

Lemma 5.1 The price of total anarchy in the full information settingatsmost

- OPT(v)
v,DeCpCE Ep~p[SW (7(b), V)]

whereCCFE is the set of coarse correlated equilibria.

Proof. Consider a declaration sequenbe= (b',...,b’,...) in the full information case. For eadh let
DT be the distribution over bid profiles where edghfor ¢t < T is drawn with probability%. Proving that
the price of total anarchy is bounded hys equivalent to showing that:

limTinf Eppr[SW (n(b),v)] > %OPT(V).

Since the set of all possible bid profiles is compact, one siez@drove that for all distribution® such that
there is a subsequence {d” } converging in distribution t@® we have:

Eyyon[SW (7(b), v)] > %OPT(V).

It is therefore sufficient to show that suciDais a coarse correlated equilibrium. We note that the fadt tha
the declaration sequende minimizes external regret implies that, for each distitmutD which can be
written as the limit of a subsequence{@7 }r, it holds that:

Eb~p[u;(b)] > Ebplui(b;, b_;)], Vi, b;

as required. [

Using this connection to coarse correlated equilibria, meeable to obtain a bound @f310 on the price
of total anarchy of the GSP auction.

Theorem 5.2 The price of total anarchy of the Generalized Second Priagtian in the full information
setting is at mos2.310.

A full proof of Theoren{5.R appears in Appendix C. We now presesimpler proof of the following
weaker bound, which captures some of the intuition behiedtiof of Theorerh 512.
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Theorem 5.3 The price of total anarchy of the Generalized Second Priagtian in the full information
setting is at moss.

Proof. The proof can be thought of as an improved version of the mfcanarchy bound based on the
fact that the GSP auction game(is/2, 1)-semi-smooth. We consider a distributifnwhich corresponds
to a coarse correlated equilibrium. All expectations in tbiéowing are taken with respect tb ~ D.
Recall the outline of the bound dfon the price of anarchy based on the fact that the GSP auciiom §s
(1/2,1)-semi-smooth. We considered a possible deviation for playéth valuationv; to bid b, = v;/2,
and concluded the bound (b}, b_;) > a;v;vi/2 — qivr)bx(y In the proof of Lemma 3]5. We use the
no-regret inequality directly, to get that

E[ui(b)] > a;vivi/2 — Elaivx(i)br(]-

Using thatb,.;) < v.(;), and summing over all players we get a bound of 4 on the pritetaf anarchy as
was done in Lemmia 3.3.

Here we improve this bound by adding two new ideas. First it for all slots except the top one
@iV (i)br(s) IS @ lower bound to the payment of the player in slet 1. The social welfare is the sum of
player utilities and the payments. The inequality states i expectation the utility of playerplus the
payment of the player in slot— 1 is at leasty;v;v;/2, i.e., half of the social welfare contributed by player
in the efficient solution. To turn this into a bound on socialfare, we need to handle playkedifferently,
asaix(1)br(1) does not correspond to any payment.

The second observation is that for playewe can obtain a stronger bound on her utility by considering
the deviatiord}, = v;. For other players such a high bid would endanger them to glet anuch higher than
their slot in the optimum at a very high price. But player kalty gets the best slot in the efficient solution.
Deviating tob] = vy will give the player the top slot, and hence utility~y; v, — @1Yx(1)br(1)- NOW Using
the no-regret property we get

E[u1(b)] > a1y1v1 — Elaavr1)br(n)-
By summing over all players and writing the social welfar¢hesssum of utilities plus the total payments,

we get:

E[SW (r(b), V)] = B[S ui(b)] +E[Y avaisnybais)

1
2 5E[ur(b)] + > Efui(b)] +E[Y | qivn(ibe()]
i>2 i>2
Q17101 E[al%(l)bw(l)] Q74
2 +y 5~ > Eloivrbe() + > Blotivn (i)

i>2 i>2 i>2

1 1
= iOPT(V) - §E[a1%(1)bn(1)]-

- 2 2

SinceE[SW (mr(b), v)] > Elo17,(1)bx(1)], We obtain thal[SW (n(b),v)] > 2OPT(v). |
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5.2 Learning with uncertainty

Let us now turn to the model of learning outcomes with undigaAs in the full information model, we can
define a Bayesian version of the coarse correlated equitibrA Bayesian coarse correlated equilibriuis
a joint distribution(v, v, b) whose(v, v)-marginals aréF, G) and satisfies the following property:

E(vyb) [1i (b, ) [0i] > By ) [ (b, bis ) |vil, Vi, 03, by

Similarly to LemmdX5.l1, we can show that the price of totalrai with uncertainty can be bounded by
considering the social welfare generated at any Bayesiarse@orrelated equilibrium.

Lemma 5.4 Assuming that the distribution over types has finite supgbe price of total anarchy with

uncertainty is at most
Ey ,OPT(v,7)
sup

F.G,D(-)eCCE By, b~D) [SW (7(b),v,7)]
whereCCE is the set of Bayesian coarse correlated equilibria.

Proof Sketch. The proof follows the same lines as the proof of Lenima 5.1.eoht > 1, (vt 4!, bt) is
the tuple of profiles corresponding to roundSince the distribution over types has finite support, tlgre
almost surely som&, such that, for each type profitein the support oF, there ist < Tj, such that’ = v.
For eachl’ > Ty, let D' be the joint distribution orfv, v, b) that samples uniformly from {1,2,...,T}
and outputgv?, v, bt). This defines a sequence of distributigi®” }7->7,. Now, it is enough to observe
that each convergent subsequence converges to a Bayesime aorrelated equilibrium. Therefore the
price of total anarchy is bounded by the price of anarchy Bagfesian coarse correlated equilibria.

Remark 5.5 Since our theorems hold in the limit @sgoes to infinity, they do not depend on the speed of
learning —which we can define as the speed in which subseesiefD” } - converge to a Bayesian coarse
correlated equilibrium in the proof above. The rate of coggace depends on the specific learning methods
being used by the players. However, the reader might ndiat tegardless of the learning methods used,
the speed of learning will depend on the time required foretimgirical distribution ofv, v to resemble the
real distribution. The speed in which this happens is cdiettpfor example, by the Central Limit Theorem.
Also, if players observe only realized payoffs each roumath@r than expectations), one would expect low
click-through rates to increase the amount of time needetééwning, since more rounds will be required
to accurately estimate expected outcomes. See Auer gi &br [@ more detailed discussion on the speed of
convergence of no-regret algorithms with limited feedback

The arguments in the proof of Lemrhal3.3 can be used with ealgmto change to show thdt\, x)-
semi-smoothness implies a bound pf+ 1)/ to the price of total anarchy with uncertainty. From this, we
know that:

Theorem 5.6 The price of total anarchy of the Generalized Second Pric¢ian with uncertainty is bounded
by 3.164.

In Appendix/A we present an improved result for the Bayesiacepf anarchy that also extends to the
following improved bound for learning outcomes.

Theorem 5.7 The price of total anarchy of the Generalized Second Prictien with uncertainty is bounded
by 2.927.
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A Improved Bounds for Games with Uncertainty

In this section, we prove Theoremsl3.1 5.7. The idea gfrtbef is analogous to our proof of the bound
of 3.164 in Sectior[_8, based on semi-smoothness, but will use a matiificof semi-smoothness specially
tailored to the GSP auction game, analogous to the way wefimddhe simple bound of 4 derived using
the (1/2, 1)-semi-smoothness of GSP to a bound of 3 on the price of totathwy for the full information
case in Sectioh]5. We handle the case when a player has theshigffective value separately, and show
that there exists a bidding profil& such that the following inequality holds.

E[Z ui (b (vi),b_i,7)] = BE[OPT(v,7)] — (1+96) ZE[az’%(z)bw(i)] + Elaavzmybra))- (5)

This inequality is analogous but weaker than claiming th&PGs (3, §)-semi-smooth, yet we will show
that it implies that the price of anarchy (and the price ddltaharchy) is bounded bly;g—‘;. This connection
is stated in the next lemma.

Lemma A.1 Assume that for every GSP auction game there is a biddindetdfand parameterg, 5 > 0
such that inequality[(5) holds for any strategy profile Then, the price of anarchy of the Generalized
Second Price auction with uncertainty is at mé%i. The same bound applies to the price of total anarchy
with uncertainty as well.

Proof. Consider a Nash equilibrium bidding profite Clearly, E[u;(b,~)] > E[u;(;(v;),b_i,7)] by
selecting the bidding profild’ as in inequality [(6). We use this inequality and the fact that social
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welfare is the sum of the expected utilities of the adversigdus the total payments to get
E[SW (x(b(v),7).v. )] = E[Y ui(b. )] +E[Y airiss)begir)
> E[Z i (b; (vi), b_i, )] + E[Z QY (i4+1) O (it 1))
> BE[OPT(v,7)] — (1 +9) Z Elaivr(i)br(i)] + Eloa vz (1) br (1))

+ Z B[ vr(i) br (i)
i>2

= PE[OPT(v,v)] —¢ Z B[t Vr() b (i)
> BE[OPT(v,~)] — SE[SW (x(b(v),7),v,7)],

which implies that the price of anarchy is at mé%é, as desired. To get the same bound for the price of
total anarchy, consider a coarse correlated equilibfiuimstead of a Nash equilibrium. [

The next lemma (Lemnia A.3) connects inequaliy (5) to theterice of functions with particular prop-
erties which we cal(, ¢)-bounded functions.

Definition A.2 Let 3,6 > 0 andg : [0,1] — R,. Functiong is (53, d)-bounded if the following three
properties hold:

1
i) /0 9(y)dy < 1,
1
i) (-2 [ gwdyz 55 Vel
1
iii) / (1—-y)gly)dy > B—(14+0)z, Vze]0,1].

Recall that the proof of Lemnia 3.5 that GSP(Is— 1, 1)-semi-smooth relied on a random distribution

with density f(y) = ﬁ fory € [0, (1 — 1)] and f(y) = 0 otherwise, and considered the bid distribution

b, = yv;, for playeri with valuationv;. The improved proof in Lemnia A.3 useg 3, ¢)-bounded function
g in place of thisf.

Lemma A.3 Let3,d > 0 be such that 43, §)-bounded function exists. Then, there is a bidding prafile
such that inequality({5) holds for any strategy profile

Proof. In the proof we consider a GSP auction game witiots with click-through-rates; > as > ... >
a, > 0 andn conservative players with random valuatianswvs, . .., v, > 0 and random quality factors
1,72, .-+, > 1. Letb denote any bid profile. Also, we denote b¥the bid profile such that;(z) is the
most profitable deviation for playémwhen her valuation is; = x. We will prove inequality[(5) using this
definition forb’.

The proof is long and technical. Before presenting it, weegvhigh-level overview. We apply the
following three steps:
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e Step 1: We focus on advertisawith valuationv; = x and obtain a lower bound on her expected utility
E[u; (b, b_;,v)|v; = =] when deviating td/(z). The main idea we use here is that the deviation to
bid b.(x) is more profitable for advertisérthan deviating to the bigzx, for everyy € [0, 1]. This
yields infinitely many lower bounds dB[u; (b}, b_;,v)|v; = z]; we combine them in a single lower
bound by taking their weighted average, with weights indideby the values of &3, §)-bounded
functiong.

e Step 2: We further refine the lower bound®fu; (b}, b_;, v)|v; = x]. Here, we reason about the slots
advertiseri would occupy by deviating to biglz and the utility she would then have, and we use the
properties of 3, §)-bounded functions. We consider sloand slots > 2 separately, as we did in the
proof of Theoreni 5.3.

e Step 3: We use the bound obtained in Step 2 in order to comgatees bound for the total expected
utility of all players when deviating tb’. We first lower-bound the unconditional expected utility of
advertiseri and, then, we simply sum the obtained inequalities overdskdisers in order to obtain

inequality [5).

Step 1: Focus on playet and letz be a possible valuation for this player. L&té > 0 and consider a
(8,0)-bounded functiory : [0,1] — R,. Using the first property in Definition_Al2 fay and the fact that
bl(z) is the most profitable deviation for advertisewe have

1
Elui(bi(x), b_s,)v; = 2] > /0g(y)E[uz’(bé(ﬂ?)’b—iﬁ)mZl"]dy
1
> /0 9(y)Efui(ye, b_i, 7)|vi = 2] dy.

Given any slotj, let AY denote the event that = 2 andv(i) = j and BY denote the event that(i) = j
given thatv; = z. Using these definitions, we can rewrite the quarifify; (yx,b_;,v)|v; = ] for every
y € [0,1] as

Efu;(yz,b_i, )l = 2] = Y Elui(yz, b_;,v)|AY] - P[BY].
j=1

By the last two (in)equalities, we obtain that

1 n
Eus (bj(x), b—i, 7l = 2] > /Og(y)ZE[ui(yw,b-i,v)!A?]-]P’[chj]dy
=1
= Z/ 9(W)E[ui(yz, b, 7)|A7] dy - P[BY]. (6)
j=1"0

Step 2: Our purpose now is to refine the lower bound provided by intityui). Let 7i(b_;,4) be the
player with thei-th highest effective bid if_;.

First consider slot 1 separately. Assume that the evéhtis true, i.e.,v; = z andv(i) = 1. We
will first lower-bound the quantityE[u;(yz,b_;,v)|A%] for everyy € [0,1]. By deviating to bidyz,

27



playeri is allocated the first slot wheneveryz > fyﬂ(l)bﬂz—(l); in this case, playef has utility at least
011(%'1' - ’Ywi(l)bﬂi(l)). Hence,

Elus(yz,b_i, )AL > Elon (%@ — Yoi1)bri(n)) LH{V¥® > Vi (1) bri(1) HAL -

We setz = w and use this last inequality to obtain

1 1
/0 9()E[ui(yz,b_i, 1) AN]dy > /O o(y) - Elonmiz(1 — 2)1{y > 2}|A}] dy
1
= Efonyia(l - 2) /O o(y)1{y > 2} dy|A}]

1
— Elayye(l - 2) / o(y) dyl A%
> Eloy (8% — 69mi1)briqr)) 14%] (7)

where the second inequality follows by the second propdrfedinition[A.2 for functiong (and using the
definition of z).

Now, assume that the .eveAﬁ:Z is true forj > 2, i.e.,v; = x andv(i) = j. We will lower-bound the
quantityE[u; (yz, b_;,v)| A% ] for everyy € [0, 1]. By deviating to bidyx, playeri is allocated sloy (or a
higher one) whenevey;yx > 7 bri(;); in this case, playerhas utility at leasty;v;z(1 — y). Hence,

Elui(yz,bi, MIAY] > Elagviz(l — y)H{viyx > vrig)briy HAL -

Vi ()b
We sety = =) 0)

r 22 and use this last inequality to obtain

1 1
/0 o) Elus(ye, by, )| AB] dy > /0 o) Eloymiz(1 — y)1{y > 2}|A7] dy

1 ..
= E[amw/ (1 —y)g(y) dy|AY]
Elaj (8vix — (14 6)mi(j)bmi(y)) [A7]. (8)

The second inequality follows by the third property of Defom[A.2 for functiong (and using the definition
of 2).

We now use inequality {6) together with the lower boundsijg(y)E[ui(yx, b_;,v)| A% ] dy obtained
in (7) and [(8). We have

v

Elui(bj(z), b_i,Nvi = 2] > Eloa (Bvix — 6vmiybmiqry) |AL] - P[BY]

+ ZE[% (87w — (1 + 0)vri(j)bri(y)) |AZ] - P[BY]
=2

= B Elayyx|AY] - P[BY] — 6E[a1 iy bri(ry AL] - P[BE]
im1

— (1406) > Eloyvmi(jybai()| AY) - P[BY).
=2
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Step 3: We can now bound the unconditional expected utility of ptay&hen deviating to stratedy(v;)
by integrating over the range of valuations for play@nd using the last inequality obtained in Step 2. In
the following we usef,, (x) to denote the probability density function of the randomialale v;. We have

Efus(B(0r), b_i,7)] = /0 " Efus(¥)(vi), b, )] - for () da

v

53 / Eloji0i] AY] - P[BY] - fo, () da
j=170
5 /0 Elo1 s (1 by | AL - BB - f () dat
—(1+9) Z/O ElojYpi(j)bri(jy A ] - PBY] - fo,(2) da
=2

Now, we use the property

/0 E[Z|AY] - P[BY]- fo,(x)dz = E[Z|v(i) = j]-P[v(i) = j],
for any random variablef as well as the fact that.: ;b (j) < Vx(j)bx(j) to obtain that
Efu; (b} (vi), b_i,7)]

> B Elagyivilv(i) = j]- Plu(i) = j] = SEarymsqybriy (i) = 1] - Plv(i) = 1]
j=1

— (146) Y Elajvribuigy v (i) = j] - Plv(i) = ]

i—2
> B Eloyyivilv(i) = j] - Plu(i) = j] — 0E[orve(ybeqy v (i) = 1] - Pl(i) = 1]
j=1
—(1+9) ZE[aj’Yw(j)bn(j)\V(i) =jl-Plv(i) = j]
=2
= B Elayyilv(i) = j]-Pl(i) = j] — (14 6) Y Elayn()bei v (i) = 4] - Plv(i) = j]
=1 =1

+ Ela1vr1)brylv (i) = 1] - Plv(i) = 1]
= BE[o)vivi] — (14 0)E[w () Yaw() Orwiin)] + Eloaveybrylv (i) = 1] - Plv(i) = 1].

By summing over all players, we obtain inequallty (5). Intmarar,
Z E uz b—za > B Z E ’szz - (1 + 5) Z E[au(z)f}/w(u(z))bﬂ(u(z))]
+ ZE (1Y) or)lv (i) = 1] - Pl (i) = 1]

= BE[OPT(v,7)] = (14 6) > Elaive(ibr) + Eloave()br)-

i
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Therefore, by Lemmds A.1 ahd A.3, in order to bound the pricanarchy, it suffices to find &3, §)-
bounded function such that the raﬂigé is as low as possible. This is the purpose of the followingnem

Lemma A.4 Consider a functiory : [0, 1] — R defined as follows:

gl y€[0,A),
gy) = S ye ),
0, y € [ 1,

wherex > 1and1l > g > XA > 0 such that% —rkln(l—X) <1,and(xk — 1)(1 —u)ln% -
(k= 1)+ kX > 0. Theng(y) isan((x — 1), k — 1)-bounded function.

Proof. We begin by computingo1 g(y) dy. It holds that

' _ [k Pe=DA—p) o (k=D=M

where the inequality holds by the first assumption concerrim\ andyu. Hence g satisfies the first property
of Definition[A.2.
For the second property of Definitibn A.2 it suffices to pravatt

-9 [ @+ -E—) 2 0 v:e
We distinguish between three cases depending. &1irst, we consider the case that [u, 1]. We have
- [ o+ (-G ) = (-1 20,
where the inequality holds sineec [u, 1] andx > 1. Forz € (A, 1) we have
-2 [t -G = 02 [TEDE gy e =0
Finally, for z € [0, A] we have

1
<1—z>/ g(w)dy + (k — 1)(z — o)
Ak K — -
= (1—z)/ ?ydy+(1_z)/jwdy+(%—1)(2—,&)

(1—y)?
_ (1—z)/{lni:i+(1_z)(?:i)(u_/\)—I—(I{—l)(z—,u)
> (k=D =2+ E-1A-pu
= 0,
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where the inequality follows by the fact that the derivatii¢h respect ta: is negative for: € [0, A]. Hence,
it holds thatg satisfies the second property of Definition JA.2.
It remains to prove that satisfies the third property of Definition A.2. Similarlysitiffices to prove that

1
/(1—y)g(y)dy—(f<;—1)u+mz > 0, Vzelo,1].

Again, we distinguish between three cases depending &irst, we consider the case that [u,1]. We
have

1
/ 1-ygly)dy—(k—Dpu+rz = —(k—1)pu+kz>p>0,
where the first inequality follows sincee [u, 1]. Forz € [, 1) we have

/“ (r =11 —p)

e dy — (k — D+ k2

1
/ Q-9 dy — (k= Dp+rz =

= (“—1)(1—,“)1111:;;—(/-i—l),u—l-/-iz
> (k= 1)1~ )T~ (s~ D+ A
> 0,

where the first inequality follows by the fact that the deiiv@ with respect to: is strictly positive for
z € [\, u), and the second inequality follows by the second assumptiagernings, A and . Finally, for
z € [0,\) we have

1 A k— —
/(1—y)g(y)dy—(f<—1)#+m = /"‘d“/jw

= (h=1)(1—p)In =
> 0,

dy — (k= Dp+ Kz

— (k= 1)p+ kA

where the inequality follows by the second assumption awmireg <, A and .. The proof of the lemma is
complete. [

We are now ready to complete the proof of Theoréms 3.1 and™&.two conditions of Lemma Al.4
are satisfied for, = 1.7507, A = 0.225, andu = 0.7966. By combining Lemmas_Al1,_Al3, arid A.4,
we conclude that the price of (total) anarchy of GSP auctmmes over Bayes-Nash equilibria is at most

i < 2:9276.

B Improved Bounds for Pure Nash Equilibria

In this section we present our results for pure Nash eqialiibrthe full information setting (Theorers #.1
and4.2). For simplicity of exposition, we consider all dtyafactors to be equal td; so,y does not appear
in notation. Our proofs can be adapted to different quadittdrs in a straightforward way. We consider GSP
auction games with advertisers with valuations; > ... > v, > 0 andn slots with click-through-rates
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o > ... > a, > 0. We assume that neither all slots have the same click-throaig nor all advertisers
have the same valuation (in both cases, the price of anasd)y i

We use the ternmefficiencyof allocationr to refer to the rati® PT'(v)/SW (m,v). In Lemm&4.b we
showed that every pure Nash equilibrium corresponds to &lwésasible allocation. Hence, the price of
anarchy of a GSP auction game over pure Nash equilibria isrdppunded by the worst-case inefficiency
among weakly feasible allocations.

Definition B.1 An allocationr is calledproperif for any two slotsi < j with equal click-through-rates, it
holds~ (i) < m(j).

Clearly, for any non-proper weakly feasible allocation, ee@ construct a proper weakly feasible one with
equal social welfare. Hence, in order to prove our upper dsiwe essentially upper-bound the worst-case
inefficiency over proper weakly feasible allocations.

Given an allocationr, consider the directed gragh(r) that has one node for each slot, and a directed
edge for each advertiséithat connects the node corresponding to skat the node corresponding to slot
7~1(7). In generalG(r) consists of a set of disjoint cycles and may contain selpgoo

Definition B.2 An allocation is called reducibleif its directed graphG(7) has more than one cycles.
Otherwise, it is calledrreducible

Given a reducible allocation such thatz(7) hasc > 2 cycles, we can construetGSP auction subgames
by considering the slots and the advertisers that correspmothhe nodes and edges of each cycle. Similarly,
for¢ =1,...,c, the restrictionr? of 7 to the slots and advertisers of the¢h subgame is an allocation for
this game. The next fact essentially states that we can fmtuseducible allocations.

Fact B.3 If allocation 7 is weakly feasible for the original GSP auction game, théis weakly feasible for
the ¢-th subgame as well, faf = 1,...,c. Then, the inefficiency af is at most the maximum inefficiency
among the allocations’ for¢ =1, ..., c.

When considering irreducible weakly feasible allocatjomne further assume that the index of the slot
advertiserl occupies is smaller than the index of the advertiser thassgyaed to sloi. This is without
loss of generality due to the following argument. Consideireeducible weakly feasible allocationfor
a GSP auction game with advertisers such that=!(1) > =(1). We construct a new game with click-
through-ratea; = v; for sloti and valuationv; = «; for advertiser;, for i = 1,...,n, and the allocation
T, = n 1. Observe that;1(1) = m(1) < 7#~1(1) = m.(1). Clearly, the optimal social welfare is the
same in both games while the social welfarergffor the new game iISW (7,,v') = ia;U;*(i) =
> i Villr, (i) = Do 1) vi = SW(m, v). We can also prove the weak feasibility conditions forin the
new game for each j. In order to do so, consider the weak feasibility conditionsf in the original game
for advertisersr(j), 7(i). Itis ajur(j) > @i(vr) — vr)) and, equivalentlyp,;ya; > vey (i — ay).

By the definition of the click-through-rates and the valoas in the new game and the definitionmqf we
obtain thafa;:l(i)v,’- > a;:l(j)(vg — v}) as desired.

We furthermore note that wher, = 0, any proper weakly feasible allocation is reducible. Thkis i
obviously the case if all advertisers with zero valuatioa tne last slots. Otherwise, consider an adveriiser
with non-zero valuation that is assigned a siot (i) > 7~!(j) wherej is an advertiser with zero valuation.
Since the allocation is proper, it holds that-1;) < a,-1(;). Then, we obtain a contradiction by the weak
feasibility conditiona.—1;yv; > az-1(;)(vi — v;) for advertisers, j.
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B.1 GSP auction games with two and three advertisers

We now complete the proof of Theorém#.2.

We begin by presenting the matching upper bound on the pfieearchy for two advertisers and two
slots. The upper bound follows by bounding the inefficientyweakly feasible allocations. Consider a GSP
auction game with two slots with click-through-rates > a2 = SBaq, for g € [0,1] and two advertisers
with valuationsv; > vy = Avy, for A € [0,1]. The only non-optimal weakly feasible allocatiarassigns
advertiserl to slot2 and advertise? to slot1. Its social welfare iSW (7, v) = ajve+agv; = vy (B+A),
while the optimal social welfare IO PT(v) = ajv; + agvy = aqui(1 + BN). Furthermore, the weak
feasibility condition for advertiset implies thatasovy > a4 (v1 — v2), i.e.,8 > 1 — A. We have that

OPT(v) _1+pA _ 1+ (B+N)?%/4
SW(m,v) B+~ B+ A

<5/4

where the first inequality holds since the prodtatis maximized whem? = A = (8+ A)/2 and the second
inequality holds sincg + A € [1,2] and the function”x# is non-increasing i € [1,2].

For the case of three advertisers, we again present a tightban the price of anarchy. We first present
the upper bound. Consider a GSP auction game with threevglbtslick-through-ratesy; > oy > a3 >0
and three advertisers with valuations > v, > v3 > 0 and a proper weakly feasible allocatiorof slots
to advertisers. We will prove the theorem by upper-boundirg inefficiency ofr by 1.259134. If 7 is
reducible, then the inefficiency is bounded by the inefficjeaf games with two advertisers (see Hact B.3)
and the theorem follows by the upper bound@f proved for this case. So, in the following, we assume
that is irreducible; by the observation above, this implies that- 0. There are only two such allocations
which are in fact symmetric: in the first, slots2, 3 are allocated to advertise3s1, 2, respectively, and in
the second, slots, 2, 3 are allocated to advertise?s 3, 1, respectively. Without loss of generality (see the
discussion above), we assume thas the former allocation.

Let 3, d, A, andu be such thatvy, = Baq, ag = da, vo = Avy, andvs = pwy. Clearly, it holds that >
g >4 >0andl >\ > p > 0. The social welfare of allocationis SW (7, v) = ajv1 (u+6+9d)\) whereas
the optimal social welfare iI© PT'(v) = ajvi(1 + A + du). Furthermore, since is weakly feasible, the
weak feasibility conditions for advertiseisand 3 and advertiser® and3 are agv; > «a;(v; — v3) and
agvy > aq(ve — v3), respectively, i.e.p > 1 —pandd > 1 — % We are now ready to bound the
inefficiency ofr. Lete,# > 0 be suchthat =1 — 4 eandd =1 — &£ + 6. We have

OPT(v)  14+BA+6u 1+A—ph+pu— L £ A+
SW(m,v) — u+B+6N L4+ X—p+e+ 06X
2
- 1+A—MA+M—“T.
- 1+A—p

The inequality follows sincé > X\ > p > 0 implies thatl + A\ — g\ + pu — “72 =1+A—p+pl-XN+
wl—p/N)>1+X—p>Tlande+ 0\ > el +60u > 0.

Foru € [0, 1], this last expression is maximized for the valug.dhat makes its derivative with respect
to 1 equal to zero, i.eyy = —v A3 + 1 + A + 1. By substitutingu, we obtain that

OPT(v) _ M EA+2-2VN+1
SW(m,v) ~ A

<1+2¢=1.259134
where¢ = 0.129567 and the second inequality follows by the following lemmarfirea[B.4).
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Lemma B.4 Let¢ = 0.129567. For any\ € [0, 1], it holds thaty/'A® +1 > 1 — (A + %2

Proof. Since both parts of the inequality are non-negativeXfer [0, 1], it suffices to show that the function
2
fA) =N +1) - (1 —CA+ A—;) is non-negative fon € [0,1]. Letg(\) = —%3 +(1+ON -1+

(%)X +2¢ and observe that()\) = A-g(\). The proof will follow by proving thag()\) > 0 when\ € [0, 1].
Observe that the derivative gfis strictly negative for\ = 0 and strictly positive forh = 1. Hence, the

minimum of g in [0, 1] is achieved at the point* = 4+4<—2,3/¢2‘+84+1 where the derivative of becomes
zero. Straightforward calculations yield thgt\*) > 0 and the lemma follows. |

In the following we prove that the above analysis is tight.n€ider a GSP auction game with three
advertisers with valuations; = 1, vo = 0.5296, andvs = 0.14583, respectively, and three slots with
click-through-ratesy; = 1, ae = 0.55071, andas = 0.4704, respectively. Leb = (b1, b2, b3) be a bid
vector withb; = 0, by = v9 = 0.5296, andbs = v3 = 0.14583, respectively. So, advertiséris allocated
slot 1, advertisen is allocated sloR, and advertiset is allocated slo8. We refer to this allocation as. It
is not hard to verify thab is a pure Nash equilibrium, and that the price of anarchyvismgby:

OPT(v)  oqvr + agvs + azv3
SW(?T, v) N a1V9 + a3 + a3V

> 1.259133.
The proof of Theorern 412 is complete.

B.2 GSP auction games with many advertisers

We now prove Theorem 4.1. In order to do so, we will actuallgverthe stronger claim that the worst-
case inefficiency among weakly feasible allocations of a®P@uction game is at mast= % ~
1.28216. We use induction. As the base of our induction, we use thetiat GSP auction games with one,
two, or three advertisers have worst-case inefficiency anveeakly feasible allocations at mak28216.
For a single advertiser, the claim is trivial. For two or #evertisers, it follows by the proof of Theorem
[4.2. Letn > 4 be an integer. Using the inductive hypothesis that the wearse inefficiency among weakly
feasible allocations of any GSP auction game with at mostl advertisers is at most we will show that
this is also the case for any GSP auction game witluvertisers.

Consider a GSP auction game withadvertisers with valuations, > v, > ... > v, > 0 andn slots
with click-through-ratesy; > as > ... > «, > 0 and letr be a proper weakly feasible allocation.xlfis
reducible, the claim follows by Falct B.3 and the inductivepdihesis. So, in the following, we assume that
m is irreducible; this implies that,, > 0. Let j be the advertiser that is assigned dl@ndi; be the slot
assigned to advertisér Without loss of generality, we assume thiak j since the other case is symmetric;
see the discussion at the beginning of Sedfibn B. Alsailék the slot assigned to advertiser By our
assumptions, the integejsl, i1, andi, are different.

We will show that

OPT
a1U1 + (V) '

"
SW(r,v) = a1vj+ oy (v — %) + g (viy —vj) = — .

(9)

Once we have proved inequality| (9), we can obtain the deséekdion betweerbW (7, v) andOPT(v)
using the following technical lemma.
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LemmaB.5 Letr = % ~ 1.28216 and f (3,0, \, 1) = p+ B (1 — %) + 0N —p) — % Then, the
objective value of the mathematical program

minimize  f(5,0,\, u)

subjectto g >1-—pu
0>1—p/A
1>A>pu>0
1>3,0>0

is non-negative.

Proof. Sincep < A < 1, we have thatf(3,d, A, 1) is non-decreasing i andd. Using the first two
constraints, we have that the objective value of the mattieahgprogram is at least

7 B 1 A A w2
Fll=mi=5am) = 12422 u<2 r>+)\’

. . .. . o )\2
which is minimized foru = A — 5 to

roor r 42

A2\ _)\_2 1 1 A )\_2_)\3
or’ 2r’ "7 2r

f<1—>\+— 20

In order to complete the proof it suffices to show that the fiamgy(\) = 1 — % — % + %2 — 44:; IS non-
negative for\ € [0,1]. Observe thag()) is a polynomial of degred and, hence, it has at most one local

minimum. Also observe that the derivativegif\) is — 1 + 22 — % which is strictly negative foA = 0 and

strictly positive forA = 1. Hence, its minimum irj0, 1] is achieved at the point* = 4r=2vIr"=5" where
the derivative becomes zero. Straightforward calculatield thatg(\*) = 0 and the lemma follows. =

So, assuming that)(9) holds, we can apply Lerima B.5 With «;, /a1, § = i, /o, A = v;, /vy, and
p = vj/vy. Clearly, the last two constraints of the mathematical ogin LemmaB.b are satisfied. Also,
observe that the weak feasibility conditions for advertideandj and advertisers, andj in allocation
area;, v; > aq(v; — vj) andey, v, > ai(v;, — v;), respectively, i.e 3 > 1 — pandd > 1 — /A and the

first two constraints of the mathematical program in LerbnfadBe satisfied as well. Now, using inequality
(9) and LemmaBl5, we have that

SW(m,v) > f <% Yz Vi ﬁ) vy + OPT(v) > OPT(v)

a1 ’ aq ’ U1 ’ U1 T
and the proof follows.

It remains to prove inequality 9). We distinguish betwelereé cases depending on the relative order
of j,i1, andis; in each of these cases, we further distinguish between toases. In each case, we
exploit the structure of allocationt to reason as follows. We consider a restriction of the oalggame
(i.e., a different “restricted” game) by removing some atigers from the original game and the slots they
occupy inw. The particular advertisers to be removed are differentachecase. We denote hy the
restriction of allocationr to the advertisers and slots of the restricted game. We alse’tto denote the
valuation profile in the restricted game; s\ (7', v') denotes the social welfare af in the restricted
game. An important observation is theltis a weakly feasible allocation in the restricted game sthee
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weak feasibility conditions for’ are just a subset of the corresponding conditionsrfgfor the original
game). Furthermore, the restricted game has at mest advertisers and, by the inductive hypothesis, we
know that the inefficiency ofr’ is at mostr. Then, inequality[(9) follows using this fact and by cariful
expressing the optimal social welfare in the new game.

Case 1.1:1 < iy < j <ipanda; < agr. Consider the restriction of the original game that con$ts
the advertisers different thgn 1, andi; and the slots different thah i,, andis. Let 7’ be the restriction of

m to the advertisers and slots of the new game and’lbt the restriction of to all advertisers besidgs 1
andi;. Clearly,n’ is weakly feasible for the new game since the weak feasilitinditions forr’ are just a
subset of the corresponding conditions foffor the original game). Also, note that the efficient allooa

for the restricted game assigns advertisés slotk fork =2,... i1 —1,41+1,...,j—1,io+1,...,nand
advertiserk + 1 to slotk for k = j,...,is — 1. By the inductive hypothesis, we know that the inefficiency
of 7’ is at mostr. Hence, we can bound the social welfarerais

SW(m,v) = a1V + Qi V1 + QU5 + E OV ()
k&{1,i1,i2}
= avj + @i v1 + v, + SW (R, V)
i1—1 i9—1
> Qv + oy v+ Qv + g QpUE + E QpUE + g QpVk+1 + g QpVk
k=i1+1 k=io+1
i1—1
> v+ oy v+ v + g QpUE + E QpUE + g apUE + E QLU
k=i1+1 k=j+1 k=io+1
1
= o1V + Qj; V1 + Q4,05 + E QU — QU] — QG V4 — QU5

OPT
a1U1 + (V)

T T

> ago; + ag, (v — 2 . =) + iy (vi, —vj) —

and inequality [(P) follows. The first inequality follows bie inductive hypothesis and the definition of
the efficient allocation for the restricted game. The sedoeduality follows sincev;, > a1 for k =
J»---,i2 — 1. The last inequality follows since; < a;,r.

Case l.2:1 <i; < j <igandoa; > a;,r. We use the restriction of the original game that consisthef t
advertisers different thapand1 and the slots different thahandi;. Now, the efficient allocation for the
restricted game assigns advertisdo slotk for k = 2,...,i1 — 1,5+ 1,...,n and advertisek — 1 to slot

kfor k =iy +1,...,7. Using the inductive hypothesis for the restrictiohof 7 to the restricted game, we
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can bound the social welfare afas
SW(m,v) = Q1v5 + oy, 01 + Z QLU (k)
k#{1,i1}
= ov; +aiv1 + SW(ﬂ‘/ V,)

i1—1

> alvj—kozilvl—i—; E aRUL + E QrpUL_1 + E LUk
k=iy+1 k=j+1

1
= v + a3 v+ ; E QRUR — Qv — oV, + E ak(vk_l — ’Uk)

k=1 k=i 41
1 (& J
> o1vj + o v1 + - Zakvk — U — 0,0, + oy Z (Vk—1 — vg)
k=1 k=i1+1

OPT(v)
T
avy OPT(v
w , OP1 (v)
and inequality[(P) follows. The first inequality follows blye inductive hypothesis and the definition of the
efficient allocation for the restricted game. The seconduadity follows sinceny, > o andvy,_; — v, > 0
fork =i, +1,...,7. The last inequality follows since; > o;,r.

1
= ov; + a1 — ; (alvl + o, v + v — Oéjvil) +

Vs
> v + ail(vl — %) + ai2(vi1 — vj) —

Casell.1:1 < iy <ip < jandv;, <vjr. We use the restriction of the original game that consisthef t
advertisers different thayy 1, andi; and the slots different thah i1, andis. Now, the efficient allocation
for the restricted game assigns advertis¢o slotk for k =2,...,iy — 1,i1+1,...;ia— 1,57+ 1,...,n
and advertisekt — 1 to slotk for k = iy + 1,. .., j. Using the inductive hypothesis for the restrictiohof

« to the restricted game, we can bound the social welfareasf

SW(?T,V) = aqj + QU1 + Q4,0 + Z QU (k)
k&{1,i1,i2}
= aqvj + @i, v1 + i, + SW (R, V)
11—1 ig—1
= 0+ oy v+ v+ Z QU + Z QU + Z QpUk—1 + Z QU
k=i1+1 k=i2+1 k=j+1
1 i1—1 i2—1
> 0+ oy v+ g+ - Z QU + Z QU + Z QU + Z QU
k=i1+1 k=iz+1 k=j+1
1 n
= aqj + QU1 + Q4,0 + ; QU — QU1 — Q4 Vi — QG Vs,
k=1

oy OPT(v

o r( )
and inequality [(P) follows. The first inequality follows bie inductive hypothesis and the definition of
the efficient allocation for the restricted game. The sedoeduality follows sincev,_1 > vy for k =

i2 +1,..., 7. The last inequality follows since, < v;r.

s
> v+ i, (v1 — %) + iy (viy — vj) -
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Case ll.2: 1 < i1 < i < jandwv;, > v;r. We use the restriction of the original game that consists of
the advertisers different thanand:; and the slots different than and:s. Now, the efficient allocation for
the restricted game assigns advertiséo slotk for £ = i3 + 1,...,n, advertiseri; + 1 to sloti; — 1, and
advertiserk + 1toslotk for k = 1,...,i1 — 2,41 + 1,...,i9 — 1. Using the inductive hypothesis for the
restriction’ of 7 to the advertisers and slots of the restricted game, we camdaihe social welfare of as

SW(va) = 04V + 0y + Z Ok Ur (k)
ke {i1 iz}
/ /
= ;v + a,v, + SW(r',v)
12 ia—1 n
Z Qi U1+ @Gy + - Z QkVk+1 + Qi 10341 + Z QU1 + Z QU
k=1 k=i +1 k=iz+1
1 n i1 —2
= ;U1 + Qv + - Zakvk + Z (g — Qpg1)Vps1 + (-1 — Qi 11)Vig 41
k=1 k=1
io—1
+ Y (k= 1)Uk — 011 — Qi vy,
k=i1+1
1 n i1—2
>y U1+ Qv + - Zakvk + Z (o — Qpg1) iy + (-1 — Q4 41) Vi,
k=1 k=1
i2—1
+ > (ok — app1)vi, — 0101 — 0, 03
k=i1+1

OPT(v)

= ;U1 + Qv — - (a1U1 + @, v + Qi Vi, — 011212‘2) + "

OPT
a1U1 + (V)
r T

Vi
> v + ail(vl — %) + Oéi2(vi1 — vj) —

and inequality [(P) follows. The first inequality follows bie inductive hypothesis and the definition of
the efficient allocation for the restricted game. The sedoeduality follows sincev;, — ax+; > 0 and
Vg1 > U, fOrk =1,...,01 — 2,491 + 1,...,i0 — 1l anda;, -1 — a;,41 > 0 andv;, 41 > v;,. The last
inequality follows sincey;, > v;r anda; > a,.

Caselll.1l: 1 < iy < i < jandv;, <wvjr. We use the restriction of the original game that consisteef t
advertisers different thaj i1, and1 and the slots different thah i, andi;. Now, the efficient allocation
for the restricted game assigns advertiseo slotk for k = 2,...,i5 — 1,5 + 1,...,n advertiseri; — 1
to sloti; + 1, and advertisek — 1 to slotk for k = iy + 1,...,41 — 1,41 + 2,...,j. Using the inductive
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hypothesis for the restriction’ of 7 to the restricted game, we can bound the social welfareasf

SW(m,v) = QU + Qi V4 + QU1 + Z OV (k)
kg{1,i2,i1}

= a1v; + Qi v, + o1 + SW (T, V)
i2—1 i1—1

> 0+ Qv+ Qv+ - Z ogVE + Z OVk—1 + Q4105 —1
k=2 k=ia+1

7 n
+ Z AVE—1 + Z QLU
k=11+2 k=j+1

i2—1 i1—1

2 v+ v + QU —|— Z QpUE + Z QpUE + Z QRVk

k=io+1 k=i1+1

1 n
= a1V + Qv + a1 + - E QEpUE — QU1 — Qy U4y — QG Vg4
k=1
a1v1 OPT(V)
4
T T

vs
> v+ oy (v1 — %) + iy (viy — Uj) -

and inequality [(P) follows. The first inequality follows bie inductive hypothesis and the definition of
the efficient allocation for the restricted game. The sedoeduality follows sincev,_1 > v for k =
io+1,...,41 — 1,41 +2,...,7 andv;, 1 > v;, +1. The last inequality follows since, < v;r.

Caselll.2: 1 < iy < i1 < jandv;, > v;r. We use the restriction of the original game that consisteef t
advertisers different thaiy and1 and the slots different thais andi;. Now, the efficient allocation for the
restricted game assigns advertigdo slotk for k = is +1,...,4y — 1,41 + 1,...,n and advertisek + 1

to slotk for k = 1,...,i5 — 1. Using the inductive hypothesis for the restrictiohof = to the restricted
game, we can bound the social welfarerads

SW(m,v) = v, + v+ Z Qg Uz (k)
kg{izsir}
= QU T 04,01 F SW(ﬂ‘/ V,)
1 i2—1 i1—1
2 QU+ T Z QgVk+1 + Z QgVk + Z Qg Uk
k=1 k=io+1 k=i1+1
1 i2—1
= v, +a; v+ . (Z QU — QU] — Q4 Vg F Z o — ak+1)vk+1>
k=1 k=1
i2—1
2 algvll + allvl + Zakvk — 101 — allvll + Z Oék; - ak+l)U22
k=1 k=1
1 OPT(v)
= Q4,4 + QU1 — ; (0412)1 + O, Uy + Qo Uiy — 041%2) + ﬁ

v OPT(v)

s
> Oél”Uj‘FOZil('Ul_%)—i_a?é(vil _Uj)_ r r
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and inequality [(P) follows. The first inequality follows bie inductive hypothesis and the definition of
the efficient allocation for the restricted game. The sedoeduality follows sincev;, — ax+; > 0 and
Up+1 > Ui, fOrk =1,...,ip — 1. The last inequality follows since;, > v,;r anda; > a;,.

The proof of Theorerm 411 is complete.

C Improved Bounds for Learning Outcomes

In this section, we focus on the full information game. Fonglicity we assume that all quality factors
~v; = 1, and assume that players are sorted sodhat v, > --- > v, (all proofs extend to the case with
general quality factors by considering effective valggs in place of valuations everywhere).

The main goal of this Appendix is to prove Theoreml5.2. Sirhiléo the proof of Theorerh 311 in
Appendix(A for Bayes-Nash equilibria, the proof considemdayer: with valuationv;, possible bids of the
form yv;, and uses the fact that the player has no-regret about siechative bids. In the full information
case, we can handle the player with top valuation sepayatediwill only use that this player 1 has no regret
about bidding her actual valuatien. For any other playet, the proof is analogous to the proof of Theorem
3.1 in AppendiX_A. However, we no longer have to consider seply the case when the player’s optimal
slotis 1. This allows us to drop one requirement for the fiamcg in the definitior_A.2. We further simplify
that definition by setting = 5 (we have verified that different values fdido not yield any improvement).
More formally, we will need the following definition.

Definition C.1 Let 5 € (0,1]. A functiong : [0,1] — R, is called 5-bounded if the following two
properties hold:

1
i) /Og(y)dyél,

1
i) [a-pe)dyzp- 1+ p)z vee .l

The following lemma states the connection of the price of@mato the existence gf-bounded func-
tions.

Lemma C.2 LetS € (0, 1] be such that g8-bounded function exists. Then, the price of total anardithe
Generalized Second Price auction in the full informatiotiisg is at mostl + 1/5.

Proof. In the proof, we consider a GSP auction game withlots with click-through-rates;; > as >
... > «ap > 0 andn conservative players with valuationsg, vo, . .., v, > 0. Letb denote the bids of the
players at a coarse correlated equilibrium.

We begin by lower-bounding the expected utility of each plagt a coarse correlated equilibrium. We
first consider playet and her deviation to the bid,. Then, playen would always be allocated slatand
would pay the highest bid among the remaining players (wisiett most(;)) per click. By the definition
of the coarse correlated equilibrium such a deviation doegwrease her expected utility (as the player has
no regret), i.e.,

E[ul(b)] > E[ul(vl,b_l)] > E[al(vl — bw(l))] > 50[12}1 — 5E[Ox1b7r(1)], (10)

where the last inequality follows sinee > b,y and sinces € (0,1]. Now, consider the deviation of
playeri to the deterministic bid, < v;. Then, she would be assigned to siair higher and would get
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utility at leasta; (v; — b;) when thei-th highest bid is smaller thaj. Again, by the definition of the coarse
correlated equilibrium such a deviation does not increasekpected utility, i.e.,

Elu;(b)] > Eu; (b, b_;)] > Ela;(v; — b’)]l{b ) < b}

Using the first property in Definition 3.1 foras well as the last inequality (wit = yv;) , we have
B > [ o) By
> [ o) Blautos — g 1oy < by
= Elav; /0 1 (1 = 9)9(y) L) < yvi}dy]

1
= E[az’vz’/ (1 —y)g(y) dyl.
bw(i)/vi
We now apply the second property of Definitlon IC.1 for funtioto obtain
E[uz(b)] > E[Baivi - (1 + ,B)Oélbw(l)] = Bajv; — (1 + B)E[a,bw(z)] (1))

By summing over all players and using inequalities (10) &), (we have
ZE[uz(b)] = Efu(b)] + ) E[ui(b)]
> B Z av; — (1+ B) Z Elaib. )] + Eloaby()]
= ﬁoZPT(v) —(1+8) Z Elibr(s)] + Elaibzy)-

Now, we use this last inequality in the same way we used ifiyg8) in the proof of Lemm&Al. By
the fact that the social welfare is the sum of the expectddiegiof the players plus the total payments, we
obtain

E[SW (x(b).v)] = E[Zuxb)]%[zaibwﬂﬂ

> BOPT(v)— 1—|—5ZE0¢Z )]+ Elarbay] + > Eloiby

1>2
= BOPT(v)—-p Z E[ab,
> BOPT(v) — 5E[SW(7T(b),V)],
which implies that the price of total anarctyPT'(v)/E[SW (7(b), v)] is at mostl 4 1/, as desired. m

We are ready to complete the proof of Theoflem 5.2. By Lemma i€siffices to find a3-bounded
function with 8 as high as possible. Lat~ 0.4328 be the solution of the equatidn— A +In (1 — A) =0
andg : [0, 1] — R be the function defined as follows:

1
_ ) amva Y € [0, A]
5(0) { 0, ye ]
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We will show thatg is S-bounded for3 = ﬁ; the upper bound of /A ~ 2.3102 stated in Theorein 5.2
will then follow.
Indeed, by the definition of, we have

! o dy ~ W(=n
f o= | at =

Hence,g satisfies the first property of Definitign C.1. We also obsdima

! A d A—z
[a-vstay= [ Hei—s-ain

i.e., g satisfies the second property of DefinitionIC.1 as well.

D Irrational and Partially Rational Players

In this section we consider the effect of partial ratioryatih the welfare generated by the GSP auction. We
first consider a setting in which the players are not necigsmrfect utility optimizers, but rather can only
be assumed to apply strategies that form an approximatébegumn. We then study a setting in which some
fraction of the players bid arbitrarily, without any ratedity assumptions beyond avoiding the dominated
strategy of overbidding (see Section]2.3). In both casedjmndethat the social welfare guarantees of the
GSP auction degrade continuously with the degree of imatity present in the players.

D.1 Approximate equilibria

We will consider the social welfare generated by the GSPi@uetith uncertainty when players play only
approximately utility-maximizing strategies. In Secti@we assumed that rational players apply strategies
at equilibrium. However, due to limits on rationality or iffdrence between small differences in utility, it
may be the case that players converge only to an approximgatibeium. We begin by defining this notion
formally. Given a joint distributior{F', G) over types and quality factors, we say that strategy prbfikan
e-Bayes-Nash equilibrium for distributiors, G if, for all playersi, all typesv;, and all alternative strategies
bi',

Eyv iy blui(bi(vi),b_i(v_i),Mvi] > (1 — €)Ey_, 5 blui(b;(v:), b_i(v_;),7)|vi].

Notice our choice of the multiplicative definition of appnamate equilibria, justified by the fact that we have
chosen not to scale values to lie[in1].
We define the-Bayes-Nash Price of Anarchy be

sup EV,W[OPT(‘C 7)]
F,G,b(.)ée-BNE Ev,'y,b(v) [SW(m(b(v),7),v,7)]

wheree-BNE is the set of alk-Bayes-Nash equilibria.
We now claim that our bound for social welfare at (non-apprate) equilibrium degrades continuously
as we relax the degree to which a bidding strategy only apmates an equilibrium.

Theorem D.1 The e-Bayes-Nash price of anarchy of the Generalized Seconde Rrition is at most
1.2553 4+ (1 —€)~1 - 1.6722.
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The intuition behind Theorem .1 is that the bound for exgailéria obtained in Theorefn 3.1 depends
on the Bayes-Nash equilibrium condition in a continuous .wakis continuity is captured by the semi-
smoothness of the GSP auction (as well as by inequality €& to prove Theorefn 3.1 in Appendix A).
Indeed, the following Lemma follows by a trivial modificatido the proof of LemmaAll.

Lemma D.2 Assume that for every GSP auction game there is a biddingetgfand parameters, 6 > 0
such that inequality[{5) holds for any strategy profile Then thee-Bayes-Nash price of anarchy of the

Generalized Second Price auction is at m8§te)ﬁfﬁ.

It then follows immediately from Lemmas A.3 ahd A.4 (see Apgi[A) that thee-Bayes-Nash price
-1
of anarchy of the GSP auction is at mé§EL 07507 . 1 9553 4 (1 — €)1 - 1.6722.

D.2 lIrrational players

We now consider a setting in which, of theadvertisers who bid in the GSP auction, some subset of them
are “irrational” and cannot be assumed to apply strategiegjailibrium. We still think of the irrational
advertisers as being true players in the GSP auction, witatians and quality scores. The irrational
advertisers simply may not apply rational bidding straspifor example, they may not have experience
with the GSP auction, or not know about historical biddintieras.

Our setting will be an extension of the GSP auction with utacety. We will first provide some defini-
tions. Given valuations, quality scoresy, an outcomer, and a sef of players, the social welfare restricted
to setS'is SWs(m, v,7) = D5 @r-1()Vi%i, the total value of the outcomefor the advertisers its. The
optimal social welfare restricted 9is OPTs(v,v) = max, SWs(m,v,7).

Given a joint distribution(F, G) over types and quality factors, and a $ebf players, we say that
strategy profiléb is an.S-Bayes-Nash equilibrium for distributiorIs, G if, for all players: € S, all types
v;, and all alternative strategiég,

Eyv_; v bli(bi(vi), boi(v_i), V)vi] > Ey_, 4 plui(b;(vi), b_i(v_s),7)|vi].

That is, no player ir can improve her utility by modifying her bid, but no such rition is imposed upon
the players outsids.

We will show that, for each sef of players, the total expected social welfare obtained b¥? @Gan
S-Bayes-Nash equilibrium is a good approximatiorE{® PTs(v)]. We can interpret this result as stating
that the addition of irrational players does not signifibadegrade the social welfare that would have been
generated had they not participated. Note that we canna tplways obtain a good approximation to
E[OPT(v)] (the optimal social welfare cdll advertisers) at alb-Bayes-Nash equilibria; for example, it
may be that the valuations of the players outsidare very large, but they choose (irrationally) to bid

We note that our no-overbidding assumption (Sedtioh 2.8}icoes to apply to all players, not only
to the players inS. In other words, we require thaf(v;) < v; for all i ¢ S and allv;,. We feel this is a
natural restriction to impose even on “irrational” advestis, as overbidding is an easily-avoided dominated
strategy. Moreover, it is arguable that inexperienced didegs would bid conservatively, and not risk a
large payment with no gaﬁL

®This relies on the simplifying assumption that all adventishave knowledge of their own private valuations. Adrdlitethis
requires a certain level of sophistication and may be difftoLattain in practice. Our argument is thus limited to infpet strategy
choice given perfect knowledge of types. It remains openxtersl this analysis to players who may misunderstand thveir o
valuations.

43



Formally, given a non-empty subsgtof advertisers, we define the-Bayes-Nash Price of Anarchy

be
sup Ey A[OPTs(v,7)]
F.G,b(-)eS-BNE Ev.5b) [SW(m(b(v),7),v,7)]

whereS-BNE is the set of allS-Bayes-Nash equilibria.
Our main result is the following extension of Theorem) 3.1.

Theorem D.3 For any non-empty subsét of rational advertisers, th&-Bayes-Nash price of anarchy of
the Generalized Second Price auction is at m20$27.

In order to prove this theorem, we need an inequality simidanequality [5) in SectionA. In particular, for
every bid profileb, there exists a bid profilb’ defined on the rational advertisers such that

> Efui(®(vi),b-i,7)] = BE[OPTs(v,7)]— (146) > Elon(i) Ya(w(i) br(win) + Eloavz@be)]. (12)
€S €S

We can prove inequality (12) by following the same steps disamproof of Lemma&AJ3 and by consider-
ing the utilities of the rational players at their most praifie deviation. Herey(i) should be interpreted as
the slot the rational advertiséoccupies in the efficient allocation restrictedt@nd () is the advertiser
that occupies thg-th slot in allocationr (this advertiser can be rational or irrational). Similarty() is the
player with thej-th highest effective bid among all advertisers besidesdtienal advertisef.

All the arguments hold in this case as well. However, thera iBinor point that should be justified.
Observe that in order to obtain inequalitié$ (7) (8), weduthe fact that thg-th highest effective
bid (excluding advertisei) is not larger that the effective value of advertisavhenv (i) = j, i.e., when
slot j is allocated to advertiserin the efficient allocation restricted 9. When adapting the proof to the
case of rational and irrational players, it may be the caaeutfi) = j when the rational advertisérhas
valuationv; = x but~y,i(;)bxi(;) > viz. This may be due to the fact that playei(;) is one of the irrational
players. Fortunately, both inequaliti€s (7) ad (8) arealsly true in this case as well. Observe that ¢
(otherwise, the second property of Definitlon A.2 would noldhfor = = 1) and the right-hand side of both
inequalities is non-positive. The changes in the rest optief of Lemmd.A.B are minor.

Then, Theorerh DI3 follows by the next lemma that exploitgjiradity (12) and using the same values
for 5 and that we used in SectidnlA.

Lemma D.4 Assume that for every GSP auction game with a non-empt§ eétational players there is
a bidding profileb’ for the players inS and parameters3, § > 0 such that inequalityL(12) holds for any
strategy profileb. Then, theS-Bayes-Nash price of anarchy of the Generalized Seconct Rriction is at
mosti+?,

B

Proof. Consider art-Bayes-Nash equilibriurb. Defineb’ as in inequality[(I2) and observe tfigi; (b, v)] >
Elu; (b} (vi), b_;,)] for every playeri € S. We use this inequality and the fact that the social welfaurat i
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least the sum of the expected utilities of the rational aikens plus the total payments to get

E[SW (n(b(v),7),v,7)] = > Eui(b, )] + Y Elaitn(ip1)beiis)]

€S )
= Z E[u; (b} (vi), b_i,¥)] + Z E[vivr(i) b (i)
€S 1>2
> BE[OPTs(v, )] — (14 8) Y Elay (i) ¥r (i brwiin] + Elenvmybey) + D Bloiva (i)
ics i>2

> BE[OPTs(v, )] — (14 0) Y Elaive(ibeg] + Y Elaive(ibe(o)]

= BE[OPTs(v,7)] =6 Z E[ivr (i) bri))
> BE[OPTS(V7 ’Y)] - 5E[SW(7T(b(V)7 7)7 v, 7)]7

which implies that the5-Bayes-Nash price of anarchy is at mé%é, as desired.
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