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Abstract

The Generalized Second Price (GSP) auction is the primary auction used for monetizing the use
of the Internet. It is well-known that truthtelling is not a dominant strategy in this auction and that
inefficient equilibria can arise. Edelman et al. (AER, 2007)and Varian (IJIO, 2007) show that an
efficient equilibrium always exists in the full informationsetting. Their results, however, do not extend
to the case with uncertainty, where efficient equilibria might not exist.

In this paper we study the space of equilibria in GSP, and quantify the efficiency loss that can arise
in equilibria under a wide range of sources of uncertainty, as well as in the full information setting.
The traditional Bayesian game models uncertainty in the valuations (types) of the participants. The
Generalized Second Price (GSP) auction gives rise to a further form of uncertainty: the selection of
quality factors resulting in uncertainty about the behavior of the underlying ad allocation algorithm. The
bounds we obtain apply to both forms of uncertainty, and are robust in the sense that they apply under
various perturbations of the solution concept, extending to models with information asymmetries and
bounded rationality in the form of learning strategies.

We present a constant bound (2.927) on the factor of the efficiency loss (price of anarchy) of the
corresponding game for the Bayesian model of partial information about other participants and about ad
quality factors. For the full information setting, we provea surprisingly low upper bound of1.282 on
the price of anarchy over pure Nash equilibria, nearly matching a lower bound of1.259 for the case of
three advertisers. Further, we do not require that the system reaches equilibrium, and give similarly low
bounds also on the quality degradation for any no-regret learning outcome. Our conclusion is that the
number of advertisers in the auction has almost no impact on the price of anarchy, and that the efficiency
of GSP is very robust with respect to the belief and rationality assumptions imposed on the participants.
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1 Introduction

The sale of advertising space on the Internet, or AdAuctions, is the primary source of revenue for many
providers of online services. According to a recent report [13], $25.8 billion dollars were spent in online
advertisement in the US in 2010. The main part of this revenuecomes from search advertisement, in which
search engines display ads alongside organic search results. The success of this approach is due, in part, to
the fact that providers can tailor advertisements to the intentions of individual users, which can be inferred
from their search behavior. A search engine, for example, can choose to display ads that synergize well with
a query being searched. However, such dynamic provision of content complicates the process of selling
ad space to potential advertisers. Each search query generates a new set of advertising space to be sold,
each with its own properties determining the applicabilityof different advertisements, and these ads must
be placed near-instantaneously.

The now-standard mechanism for resolving online search advertisement requires that each advertiser
places abid that represents the maximum she would be willing to pay if a user clicked her ad. These bids
are then resolved in an automated auction whenever ads are tobe displayed. By far the most popular bid-
resolution method currently in use is the Generalized Second Price (GSP) auction, a generalization of the
well-known Vickrey auction. In the GSP auction, there are multiple ad “slots” of varying appeal (e.g. slots
at the top of the page are more effective). In two seminal papers Edelman et al. [11] and Varian [36] propose
a simple model of the GSP auction that we will also adopt in this paper. They observe that truthtelling is
not a dominant strategy under GSP, and GSP auctions do not generally guarantee the most efficient outcome
(i.e., the outcome that maximizes social welfare). Nevertheless, the use of GSP auctions has been extremely
successful in practice. This begs the question:are there theoretical properties of the Generalized Second
Price auction that would explain its prevalence?Edelman et al. [11] and Varian [36] provide a partial
answer to this question by showing that, in the full information setting, a GSP auction always has a Nash
equilibrium that has same allocation and payments as the VCGmechanism. [11] and [36] give only informal
arguments to justify the selection of envy-free equilibria.

We argue that the Generalized Second Price auction is best modeled as a Bayesian game of partial
information. Modeling GSP as a full information game assumes that each auction is played repeatedly with
the same group of advertisers, and during such repeated playthe bids stabilize. The resulting stable set of
bids is well modeled by a full information Nash equilibrium.The analyses of Edelman et al. [11] and Varian
[36] provide important insight into the structure of the GSPauction under this assumption. However, the set
and types of players can vary significantly between rounds ofa GSP auction. Each query is unique, in the
sense that it is defined not only by the set of keywords invokedbut also by the time the query was performed,
the location and history of the user, and many other factors.Search engines use complex machine learning
algorithms to select the ads, and more importantly to determine appropriate quality scores (or factors) for
each advertiser for a particular query, and then decide which advertiser to display. This results in uncertainty
both about the competing advertisers, and about quality factors. We model this uncertainty by viewing the
GSP auction as a Bayesian game, and ask: what are the theoretical properties of the Generalized Second
Price auctiontaking into account the uncertainty that the advertisers face?

Bounding the quality of outcomes: Price of Anarchy. To answer the question above, we offer a quanti-
tative understanding of the inefficiencies that can arise inGSP auctions, using a metric known as thePrice
of Anarchy. We show that the welfare generated by the auction inany equilibrium of bidding behavior is
at least a1η -fraction of the maximum achievable welfare (i.e., the welfare the auction could generate know-
ing the player types and quality factors in advance). The value ofη measures the robustness of an auction
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with respect to strategic behavior: in the worst case, how much can strategic manipulation harm the social
welfare. The closerη is to 1, the more robust the auction is. An auction that always generates efficient
outcomes at equilibrium would have price of anarchy equal to1. We bound the inefficiency of the outcomes
both in the Bayesian version of the game as well as the full information game, and extend the analysis also
for learning outcomes.

We develop a general technique for bounding the inefficiencyof outcomes that allows us to do this
in the most general setting, even in Bayesian games with multiple, correlated sources of uncertainty. Our
framework ofsemi-smoothgames is an extension of Roughgarden’s [31] smoothness framework, that allows
dealing with correlated distributions. Correlated distributions are an important feature of the GSP model,
especially when modeling quality factors, as the same factsaffect clickability and hence the quality factors
for all advertisers. (For instance, an ad shown to a bot will not get a click independent of the advertiser.)

For mechanisms that are not dominant strategy truthful, like GSP auctions, price of anarchy analysis is a
powerful tool for quantifying the potential loss of efficiency at equilibrium. We conduct this analysis both in
a full information setting without uncertainty (in which the price of anarchy is surprisingly small, indicating
a loss of at most22% of the welfare), but also in a setting with uncertainty and a very general information
structure, in which we prove that the price of anarchy is still bounded by a small constant. This shows
that while the GSP auction is not guaranteed to be efficient, it is a reasonably good design, as remarkably,
the welfare loss of these auctions is bounded by a value that does not depend on the number of players,
the number of advertisements for sale, or the prior distributions on player types. In contrast, the variant
of the Generalized Second Price auction that orders advertisers by their bid ignoring quality factors, which
has been historically used by Yahoo!, results in a quality loss proportional to the range of quality factors,
while randomly assigning advertisers to slots can result ina loss of efficiency proportional to the number of
advertisers.

One feature of our results is that they hold for a variety of models regarding the rationality and the beliefs
of the players. This robustness is particularly important in large-scale auctions conducted over the Internet,
where assumptions of full information and/or perfect rationality of the participants are unreasonably strong.

The GSP auction and sources of uncertainty. By far the most popular auction method currently in use
for search ads is the Generalized Second Price (GSP) auction, a generalization of the well-known Vickrey
auction. The GSP auction is invoked every time a user queriesa keyword of interest; it is a repeated auction
in which players repeatedly bid for ad slots. However, modeling equilibrium strategies in a repeated game
of this nature is notoriously difficult, and results in a gamewith a plethora of unnatural equilibria due to
the possibility of bids representing threats for future rounds, optimal exploration of the bidding space, and
so on. A common simplification used in the literature is to focus on auctions for a single keyword, and to
suppose that players will quickly learn each others’ valuations and reach a stationary equilibrium. Under
this assumption, the stationary equilibrium would correspond naturally to a Nash equilibrium in the full
information, one-shot version of the GSP auction [12]. It has therefore become common practice to study
pure, full information equilibria of the one-shot game, as an approximation to expected behavior in the more
general repeated game [11, 36, 28].

In reality, however, the set and types of players can vary significantly between rounds of a GSP auction:
each query is unique, in the sense that it is defined not only bythe set of keywords invoked but also the
time the query was performed, the location and history of theuser, and many other factors. Thiscontextis
taken into account by an underlyingad allocation algorithm, which is controlled by the search engine. The
ad allocation algorithm not only selects which advertiserswill participate in an auction instance, but also
assigns aquality factor to each advertiser. As a first approximation we can think of the quality factor as
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a score that measures how likely that participant’s ad will be clicked for that query. These quality factors
are then used to scale the bids of the advertisers. These scaled bids are known aseffective bids, which
can be viewed as bids derived from a similarly-modifiedeffective type. Under our assumption that quality
factors measure clickability, the effective type of an advertiser is the expected valuation of displaying the ad
(valuation of the ad times its likelihood of getting a click). The effective bid and effective type of a player are
therefore random variables, which can be thought of as the original valuations multiplied by quality scores
computed exogenously by the search engine. Athey and Nekipelov [3] point out that the uncertainty in
quality factors produces qualitative changes in the structure of the game. Thus, even if players converge to a
stationary bidding pattern, the resulting equilibrium cannot be described as the outcome of a full information
game.

We model the uncertainty about the effective types of advertisers as a Bayesian, partial information
game. That is, the inherent uncertainty due to context and the ad allocation algorithm can be captured via
prior distributions over effective types, even when the true types of all potential competitors are fully known.
The appropriate equilibrium notion is then the Bayes-Nash equilibrium with respect to these distributions.
Our model allows arbitrary correlations between the types and quality factors. The uncertainty of ad quality
and allocation mostly comes from the query context, and hence is best modeled by correlated distributions
of types and ad quality. Search engines use complex machine learning algorithms to compute quality factors
based on all available information about the context, whoseoutcome is hard to predict for the advertisers.
Search engines share distributional information about quality factors with advertisers. We model this by
assuming that the advertisers are aware of the distributionof quality factors. Further, we also assume that
the quality factors computed by the search engine correspond exactly to the clickability of the ad.

Summarizing, there are two main sources of uncertainty: thefirst is about the quality factors that the
search engine attributes to each advertiser and the second is about the valuations (types) of the players.
These sources are different in nature: each advertiser has knowledge of (and can condition her behavior on)
her own type, whereas quality factors are fully exogenous and are only revealed ex post.

Asymmetric information. There are different types of players in advertising markets, which may have
differing levels of information about their competitors. We assume all players know their own valuations
correctly, but some smaller players (such as individual advertisers) might be clueless about the valuations of
the other players and expected behavior of quality scores, while others (say bidding agencies or large com-
panies with web advertising departments) may have a much better understanding of how individual rounds
of the auction will proceed. Even among this latter group, different advertisers may have access to differ-
ent information. We can model such information asymmetriesby giving each player access to an arbitrary
player-specific signal that can carry information about theeffective types of the auction participants. Our
bounds on social efficiency in the Bayesian model hold in settings with such asymmetry in information.

Learning players. So far we have considered equilibria of the auction game. Analyzing equilibria makes
the strong assumption that players reach equilibrium play.Learning outcomes provide a very appealing
generalization. A now standard model considers a repeated version of the game, and assumes that players
employ strategies that give them vanishingly smallregret over time. Roughly speaking, such a model as-
sumes that players observe the bidding patterns of others and modify their own bids in such a way that their
long-term performance is at least as good as a single optimalstrategy chosen in hindsight. Notice that if all
players employ the same (possibly randomized) strategy in each round, the resulting stable strategies form a
Nash equilibrium. Therefore, the no-regret assumption of repeated play is a generalization of the notion of
Nash equilibrium. Further, there are many simple bidding strategies that yield vanishing regret over time, as
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discussed below. The no-regret assumption does not requirethat players follow one of these algorithms; in
fact, good play can result in better utility than simply no-regret, e.g., if the player can anticipate the behavior
of other players. Rather, the assumption models a natural rationality: if there is a consistently good strategy
players will attempt to learn this over time, and do at least as well (or better) as this good fixed strategy.
In this sense, the no-regret assumption aims to capture the intuition that players attempt to learn beneficial
bidding strategies over time, while also providing a generalization of Nash equilibrium play. We view the
existence of simple learning algorithms as supporting thisassumption. If all players have no-regret this will
cause the empirical distribution of the bids to converge to acoarse correlated equilibrium of the game, a
slight generalization of the well-known correlated equilibrium.

We therefore assume that the players use algorithms to learnhow to best bid given their valuation and
signal, and achieve vanishing regret over time. In other words, for each possible valuation and signal,
repeated auctions allow players to learn how to best bid taking into account the varying bids of other players,
and the uncertainty about quality factors, other players’ valuations, and bidding strategies. We will consider
the quality degradation of the average social outcome when all players employ strategies with small regret.
Blum et al. [6] introduced the termPrice of Total Anarchyfor this analog of the price of anarchy.

Approximate rationality. One of the fundamental assumptions in auction analysis is that all players are
perfectly rational utility optimizers. However, in reality (and especially in large online settings), it is natural
to assume that some fraction of the players participating inan advertising auction might have unsophisticated
bidding strategies. In fact, some players may not even play at equilibrium in the single-shot approximation
of the GSP auction, or may only be able to find strategies that are approximately utility-maximizing. We
discuss the robustness of our bounds to the presence of players bidding with limited (or no) rationality. As
we shall see, the GSP auction has the property that its socialwelfare guarantees degrade continuously when
our assumptions about the rationality of the players are relaxed.

1.1 Our results

We present the following results.

• Our main result is a bound on the Bayesian price of anarchy forthe GSP auction. Specifically, we
show that the price of anarchy is at most2.927, meaning that the social welfare in any Bayes-Nash
equilibrium is at least1/2.927 of the optimal social welfare. Notice that this is an unconditional
bound, as we make no assumptions on the distribution on valuation profiles and quality factors (it
can, for example, be correlated) or on the number of players or slots. In the main part of the paper,
we prove weaker bounds for both the full information and the Bayesian game, and only sketch the
stronger bounds. We believe that the weaker bounds are interesting in their own right, and show the
main techniques of the paper in a way that is easier to read. Wedefer the details of the stronger bounds
to the Appendix.

Perhaps just as important as the bound, however, is the straightforward and robust nature of the GSP
auction. In particular, our results extend to provide the same welfare guarantees for outcomes of
no-regret learning: the average social welfare when players play repeatedly in order to minimize
total regret, in a Bayesian setting, is within a1/2.927 factor of the optimal social welfare. In fact,
some of our bounds for learning outcomes require only that the players have no regret for a particular
natural strategy of shading their bids. The bounds continueto hold even if players have asymmetric
access to distributional information, in the form of exogenously provided signals. It also degrades
continuously in the presence of approximately rational players or a small fraction of irrational players
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as explained in Appendix D. The results also extend to the case when possible bid space is discretized
(i.e., players need to bid in integer number of pennies). This case is interesting both as in practice bids
do come from such a discrete space, and also as in the discretecase, the existence of Nash equilibria
is guaranteed. In fact, using a result of Athey [2] and Reny [30], in the discrete case if player types
and quality factors are drawn independently, one can also show that the existence of pure strategy
equilibria that are monotone in the types is guaranteed.

• We achieve the bounds on the solution quality by identifyinga property that encapsulates some of
the insight. Roughgarden [31] identified a class of games that he termedsmoothgames, defined via
a similar property that is used to bound the price of anarchy.We identify a stronger property, semi-
smoothness, that is satisfied by the GSP auction, and is strong enough to also imply price of anarchy
bounds even in the Bayesian setting with arbitrarily correlated types.

• We provide improved results for the case where there is no uncertainty, which is the traditional setting
studied in [11, 36]. If valuations and quality factors are fixed, we prove that the social welfare in
anypure Nash equilibriumis within a factor of1.282 of the optimal one and show that this bound is
essentially tight by providing a lower bound of1.259. Also, we show a bound of2.310 for coarse cor-
related equilibria; as discussed above, this implies the same bound on the social welfare for learning
outcomes when players with fixed (effective) types minimizetheir regret in a repeated auction. This
bound of2.310 holds for mixed Nash equilibria as well.

1.2 Related work

Due to their central role in Internet monetization, sponsored search auctions have received considerable
attention in the past years. From the optimization perspective, they were first considered by Mehta et
al. [26]. A classical game-theoretical modeling of sponsored search auctions was proposed simultaneously
by Edelman et al. [11] and Varian [36]. See the surveys of Lahaie et al. [20] and Maille et al. [25] for an
overview of subsequent developments.

The model we adopt follows [11, 36]. In those two seminal papers, the authors notice that even though
truthtelling is not a dominant strategy under GSP, the full information game always has a Nash equilibrium
that has same allocation and payments as the VCG mechanism. They focus on a subclass of Nash equilibria
which is calledenvy-free equilibriain [11] andsymmetric equilibriain [36]. They show that such equilibria
always exist and are always efficient. In this class, an advertiser would not be better off after switching
bids with the advertiser just above her. Note that this is a stronger requirement than in Nash equilibria,
which are defined considering only unilateral deviations bythe advertisers, and if an advertiser unilaterally
switches to a slot with higher click-through-rate, she paysmore than the advertiser at that slot paid. In
[11, 12, 36], informal arguments are presented to justify the selection of envy-free equilibria, but no formal
game-theoretical analysis is done. We believe it is an important question to go beyond this and prove
efficiency guarantees for all Nash equilibria. Lahaie [19] also considers the problem of bounding the social
welfare obtained at equilibrium, but restricts attention to the special case that click-through-rates decay
exponentially along the slots with a factor of1

δ . Under this assumption, Lahaie proves a price of anarchy of
min{1

δ , 1− 1
δ}.

Gomes and Sweeney [16] study the GSP auction in the Bayesian setting, where player types are drawn
from independent and identical distributions (without considering the uncertainty due to quality factors).
They show that, unlike the full information case, there may not exist symmetric or socially optimal equi-
libria in this model, and obtain sufficient conditions on click-through-rates that guarantee the existence of

6



a symmetric and efficient equilibrium. Athey and Nekipelov [3] study the effect of uncertainty of quality
factors both from a theoretical and an empirical perspective.

The study of price of anarchy for non-truthful auction mechanisms (especially in the Bayesian setting)
was initiated by Christodoulou et al. [9] and developed in Lucier and Borodin [23], Lucier [22], and most
recently in the work of Bhawalkar and Roughgarden [5]. To thebest of our knowledge, the current paper is
the first one in which the price of anarchy bounds hold when player valuations are drawn from a correlated
distribution. In truthful mechanism design, the study of correlated valuations has a long history – see Cremer
and McLean [10] for an early reference.

The study of regret-minimization goes back to the work of Hannan on repeated two-player games [17].
Since then, a number of simple algorithms (to be thought of asadaptive procedures) that guarantee no-regret
have been proposed in the literature. Initial work in this area focused on the stronger requirement of finding
simple adaptive procedures through which the play converges to the set of correlated equilibria, requiring
that players have a stronger form of no-regret that is calledno internal regret (see the survey by Blum and
Mansour [7] for a discussion of such procedures and a comparison). Foster and Vohra [14] obtained such a
procedure, and Fudenberg and Levine [15] presented a different one. Hart and Mas-Collel’s regret matching
strategy [18] or the multiplicative weight updating strategy of [21] (see also [1]) are two procedures that
become especially simple when used to guarantee only no-regret (as opposed to no internal regret). These
classical learning algorithms assume that players learn outcomes and strategies of all participants in each
round, but have also been extended to situations where in each round, a player observes only her own
outcome, or even realizations of her outcome in case it is randomized. We refer to Auer et al. [4] for a
detailed discussion on this matter.

Adaptive procedures that guarantee no-regret define a play that converges to the set of coarse correlated
equilibria. Blum et al. [6] apply regret-minimization to the study of inefficiency in repeated games, coining
the term “price of total anarchy” for the worst-case ratio between the optimal objective value and the average
objective value when players minimize regret.

Roughgarden [31] identifies a class of games that he termssmoothgames where the price of anarchy
and price of total anarchy are identical. See also [27] and [33], for subsequent refinements. Since the initial
conference versions of our Bayesian bound of [24] and [8], Roughgarden [32] and independently Syrgkanis
[34] show that the bounds proved via smoothness also extend to the Bayesian price of anarchy assuming
a variant of the smoothness assumption (called universal smoothness in [34]) if player types are drawn
from independent distributions. See [35] for such an extension theorem without the stronger assumption.
In this paper we isolate a stronger property related to smoothness that encapsulates many of the insights
that drive our bounds and allows us to extend our bounds for the Bayesian price of anarchy with correlated
distributions.

Some of the results in this paper appeared in preliminary conference versions. Paes Leme and Tardos
[29] study equilibria of GSP auctions and give upper bounds on the price of anarchy in pure, mixed, and
Bayesian strategies; achieving bounds of1.618, 4, and8, respectively. Lucier and Paes Leme [24] and
Caragiannis et al. [8] improve these bounds to3.16 and3.037 respectively for Bayesian games, and1.282
and2.31 for pure Nash and learning outcomes for full information games (as well as mixed Nash equilibria),
and extend them to apply to equilibria with correlated valuations and learning outcomes. Here we further
improve the bounds, present and also improve the proofs, andextend the results to games with uncertainty
about quality factors in addition to player types.
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2 Model and Equilibrium Concepts

We consider an auction withn advertisers andn slots1. Each advertiseri has a private typevi, representing
her valuation per click received. The sequencev = (v1, . . . , vn) is referred to as thetype profile(or valuation
profile). We will write v−i for v excluding theith entry, so thatv = (vi,v−i).

An outcomeis an assignment of advertisers to slots. An outcome can be viewed as a permutationπ
with π(k) being the advertiser assigned to slotk. The probability of a click depends on the slot as well
as the advertiser shown in the slot. We use the model of separable click probabilities. We assume slots
have associatedclick-through-ratesα1 ≥ α2 ≥ . . . ≥ αn, and each advertiseri has aquality factorγi that
reflects the clickability of the ad. When advertiseri is assigned to thek-th slot, she getsαkγi clicks.

A mechanism for this auction elicits a bidbi ∈ R+ := [0,∞) from each advertiseri, which is interpreted
as a type declaration, and returns an assignment as well as a pricepi per click for each advertiser. If advertiser
i is assigned to slotj at a price ofpi, herutility isαjγi(vi−pi), which is the number of clicks received times
profit per click. Thesocial welfareof outcomeπ is SW (π,v, γ) =

∑

j αjγπ(j)vπ(j), the total value of the
solution for the participants. The social welfare also depends on the click-through-ratesαj , but throughout
the paper we will assume they are fixed and common knowledge, and as a result we suppress them in the
notation. The optimal social welfare isOPT (v, γ) = maxπ SW (π,v, γ), the welfare generated by the
socially efficient outcome. Note that the efficient outcome sorts advertisers by theireffective valuesγivi,
and assigns them to slots in this order. The effective value can be thought of as the expected value of showing
the ad in a slot with click-through-rate equal to1.

We focus on a particular mechanism, the Generalized Second Price auction, which works as follows.
Given bid profileb, we define theeffective bidof advertiseri to beγibi, which is her bid modified by her
quality factor, analogous to the effective value defined above. The auction setsπ(k) to be the advertiser with
thekth highest effective bid (breaking ties arbitrarily). Thatis, the GSP mechanism assigns slots with higher
click-through-rate to advertisers with higher effective bids. Payments are then set according to critical value:
the smallest bid that guarantees the advertiser the same slot. When advertiseri is assigned to slotk (that is,
whenπ(k) = i), this critical value is defined as

pi =
γπ(k+1)

γi
bπ(k+1)

where we takebn+1 = 0. We will write ui(b, γ) for the utility derived by advertiseri from the GSP
mechanism when advertisers bid according tob:

ui(b, γ) = απ−1(i)γi(vi − pi) = απ−1(i)[γivi − γπ(π−1(i)+1)bπ(π−1(i)+1)].

Notice thatπ is a function ofb, γ as well. In places where we need to be more explicit, we will write
π(b, γ, j) to be the advertiser assigned to slotj by GSP when quality factors areγ and the advertisers bid
according tob. We will also writeσ(b, γ, i) for the slot assigned to advertiseri, again when advertisers bid
according tob and quality factors areγ. In other words,σ(b, γ, ·) = π−1(b, γ, ·). We writeπi(b−i, γ, j)
to be the advertiser that would be assigned to slotj if advertiseri did not participate in the auction. When
b andγ are clear from the context, we writeπ(i) andσ(i) instead ofπ(b, γ, i) andσ(b, γ, i). We will also
write ν(v, γ) for the optimal assignment of slots to advertisers for valuation profilev, so thatν(v, γ, i) is
the slot that would be allocated to advertiseri in the optimal assignment2.

1We note that we can handle unequal numbers of slots and advertisers by adding virtual slots with click-through-rate zeroor
virtual advertisers with zero valuation per click.

2We note that, since GSP makes the optimal assignment for a given bid declaration, we actually have thatν(v, γ, i) and
σ(v, γ, i) are identically equal. We defineν mainly for use when emphasizing the distinction between an efficient assignment for
a valuation profile and the assignment that results from a given bid profile.
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We will consider rational behavior under various models of the information available to the advertisers.
In general, the advertisers are engaged as players in a game defined by the auction mechanism; each of them
aims to select a bidding strategy that maximizes her utility. In the following, we use the terms advertiser
and player interchangeably. We group our models into full information and partial information ones. In all
models we assume that the valuesαj are fixed and commonly known to all players. In our full information
settings, we assume that the quality factorsγi as well as the valuation profilev are also common knowledge.
In our Bayesian setting of partial information, we assume that the profile of quality factors is unknown to
all players, and the typevi is private knowledge known only to playeri, but they are randomly drawn from
a commonly known joint distribution(F,G) of quality factors and valuation profiles. It will turn out that
bidding more than one’s true type (overbidding) is a dominated strategy in the mechanism we consider. So,
we will focus on non-overbidding (or conservative) players; see Section 2.3 for a discussion.

2.1 Full information setting

In the full information setting, the valuation profilev and quality factorsγi are fixed and common knowl-
edge. We will therefore tend to drop dependencies onγ from our notation when working in the full infor-
mation setting. In this setting, apure strategyfor playeri is a bidbi ∈ R+. We say that the bid profileb is
a (pure) Nash equilibriumif there is no deviation from which the player can profit, i.e., for all b′i ∈ R+,

ui(bi,b−i) ≥ ui(b
′
i,b−i).

It is known that a pure Nash equilibrium always exists in thissetting [11, 36]. We can therefore define the
(pure) Price of Anarchyto be

sup
v,b∈NE

OPT (v)

SW (π(b),v)

where NE is the set of pure Nash equilibria (assuming no overbidding; see Section 2.3).
Similarly, amixed strategyis a randomized bidbi, which is a distribution over possible bids. A mixed

Nash equilibrium is a profile of bid distributionsb such that for alli and all alternative strategiesb′i,

Eb[ui(bi,b−i))] ≥ Eb[ui(b
′
i,b−i))].

Note that, unlike more general solution concepts we will discuss in a while, the bid distributions of different
players at a mixed Nash equilibrium are independent. We define the(mixed) Price of Anarchyto be the
worst-case ratio between optimal social welfare and expected social welfare in GSP across all valuation
profiles and all mixed Nash equilibria:

sup
v,b∈NE

OPT (v)

Eb[SW (π(b),v)]
.

2.2 Bayesian setting

In the Bayesian setting of partial information, we suppose that the valuation profile and the quality factors
are drawn from a publicly known (possibly correlated) jointdistribution(F,G). A strategy for playeri is a
(possibly randomized) mappingbi : R+ → R+, mapping her typevi to a bidbi(vi). Notice that a player is
not able to condition her bid on the quality factors, since they are only known to the search engine, and not
to the advertisers.
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We writeb(v) = (b1(v1), . . . , bn(vn)) to denote the profile of bids that results whenb is applied to type
profilev. We then say that strategy profileb is a Bayes-Nash equilibrium for distributionsF,G if, for all i,
all vi, and all alternative strategiesb′i,

Ev−i,γ,b[ui(bi(vi),b−i(v−i), γ)|vi] ≥ Ev−i,γ,b[ui(b
′
i(vi),b−i(v−i), γ)|vi].

That is, each player maximizes her expected utility by bidding in accordance with strategybi(·), assuming
that the other players bid in accordance with strategiesb−i(·), where expectation is taken over the distribu-
tion of the other players’ types conditioned onvi, any randomness in their strategies, and the quality factors.
We define theBayes-Nash Price of Anarchyto be

sup
F,G,b(·)∈BNE

Ev,γ[OPT (v, γ)]

Ev,γ,b(v)[SW (π(b(v), γ),v, γ)]

where BNE is the set of all Bayes-Nash equilibria (again assuming no overbidding; see below).

2.3 No overbidding

It is important to note that, in both the full information andBayesian settings, any bidbi > vi is dominated
by the bidbi = vi in the GSP auction. If by biddingbi > vi, the next highest effective bid is greater than
γivi, then the player gets negative utility. If on the other hand,the next highest effective bid is smaller or
equal thanγivi, then biddingbi = vi would get the same slot and payment. Based on this, we make the
following assumption for the rest of the paper:

Assumption: Players areconservativeand do not employ overbidding strategies in GSP auctions. This
means that for pure strategiesbi ≤ vi, for mixed strategiesP(bi > vi) = 0, and for Bayesian strategies
P(bi(vi) > vi) = 0 for all vi.

We use this assumption to rule out unnatural equilibria in which advertisers apply certain dominated
strategies. We remark that, in these equilibria, the socialwelfare may be arbitrarily worse than the optimal.
It is therefore necessary to exclude such dominated strategies in order to obtain meaningful bounds on the
price of anarchy. We note, however, that this phenomenon is not specific to the GSP auction: such degenerate
equilibria exist even in the Vickrey auction for a single good, where truthful bidding is a weakly dominant
strategy. Since the Vickrey auction is a special case of GSP auctions (where one slot hasα1 = 1, all other
slots haveαi = 0 and all quality factors haveγi = 1), this issue carries over to our setting. Consider the
example of a single-item Vickrey auction, where truthful bidding ofbi = vi is a weakly dominant strategy.
Yet with overbidding, there are equilibria where an arbitrary player bids excessively high (and hence wins),
while everyone else bids0. If the player bidding high has a low valuation, this resultsin a high price
of anarchy. Note, however, that this Nash equilibrium seemsvery artificial as it depends crucially on the
low valuation player using the dominated strategy of overbidding. Indeed, such an advertiser is exposed
to the risk of negative utility (if some other advertiser submits a new bid between her valuation and bid)
without any benefit. We therefore take the position that advertisers will avoid such dominated strategies
when participating in the GSP auction.

2.4 Signals and information asymmetry

We define an extension of the setting above, incorporating a Bayesian version of information asymmetry. In
this model, each player’s type consists of a signalsi drawn from an arbitrary signal spaceS. The signal of
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playeri includes her valuationvi(si) and can contain other privately-gained insight that refinesthe player
i’s conditional distribution over the space of other players’ types and quality factors. The signals and quality
factors come from a publicly known joint distribution(F′,G), which can be arbitrarily correlated.

In this model, a strategy is a bidding function that mapssi, a signal, to a distribution of possible bids.
The bid profileb is a Bayes-Nash equilibrium in the asymmetric information model if, for all i and all
alternative bidding functionsbi

′,

Es−i,γ,b[ui(bi(si),b−i(s−i), γ)|si] ≥ Es−i,γ,b[ui(b
′
i(si),b−i(s−i), γ)|si]

In this model, the Price of Anarchy is defined as

sup
F′,G,b(·)∈BNE

Es,γ [OPT (v(s), γ)]

Es,γ,b(s)[SW (π(b(s), γ),v(s), γ)]

where BNE is the set of Bayes-Nash equilibria with respect todistributionF′ over signals, with no overbid-
ding.

The presence of signals captures the notion that some advertisers might have a better potential to infer
the other advertisers’ valuations than others, or may be endowed with privileged information. We do note,
however, that players do know their own valuationsvi(si), and also are aware of the profile of bidding
strategiesb(·) and the distributionF′, so that players can rationalize about the effects of signals upon the
bidding behavior of their opponents.

2.5 Repeated auctions and regret minimization

We now consider the GSP auction in a repeated-game setting. In this model, the GSP auction is runT ≥ 1
times. We will distinguish between two variants of this model: the full information model and the model
with uncertainty.

Full information model. Each round of the GSP auction occurs with the same slots and players. The
valuation profilev of the players and the quality factors do not change between rounds, but the players are
free to change their bids. We writebti for the bid of playeri on roundt. We refer to aD = (b1, . . . ,bT , . . .)
as an (infinite)declaration sequence. Given declaration sequenceD, we will write DT to mean the prefix of
D of lengthT ; that is,DT = (b1, . . . ,bT ). Given a (finite or infinite) declaration sequenceD, we will write
π(D) for the sequence of permutations generated by GSP on inputD. The average social welfare generated
by GSP on a finite input sequenceDT of lengthT is SW (π(DT ),v) = 1

T

∑T
t=1 SW (π(bt),v). The aver-

age social welfare generated by GSP on an infinite input sequenceD is then defined to beSW (π(D),v) =
lim infT→∞ SW (π(DT ),v).

The full range of equilibria in such a repeated game is very rich, so we restrict ourselves to a particular
non-equilibrium form of play that nevertheless captures the intuition that players learn appropriate bidding
strategies over time, without necessitating convergence to a stationary equilibrium.

We say that declaration sequenceD = (b1, . . . ,bT , . . .) minimizes external regretfor player i if, for
any fixed declarationb′i,

∑

t≤T

ui(b
t
i,b

t
−i) ≥

∑

t≤T

ui(b
′
i,b

t
−i) +R(T )

whereR(T )/T → 0 asT grows large. That is, asT grows large, the utility of playeri in the limit is
no worse than the utility of the optimal fixed strategy in hindsight. ThePrice of Total Anarchy[6] is the
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worst-case ratio between optimal social welfare and the average social welfare obtained by GSP across all
declaration sequences that minimize external regret for all players. That is, the price of total anarchy is

sup
v,D

OPT (v)

SW (π(D),v)

where the supremum is taken over (infinite) declaration sequences that minimize external regret for all
players.

To this point we have not discussedhow the players achieve vanishing regret, and indeed our results
are agnostic to this process. There are many known learning algorithms that guarantee vanishing regret
asT goes to infinity. These algorithms require only that a playerobserves her realized payoff after each
round. That is, to facilitate learning it is enough if players see whether or not their ad was clicked and, if
so, the price of the click. In particular, they do not need to learn outcomes or bids of other players, nor
even the actual slot their ad was placed in. For an extensive discussion on no-regret algorithms with limited
feedback, we refer to Auer et al. [4]. Further, it is known that the price of total anarchy is closely related
to an equilibrium notion for the single-shot game known as coarse correlated equilibrium. We discuss this
relationship further in Section 5.1.

Learning with uncertainty. Next we describe our model of learning in repeated GSP auctions with un-
certainty. In this model, each round of the GSP auction occurs with the same slots, but the valuation profile
v and quality factorsγ are redrawn from(F,G) on each round3. These changes to ad quality and types
can be thought of as being due to the context of the search query that initiates each auction instance, which
can change between rounds. As before, learning requires only that players observe their own outcome each
round, and not the results for other players. I.e., a player learns whether or not her ad was clicked, and if so
the price per click, but does not necessarily observe the outcomes or bids of other players nor the realization
of γ. We again refer to Auer et al. [4] for a discussion of no-regret algorithms with limited feedback.

Suppose that each player has a finite type space4. Letvt, γt be the type profile and quality factors drawn
at roundt. Given a declaration sequenceD and typẽvi for playeri, we denote byI(i, ṽi) the subsequence of
D consisting of the set of rounds in which playeri has typẽvi, i.e.,I(i, ṽi) = {t; vti = ṽi}. DefineIT (i, ṽi)
analogously with respect toDT . Given a sequence of type profiles and quality factors that represent the
realization of these random quantities over the rounds of the auction, we say that playeri has vanishing
regret in declaration sequenceD if player i has vanishing regret (in the sense of the full information game)
on the subsequenceI(i, ṽi) of D for each possible typẽvi. Formally:

∑

t∈IT (i,ṽi)

ui(b
t
i,b

t
−i, γ

t) ≥
∑

t∈IT (i,ṽi)

ui(b
′
i,b

t
−i, γ

t) +R(|IT (i, ṽi)|)

for R(T )/T → 0 asT → ∞. Notice that sincevt is independently and identically distributed in each round,
we have|IT (i, ṽi)| → ∞ asT → ∞. Now, we can define thePrice of Total Anarchy with uncertaintyas:

sup
{vt},{γt},D

lim sup
T→∞

∑

t≤T OPT (vt, γt)
∑

t≤T SW (π(bt, γt),vt, γt)
.

As in the full information setting, there is a relationship between regret minimization under uncertainty
and coarse correlated equilibria with uncertainty. Note however, that the speed of learning now depends on

3In fact, we can also think of the set of players as changing on each round: if playeri is assigned type0 on a given round, this
can be interpreted as playeri not being present in that round.

4For instance, one could assume that valuations are bounded and multiples of some arbitrarily small increment.
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the time needed for the empirical distribution of iid samples (vt, γt) to resemble the original distribution
and for learning algorithms to guarantee low regret with high probability. We discuss this in more detail in
Section 5.2.

3 Semi-Smooth Games and the Price of Anarchy with Uncertainty

Our main result is a bound on the price of anarchy for the Generalized Second Price auction with uncertainty.
Recall that our model captures two types of uncertainty: uncertainty for player types and uncertainty about
quality factors. Further, our result holds even in the presence of information asymmetry in the form of
personalized signals available to the players.5 For simplicity of presentation, we focus on the setting where
there are no signals and player valuations and quality factors are drawn from a known joint distribution
(F,G).

Theorem 3.1 The price of anarchy of the Generalized Second Price auctionwith uncertainty is at most
2.927. That is, for any fixed click-through-ratesα1, . . . , αn, any joint distribution(F,G) over valuation
profiles and quality factors, and any Bayes-Nash equilibriumb,

Ev,γ,b[SW (π(b, γ),v, γ)] ≥ 1

2.927
Ev,γ[OPT (v, γ)].

Semi-smooth games and the price of anarchy. Our proof is based on an extension of a proof technique
introduced by Roughgarden [31], which he calls smoothness.We begin by reviewing this notion briefly in
the context of a general game. Lett denote the (fixed) player types in a game, andh a pure strategy profile
for the players, and letUi(t,h) denote the utility of playeri with player typest, and strategy profileh. Let
sw(t,h) denote the social welfare generated by strategy profileh, andsw∗(t) the maximum possible social
welfare. Roughgarden defines(λ, µ)-smooth games as games where for all pairs of pure strategy profiles
h,h′, and any (fixed) vector of typest, we have

∑

i

Ui(t, h
′
i,h−i) ≥ λ · sw(t,h′)− µ · sw(t,h).

Roughly speaking, smoothness captures the property that ifstrategy profileh′ results in a significantly
larger social welfare than another strategy profileh, then a large part of this gap in welfare is captured by
the marginal increases in the utility of each individual player when unilaterally switching her strategy from
hi to h′i.

It is not hard to see that GSP does not satisfy this definition for all pairs of strategy profilesh,h′.
However, we argue that GSP is smooth with respect to aparticular (possibly randomized) strategy profile
h
′, as defined by Nadav and Roughgarden [27], that can be used by players unilaterally to improve the

efficiency of GSP whenever its allocation resulting from a pure strategy profileh is highly inefficient. Note
that unlike [27] we require improvement relative to the social optimumsw∗(t) and not relative tosw(t,h′),
i.e., we will not assume thatsw(t,h′) is (close to) the maximumsw∗(t). Further, we will show that there
exists such a strategy profileh′ where the strategyh′

i of a player depends only on the type of the player. We
call games that satisfy this stronger requirement semi-smooth.

5In the presence of additional signals, we can assume that signal s also encodes the valuation of the player, i.e., that playeri’s
valuation for a click when she receives signalsi is vi(si), and in this case, signals and quality factors are drawn froma known joint
distribution(F′,G). Our statement and proof carry over to this case with straightforward modifications.
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Definition 3.2 (semi-smooth games)We say that a game is(λ, µ)-semi-smooth if for each playeri there
exists some (possibly randomized) strategyh′i(·) (depending only on the type of the player) such that,

∑

i

Eh′
i
(ti)[Ui(t, h

′
i(ti),h−i)] ≥ λ · sw∗(t)− µ · sw(t,h),

for every pure strategy profileh and every (fixed) type vectort. The expectation is taken over the random
bits ofh′i(ti).

Analogous to Roughgarden’s [31] proof (see also Nadav and Roughgarden [27]), semi-smoothness also
immediately implies a bound on the price of anarchy with uncertainty even when the types are arbitrarily
correlated.

Lemma 3.3 If a game is(λ, µ)-semi-smooth and its social welfare is at least the sum of theplayers’ utilities,
then the price of anarchy with uncertainty (and informationasymmetries) is at most(µ + 1)/λ.

Proof. Consider a game in the Bayesian setting where player types are drawn from a joint probability
distribution and leth be a Bayes-Nash equilibrium for this game. By the definition of the Bayes-Nash
equilibrium, we have thatEt−i,h[Ui(t,h)|ti] ≥ Et−i,h[Ui(t, h

′
i(ti),h−i)|ti] for every value the random

variableh′i(ti) may take. Hence,Et−i,h[Ui(t,h)|ti] ≥ Et−i,hEh′
i
(ti)[Ui(t, h

′
i(ti),h−i)|ti]. Now taking

expectation overti, we getEt,h[Ui(t,h)] ≥ Et,hEh′
i
(ti)[Ui(t, h

′
i(ti),h−i)]. By summing over all players,

and using the fact that the social welfare is at least the sum of the players’ utilities, as well as the semi-
smoothness property, we have

Et,h[sw(t,h)] ≥ Et,h[
∑

i

Ui(t,h)]

≥ Et,h[
∑

i

Eh′
i
(ti)[Ui(t, h

′
i(ti),h−i)]]

≥ Et,h[λ · sw∗(t)− µ · sw(t,h)]
= λEt[sw

∗(t)]− µEt,h[sw(t,h)].

Note that the third inequality follows by applying the semi-smoothness property for every fixed type vector
and every pure strategy profile that are simultaneous outcomes of the random vectorst andh. The last
inequality impliesEt[sw

∗(t)] ≤ µ+1
λ Et,h[sw(t,h)], as claimed.

We remark that the proof holds without significant changes ifwe add information asymmetries in the
game, i.e., if we assume that each player gets signals that reveal her type and refine her knowledge on the
probability distributions of the types of the other players. The only change required is to define an extended
type for each player, consisting of the player’s original type composed with that player’s signal, and use it
in place of the original type.

A particular strength of Lemma 3.3 lies in the fact that it canprovide bounds on the efficiency loss for
Bayesian games even with correlated types (and, as we will see later in Section 5, under even more general
equilibrium concepts) by examining substantially more restricted settings. In the context of GSP auction
games, it allows us to focus on identifying a (possibly randomized) deviating bid strategy for each player
(i.e., a bidb′i for each playeri) so that the semi-smoothness inequality holds for every fixed valuation vector
v and pure bidding profileb. By Lemma 3.3, this then immediately implies a bound on the price of anarchy
of GSP auction games with uncertainty and information asymmetries.
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Remark 3.4 It is maybe easier to interpret a deterministic special caseof Lemma 3.3 where we require that
Definition 3.2 holds for deterministic bidsh′i(·). As a warmup in analyzing the GSP auction, we will show
in Claim 3.6 that the bidsb′i =

1
2vi can serve to prove that the GSP auction is(1/2, 1)-smooth, and hence

has a price of anarchy of at most 4. This bound of 4 on the price of anarchy shows that if the social welfare
is less than a quarter of the maximum possible, there is a player i who can deviate tob′i =

1
2vi, a natural

shading of her bid, and improve her utility.
To improve the bound we will consider a deviating bidbi = θ · vi for other constantsθ ∈ (0, 1). In fact,

we will need to consider a randomθ rather than a constant one. There are two ways to understand such a
random bid: a direct conclusion is that samplingθ according to the prescribed distribution produces a good
deviation in expectation, whenever welfare is low. But maybe a more natural interpretation is through the
lenses of theprobabilistic method, used in combinatorics to show that a certain object exists without finding
it explicitly. If there exists a randomized deviationbi = θ · vi that improves playeri’s utility, this implies
that there exists a deterministic bidθvi that improves playeri’s utility.

The randomization on selecting the bidh′i(·) in Definition 3.2 gives us more flexibility to prove the
semi-smoothness inequality with good parametersλ andµ by defining appropriately the density function of
h′i’s.

Price of anarchy of GSP auctions. First note that, technically speaking, the GSP auction doesnot im-
mediately fit into the framework of semi-smoothness: advertiser payoffs depend on random quality factors
which may be correlated with the type profile. However, this notational technicality is easily addressed by
expressing advertiser utilities in expectation over quality scores. That is, expressing utilities in the GSP auc-
tion in the notation of general games, we haveUi(v,b) = Eγ [ui(b, γ)|v]. Since quality factors affect the
social welfare as well, we havesw∗(v) = Eγ [OPT (v, γ)|v] andsw(v,b) = Eγ [SW (π(b, γ),v, γ)|v].

We are ready to prove that GSP auction games are semi-smooth.We start by presenting a slightly weaker
version of Theorem 3.1, where we prove a bound of3.164. Then we sketch the proof of the improved bound
of 2.927, which is more technically involved. Details of the proof can be found in Appendix A.

Lemma 3.5 The GSP auction game is(1− 1
e , 1)-semi-smooth.

Proof. We begin by rewriting the definition of semi-smoothness in the notation of GSP auctions. The GSP
auction game is(1 − 1

e , 1)-semi-smooth if and only if, for each valuation profilev, there exists a (possibly
randomized) bid profileb′ (with b′i depending only on the valuation of playeri) such that, for every bid
profileb,

∑

i

Eγ,b′
i
[ui(b

′
i,b−i, γ)|v] ≥

(

1− 1

e

)

Eγ [OPT (v, γ)|v] − Eγ [SW (π(b, γ),v, γ)|v]. (1)

We will actually establish the stronger property that this inequality holds forall γ, and not only in expecta-
tion.

∑

i

Eb′
i
[ui(b

′
i,b−i, γ)] ≥

(

1− 1

e

)

OPT (v, γ) − SW (π(b, γ),v, γ). (2)

The desired inequality (1) will then follow by taking (2) in expectation over the choice ofγ (whose distri-
bution may depend on the valuation profilev).

Before establishing inequality (2), we will prove the even weaker statement that the GSP auction game
is (1/2, 1)-semi-smooth (which implies a bound of4 on the price of anarchy with uncertainty).
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Claim 3.6 The GSP auction game is(1/2, 1)-semi-smooth.

Proof. Choose a vectorv of fixed valuations, a pure bidding profileb, and quality factorsγ. Consider a
(deterministic) deviating bidb′i = vi/2 for each playeri. We distinguish between two cases (recalling that
ν(i) is the slot assigned to playeri in the efficient allocation givenv andγ):

• If by bidding b′i playeri gets slotν(i) or better, thenui(b′i,b−i, γ) ≥ αν(i)γivi/2, as the paymentpi
cannot exceed her effective bid.

• If by bidding b′i playeri gets a slot lower thanν(i), then the effective value of the playerπ(ν(i)) in
slot ν(i) is at leastγivi/2, as we assume no overbidding.

We conclude that, in either case,

ui(b
′
i,b−i, γ) ≥ αν(i)γivi/2− αν(i)γπ(ν(i))vπ(ν(i)).

Summing over all players, and noticing that
∑

i αiγπ(i)vπ(i) = SW (π(b, γ),v, γ), while
∑

i αν(i)γivi =
OPT (v, γ), we arrive at the claimed bound that the GSP auction game is(1/2, 1)-semi-smooth:

∑

i

ui(b
′
i,b−i, γ) ≥

1

2
OPT (v, γ) − SW (π(b, γ),v, γ).

Notice that the proof uses a single Nash inequality: that no player i would be better off changing her
bid to b′i = vi/2, bidding half her valuation, a natural shading of her valuation. As we will see in Section 5,
the bound will also apply to learning outcomes under the sameassumption of not regretting this single
alternative.

Now we return to proving the(1 − 1
e , 1) semi-smoothness. To do this, consider a randomized bidb

′,
rather than the deterministic bid ofb′i = vi/2 considered above, that offers a more sophisticated bid-shading
strategy. We consider a random strategy where playeri shades her bid randomly to a value in the interval
[0, vi(1 − 1

e )], where bidb′i is a random variable with densityf(y) = 1
vi−y for y ∈ [0, vi(1 − 1

e )] and
f(y) = 0 otherwise. We will show that

Eb′
i
[ui(b

′
i,b−i, γ)] ≥

(

1− 1

e

)

αν(i)γivi − αν(i)γπ(ν(i))bπ(ν(i)). (3)

Like in the proof of Claim 3.6, by summing expression (3) for all i and using the fact thatbπ(i) ≤ vπ(i) by
the non-overbidding assumption, we obtain that the game is(1− 1

e , 1)-semi-smooth.
It remains to derive equation (3). We have that

Eb′
i
[ui(b

′
i,b−i, γ)] ≥ Eb′

i
[αν(i)γi(vi − b′i)1{γib′i ≥ γπ(ν(i))bπ(ν(i))}]

=

∫ vi(1− 1
e
)

0
αν(i)γi(vi − y)1{γiy ≥ γπ(ν(i))bπ(ν(i))}

1

vi − y
dy

= αν(i)γi

[

vi

(

1− 1

e

)

−
γπ(ν(i))

γi
bπ(ν(i))

]+

≥
(

1− 1

e

)

αν(i)γivi − αν(i)γπ(ν(i))bπ(ν(i))

which implies (3), completing the proof of Lemma 3.5.

Combining Lemmas 3.3 and 3.5, we get the claimed bound on the price of anarchy.
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Theorem 3.7 The price of anarchy of the Generalized Second Price auctionwith uncertainty (and with
information asymmetries) is at most2(1− 1/e)−1 ≈ 3.164.

To prove Theorem 3.1 we will need to extend semi-smoothness specially tailored to the GSP auction
game. In addition to working more carefully on optimizing constants, we want to highlight two ideas: First,
note that the payment of the player in sloti is αiγπ(i+1)bπ(i+1), and this payment also contributes to the
social welfare. Using thatα is monotone decreasing, we can add a termαiγπ(i)bπ(i) to social welfare (in
addition to the advertisers’ utility) for all slots except the top one. Second, the player in the top slot can
obtain a stronger bound on her utility by considering the deviation b′1 = v1. (For all other players bidding
too close tovi endangers getting a higher slot at too high a price, but the top player does not face this danger.)
We will use these ideas in Section 5 to improve our bound on thelearning outcomes for full information
games. The details of the more complicated improved bound for the Bayesian case are found in Appendix
A.

Discretization of the bidding space. Analogous results also hold when the possible bid space is dis-
cretized (i.e., players need to bid in integer number of pennies). With a finely enough discretized bid space,
the players could approximately follow the bidding strategies used in the above proofs, as well as in the
proofs in Appendix A. The Nash property then implies that thesame bound holds at the equilibria with a
small loss due to the discretization. Recall that this case is both of practical relevance, and using a result of
Athey [2] and Reny [30], in the discrete case if player types and quality factors are drawn independently, the
existence of pure strategy equilibria that are monotone in the types is also guaranteed.

In order to illustrate this point, we show how to adapt Lemma 3.5 and Theorem 3.7 to the case where
possible bids are discrete. Assume bidsbi must be in the finite setTǫ,K = {0, ǫ, 2ǫ, . . . ,Kǫ} for some large
integerK. We also need to assume thatǫ is small compared to the valuations. We will assume thatǫ < 1

e
and all types in the support of the distribution arevi ≥ 1. We show that:

Lemma 3.8 The GSP auction game with discretized bid is((1− 1
e )(1− eǫ), 1− eǫ)-semi-smooth assuming

ǫ < 1
e and vi ≥ 1 for all i. That is, there is a deviationb′i from the discrete spaceTǫ,K that satisfies the

semi-smoothness inequality.

Proof. The proof follows from a small modification of Lemma 3.5. There we considered the deviation
where a player with valuationvi samples a bidb′i from the distribution with densityf(y) = 1

vi−y for

y ∈ [0, (1 − 1
e )vi]. In this setting, bids must lie inTǫ,K, so we use a rounded version instead:b̂′i = ǫ · ⌈yǫ ⌉.

This change increases the probability thatγib̂
′
i ≥ γπ(ν(i))bπ(ν(i)), but decreases the expressionvi − b′i inside

the integral. This decrease, however, is bounded since it holds that

min
y

vi − ǫ · ⌈yǫ ⌉
vi − y

≥ (1− ǫe

vi
) ≥ 1− ǫe.

Using the same calculation as in the proof of Lemma 3.5, we getthat

Eb̂′
i

[ui(b̂
′
i,b−i, γ)] ≥ (1− ǫe)

(

1− 1

e

)

αν(i)γivi − (1− ǫe)αν(i)γπ(ν(i))bπ(ν(i)).

Using this Lemma 3.8 we immediately get the following theorem.
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Theorem 3.9 The price of anarchy of the Generalized Second Price auctionwith uncertainty and discretized
bids is at most(1 + 1

1−ǫe) · (1− 1
e )

−1 = 3.16 +O(ǫ), assuming that bids lie onTǫ,K = {0, ǫ, 2ǫ, . . . ,Kǫ},
for a large integerK andǫ < 1/e, and that, for each playeri, vi ≥ 1.

4 Pure Nash Equilibria in the Full Information Setting

In this section we turn our attention to the full informationsetting, where the quality factorsγ are fixed and
common knowledge. Without loss of generality we can assume that γ1v1 ≥ γ2v2 ≥ . . . ≥ γnvn. In this
setting the strategy of a player is a single bidbi ∈ [0, vi], again assuming that players do not overbid. Our
main result in this setting is the following:

Theorem 4.1 The (pure) price of anarchy of the Generalized Second Price auction in the full information
setting is at most1.282. In other words, for any fixed click-through-ratesα, valuation profilev, and quality
factorsγ, if b is a bid profile in pure Nash equilibrium, thenSW (π(b),v) ≥ 1

1.282 · OPT (v) ≈ 0.78 ·
OPT (v).

The bound above is very close to being tight, since we can exhibit an example with3 players and3 slots
for which there is an equilibrium where the gap between the optimal social welfare and the social welfare in
equilibrium is1.259. Also, we can show the following slightly stronger bound fora small number of players
and slots. Notice however that the bound in Theorem 4.1 holdsregardless of the number of slots.

Theorem 4.2 For 2 players and2 slots, the price of anarchy is exactly1.25. For 3 players and3 slots, the
price of anarchy is exactly1.259. Byexactlywe mean that there is a particular GSP auction game with an
equilibrium matching this bound.

Proof. Here we give an example with two slots that yields price of anarchy 1.25. In Appendix B, we show
that this is worst possible, and show the bound for 3 slots.

For two slots, consider an example with two players with valuations 1 and1/2 respectively, quality
factorsγ1 = γ2 = 1, and two slots withα1 = 1 andα2 = 1/2. The bidsb1 = 0 andb2 = 1/2 are at
equilibrium, resulting in a social welfare of1, while the optimal social welfare is1.25.

The full proof of Theorem 4.1 can be found in Appendix B. Here instead, we present the proof of a
weaker bound that highlights the intuition underlying our result that GSP equilibria have good social welfare
properties.

Theorem 4.3 The (pure) price of anarchy of the Generalized Second Price auction in the full information
setting is at most2.

The proof is based on the concept ofweakly feasible allocations. Recall that each bid profileb defines
an allocationπ that is a mapping from slots to playersπ : [n] → [n].

Definition 4.4 (weakly feasible allocations)We say that an allocationπ is weakly feasibleif the following
holds for each pairi, j of slots:

αj

αi
+

γπ(i)vπ(i)

γπ(j)vπ(j)
≥ 1. (4)
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We also use the termweak feasibility conditionto refer to inequality (4).
The concept of weakly feasible allocations is a relaxation of the concept of Nash equilibrium. We adopt

this terminology to denote it is a weakening of the feasibility conditions for Nash equilibrium. This concept
encapsulates the fact that an allocation in equilibrium cannot be too far from the optimal. The optimal
allocation is such thatπ(i) = i, since both{αi} and{γivi} are sorted. If an allocation is not optimal, then
two slotsi < j have advertisers assigned to them such thatπ(i) > π(j), i.e., they are assigned in the wrong
order. Equation (4) implies that at least one of the two ratios is at least1/2, and hence whenever advertisers
are assigned in the non-optimal order, then either (i) the two advertisers have similar effective values for a
click, or (ii) the click-through-rates of the two slots are not very different; in either case their relative order
does not affect the social welfare very much.

Lemma 4.5 If b is a Nash equilibrium of the GSP auction game, then the induced allocationπ satisfies the
weak feasibility condition.

Proof. If j ≤ i the inequality is obviously true. Otherwise consider the playerπ(j) in slot j. Sinceb is a
Nash equilibrium, the player in slotj is happy with her outcome and does not want to increase her bidto take
slot i, so:αj(γπ(j)vπ(j) − γπ(j+1)bπ(j+1)) ≥ αi(γπ(j)vπ(j) − γπ(i)bπ(i)) sincebπ(j+1) ≥ 0 andbπ(i) ≤ vπ(i)
then:αjγπ(j)vπ(j) ≥ αi(γπ(j)vπ(j) − γπ(i)vπ(i)).

Given Lemma 4.5, the proof of Theorem 4.3 follows almost directly:

Proof of Theorem 4.3. Taking j = σ(i) in the definition of weakly feasible allocations, we get that:
ασ(i)γivi + αiγπ(i)vπ(i) ≥ αiγivi. Now, summing this for each playeri, we get

2 · SW (π(b),v) =
∑

i

ασ(i)γivi +
∑

i

αiγπ(i)vπ(i) ≥
∑

i

αiγivi = OPT (v).

To prove Theorem 4.1 we proceed by induction on the number of slots. Given an allocationπ, consider
the directed graphG(π) that has one node for each slot, and a directed edge for each advertiseri that connects
the node corresponding to sloti to the node corresponding to slotπ−1(i). When the allocation is optimal,
this graph consists of self-loops. In general,G(π) consists of a set of disjoint cycles, however, without loss
of generality, we can assumeG(π) is a single cycle. We obtain the improved bound by considering four
nodes in the neighborhood of node1 in this cycle, and separately considering cases depending on the order
of the effective values of the corresponding players. The details of the proof can be found in Appendix B.

5 Quality of Learning Outcomes in GSP

In this section, we bound the average quality of outcomes in arepeated play of a GSP auction game where
players employ strategies that guarantee no external regret. In both the full information setting and the setting
with uncertainty, we can reduce the problem over declaration sequences to a problem over distributions. This
will allow us to adapt our earlier bounds on the price of anarchy from Sections 3 and 4 to bound the price
of total anarchy. As in previous sections, we show simple andintuitive bounds in this section, and defer
improved and more complex bounds to the appendix.
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5.1 Learning in the full information setting

We will first focus upon the full information setting of the GSP auction. Recall that, in this model, the
valuation profilev and quality factorsγ are fixed and common knowledge. As in the previous section, we
will assume thatγ1v1 ≥ γ2v2 ≥ . . . ≥ γnvn.

We will begin by proving a relationship between the price of total anarchy and the set ofcoarse corre-
lated equilibriafor the GSP auction in the full information model. Given a valuation profilev, a distribution
D over bid profiles is called a coarse correlated equilibrium if

Eb∼D[ui(b)] ≥ Eb∼D[ui(b
′
i,b−i)],∀i, b′i.

As we shall show, the price of total anarchy can be bounded by considering the social welfare generated at
any coarse correlated equilibrium.

Lemma 5.1 The price of total anarchy in the full information setting isat most

sup
v,D∈CCE

OPT (v)

Eb∼D[SW (π(b),v)]

whereCCE is the set of coarse correlated equilibria.

Proof. Consider a declaration sequenceD = (b1, . . . ,bt, . . .) in the full information case. For eachT let
D

T be the distribution over bid profiles where eachb
t for t ≤ T is drawn with probability1

T . Proving that
the price of total anarchy is bounded byη is equivalent to showing that:

lim inf
T

Eb∼DT [SW (π(b),v)] ≥ 1

η
OPT (v).

Since the set of all possible bid profiles is compact, one needs to prove that for all distributionsD such that
there is a subsequence of{DT }T converging in distribution toD we have:

Eb∼D[SW (π(b),v)] ≥ 1

η
OPT (v).

It is therefore sufficient to show that such aD is a coarse correlated equilibrium. We note that the fact that
the declaration sequenceD minimizes external regret implies that, for each distribution D which can be
written as the limit of a subsequence of{DT }T , it holds that:

Eb∼D[ui(b)] ≥ Eb∼D[ui(b
′
i,b−i)],∀i, b′i

as required.

Using this connection to coarse correlated equilibria, we are able to obtain a bound of2.310 on the price
of total anarchy of the GSP auction.

Theorem 5.2 The price of total anarchy of the Generalized Second Price auction in the full information
setting is at most2.310.

A full proof of Theorem 5.2 appears in Appendix C. We now present a simpler proof of the following
weaker bound, which captures some of the intuition behind the proof of Theorem 5.2.
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Theorem 5.3 The price of total anarchy of the Generalized Second Price auction in the full information
setting is at most3.

Proof. The proof can be thought of as an improved version of the priceof anarchy bound based on the
fact that the GSP auction game is(1/2, 1)-semi-smooth. We consider a distributionD which corresponds
to a coarse correlated equilibrium. All expectations in thefollowing are taken with respect tob ∼ D.
Recall the outline of the bound of4 on the price of anarchy based on the fact that the GSP auction game is
(1/2, 1)-semi-smooth. We considered a possible deviation for player i with valuationvi to bid b′i = vi/2,
and concluded the boundui(b′i,b−i) ≥ αiγivi/2 − αiγπ(i)bπ(i) in the proof of Lemma 3.5. We use the
no-regret inequality directly, to get that

E[ui(b)] ≥ αiγivi/2− E[αiγπ(i)bπ(i)].

Using thatbπ(i) ≤ vπ(i), and summing over all players we get a bound of 4 on the price oftotal anarchy as
was done in Lemma 3.3.

Here we improve this bound by adding two new ideas. First, note that for all slots except the top one
αiγπ(i)bπ(i) is a lower bound to the payment of the player in sloti − 1. The social welfare is the sum of
player utilities and the payments. The inequality states that in expectation the utility of playeri plus the
payment of the player in sloti− 1 is at leastαiγivi/2, i.e., half of the social welfare contributed by playeri
in the efficient solution. To turn this into a bound on social welfare, we need to handle player1 differently,
asα1γπ(1)bπ(1) does not correspond to any payment.

The second observation is that for player1 we can obtain a stronger bound on her utility by considering
the deviationb′1 = v1. For other players such a high bid would endanger them to get aslot much higher than
their slot in the optimum at a very high price. But player 1 already gets the best slot in the efficient solution.
Deviating tob′1 = v1 will give the player the top slot, and hence utilityα1γ1v1 − α1γπ(1)bπ(1). Now using
the no-regret property we get

E[u1(b)] ≥ α1γ1v1 − E[α1γπ(1)bπ(1)].

By summing over all players and writing the social welfare asthe sum of utilities plus the total payments,
we get:

E[SW (π(b),v)] = E[
∑

i

ui(b)] + E[
∑

i

αiγπ(i+1)bπ(i+1)]

≥ 1

2
E[u1(b)] +

∑

i≥2

E[ui(b)] + E[
∑

i≥2

αiγπ(i)bπ(i)]

≥ α1γ1v1
2

−
E[α1γπ(1)bπ(1)]

2
+
∑

i≥2

αiγivi
2

−
∑

i≥2

E[αiγπ(i)bπ(i)] +
∑

i≥2

E[αiγπ(i)bπ(i)]

=
1

2
OPT (v)− 1

2
E[α1γπ(1)bπ(1)].

SinceE[SW (π(b),v)] ≥ E[α1γπ(1)bπ(1)], we obtain thatE[SW (π(b),v)] ≥ 1
3OPT (v).
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5.2 Learning with uncertainty

Let us now turn to the model of learning outcomes with uncertainty. As in the full information model, we can
define a Bayesian version of the coarse correlated equilibrium. A Bayesian coarse correlated equilibriumis
a joint distribution(v, γ,b) whose(v, γ)-marginals are(F,G) and satisfies the following property:

E(v,γ,b)[ui(b, γ)|vi] ≥ E(v,γ,b)[ui(b
′
i,b−i, γ)|vi],∀i, vi, b′i.

Similarly to Lemma 5.1, we can show that the price of total anarchy with uncertainty can be bounded by
considering the social welfare generated at any Bayesian coarse correlated equilibrium.

Lemma 5.4 Assuming that the distribution over types has finite support, the price of total anarchy with
uncertainty is at most

sup
F,G,D(·)∈CCE

Ev,γOPT (v, γ)

Ev,γ,b∼D(v)[SW (π(b),v, γ)]

whereCCE is the set of Bayesian coarse correlated equilibria.

Proof Sketch. The proof follows the same lines as the proof of Lemma 5.1. Foreacht ≥ 1, (vt, γt,bt) is
the tuple of profiles corresponding to roundt. Since the distribution over types has finite support, thereis
almost surely someT0 such that, for each type profilẽv in the support ofF, there ist ≤ T0 such thatvt = ṽ.
For eachT ≥ T0, letDT be the joint distribution on(v, γ,b) that samplest uniformly from {1, 2, . . . , T}
and outputs(vt, γt,bt). This defines a sequence of distributions{DT }T≥T0 . Now, it is enough to observe
that each convergent subsequence converges to a Bayesian coarse correlated equilibrium. Therefore the
price of total anarchy is bounded by the price of anarchy overBayesian coarse correlated equilibria.

Remark 5.5 Since our theorems hold in the limit asT goes to infinity, they do not depend on the speed of
learning – which we can define as the speed in which subsequences of{DT }T converge to a Bayesian coarse
correlated equilibrium in the proof above. The rate of convergence depends on the specific learning methods
being used by the players. However, the reader might notice that, regardless of the learning methods used,
the speed of learning will depend on the time required for theempirical distribution ofv, γ to resemble the
real distribution. The speed in which this happens is controlled, for example, by the Central Limit Theorem.
Also, if players observe only realized payoffs each round (rather than expectations), one would expect low
click-through rates to increase the amount of time needed for learning, since more rounds will be required
to accurately estimate expected outcomes. See Auer et al. [4] for a more detailed discussion on the speed of
convergence of no-regret algorithms with limited feedback.

The arguments in the proof of Lemma 3.3 can be used with essentially no change to show that(λ, µ)-
semi-smoothness implies a bound of(µ+1)/λ to the price of total anarchy with uncertainty. From this, we
know that:

Theorem 5.6 The price of total anarchy of the Generalized Second Price auction with uncertainty is bounded
by3.164.

In Appendix A we present an improved result for the Bayesian price of anarchy that also extends to the
following improved bound for learning outcomes.

Theorem 5.7 The price of total anarchy of the Generalized Second Price auction with uncertainty is bounded
by2.927.
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A Improved Bounds for Games with Uncertainty

In this section, we prove Theorems 3.1 and 5.7. The idea of theproof is analogous to our proof of the bound
of 3.164 in Section 3, based on semi-smoothness, but will use a modification of semi-smoothness specially
tailored to the GSP auction game, analogous to the way we modified the simple bound of 4 derived using
the(1/2, 1)-semi-smoothness of GSP to a bound of 3 on the price of total anarchy for the full information
case in Section 5. We handle the case when a player has the highest effective value separately, and show
that there exists a bidding profileb′ such that the following inequality holds.

E[
∑

i

ui(b
′
i(vi),b−i, γ)] ≥ βE[OPT (v, γ)] − (1 + δ)

∑

i

E[αiγπ(i)bπ(i)] + E[α1γπ(1)bπ(1)]. (5)

This inequality is analogous but weaker than claiming that GSP is(β, δ)-semi-smooth, yet we will show
that it implies that the price of anarchy (and the price of total anarchy) is bounded by1+δ

β . This connection
is stated in the next lemma.

Lemma A.1 Assume that for every GSP auction game there is a bidding profileb
′ and parametersβ, δ > 0

such that inequality (5) holds for any strategy profileb. Then, the price of anarchy of the Generalized
Second Price auction with uncertainty is at most1+δ

β . The same bound applies to the price of total anarchy
with uncertainty as well.

Proof. Consider a Nash equilibrium bidding profileb. Clearly,E[ui(b, γ)] ≥ E[ui(b
′
i(vi),b−i, γ)] by

selecting the bidding profileb′ as in inequality (5). We use this inequality and the fact thatthe social
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welfare is the sum of the expected utilities of the advertisers plus the total payments to get

E[SW (π(b(v), γ),v, γ)] = E[
∑

i

ui(b, γ)] + E[
∑

i

αiγπ(i+1)bπ(i+1)]

≥ E[
∑

i

ui(b
′
i(vi),b−i, γ)] + E[

∑

i

αiγπ(i+1)bπ(i+1)]

≥ βE[OPT (v, γ)] − (1 + δ)
∑

i

E[αiγπ(i)bπ(i)] + E[α1γπ(1)bπ(1)]

+
∑

i≥2

E[αiγπ(i)bπ(i)]

= βE[OPT (v, γ)] − δ
∑

i

E[αiγπ(i)bπ(i)]

≥ βE[OPT (v, γ)] − δE[SW (π(b(v), γ),v, γ)],

which implies that the price of anarchy is at most1+δ
β , as desired. To get the same bound for the price of

total anarchy, consider a coarse correlated equilibriumb instead of a Nash equilibrium.

The next lemma (Lemma A.3) connects inequality (5) to the existence of functions with particular prop-
erties which we call(β, δ)-bounded functions.

Definition A.2 Let β, δ > 0 and g : [0, 1] → R+. Functiong is (β, δ)-bounded if the following three
properties hold:

i)

∫ 1

0
g(y) dy ≤ 1,

ii) (1− z)

∫ 1

z
g(y) dy ≥ β − δz, ∀z ∈ [0, 1],

iii)

∫ 1

z
(1− y)g(y) dy ≥ β − (1 + δ)z, ∀z ∈ [0, 1].

Recall that the proof of Lemma 3.5 that GSP is(1 − 1
e , 1)-semi-smooth relied on a random distribution

with densityf(y) = 1
1−y for y ∈ [0, (1 − 1

e )] andf(y) = 0 otherwise, and considered the bid distribution
b′i = yvi for playeri with valuationvi. The improved proof in Lemma A.3 uses a(β, δ)-bounded function
g in place of thisf .

Lemma A.3 Letβ, δ > 0 be such that a(β, δ)-bounded function exists. Then, there is a bidding profileb
′

such that inequality (5) holds for any strategy profileb.

Proof. In the proof we consider a GSP auction game withn slots with click-through-ratesα1 ≥ α2 ≥ . . . ≥
αn ≥ 0 andn conservative players with random valuationsv1, v2, . . . , vn ≥ 0 and random quality factors
γ1, γ2, . . . , γn ≥ 1. Letb denote any bid profile. Also, we denote byb′ the bid profile such thatb′i(x) is the
most profitable deviation for playeri when her valuation isvi = x. We will prove inequality (5) using this
definition forb′.

The proof is long and technical. Before presenting it, we give a high-level overview. We apply the
following three steps:
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• Step 1: We focus on advertiseri with valuationvi = x and obtain a lower bound on her expected utility
E[ui(b

′
i,b−i, γ)|vi = x] when deviating tob′i(x). The main idea we use here is that the deviation to

bid b′i(x) is more profitable for advertiseri than deviating to the bidyx, for everyy ∈ [0, 1]. This
yields infinitely many lower bounds onE[ui(b′i,b−i, γ)|vi = x]; we combine them in a single lower
bound by taking their weighted average, with weights indicated by the values of a(β, δ)-bounded
functiong.

• Step 2: We further refine the lower bound onE[ui(b
′
i,b−i, γ)|vi = x]. Here, we reason about the slots

advertiseri would occupy by deviating to bidyx and the utility she would then have, and we use the
properties of(β, δ)-bounded functions. We consider slot1 and slotsi ≥ 2 separately, as we did in the
proof of Theorem 5.3.

• Step 3: We use the bound obtained in Step 2 in order to compute alower bound for the total expected
utility of all players when deviating tob′. We first lower-bound the unconditional expected utility of
advertiseri and, then, we simply sum the obtained inequalities over all advertisers in order to obtain
inequality (5).

Step 1: Focus on playeri and letx be a possible valuation for this player. Letβ, δ > 0 and consider a
(β, δ)-bounded functiong : [0, 1] → R+. Using the first property in Definition A.2 forg and the fact that
b′i(x) is the most profitable deviation for advertiseri, we have

E[ui(b
′
i(x),b−i, γ)|vi = x] ≥

∫ 1

0
g(y)E[ui(b

′
i(x),b−i, γ)|vi = x] dy

≥
∫ 1

0
g(y)E[ui(yx,b−i, γ)|vi = x] dy.

Given any slotj, letAij
x denote the event thatvi = x andν(i) = j andBij

x denote the event thatν(i) = j
given thatvi = x. Using these definitions, we can rewrite the quantityE[ui(yx,b−i, γ)|vi = x] for every
y ∈ [0, 1] as

E[ui(yx,b−i, γ)|vi = x] =
n
∑

j=1

E[ui(yx,b−i, γ)|Aij
x ] · P[Bij

x ].

By the last two (in)equalities, we obtain that

E[ui(b
′
i(x),b−i, γ)|vi = x] ≥

∫ 1

0
g(y)

n
∑

j=1

E[ui(yx,b−i, γ)|Aij
x ] · P[Bij

x ] dy

=

n
∑

j=1

∫ 1

0
g(y)E[ui(yx,b−i, γ)|Aij

x ] dy · P[Bij
x ]. (6)

Step 2: Our purpose now is to refine the lower bound provided by inequality (6). Let πi(b−i, i) be the
player with thei-th highest effective bid inb−i.

First consider slot 1 separately. Assume that the eventAi1
x is true, i.e.,vi = x andν(i) = 1. We

will first lower-bound the quantityE[ui(yx,b−i, γ)|Ai1
x ] for every y ∈ [0, 1]. By deviating to bidyx,
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player i is allocated the first slot wheneverγiyx > γπi(1)bπi(1); in this case, playeri has utility at least
α1(γix− γπi(1)bπi(1)). Hence,

E[ui(yx,b−i, γ)|Ai1
x ] ≥ E[α1(γix− γπi(1)bπi(1))1{γiyx > γπi(1)bπi(1)}|Ai1

x ].

We setz =
γ
πi(1)bπi(1)

γix
and use this last inequality to obtain

∫ 1

0
g(y)E[ui(yx,b−i, γ)|Ai1

x ] dy ≥
∫ 1

0
g(y) · E[α1γix(1− z)1{y > z}|Ai1

x ] dy

= E[α1γix(1− z)

∫ 1

0
g(y)1{y > z}dy|Ai1

x ]

= E[α1γix(1− z)

∫ 1

z
g(y) dy|Ai1

x ]

≥ E[α1

(

βγix− δγπi(1)bπi(1)

)

|Ai1
x ] (7)

where the second inequality follows by the second property of Definition A.2 for functiong (and using the
definition ofz).

Now, assume that the eventAij
x is true forj ≥ 2, i.e.,vi = x andν(i) = j. We will lower-bound the

quantityE[ui(yx,b−i, γ)|Aij
x ] for everyy ∈ [0, 1]. By deviating to bidyx, playeri is allocated slotj (or a

higher one) wheneverγiyx > γπi(j)bπi(j); in this case, playeri has utility at leastαjγix(1− y). Hence,

E[ui(yx,b−i, γ)|Aij
x ] ≥ E[αjγix(1− y)1{γiyx > γπi(j)bπi(j)}|Aij

x ].

We setz =
γ
πi(j)bπi(j)

γix
and use this last inequality to obtain

∫ 1

0
g(y)E[ui(yx,b−i, γ)|Aij

x ] dy ≥
∫ 1

0
g(y)E[αjγix(1− y)1{y > z}|Aij

x ] dy

= E[αjγix

∫ 1

z
(1− y)g(y) dy|Aij

x ]

≥ E[αj

(

βγix− (1 + δ)γπi(j)bπi(j)

)

|Aij
x ]. (8)

The second inequality follows by the third property of Definition A.2 for functiong (and using the definition
of z).

We now use inequality (6) together with the lower bounds for
∫ 1
0 g(y)E[ui(yx,b−i, γ)|Aij

x ] dy obtained
in (7) and (8). We have

E[ui(b
′
i(x),b−i, γ)|vi = x] ≥ E[α1

(

βγix− δγπi(1)bπi(1)

)

|Ai1
x ] · P[Bi1

x ]

+

n
∑

j=2

E[αj

(

βγix− (1 + δ)γπi(j)bπi(j)

)

|Aij
x ] · P[Bij

x ]

= β
n
∑

j=1

E[αjγix|Aij
x ] · P[Bij

x ]− δE[α1γπi(1)bπi(1)|Ai1
x ] · P[Bi1

x ]

− (1 + δ)

n
∑

j=2

E[αjγπi(j)bπi(j)|Aij
x ] · P[Bij

x ].
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Step 3: We can now bound the unconditional expected utility of player i when deviating to strategyb′i(vi)
by integrating over the range of valuations for playeri and using the last inequality obtained in Step 2. In
the following we usefvi(x) to denote the probability density function of the random variablevi. We have

E[ui(b
′
i(vi),b−i, γ)] =

∫ ∞

0
E[ui(b

′
i(vi),b−i, γ)] · fvi(x) dx

≥ β

n
∑

j=1

∫ ∞

0
E[αjγivi|Aij

x ] · P[Bij
x ] · fvi(x) dx

− δ

∫ ∞

0
E[α1γπi(1)bπi(1)|Ai1

x ] · P[Bi1
x ] · fvi(x) dx

− (1 + δ)
n
∑

j=2

∫ ∞

0
E[αjγπi(j)bπi(j)|Aij

x ] · P[Bij
x ] · fvi(x) dx.

Now, we use the property
∫ ∞

0
E[Z|Aij

x ] · P[Bij
x ] · fvi(x) dx = E[Z|ν(i) = j] · P[ν(i) = j],

for any random variableZ as well as the fact thatγπi(j)bπi(j) ≤ γπ(j)bπ(j) to obtain that

E[ui(b
′
i(vi),b−i, γ)]

≥ β

n
∑

j=1

E[αjγivi|ν(i) = j] · P[ν(i) = j]− δE[α1γπi(1)bπi(1)|ν(i) = 1] · P[ν(i) = 1]

− (1 + δ)

n
∑

j=2

E[αjγπi(j)bπi(j)|ν(i) = j] · P[ν(i) = j]

≥ β
n
∑

j=1

E[αjγivi|ν(i) = j] · P[ν(i) = j]− δE[α1γπ(1)bπ(1)|ν(i) = 1] · P[ν(i) = 1]

− (1 + δ)

n
∑

j=2

E[αjγπ(j)bπ(j)|ν(i) = j] · P[ν(i) = j]

= β

n
∑

j=1

E[αjγivi|ν(i) = j] · P[ν(i) = j]− (1 + δ)

n
∑

j=1

E[αjγπ(j)bπ(j)|ν(i) = j] · P[ν(i) = j]

+ E[α1γπ(1)bπ(1)|ν(i) = 1] · P[ν(i) = 1]

= βE[αν(i)γivi]− (1 + δ)E[αν(i)γπ(ν(i))bπ(ν(i))] + E[α1γπ(1)bπ(1)|ν(i) = 1] · P[ν(i) = 1].

By summing over all players, we obtain inequality (5). In particular,
∑

i

E[ui(b
′
i(vi),b−i, γ)] ≥ β

∑

i

E[αν(i)γivi]− (1 + δ)
∑

i

E[αν(i)γπ(ν(i))bπ(ν(i))]

+
∑

i

E[α1γπ(1)bπ(1)|ν(i) = 1] · P[ν(i) = 1]

= βE[OPT (v, γ)] − (1 + δ)
∑

i

E[αiγπ(i)bπ(i)] + E[α1γπ(1)bπ(1)].
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Therefore, by Lemmas A.1 and A.3, in order to bound the price of anarchy, it suffices to find a(β, δ)-
bounded function such that the ratio1+δ

β is as low as possible. This is the purpose of the following lemma.

Lemma A.4 Consider a functiong : [0, 1] → R+ defined as follows:

g(y) =











κ
1−y , y ∈ [0, λ),
(κ−1)(1−µ)

(1−y)2
, y ∈ [λ, µ),

0, y ∈ [µ, 1],

whereκ > 1 and1 > µ ≥ λ ≥ 0 such that(κ−1)(µ−λ)
1−λ − κ ln(1 − λ) ≤ 1, and(κ − 1)(1 − µ) ln 1−λ

1−µ −
(κ− 1)µ + κλ ≥ 0. Then,g(y) is an((κ− 1)µ, κ− 1)-bounded function.

Proof. We begin by computing
∫ 1
0 g(y) dy. It holds that

∫ 1

0
g(y) dy =

∫ λ

0

κ

1− y
dy +

∫ µ

λ

(κ− 1)(1− µ)

(1− y)2
dy =

(κ− 1)(µ − λ)

1− λ
− κ ln(1− λ) ≤ 1,

where the inequality holds by the first assumption concerning κ, λ andµ. Hence,g satisfies the first property
of Definition A.2.

For the second property of Definition A.2 it suffices to prove that

(1− z)

∫ 1

z
g(y) dy + (κ− 1)(z − µ) ≥ 0, ∀z ∈ [0, 1].

We distinguish between three cases depending onz. First, we consider the case thatz ∈ [µ, 1]. We have

(1− z)

∫ 1

z
g(y) dy + (κ− 1)(z − µ) = (κ− 1)(z − µ) ≥ 0,

where the inequality holds sincez ∈ [µ, 1] andκ > 1. Forz ∈ (λ, µ) we have

(1− z)

∫ 1

z
g(y) dy + (κ− 1)(z − µ) = (1− z)

∫ µ

z

(κ− 1)(1 − µ)

(1− y)2
dy + (κ− 1)(z − µ) = 0.

Finally, for z ∈ [0, λ] we have

(1− z)

∫ 1

z
g(y) dy + (κ− 1)(z − µ)

= (1− z)

∫ λ

z

κ

1− y
dy + (1− z)

∫ µ

λ

(κ− 1)(1 − µ)

(1− y)2
dy + (κ− 1)(z − µ)

= (1− z)κ ln
1− z

1− λ
+

(1− z)(κ − 1)(µ − λ)

1− λ
+ (κ− 1)(z − µ)

≥ (κ− 1)(µ − λ) + (κ− 1)(λ− µ)

= 0,
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where the inequality follows by the fact that the derivativewith respect toz is negative forz ∈ [0, λ]. Hence,
it holds thatg satisfies the second property of Definition A.2.

It remains to prove thatg satisfies the third property of Definition A.2. Similarly, itsuffices to prove that

∫ 1

z
(1− y)g(y) dy − (κ− 1)µ + κz ≥ 0, ∀z ∈ [0, 1].

Again, we distinguish between three cases depending onz. First, we consider the case thatz ∈ [µ, 1]. We
have

∫ 1

z
(1− y)g(y) dy − (κ− 1)µ + κz = − (κ− 1)µ + κz ≥ µ ≥ 0,

where the first inequality follows sincez ∈ [µ, 1]. Forz ∈ [λ, µ) we have

∫ 1

z
(1− y)g(y) dy − (κ− 1)µ + κz =

∫ µ

z

(κ− 1)(1 − µ)

(1− y)2
dy − (κ− 1)µ + κz

= (κ− 1)(1 − µ) ln
1− z

1− µ
− (κ− 1)µ+ κz

≥ (κ− 1)(1 − µ) ln
1− λ

1− µ
− (κ− 1)µ+ κλ

≥ 0,

where the first inequality follows by the fact that the derivative with respect toz is strictly positive for
z ∈ [λ, µ), and the second inequality follows by the second assumptionconcerningκ, λ andµ. Finally, for
z ∈ [0, λ) we have

∫ 1

z
(1− y)g(y) dy − (κ− 1)µ + κz =

∫ λ

z
κdy +

∫ µ

λ

(κ− 1)(1 − µ)

(1− y)2
dy − (κ− 1)µ + κz

= (κ− 1)(1 − µ) ln
1− λ

1− µ
− (κ− 1)µ + κλ

≥ 0,

where the inequality follows by the second assumption concerning κ, λ andµ. The proof of the lemma is
complete.

We are now ready to complete the proof of Theorems 3.1 and 5.7.The two conditions of Lemma A.4
are satisfied forκ = 1.7507, λ = 0.225, andµ = 0.7966. By combining Lemmas A.1, A.3, and A.4,
we conclude that the price of (total) anarchy of GSP auction games over Bayes-Nash equilibria is at most

κ
(κ−1)µ < 2.9276.

B Improved Bounds for Pure Nash Equilibria

In this section we present our results for pure Nash equilibria in the full information setting (Theorems 4.1
and 4.2). For simplicity of exposition, we consider all quality factors to be equal to1; so,γ does not appear
in notation. Our proofs can be adapted to different quality factors in a straightforward way. We consider GSP
auction games withn advertisers with valuationsv1 ≥ . . . ≥ vn ≥ 0 andn slots with click-through-rates
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α1 ≥ . . . ≥ αn ≥ 0. We assume that neither all slots have the same click-through-rate nor all advertisers
have the same valuation (in both cases, the price of anarchy is1).

We use the terminefficiencyof allocationπ to refer to the ratioOPT (v)/SW (π,v). In Lemma 4.5 we
showed that every pure Nash equilibrium corresponds to a weakly feasible allocation. Hence, the price of
anarchy of a GSP auction game over pure Nash equilibria is upper-bounded by the worst-case inefficiency
among weakly feasible allocations.

Definition B.1 An allocationπ is calledproperif for any two slotsi < j with equal click-through-rates, it
holdsπ(i) < π(j).

Clearly, for any non-proper weakly feasible allocation, wecan construct a proper weakly feasible one with
equal social welfare. Hence, in order to prove our upper bounds, we essentially upper-bound the worst-case
inefficiency over proper weakly feasible allocations.

Given an allocationπ, consider the directed graphG(π) that has one node for each slot, and a directed
edge for each advertiseri that connects the node corresponding to sloti to the node corresponding to slot
π−1(i). In general,G(π) consists of a set of disjoint cycles and may contain self-loops.

Definition B.2 An allocationπ is called reducibleif its directed graphG(π) has more than one cycles.
Otherwise, it is calledirreducible.

Given a reducible allocationπ such thatG(π) hasc ≥ 2 cycles, we can constructc GSP auction subgames
by considering the slots and the advertisers that correspond to the nodes and edges of each cycle. Similarly,
for ℓ = 1, . . . , c, the restrictionπℓ of π to the slots and advertisers of theℓ-th subgame is an allocation for
this game. The next fact essentially states that we can focuson irreducible allocations.

Fact B.3 If allocationπ is weakly feasible for the original GSP auction game, thenπℓ is weakly feasible for
the ℓ-th subgame as well, forℓ = 1, . . . , c. Then, the inefficiency ofπ is at most the maximum inefficiency
among the allocationsπℓ for ℓ = 1, . . . , c.

When considering irreducible weakly feasible allocations, we further assume that the index of the slot
advertiser1 occupies is smaller than the index of the advertiser that is assigned to slot1. This is without
loss of generality due to the following argument. Consider an irreducible weakly feasible allocationπ for
a GSP auction game withn advertisers such thatπ−1(1) > π(1). We construct a new game with click-
through-ratea′i = vi for slot i and valuationv′i = αi for advertiseri, for i = 1, . . . , n, and the allocation
π∗ = π−1. Observe thatπ−1

∗ (1) = π(1) < π−1(1) = π∗(1). Clearly, the optimal social welfare is the
same in both games while the social welfare ofπ∗ for the new game isSW (π∗,v′) =

∑

i a
′
iv

′
π∗(i)

=
∑

i viαπ∗(i) =
∑

i απ−1(i)vi = SW (π,v). We can also prove the weak feasibility conditions forπ∗ in the
new game for eachi, j. In order to do so, consider the weak feasibility condition for π in the original game
for advertisersπ(j), π(i). It is αjvπ(j) ≥ αi(vπ(j) − vπ(i)) and, equivalently,vπ(i)αi ≥ vπ(j)(αi − αj).
By the definition of the click-through-rates and the valuations in the new game and the definition ofπ∗, we
obtain thata′

π−1
∗ (i)

v′i ≥ a′
π−1
∗ (j)

(v′i − v′j) as desired.

We furthermore note that whenvn = 0, any proper weakly feasible allocation is reducible. This is
obviously the case if all advertisers with zero valuation use the last slots. Otherwise, consider an advertiseri
with non-zero valuation that is assigned a slotπ−1(i) > π−1(j) wherej is an advertiser with zero valuation.
Since the allocation is proper, it holds thatαπ−1(i) < απ−1(j). Then, we obtain a contradiction by the weak
feasibility conditionαπ−1(i)vi ≥ απ−1(j)(vi − vj) for advertisersi, j.
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B.1 GSP auction games with two and three advertisers

We now complete the proof of Theorem 4.2.
We begin by presenting the matching upper bound on the price of anarchy for two advertisers and two

slots. The upper bound follows by bounding the inefficiency of weakly feasible allocations. Consider a GSP
auction game with two slots with click-through-ratesα1 ≥ α2 = βα1, for β ∈ [0, 1] and two advertisers
with valuationsv1 ≥ v2 = λv1, for λ ∈ [0, 1]. The only non-optimal weakly feasible allocationπ assigns
advertiser1 to slot2 and advertiser2 to slot1. Its social welfare isSW (π,v) = α1v2+α2v1 = α1v1(β+λ),
while the optimal social welfare isOPT (v) = α1v1 + α2v2 = α1v1(1 + βλ). Furthermore, the weak
feasibility condition for advertiser1 implies thatα2v1 ≥ α1(v1 − v2), i.e.,β ≥ 1− λ. We have that

OPT (v)

SW (π,v)
=

1 + βλ

β + λ
≤ 1 + (β + λ)2/4

β + λ
≤ 5/4

where the first inequality holds since the productβλ is maximized whenβ = λ = (β+λ)/2 and the second

inequality holds sinceβ + λ ∈ [1, 2] and the function1+x2/4
x is non-increasing inx ∈ [1, 2].

For the case of three advertisers, we again present a tight bound on the price of anarchy. We first present
the upper bound. Consider a GSP auction game with three slotswith click-through-ratesα1 ≥ α2 ≥ α3 ≥ 0
and three advertisers with valuationsv1 ≥ v2 ≥ v3 ≥ 0 and a proper weakly feasible allocationπ of slots
to advertisers. We will prove the theorem by upper-boundingthe inefficiency ofπ by 1.259134. If π is
reducible, then the inefficiency is bounded by the inefficiency of games with two advertisers (see Fact B.3)
and the theorem follows by the upper bound of5/4 proved for this case. So, in the following, we assume
thatπ is irreducible; by the observation above, this implies thatv3 > 0. There are only two such allocations
which are in fact symmetric: in the first, slots1, 2, 3 are allocated to advertisers3, 1, 2, respectively, and in
the second, slots1, 2, 3 are allocated to advertisers2, 3, 1, respectively. Without loss of generality (see the
discussion above), we assume thatπ is the former allocation.

Let β, δ, λ, andµ be such thatα2 = βα1, α3 = δα1, v2 = λv1, andv3 = µv1. Clearly, it holds that1 ≥
β ≥ δ ≥ 0 and1 ≥ λ ≥ µ > 0. The social welfare of allocationπ isSW (π,v) = α1v1(µ+β+δλ) whereas
the optimal social welfare isOPT (v) = α1v1(1 + βλ+ δµ). Furthermore, sinceπ is weakly feasible, the
weak feasibility conditions for advertisers1 and3 and advertisers2 and3 areα2v1 ≥ α1(v1 − v3) and
α3v2 ≥ α1(v2 − v3), respectively, i.e.,β ≥ 1 − µ and δ ≥ 1 − µ

λ . We are now ready to bound the
inefficiency ofπ. Let ǫ, θ ≥ 0 be such thatβ = 1− µ+ ǫ andδ = 1− µ

λ + θ. We have

OPT (v)

SW (π,v)
=

1 + βλ+ δµ

µ+ β + δλ
=

1 + λ− µλ+ µ− µ2

λ + ǫλ+ θµ

1 + λ− µ+ ǫ+ θλ

≤ 1 + λ− µλ+ µ− µ2

λ

1 + λ− µ
.

The inequality follows since1 ≥ λ ≥ µ > 0 implies that1 + λ− µλ+ µ− µ2

λ = 1+ λ− µ+ µ(1− λ) +
µ(1− µ/λ) ≥ 1 + λ− µ ≥ 1 andǫ+ θλ ≥ ǫλ+ θµ ≥ 0.

Forµ ∈ [0, 1], this last expression is maximized for the value ofµ that makes its derivative with respect
to µ equal to zero, i.e.,µ = −

√
λ3 + 1 + λ+ 1. By substitutingµ, we obtain that

OPT (v)

SW (π,v)
≤ λ2 + λ+ 2− 2

√
λ3 + 1

λ
≤ 1 + 2ζ = 1.259134

whereζ = 0.129567 and the second inequality follows by the following lemma (Lemma B.4).
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Lemma B.4 Let ζ = 0.129567. For anyλ ∈ [0, 1], it holds that
√
λ3 + 1 ≥ 1− ζλ+ λ2

2 .

Proof. Since both parts of the inequality are non-negative forλ ∈ [0, 1], it suffices to show that the function

f(λ) = (λ3 + 1) −
(

1− ζλ+ λ2

2

)2
is non-negative forλ ∈ [0, 1]. Let g(λ) = −λ3

4 + (1 + ζ)λ2 − (1 +

ζ2)λ+2ζ and observe thatf(λ) = λ ·g(λ). The proof will follow by proving thatg(λ) ≥ 0 whenλ ∈ [0, 1].
Observe that the derivative ofg is strictly negative forλ = 0 and strictly positive forλ = 1. Hence, the

minimum ofg in [0, 1] is achieved at the pointλ∗ =
4+4ζ−2

√
ζ2+8ζ+1

3 where the derivative ofg becomes
zero. Straightforward calculations yield thatg(λ∗) > 0 and the lemma follows.

In the following we prove that the above analysis is tight. Consider a GSP auction game with three
advertisers with valuationsv1 = 1, v2 = 0.5296, andv3 = 0.14583, respectively, and three slots with
click-through-ratesα1 = 1, α2 = 0.55071, andα3 = 0.4704, respectively. Letb = (b1, b2, b3) be a bid
vector withb1 = 0, b2 = v2 = 0.5296, andb3 = v3 = 0.14583, respectively. So, advertiser2 is allocated
slot 1, advertiser3 is allocated slot2, and advertiser1 is allocated slot3. We refer to this allocation asπ. It
is not hard to verify thatb is a pure Nash equilibrium, and that the price of anarchy is given by:

OPT (v)

SW (π,v)
=

α1v1 + α2v2 + α3v3
α1v2 + α2v3 + α3v1

≥ 1.259133.

The proof of Theorem 4.2 is complete.

B.2 GSP auction games with many advertisers

We now prove Theorem 4.1. In order to do so, we will actually prove the stronger claim that the worst-
case inefficiency among weakly feasible allocations of any GSP auction game is at mostr = 61+7

√
217

128 ≈
1.28216. We use induction. As the base of our induction, we use the fact that GSP auction games with one,
two, or three advertisers have worst-case inefficiency among weakly feasible allocations at most1.28216.
For a single advertiser, the claim is trivial. For two or three advertisers, it follows by the proof of Theorem
4.2. Letn ≥ 4 be an integer. Using the inductive hypothesis that the worst-case inefficiency among weakly
feasible allocations of any GSP auction game with at mostn− 1 advertisers is at mostr, we will show that
this is also the case for any GSP auction game withn advertisers.

Consider a GSP auction game withn advertisers with valuationsv1 ≥ v2 ≥ . . . ≥ vn ≥ 0 andn slots
with click-through-ratesα1 ≥ α2 ≥ . . . ≥ αn ≥ 0 and letπ be a proper weakly feasible allocation. Ifπ is
reducible, the claim follows by Fact B.3 and the inductive hypothesis. So, in the following, we assume that
π is irreducible; this implies thatvn > 0. Let j be the advertiser that is assigned slot1 andi1 be the slot
assigned to advertiser1. Without loss of generality, we assume thati1 < j since the other case is symmetric;
see the discussion at the beginning of Section B. Also, leti2 be the slot assigned to advertiseri1. By our
assumptions, the integersj, 1, i1, andi2 are different.

We will show that

SW (π,v) ≥ α1vj + αi1(v1 −
vi1
r
) + αi2(vi1 − vj)−

α1v1
r

+
OPT (v)

r
. (9)

Once we have proved inequality (9), we can obtain the desiredrelation betweenSW (π,v) andOPT (v)
using the following technical lemma.
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Lemma B.5 Let r = 61+7
√
217

128 ≈ 1.28216 andf(β, δ, λ, µ) = µ + β
(

1− λ
r

)

+ δ(λ − µ) − 1
r . Then, the

objective value of the mathematical program

minimize f(β, δ, λ, µ)

subject to β ≥ 1− µ

δ ≥ 1− µ/λ

1 ≥ λ ≥ µ > 0

1 ≥ β, δ ≥ 0

is non-negative.

Proof. Sinceµ ≤ λ ≤ 1, we have thatf(β, δ, λ, µ) is non-decreasing inβ and δ. Using the first two
constraints, we have that the objective value of the mathematical program is at least

f
(

1− µ, 1− µ

λ
, λ, µ

)

= 1− 1

r
+ λ− λ

r
− µ

(

2− λ

r

)

+
µ2

λ
,

which is minimized forµ = λ− λ2

2r to

f

(

1− λ+
λ2

2r
,
λ

2r
, λ, λ− λ2

2r

)

= 1− 1

r
− λ

r
+

λ2

r
− λ3

4r2
.

In order to complete the proof it suffices to show that the function g(λ) = 1− 1
r − λ

r +
λ2

r − λ3

4r2
is non-

negative forλ ∈ [0, 1]. Observe thatg(λ) is a polynomial of degree3 and, hence, it has at most one local
minimum. Also observe that the derivative ofg(λ) is−1

r +
2λ
r − 3λ2

4r2 which is strictly negative forλ = 0 and

strictly positive forλ = 1. Hence, its minimum in[0, 1] is achieved at the pointλ∗ = 4r−2
√
4r2−3r
3 where

the derivative becomes zero. Straightforward calculations yield thatg(λ∗) = 0 and the lemma follows.

So, assuming that (9) holds, we can apply Lemma B.5 withβ = αi1/α1, δ = αi2/α1, λ = vi1/v1, and
µ = vj/v1. Clearly, the last two constraints of the mathematical program in Lemma B.5 are satisfied. Also,
observe that the weak feasibility conditions for advertisers 1 andj and advertisersi1 andj in allocationπ
areαi1v1 ≥ α1(v1 − vj) andαi2vi1 ≥ α1(vi1 − vj), respectively, i.e.,β ≥ 1− µ andδ ≥ 1− µ/λ and the
first two constraints of the mathematical program in Lemma B.5 are satisfied as well. Now, using inequality
(9) and Lemma B.5, we have that

SW (π,v) ≥ f

(

αi1

α1
,
αi2

α1
,
vi1
v1

,
vj
v1

)

· α1v1 +
OPT (v)

r
≥ OPT (v)

r

and the proof follows.
It remains to prove inequality (9). We distinguish between three cases depending on the relative order

of j, i1, and i2; in each of these cases, we further distinguish between two subcases. In each case, we
exploit the structure of allocationπ to reason as follows. We consider a restriction of the original game
(i.e., a different “restricted” game) by removing some advertisers from the original game and the slots they
occupy inπ. The particular advertisers to be removed are different in each case. We denote byπ′ the
restriction of allocationπ to the advertisers and slots of the restricted game. We also usev′ to denote the
valuation profile in the restricted game; so,SW (π′,v′) denotes the social welfare ofπ′ in the restricted
game. An important observation is thatπ′ is a weakly feasible allocation in the restricted game sincethe
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weak feasibility conditions forπ′ are just a subset of the corresponding conditions forπ (for the original
game). Furthermore, the restricted game has at mostn− 1 advertisers and, by the inductive hypothesis, we
know that the inefficiency ofπ′ is at mostr. Then, inequality (9) follows using this fact and by carefully
expressing the optimal social welfare in the new game.

Case I.1: 1 < i1 < j < i2 and αj ≤ αi2r. Consider the restriction of the original game that consistsof
the advertisers different thanj, 1, andi1 and the slots different than1, i1, andi2. Letπ′ be the restriction of
π to the advertisers and slots of the new game and letv

′ be the restriction ofv to all advertisers besidesj, 1
andi1. Clearly,π′ is weakly feasible for the new game since the weak feasibility conditions forπ′ are just a
subset of the corresponding conditions forπ (for the original game). Also, note that the efficient allocation
for the restricted game assigns advertiserk to slotk for k = 2, . . . , i1−1, i1+1, . . . , j−1, i2+1, . . . , n and
advertiserk + 1 to slotk for k = j, . . . , i2 − 1. By the inductive hypothesis, we know that the inefficiency
of π′ is at mostr. Hence, we can bound the social welfare ofπ as

SW (π,v) = α1vj + αi1v1 + αi2vi1 +
∑

k 6∈{1,i1,i2}
αkvπ(k)

= α1vj + αi1v1 + αi2vi1 + SW (π′,v′)

≥ α1vj + αi1v1 + αi2vi1 +
1

r





i1−1
∑

k=2

αkvk +

j−1
∑

k=i1+1

αkvk +

i2−1
∑

k=j

αkvk+1 +

n
∑

k=i2+1

αkvk





≥ α1vj + αi1v1 + αi2vi1 +
1

r





i1−1
∑

k=2

αkvk +

j−1
∑

k=i1+1

αkvk +

i2
∑

k=j+1

αkvk +
n
∑

k=i2+1

αkvk





= α1vj + αi1v1 + αi2vi1 +
1

r

(

n
∑

k=1

αkvk − α1v1 − αi1vi1 − αjvj

)

≥ α1vj + αi1(v1 −
vi1
r
) + αi2(vi1 − vj)−

α1v1
r

+
OPT (v)

r

and inequality (9) follows. The first inequality follows by the inductive hypothesis and the definition of
the efficient allocation for the restricted game. The secondinequality follows sinceαk ≥ αk+1 for k =
j, . . . , i2 − 1. The last inequality follows sinceαj ≤ αi2r.

Case I.2:1 < i1 < j < i2 andαj > αi2r. We use the restriction of the original game that consists of the
advertisers different thanj and1 and the slots different than1 andi1. Now, the efficient allocation for the
restricted game assigns advertiserk to slotk for k = 2, . . . , i1 − 1, j + 1, . . . , n and advertiserk− 1 to slot
k for k = i1 + 1, . . . , j. Using the inductive hypothesis for the restrictionπ′ of π to the restricted game, we
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can bound the social welfare ofπ as

SW (π,v) = α1vj + αi1v1 +
∑

k 6∈{1,i1}
αkvπ(k)

= α1vj + αi1v1 + SW (π′,v′)

≥ α1vj + αi1v1 +
1

r





i1−1
∑

k=2

αkvk +

j
∑

k=i1+1

αkvk−1 +

n
∑

k=j+1

αkvk





= α1vj + αi1v1 +
1

r





n
∑

k=1

αkvk − α1v1 − αi1vi1 +

j
∑

k=i1+1

αk(vk−1 − vk)





≥ α1vj + αi1v1 +
1

r





n
∑

k=1

αkvk − α1v1 − αi1vi1 + αj

j
∑

k=i1+1

(vk−1 − vk)





= α1vj + αi1v1 −
1

r
(α1v1 + αi1vi1 + αjvj − αjvi1) +

OPT (v)

r

> α1vj + αi1(v1 −
vi1
r
) + αi2(vi1 − vj)−

α1v1
r

+
OPT (v)

r

and inequality (9) follows. The first inequality follows by the inductive hypothesis and the definition of the
efficient allocation for the restricted game. The second inequality follows sinceαk ≥ αj andvk−1− vk ≥ 0
for k = i1 + 1, . . . , j. The last inequality follows sinceαj > αi2r.

Case II.1: 1 < i1 < i2 < j and vi2 ≤ vjr. We use the restriction of the original game that consists of the
advertisers different thanj, 1, andi1 and the slots different than1, i1, andi2. Now, the efficient allocation
for the restricted game assigns advertiserk to slotk for k = 2, . . . , i1 − 1, i1 + 1, . . . , i2 − 1, j + 1, . . . , n
and advertiserk − 1 to slotk for k = i2 + 1, . . . , j. Using the inductive hypothesis for the restrictionπ′ of
π to the restricted game, we can bound the social welfare ofπ as

SW (π,v) = α1vj + αi1v1 + αi2vi1 +
∑

k 6∈{1,i1,i2}
αkvπ(k)

= α1vj + αi1v1 + αi2vi1 + SW (π′,v′)

≥ α1vj + αi1v1 + αi2vi1 +
1

r





i1−1
∑

k=2

αkvk +

i2−1
∑

k=i1+1

αkvk +

j
∑

k=i2+1

αkvk−1 +

n
∑

k=j+1

αkvk





≥ α1vj + αi1v1 + αi2vi1 +
1

r





i1−1
∑

k=2

αkvk +

i2−1
∑

k=i1+1

αkvk +

j
∑

k=i2+1

αkvk +

n
∑

k=j+1

αkvk





= α1vj + αi1v1 + αi2vi1 +
1

r

(

n
∑

k=1

αkvk − α1v1 − αi1vi1 − αi2vi2

)

≥ α1vj + αi1(v1 −
vi1
r
) + αi2(vi1 − vj)−

α1v1
r

+
OPT (v)

r

and inequality (9) follows. The first inequality follows by the inductive hypothesis and the definition of
the efficient allocation for the restricted game. The secondinequality follows sincevk−1 ≥ vk for k =
i2 + 1, . . . , j. The last inequality follows sincevi2 ≤ vjr.
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Case II.2: 1 < i1 < i2 < j and vi2 > vjr. We use the restriction of the original game that consists of
the advertisers different than1 andi1 and the slots different thani1 andi2. Now, the efficient allocation for
the restricted game assigns advertiserk to slotk for k = i2 + 1, . . . , n, advertiseri1 + 1 to slot i1 − 1, and
advertiserk + 1 to slotk for k = 1, . . . , i1 − 2, i1 + 1, . . . , i2 − 1. Using the inductive hypothesis for the
restrictionπ′ of π to the advertisers and slots of the restricted game, we can bound the social welfare ofπ as

SW (π,v) = αi1v1 + αi2vi1 +
∑

k 6∈{i1,i2}
αkvπ(k)

= αi1v1 + αi2vi1 + SW (π′,v′)

≥ αi1v1 + αi2vi1 +
1

r





i1−2
∑

k=1

αkvk+1 + αi1−1vi1+1 +

i2−1
∑

k=i1+1

αkvk+1 +
n
∑

k=i2+1

αkvk





= αi1v1 + αi2vi1 +
1

r

(

n
∑

k=1

αkvk +

i1−2
∑

k=1

(αk − αk+1)vk+1 + (αi1−1 − αi1+1)vi1+1

+

i2−1
∑

k=i1+1

(αk − αk+1)vk+1 − α1v1 − αi1vi1





≥ αi1v1 + αi2vi1 +
1

r

(

n
∑

k=1

αkvk +

i1−2
∑

k=1

(αk − αk+1)vi2 + (αi1−1 − αi1+1)vi2

+

i2−1
∑

k=i1+1

(αk − αk+1)vi2 − α1v1 − αi1vi1





= αi1v1 + αi2vi1 −
1

r
(α1v1 + αi1vi1 + αi2vi2 − α1vi2) +

OPT (v)

r

> α1vj + αi1(v1 −
vi1
r
) + αi2(vi1 − vj)−

α1v1
r

+
OPT (v)

r

and inequality (9) follows. The first inequality follows by the inductive hypothesis and the definition of
the efficient allocation for the restricted game. The secondinequality follows sinceαk − αk+1 ≥ 0 and
vk+1 ≥ vi2 for k = 1, . . . , i1 − 2, i1 + 1, . . . , i2 − 1 andαi1−1 − αi1+1 ≥ 0 andvi1+1 ≥ vi2 . The last
inequality follows sincevi2 > vjr andα1 > αi2 .

Case III.1: 1 < i2 < i1 < j and vi2 ≤ vjr. We use the restriction of the original game that consists of the
advertisers different thanj, i1, and1 and the slots different than1, i2, andi1. Now, the efficient allocation
for the restricted game assigns advertiserk to slotk for k = 2, . . . , i2 − 1, j + 1, . . . , n advertiseri1 − 1
to slot i1 + 1, and advertiserk − 1 to slotk for k = i2 + 1, . . . , i1 − 1, i1 + 2, . . . , j. Using the inductive
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hypothesis for the restrictionπ′ of π to the restricted game, we can bound the social welfare ofπ as

SW (π,v) = α1vj + αi2vi1 + αi1v1 +
∑

k 6∈{1,i2,i1}
αkvπ(k)

= α1vj + αi2vi1 + αi1v1 + SW (π′,v′)

≥ α1vj + αi2vi1 + αi1v1 +
1

r





i2−1
∑

k=2

αkvk +

i1−1
∑

k=i2+1

αkvk−1 + αi1+1vi1−1

+

j
∑

k=i1+2

αkvk−1 +

n
∑

k=j+1

αkvk





≥ α1vj + αi2vi1 + αi1v1 +
1

r





i2−1
∑

k=2

αkvk +

i1−1
∑

k=i2+1

αkvk +

n
∑

k=i1+1

αkvk





= α1vj + αi2vi1 + αi1v1 +
1

r

(

n
∑

k=1

αkvk − α1v1 − αi2vi2 − αi1vi1

)

≥ α1vj + αi1(v1 −
vi1
r
) + αi2(vi1 − vj)−

α1v1
r

+
OPT (v)

r

and inequality (9) follows. The first inequality follows by the inductive hypothesis and the definition of
the efficient allocation for the restricted game. The secondinequality follows sincevk−1 ≥ vk for k =
i2 + 1, . . . , i1 − 1, i1 + 2, . . . , j andvi1−1 ≥ vi1+1. The last inequality follows sincevi2 ≤ vjr.

Case III.2: 1 < i2 < i1 < j and vi2 > vjr. We use the restriction of the original game that consists of the
advertisers different thani1 and1 and the slots different thani2 andi1. Now, the efficient allocation for the
restricted game assigns advertiserk to slotk for k = i2 + 1, . . . , i1 − 1, i1 + 1, . . . , n and advertiserk + 1
to slotk for k = 1, . . . , i2 − 1. Using the inductive hypothesis for the restrictionπ′ of π to the restricted
game, we can bound the social welfare ofπ as

SW (π,v) = αi2vi1 + αi1v1 +
∑

k 6∈{i2,i1}
αkvπ(k)

= αi2vi1 + αi1v1 + SW (π′,v′)

≥ αi2vi1 + αi1v1 +
1

r





i2−1
∑

k=1

αkvk+1 +

i1−1
∑

k=i2+1

αkvk +
n
∑

k=i1+1

αkvk





= αi2vi1 + αi1v1 +
1

r

(

n
∑

k=1

αkvk − α1v1 − αi1vi1 +

i2−1
∑

k=1

(αk − αk+1)vk+1

)

≥ αi2vi1 + αi1v1 +
1

r

(

n
∑

k=1

αkvk − α1v1 − αi1vi1 +

i2−1
∑

k=1

(αk − αk+1)vi2

)

= αi2vi1 + αi1v1 −
1

r
(α1v1 + αi1vi1 + αi2vi2 − α1vi2) +

OPT (v)

r

> α1vj + αi1(v1 −
vi1
r
) + αi2(vi1 − vj)−

α1v1
r

+
OPT (v)

r
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and inequality (9) follows. The first inequality follows by the inductive hypothesis and the definition of
the efficient allocation for the restricted game. The secondinequality follows sinceαk − αk+1 ≥ 0 and
vk+1 ≥ vi2 for k = 1, . . . , i2 − 1. The last inequality follows sincevi2 > vjr andα1 > αi2 .

The proof of Theorem 4.1 is complete.

C Improved Bounds for Learning Outcomes

In this section, we focus on the full information game. For simplicity we assume that all quality factors
γi = 1, and assume that players are sorted so thatv1 ≥ v2 ≥ · · · ≥ vn (all proofs extend to the case with
general quality factors by considering effective valuesγivi in place of valuations everywhere).

The main goal of this Appendix is to prove Theorem 5.2. Similarly to the proof of Theorem 3.1 in
Appendix A for Bayes-Nash equilibria, the proof considers aplayeri with valuationvi, possible bids of the
form yvi, and uses the fact that the player has no-regret about such alternative bids. In the full information
case, we can handle the player with top valuation separately, and will only use that this player 1 has no regret
about bidding her actual valuationv1. For any other playeri, the proof is analogous to the proof of Theorem
3.1 in Appendix A. However, we no longer have to consider separately the case when the player’s optimal
slot is 1. This allows us to drop one requirement for the function g in the definition A.2. We further simplify
that definition by settingδ = β (we have verified that different values forδ do not yield any improvement).
More formally, we will need the following definition.

Definition C.1 Let β ∈ (0, 1]. A functiong : [0, 1] → R+ is called β-bounded if the following two
properties hold:

i)

∫ 1

0
g(y) dy ≤ 1,

ii)

∫ 1

z
(1− y)g(y) dy ≥ β − (1 + β)z, ∀z ∈ [0, 1].

The following lemma states the connection of the price of anarchy to the existence ofβ-bounded func-
tions.

Lemma C.2 Letβ ∈ (0, 1] be such that aβ-bounded function exists. Then, the price of total anarchy of the
Generalized Second Price auction in the full information setting is at most1 + 1/β.

Proof. In the proof, we consider a GSP auction game withn slots with click-through-ratesα1 ≥ α2 ≥
. . . ≥ αn ≥ 0 andn conservative players with valuationsv1, v2, . . . , vn ≥ 0. Letb denote the bids of the
players at a coarse correlated equilibrium.

We begin by lower-bounding the expected utility of each player at a coarse correlated equilibrium. We
first consider player1 and her deviation to the bidv1. Then, player1 would always be allocated slot1 and
would pay the highest bid among the remaining players (whichis at mostbπ(1)) per click. By the definition
of the coarse correlated equilibrium such a deviation does not increase her expected utility (as the player has
no regret), i.e.,

E[u1(b)] ≥ E[u1(v1,b−1)] ≥ E[α1(v1 − bπ(1))] ≥ βα1v1 − βE[α1bπ(1)], (10)

where the last inequality follows sincev1 ≥ bπ(1) and sinceβ ∈ (0, 1]. Now, consider the deviation of
player i to the deterministic bidb′i ≤ vi. Then, she would be assigned to sloti or higher and would get
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utility at leastαi(vi − b′i) when thei-th highest bid is smaller thanb′i. Again, by the definition of the coarse
correlated equilibrium such a deviation does not increase her expected utility, i.e.,

E[ui(b)] ≥ E[ui(b
′
i,b−i)] ≥ E[αi(vi − b′i)1{bπ(i) < b′i}].

Using the first property in Definition C.1 forg as well as the last inequality (withb′i = yvi) , we have

E[ui(b)] ≥
∫ 1

0
g(y) · E[ui(b)] dy

≥
∫ 1

0
g(y) · E[αi(vi − yvi)1{bπ(i) < yvi}] dy

= E[αivi

∫ 1

0
(1− y)g(y)1{bπ(i) < yvi}dy]

= E[αivi

∫ 1

bπ(i)/vi

(1− y)g(y) dy].

We now apply the second property of Definition C.1 for function g to obtain

E[ui(b)] ≥ E[βαivi − (1 + β)αibπ(i)] = βαivi − (1 + β)E[αibπ(i)]. (11)

By summing over all players and using inequalities (10) and (11), we have
∑

i

E[ui(b)] = E[u1(b)] +
∑

i≥2

E[ui(b)]

≥ β
∑

i

αivi − (1 + β)
∑

i

E[αibπ(i)] + E[α1bπ(1)]

= βOPT (v)− (1 + β)
∑

i

E[αibπ(i)] + E[α1bπ(1)].

Now, we use this last inequality in the same way we used inequality (5) in the proof of Lemma A.1. By
the fact that the social welfare is the sum of the expected utilities of the players plus the total payments, we
obtain

E[SW (π(b),v)] = E[
∑

i

ui(b)] + E[
∑

i

αibπ(i+1)]

≥ βOPT (v)− (1 + β)
∑

i

E[αibπ(i)] + E[α1bπ(1)] +
∑

i≥2

E[αibπ(i)]

= βOPT (v)− β
∑

i

E[αibπ(i)]

≥ βOPT (v)− βE[SW (π(b),v)],

which implies that the price of total anarchyOPT (v)/E[SW (π(b),v)] is at most1 + 1/β, as desired.

We are ready to complete the proof of Theorem 5.2. By Lemma C.2, it suffices to find aβ-bounded
function withβ as high as possible. Letλ ≈ 0.4328 be the solution of the equation1− λ+ ln (1− λ) = 0
andg : [0, 1] → R+ be the function defined as follows:

g(y) =

{ 1
(1−λ)(1−y) , y ∈ [0, λ]

0, y ∈ (λ, 1]
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We will show thatg is β-bounded forβ = λ
1−λ ; the upper bound of1/λ ≈ 2.3102 stated in Theorem 5.2

will then follow.
Indeed, by the definition ofλ, we have

∫ 1

0
g(y) dy =

∫ λ

0

dy

(1− λ)(1− y)
= − ln(1− λ)

1− λ
= 1.

Hence,g satisfies the first property of Definition C.1. We also observethat

∫ 1

z
(1− y)g(y) dy =

∫ λ

min{z,λ}

dy

1− λ
≥ λ− z

1− λ
= β − (1 + β)z,

i.e.,g satisfies the second property of Definition C.1 as well.

D Irrational and Partially Rational Players

In this section we consider the effect of partial rationality on the welfare generated by the GSP auction. We
first consider a setting in which the players are not necessarily perfect utility optimizers, but rather can only
be assumed to apply strategies that form an approximate equilibrium. We then study a setting in which some
fraction of the players bid arbitrarily, without any rationality assumptions beyond avoiding the dominated
strategy of overbidding (see Section 2.3). In both cases, wefind that the social welfare guarantees of the
GSP auction degrade continuously with the degree of irrationality present in the players.

D.1 Approximate equilibria

We will consider the social welfare generated by the GSP auction with uncertainty when players play only
approximately utility-maximizing strategies. In Section3, we assumed that rational players apply strategies
at equilibrium. However, due to limits on rationality or indifference between small differences in utility, it
may be the case that players converge only to an approximate equilibrium. We begin by defining this notion
formally. Given a joint distribution(F,G) over types and quality factors, we say that strategy profileb is an
ǫ-Bayes-Nash equilibrium for distributionsF,G if, for all playersi, all typesvi, and all alternative strategies
bi

′,
Ev−i,γ,b[ui(bi(vi),b−i(v−i), γ)|vi] ≥ (1− ǫ)Ev−i,γ,b[ui(b

′
i(vi),b−i(v−i), γ)|vi].

Notice our choice of the multiplicative definition of approximate equilibria, justified by the fact that we have
chosen not to scale values to lie in[0, 1].

We define theǫ-Bayes-Nash Price of Anarchyto be

sup
F,G,b(·)∈ǫ-BNE

Ev,γ [OPT (v, γ)]

Ev,γ,b(v)[SW (π(b(v), γ),v, γ)]

whereǫ-BNE is the set of allǫ-Bayes-Nash equilibria.
We now claim that our bound for social welfare at (non-approximate) equilibrium degrades continuously

as we relax the degree to which a bidding strategy only approximates an equilibrium.

Theorem D.1 The ǫ-Bayes-Nash price of anarchy of the Generalized Second Price auction is at most
1.2553 + (1− ǫ)−1 · 1.6722.
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The intuition behind Theorem D.1 is that the bound for exact equilibria obtained in Theorem 3.1 depends
on the Bayes-Nash equilibrium condition in a continuous way. This continuity is captured by the semi-
smoothness of the GSP auction (as well as by inequality (5), used to prove Theorem 3.1 in Appendix A).
Indeed, the following Lemma follows by a trivial modification to the proof of Lemma A.1.

Lemma D.2 Assume that for every GSP auction game there is a bidding profile b
′ and parametersβ, δ > 0

such that inequality (5) holds for any strategy profileb. Then theǫ-Bayes-Nash price of anarchy of the

Generalized Second Price auction is at most(1−ǫ)−1+δ
β .

It then follows immediately from Lemmas A.3 and A.4 (see Appendix A) that theǫ-Bayes-Nash price

of anarchy of the GSP auction is at most(1−ǫ)−1+0.7507
0.7507·0.7966 ≈ 1.2553 + (1− ǫ)−1 · 1.6722.

D.2 Irrational players

We now consider a setting in which, of then advertisers who bid in the GSP auction, some subset of them
are “irrational” and cannot be assumed to apply strategies at equilibrium. We still think of the irrational
advertisers as being true players in the GSP auction, with valuations and quality scores. The irrational
advertisers simply may not apply rational bidding strategies; for example, they may not have experience
with the GSP auction, or not know about historical bidding patterns.

Our setting will be an extension of the GSP auction with uncertainty. We will first provide some defini-
tions. Given valuationsv, quality scoresγ, an outcomeπ, and a setS of players, the social welfare restricted
to setS isSWS(π,v, γ) =

∑

i∈S απ−1(i)γivi, the total value of the outcomeπ for the advertisers inS. The
optimal social welfare restricted toS isOPTS(v, γ) = maxπ SWS(π,v, γ).

Given a joint distribution(F,G) over types and quality factors, and a setS of players, we say that
strategy profileb is anS-Bayes-Nash equilibrium for distributionsF,G if, for all playersi ∈ S, all types
vi, and all alternative strategiesbi

′,

Ev−i,γ,b[ui(bi(vi),b−i(v−i), γ)|vi] ≥ Ev−i,γ,b[ui(b
′
i(vi),b−i(v−i), γ)|vi].

That is, no player inS can improve her utility by modifying her bid, but no such restriction is imposed upon
the players outsideS.

We will show that, for each setS of players, the total expected social welfare obtained by GSP at an
S-Bayes-Nash equilibrium is a good approximation toE[OPTS(v)]. We can interpret this result as stating
that the addition of irrational players does not significantly degrade the social welfare that would have been
generated had they not participated. Note that we cannot hope to always obtain a good approximation to
E[OPT (v)] (the optimal social welfare ofall advertisers) at allS-Bayes-Nash equilibria; for example, it
may be that the valuations of the players outsideS are very large, but they choose (irrationally) to bid0.

We note that our no-overbidding assumption (Section 2.3) continues to apply to all players, not only
to the players inS. In other words, we require thatbi(vi) ≤ vi for all i 6∈ S and allvi. We feel this is a
natural restriction to impose even on “irrational” advertisers, as overbidding is an easily-avoided dominated
strategy. Moreover, it is arguable that inexperienced advertisers would bid conservatively, and not risk a
large payment with no gain.6

6This relies on the simplifying assumption that all advertisers have knowledge of their own private valuations. Admittedly, this
requires a certain level of sophistication and may be difficult to attain in practice. Our argument is thus limited to imperfect strategy
choice given perfect knowledge of types. It remains open to extend this analysis to players who may misunderstand their own
valuations.
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Formally, given a non-empty subsetS of advertisers, we define theS-Bayes-Nash Price of Anarchyto
be

sup
F,G,b(·)∈S-BNE

Ev,γ [OPTS(v, γ)]

Ev,γ,b(v)[SW (π(b(v), γ),v, γ)]

whereS-BNE is the set of allS-Bayes-Nash equilibria.
Our main result is the following extension of Theorem 3.1.

Theorem D.3 For any non-empty subsetS of rational advertisers, theS-Bayes-Nash price of anarchy of
the Generalized Second Price auction is at most2.927.

In order to prove this theorem, we need an inequality similarto inequality (5) in Section A. In particular, for
every bid profileb, there exists a bid profileb′ defined on the rational advertisers such that

∑

i∈S
E[ui(b

′
i(vi),b−i, γ)] ≥ βE[OPTS(v, γ)]−(1+δ)

∑

i∈S
E[αν(i)γπ(ν(i))bπ(ν(i))]+E[α1γπ(1)bπ(1)]. (12)

We can prove inequality (12) by following the same steps as inthe proof of Lemma A.3 and by consider-
ing the utilities of the rational players at their most profitable deviation. Here,ν(i) should be interpreted as
the slot the rational advertiseri occupies in the efficient allocation restricted toS andπ(j) is the advertiser
that occupies thej-th slot in allocationπ (this advertiser can be rational or irrational). Similarly, πi(j) is the
player with thej-th highest effective bid among all advertisers besides therational advertiseri.

All the arguments hold in this case as well. However, there isa minor point that should be justified.
Observe that in order to obtain inequalities (7) and (8), we used the fact that thej-th highest effective
bid (excluding advertiseri) is not larger that the effective value of advertiseri whenν(i) = j, i.e., when
slot j is allocated to advertiseri in the efficient allocation restricted toS. When adapting the proof to the
case of rational and irrational players, it may be the case that ν(i) = j when the rational advertiseri has
valuationvi = x butγπi(j)bπi(j) > γix. This may be due to the fact that playerπi(j) is one of the irrational
players. Fortunately, both inequalities (7) and (8) are obviously true in this case as well. Observe thatβ ≤ δ
(otherwise, the second property of Definition A.2 would not hold for z = 1) and the right-hand side of both
inequalities is non-positive. The changes in the rest of theproof of Lemma A.3 are minor.

Then, Theorem D.3 follows by the next lemma that exploits inequality (12) and using the same values
for β andδ that we used in Section A.

Lemma D.4 Assume that for every GSP auction game with a non-empty setS of rational players there is
a bidding profileb′ for the players inS and parametersβ, δ > 0 such that inequality (12) holds for any
strategy profileb. Then, theS-Bayes-Nash price of anarchy of the Generalized Second Price auction is at
most1+δ

β .

Proof. Consider anS-Bayes-Nash equilibriumb. Defineb′ as in inequality (12) and observe thatE[ui(b, γ)] ≥
E[ui(b

′
i(vi),b−i, γ)] for every playeri ∈ S. We use this inequality and the fact that the social welfare is at
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least the sum of the expected utilities of the rational advertisers plus the total payments to get

E[SW (π(b(v), γ),v, γ)] ≥
∑

i∈S
E[ui(b, γ)] +

∑

i

E[αiγπ(i+1)bπ(i+1)]

≥
∑

i∈S
E[ui(b

′
i(vi),b−i, γ)] +

∑

i≥2

E[αiγπ(i)bπ(i)]

≥ βE[OPTS(v, γ)] − (1 + δ)
∑

i∈S
E[αν(i)γπ(ν(i))bπ(ν(i))] + E[α1γπ(1)bπ(1)] +

∑

i≥2

E[αiγπ(i)bπ(i)]

≥ βE[OPTS(v, γ)] − (1 + δ)
∑

i

E[αiγπ(i)bπ(i)] +
∑

i

E[αiγπ(i)bπ(i)]

= βE[OPTS(v, γ)] − δ
∑

i

E[αiγπ(i)bπ(i)]

≥ βE[OPTS(v, γ)] − δE[SW (π(b(v), γ),v, γ)],

which implies that theS-Bayes-Nash price of anarchy is at most1+δ
β , as desired.
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