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It is shown that cavities formed between a multilayer quarter-wave Bragg reflector and a metal mirror that support
Tamm plasmons can be modeled by using a hard-mirror approximation, including appropriate penetration
depths into the mirrors. Results from this model are in excellent agreement with those found by numerical meth-
ods. In addition, Tammmodes that are laterally confined by the presence of a metallic disk deposited on the Bragg
reflector can be described by the effective index model that is commonly used for vertical-cavity surface-emitting
lasers. This enables the lateral modes confined by a circular disk to be found from conventional weakly guiding
waveguide theory similar to that used for optical fibers. The resonant wavelengths of these linearly polarized
guided modes are calculated as functions of disk diameter and other parameters.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work

must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

https://doi.org/10.1364/JOSAB.36.000125

1. INTRODUCTION

Electromagnetic modes bounded by a distributed Bragg reflector
(DBR) and a metal mirror are termed Tamm plasmon-polaritons
[1], or simply Tamm plasmons, by analogy to the electronic
states that can appear at the surface of a crystal [2]. In the present
contribution, the term “Tamm modes” will be used. Confined
Tamm modes have been demonstrated with lateral confinement
limited to the size of a metallic disk deposited on the DBR [3].
Lasing has been reported with Tamm modes for both large-area
metal layers [4] and with confinement provided by micrometer-
scale metal disks [5]. Replacing the disks by microrectangles with
an aspect ratio of 2 has resulted in polarization-controlled Tamm
lasers [6]. Tamm single-photon sources have been demonstrated
with InGaAs/GaAs quantum dots (QDs) emitting at 910 nm [7]
and InP/GaInP QDs emitting at 656 nm [8]. Other proposed
device applications of Tamm modes include all-optical bistable
logic [9], multichannel filters [10], and novel forms of
sensors [11,12].

Analysis of one-dimensional Tamm modes is conventionally
performed using the transfer matrix method (TMM; see, for ex-
ample Refs. [1,4,9,12–14]). For three-dimensional confined
Tamm modes, the modeling has used coupled wave analysis
[5], the aperiodic Fourier modal method (a-FMM) [6], and
the finite-difference time-domain (FDTD) method [3,14]. All
these methods involve numerical computation and do not afford

direct physical insight into modal behavior or identification of
trends with variation of structural and material parameters. In
the present contribution, drawing on concepts well established
for modeling vertical-cavity surface-emitting lasers (VCSELs)
and resonant-cavity light-emitting diodes (RCLEDs), we offer
a novel approach to modeling one-dimensional and three-
dimensional Tamm modes that includes all the relevant physics
and offers a simpler approach to studying trends.

In the next section, the hard-mirror model for a one-
dimensional cavity is applied to study Tamm modes with
the aid of the concept of the penetration depth of the field into
the DBR [15]. The following section extends this approach to
describe three-dimensional confined Tamm plasmon modes by
using the effective index model [16]. After that, a numerical
example is given and compared with results from the literature
where numerical methods have been used, and finally, we sum-
marize our conclusions and the outlook for further applications
of our approach.

2. ONE-DIMENSIONAL APPROXIMATION

A general one-dimensional structure to support Tamm modes
is shown schematically in Fig. 1(a). It consists of a spacer layer
of thickness LS and refractive index nS , between a multilayer
quarter-wave Bragg reflector and a metal whose complex refrac-
tive index is �nM � ikM �. Figure 1(b) shows the hard-mirror
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model for this cavity, allowing for penetration of the field into
the DBR and the metal.

From standard VCSEL and RCLED cavity modeling
(see, e.g., Refs. [17,18]), we approximate the confinement
of the Tamm mode between the DBR and the metal layer
as a cavity formed by two hard mirrors, each of which is posi-
tioned at a penetration depth into the appropriate medium.
The penetration depths are denoted by LM and LBR , respec-
tively, for the metal and Bragg reflector, as shown in Fig. 1(b).
Rigorous expressions for the penetration depth LBR are derived
in Ref. [15] in terms of refractive indices, number of layers in
the DBR, and wavelength. The expression for LBR [see Eq. (7)
below] is found from the phase delay τm on reflection from an
m-layer quarter-wave Bragg stack. A recursion relation for τm is
derived by adding a single quarter-wave layer to the top of an
(m − 1)-layer stack whose delay is τm−1. Full details of the der-
ivation are given in Ref. [15]. Simpler analytical expressions
that are very accurate for high numbers of layers when the pen-
etration length saturates are given in Ref. [19]. The penetration
depth into the metal, LM , at the center (Bragg) angular fre-
quency ω0 of the DBR can be calculated from the phase
change, β, on reflection [20]:

LM � c
2ω0nM

�π − β�, (1)

where c is the speed of light. An explicit (but lengthy) expres-
sion for tan β is given in Ref. [21] in terms of refractive indices,
thickness of the metal, and wavelength; this expression is cast in
the present notation in Appendix A. In the limit of large layer
thickness, this expression reduces to the simple form obtained
from the phase change on reflection from an isolated metal sur-
face [22]. Usually β lies in the second quadrant.

The longitudinal modes of the structure occur at fre-
quencies for which the round-trip phase is an integer mul-
tiple of 2π. Allowing also for the reflection delay τ from the
Bragg mirror [15], the sum of phase terms in the cavity round
trip gives

2
ωN

c
�nSLS � n̄LBR�� 2

ω0

c
nMLM −ω0τ� �2N − 1�π, (2)

where ωN is the resonant angular frequency of mode
N �� 1, 2, 3,…� and the average refractive index in the
Bragg mirror is defined [19] as

n̄ � nHdH � nLdL

dH � dL
, (3)

with nH ,L and dH ,L as the refractive indices and thicknesses of
the high and low index layers in the Bragg mirror. The reason
for the term (2N − 1) in Eq. (2) is that the combination of the
spacer layer and the metal thickness should behave as a quarter-
wave layer [23].

The delay time τ is related to the penetration depth in the
DBR by

τ � 2n̄
c
LBR : (4)

Using Eq. (4), Eq. (2) can be rewritten in the form

ωN

c
nSLS �

ω0

c
nMLM � �ωN − ω0�

c
n̄LBR �

�
N −

1

2

�
π: (5)

Equation (5) is the cavity resonance condition in terms of the
phase changes in the spacer and on reflection from the metal
and the DBR. It shows explicitly that when the mode frequency
occurs at the center frequency of the grating, there is no
dependence on the penetration depth LBR . This is because
in this case the phase on reflection from the grating is either
zero or π. Equation (5) here is equivalent to Eq. (5) in
Ref. [1], with the difference that in Ref. [1], the refractive index
of the metal is given by the Drude model, and there is no spacer
layer �LS � 0�.

From Eq. (5), it follows that the mode frequency ωN is
given by

ωN � ω0�n̄LBR − nMLM � � cπ
�
N − 1

2

�
nSLS � n̄LBR

: (6)

From Ref. [15], the expression for LBR is

LBR � πc
2ω0n̄

q
1 − p

�1 − a2pm−1��1 − pm�
�1 − q2a2p2m−2� , (7)

where m is the number of layers in the DBR and a, p, q are
refractive index ratios (low to high) of the three types of inter-
faces that characterize the mirror:

a � nLE
nHE

p � nL
nH

q � nLI
nHI

: (8)

The ratio a applies to the interface between the last DBR layer
and the exit medium (subscript E), and the ratio q refers to the
interface between the incident medium (subscript I ) and the
first DBR layer. We note here that the simpler expressions
for penetration depth [15,19] are not sufficiently accurate
for the numerical example considered below because the index
differences are too large.

In the numerical work below, the full expression [21] for the
phase β will be used in Eq. (1) for the penetration depth of the
metal in order to include the effect of a finite layer.

3. THREE-DIMENSIONAL APPROXIMATION

To model confinement in the lateral direction, we follow the
effective index approach proposed in Ref. [16] and now widely
used for VCSEL design. The essence of this method is that the
lateral effective index profile is determined by the local changes
of the Fabry–Perot cavity resonance wavelength. So, for a

(a) (b)

LS 

metal 

spacer 

Bragg 
mirror 

LM 

LBR 

Fig. 1. (a) Schematic of one-dimensional structure to support
Tamm modes; (b) equivalent hard-mirror model.
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circular metal disk on top of the vertical structure discussed
above, the change of effective index, Δne , is related to the
change of resonant wavelength, Δλ, by

Δne
ne

� Δλ
λ
, (9)

where ne is the effective index of the cavity given by the mean
value of indices in the spacer and the Bragg mirror:

neLeff � nSLS � n̄LBR , (10)

with the total effective cavity length, Leff , defined as

Leff � LS � LBR : (11)

The resulting radial index profile is illustrated in Fig. 2(a), with
a schematic of the physical structure in Fig. 2(b).

For the region outside that beneath the metal disk, the
upper mirror of the effective Fabry–Perot cavity is formed
by the semiconductor-air interface. Hence in this region,
Eq. (5) is replaced by

ωNc

c
nSLS �

�ωNc − ω0�
c

n̄LBR � π

�
N −

1

2

�
, (12)

where ωNc is the mode frequency in this region. It follows that
the quantity Δλ, required in Eq. (9), is given by

Δλ � 2πc
�

1

ωN
−

1

ωNc

�
: (13)

Thus, solutions of Eqs. (5) and (12) can be used in Eqs. (9)
and (13) to calculate the effective index profile in the radial
direction.

The resulting circular waveguide of diameter d, core index
ne , and core-cladding index difference Δne�≪ ne� supports
modes that are, to a very good approximation, linearly polarized
(LP) by analogy with the modes of weakly guiding optical fibers
[24]. These LP modes are characterized by the index eigenval-
ues, n, of the wave equation such that their cutoff frequency is
given by n � ne − Δne. These modes are characterised by two
subscripts, one for each of the radial and azimuthal coordinates.
We will use l as the azimuthal subscript and p as the radial
subscript, so that the mode is labeled LPlp. Mode solver soft-
ware for the LP modes is widely available for optical fibers
and can simply be used for the corresponding confined
Tammmodes with appropriate definitions of core and cladding
indices, as described above.

Assuming the solutions for n have been found, the fre-
quency of the confined mode, ωl p, can be calculated by using
again the cavity resonance condition in the form:

ωlp �
ω0�n̄LBR − nMLM � � cπ

�
N − 1

2

�
nLeff

: (14)

Equation (14) indicates that the confined Tamm resonant
wavelength is directly proportional to the index eigenvalue
for the corresponding LP mode.

4. NUMERICAL EXAMPLE

The method outlined above will be illustrated by applying it to
the structure designed for Tammmodes in Ref. [14], which has
a GaAs spacer, an AlAs/GaAs DBR with 35 layers, and a GaAs
substrate. Hence the incident and exit media have the same
(high) refractive index [25], and the first and last layers of
the DBR have the same (low) index [26]. The metal is gold
with nM � 0.38 and kM � 8.7 in the wavelength range of in-
terest [27]. Numerical values of the semiconductor parameters
are given in Table 1. The stopband of the Bragg mirror lies
between 1205 and 1375 nm [14], so this defines the value
of the Bragg frequency.

Figure 3 shows the variation of phase with thickness of the
gold layer calculated using the expression in Ref. [21].

Using Eq. (6) with N � 1 for a 25 nm gold thickness and
75 nm spacer gives ω1 � 1.4487 × 1015 rad∕s, corresponding
to a Tamm wavelength of 1301.1 nm. This compares well with
the value of 1304 nm reported for this structure in Ref. [14],
where the TMM was used. It is interesting also to estimate
the Tamm resonance from the approximation used in Ref. [1],

ne
ne

d

Δ

effective index

(a) (b)

metal

LS

Fig. 2. (a) Effective index model of circularly symmetric cylindrical
waveguide for the three-dimensional structure to support confined
Tamm modes shown in (b).

Table 1. Semiconductor Parameter Values

λ0 (nm) 1284.4
ω0�×1015 rad∕s� 1.4676
nS , nH , nHI, nHE 3.409
nL, nLI, nLE 2.910
p, q, a 0.854
dH (nm) 94.2
dL (nm) 110.4
n 3.139
LDBR (nm) 591.9

Fig. 3. Phase on reflection from metal (gold) versus thickness.
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where the Drude model for the metal is used. Adapting the
result from Ref. [1] to allow for the presence of a spacer layer
gives

ω1 �
ω0

�
1� Δn

2nH

�

1� ω0Δn
π

�
2

ωp
ffiffiffi
εb

p � nSLS
nH c

� , (15)

where Δn � nH − nL,ωp is the plasma frequency, and εb is the
background dielectric constant. Using our parameter values in
Eq. (15) with a plasma energy of 8.9 eV [1] yields a frequency
of 1.441 × 1015 rad∕s, corresponding to a Tamm wavelength of
1308 nm. This level of agreement may be fortuitous, since the
approximation in Eq. (15) takes no account of the gold thickness
nor of the number of layers in the Bragg mirror, effectively as-
suming both these quantities are approaching infinity. Since the
penetration depth into the DBR is approaching saturation for 35
layers, we do not expect additional layers to affect the resonant
wavelength from Eq. (6) significantly. However, it is clear
from Fig. 3 that the phase on reflection from the mirror is some
way from saturation at a thickness of 25 nm, and hence,
a change of the Tamm wavelength is expected, as we demon-
strate below.

Figure 4 shows the Tamm resonance wavelength as a func-
tion of (a) spacer thickness with the gold thickness constant at
25 nm, and (b) gold thickness with the spacer thickness kept
constant at 75 nm. Results from the present model are com-
pared with those from the TMM [14], and again the agreement
is very good. The small departures between the two are attrib-
uted to inclusion of the dispersion of the refractive indices in
the TMM.

Turning to the two-dimensional model, for the case of a
75 nm spacer and 25 nm of gold, in the region outside that
beneath the metal disk, Eq. (12) is used with N � 1 to calcu-
late a wavelength of 1245.8 nm. Hence, we can use Eq. (9)
with λ � 1307.7 nm, Δλ � 55.3 nm, and ne � 3.170 [from
Eq. (10)] to calculate the value of Δne as 0.135. For these
parameter values, the cutoff values (d c) of the disk diameter
for the LP modes can be calculated. Table 2 gives the values
of d c for some lower-order LP modes using the effective index
and index difference values calculated for this example. Each LP
mode corresponds to hybrid (HE or EH), transverse electric
(TE), or transverse magnetic (TM) modes, as indicated in
Table 2. More details of these waveguide modes are given in
many textbooks; see, for example, [28,29]. Mode profiles
are illustrated in several good tutorial websites; see, for example,
[30,31]. The number of lateral modes increases rapidly with
disk diameter. Single-mode operation is only found for a diam-
eter less than 1.1 μm.

The calculated variation of resonant wavelength with disk
diameter, using Eq. (14) for the first 12 LP modes, is shown
in Fig. 5. The trends here are similar to those measured and
calculated in Ref. [3] (albeit expressed there in terms of photon
energy rather than wavelength) for a somewhat similar
structure.

Fig. 4. Calculated Tamm wavelength (a) versus spacer thickness for
fixed gold thickness of 25 nm, and (b) versus gold thickness for fixed
spacer thickness for 75 nm.

Table 2. Cutoffs of LP Modes

LP Mode Equivalent Modes dc (μm)

LP01 HE11 0
LP11 HE21,TE01,TM01 1.10
LP02, LP21 HE12,EH11,HE31 1.72
LP31 EH21,HE41 2.30
LP12 HE22,TE02,TM02 2.47
LP41 EH41,HE51 2.86
LP03, LP22 HE13,EH12,HE32 3.14
LP51 EH41,HE61 3.40
LP32 EH23,HE42 3.77
LP13 HE23,TE03,TM03 3.88
LP61 EH51,HE71 3.93

Fig. 5. Calculated Tamm wavelength for the first 12 LP modes ver-
sus disk diameter for gold thickness 25 nm and spacer thickness
75 nm.
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5. CONCLUSION

We have shown that concepts widely used in design and analy-
sis of VCSELs and RCLEDs can be successfully applied to
model Tamm modes confined between a metal layer and a
Bragg reflector. The hard-mirror approach, where an effective
cavity is defined to include penetration depths of the optical
wave into the metal and the Bragg mirror, successfully predicts
the resonant wavelengths of one-dimensional Tamm modes. It
is worth noting that this approach uses the calculated phase on
reflection from the metal, using measured real and imaginary
parts of the refractive index rather than invoking the Drude
model. Three-dimensional Tammmodes can be modeled using
the effective index approach, where the radial effective index
profile is found from the difference in resonant wavelengths
between the one-dimensional mode beneath a circular metal
disk and that outside this region. This enables the number
of transverse modes and their wavelengths to be determined
as functions of disk diameter and other parameters, a task
which is not straightforward with purely numerical computa-
tional approaches.

It is clear that the methods proposed here can be applied to
a wider range of structures than those currently of interest.
While attention has been confined here to circular disks,
the method proposed could just as well be applied to disks
of other shapes, e.g., elliptical, racetrack, or rectangular, since
the basic principle of decoupling the vertical field component
from the lateral components applies independently of the
geometry. Thus, for example, the method could be used to
study polarization properties of noncircularly symmetric disks,
such as the microrectangles used in Ref. [6], or more compli-
cated shapes of the metal layer. In this context, it is worth
noting that approximate but accurate solutions are available
for some shapes, such as elliptical [32] or rectangular [33].
Further developments could include analysis of the effects
of metallic layers and/or spacers of differing thicknesses in
the lateral directions, thus opening up the prospect of integrat-
ing novel Tamm modal devices on a single Bragg mirror in
order to produce multifunctional components for a variety
of potential applications.

APPENDIX A: EXPRESSION FOR THE PHASE
CHANGE, β, ON REFLECTION FROM A METAL

For a wave of wavelength λ incident from the spacer (refractive
index nS ) on a metal of complex refractive index �nM � ikM �
and thickness LM , with air (refractive index 1) on the other side,
the expression for tan β is [21]

tan β �

	
2nSkM �k2M � �nM � 1�2� exp�4πkMLM∕λ� − 2nSkM �k2M � �nM − 1�2� exp�−4πkMLM∕λ�
−8nSnMkM cos�4πnMLM∕λ� − 4nSnM �k2M � n2M − 1� sin�4πnMLM∕λ�



8>><
>>:

�k2M �n2S − 1� � n2S�nM � 1�2 − �k2M � n2M � nM �2� exp�4πkMLM∕λ�
��k2M �n2S − 1� � n2S�nM − 1�2 − �k2M � n2M − nM �2� exp�−4πkMLM∕λ�
�2�n2S�k2M � n2M − 1� � �k2M � n2M − nM ��k2M � n2M � nM � − k2M � cos�4πnMLM∕λ�
−4kM �k2M � n2M � n2S� sin�4πnMLM∕λ�

9>>=
>>;

:

Funding. Engineering and Physical Sciences Research
Council (EPSRC) (EP/G012458/1, EP/M024156/1, EP/
M024237/1, EP/N003381/1).

REFERENCES

1. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain,
A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible
electromagnetic states at the interface of a metal and a dielectric
Bragg mirror,” Phys. Rev. B 76, 165415 (2007).

2. I. E. Tamm, “O vozmozhnoi sviazi elektronov na poverkhnostiakh kris-
talla,” Zh. Eksp. Teor. Fiz. 3, 34–35 (1933) (in Russian).

3. O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds,
J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart,
“Evidence for confined Tamm plasmon modes under metallic micro-
disks and application to the control of spontaneous optical emission,”
Phys. Rev. Lett. 107, 247402 (2011).

4. C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra
Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a
hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100, 121122
(2012).

5. C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant,
G. Brucoli, A. Lemaître, P. Senellart, and J. Bellessa, “Confined Tamm
plasmon lasers,” Nano Lett. 13, 3179–3184 (2013).

6. G. Lheureux, S. Azzini, C. Symonds, P. Senellart, A. Lemaître, C.
Sauvan, J.-P. Hugonin, J.-J. Greffet, and J. Bellessa, “Polarization-
controlled confined Tamm plasmon lasers,” ACS Photon. 2,
842–848 (2015).

7. O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds,
P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Single photon
source using confined Tamm plasmon modes,” Appl. Phys. Lett. 100,
232111 (2012).

8. T. Braun, V. Baumann, O. Iff, S. Höfling, C. Schneider, and M. Kamp,
“Enhanced single photon emission from positioned InP/GaInP
quantum dots coupled to a confined Tamm-plasmon mode,” Appl.
Phys. Lett. 106, 041113 (2015).

9. W. L. Zhang, Y. Jiang, Y. Y. Zhu, F. Wang, and Y. J. Rao, “All-optical
bistable logic control based on coupled Tamm plasmons,” Opt. Lett.
38, 4092–4095 (2013).

10. H. Zhou, G. Yang, K. Wang, H. Long, and P. Lu, “Multiple optical
Tamm states at a metal–dielectric mirror interface,” Opt. Lett. 35,
4112–4114 (2010).

11. B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. S. Illia, and
A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers:
toward a sensing application,” ACS Photon. 1, 775–780 (2014).

12. W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing
concept based on optical Tamm plasmon,” Opt. Express 22,
14524–14529 (2014).

13. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram,
J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and
A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact
light,” Appl. Phys. Lett. 92, 251112 (2008).

14. M. Parker, E. Harbord, A. Young, P. Androvitsaneas, J. Rarity, and R.
Oulton, “Tamm plasmons for efficient interaction of telecom wave-
length photons and quantum dots,” IET Optoelectron. 12, 11–14
(2018).

Research Article Vol. 36, No. 1 / January 2019 / Journal of the Optical Society of America B 129

https://doi.org/10.1103/PhysRevB.76.165415
https://doi.org/10.1103/PhysRevLett.107.247402
https://doi.org/10.1063/1.3697641
https://doi.org/10.1063/1.3697641
https://doi.org/10.1021/nl401210b
https://doi.org/10.1021/ph500467s
https://doi.org/10.1021/ph500467s
https://doi.org/10.1063/1.4726117
https://doi.org/10.1063/1.4726117
https://doi.org/10.1063/1.4907003
https://doi.org/10.1063/1.4907003
https://doi.org/10.1364/OL.38.004092
https://doi.org/10.1364/OL.38.004092
https://doi.org/10.1364/OL.35.004112
https://doi.org/10.1364/OL.35.004112
https://doi.org/10.1021/ph5001549
https://doi.org/10.1364/OE.22.014524
https://doi.org/10.1364/OE.22.014524
https://doi.org/10.1063/1.2952486
https://doi.org/10.1049/iet-opt.2017.0076
https://doi.org/10.1049/iet-opt.2017.0076


15. D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection
delay, penetration depth, and absorptance of quarter-wave dielectric
mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).

16. G. R. Hadley, “Effective index model for vertical-cavity surface-
emitting lasers,” Opt. Lett. 20, 1483–1485 (1995).

17. R. Michalzik, “VCSEL fundamentals,” in VCSELs. Fundamentals,
Technology and Applications of Vertical-Cavity Surface-Emitting
Lasers, R. Michalzik, ed. (Springer, 2013), pp. 19–75.

18. D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, and H. Benisty,
“High-efficiency semiconductor resonant-cavity light-emitting diodes:
a review,” IEEE J. Sel. Top. Quantum Electron. 8, 189–206
(2002).

19. L. R. Brovelli and U. Keller, “Simple analytical expressions for the re-
flectivity and the penetration depth of a Bragg mirror between arbitrary
media,” Opt. Commun. 116, 343–350 (1995).

20. F. Ma and X. Liu, “Phase shift and penetration depth of metal mirrors
in a microcavity structure,” Appl. Opt. 46, 6247–8250 (2007).

21. J. M. Bennett, “Precise method for measuring the absolute phase
change on reflection,” J. Opt. Soc. Am. 54, 612–624 (1964).

22. W. Lichten, “Precise wavelength measurements and optical phase
shifts. I. General theory,” J. Opt. Soc. Am. A 2, 1869–1876 (1985).

23. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa,
and H. Takahashi, “Broadband semiconductor saturable-absorber mirror

for a self-starting mode-locked Cr: forsterite laser,” Opt. Lett. 23, 1465–
1467 (1998).

24. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971).
25. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A.

Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier,
“Improved dispersion relations for GaAs and applications to nonlinear
optics,” J. Appl. Phys. 94, 6447–6455 (2003).

26. R. E. Fern and A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42,
3499–3500 (1971).

27. P. B. Johnson and R. W. Christy, “Optical constants of the noble
metals,” Phys. Rev. B 6, 4370–4379 (1972).

28. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981),
Chap. 7.

29. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman
and Hall, 1983), Chap. 14.

30. Fiber Optics for Sale Co., “Basic optics for optical fiber,” https://www
.fiberoptics4sale.com/blogs/archive-posts/95048070-basic-optics-for-
optical-fiber.

31. R. Paschotta, “Encyclopedia of laser physics and technology,” https://
www.rp-photonics.com/lp_modes.html.

32. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).
33. E. Marcatili, “Dielectric rectangular waveguide and directional coupler

for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).

130 Vol. 36, No. 1 / January 2019 / Journal of the Optical Society of America B Research Article

https://doi.org/10.1109/3.123281
https://doi.org/10.1364/OL.20.001483
https://doi.org/10.1109/2944.999172
https://doi.org/10.1109/2944.999172
https://doi.org/10.1016/0030-4018(95)00084-L
https://doi.org/10.1364/AO.46.006247
https://doi.org/10.1364/JOSA.54.000612
https://doi.org/10.1364/JOSAA.2.001869
https://doi.org/10.1364/OL.23.001465
https://doi.org/10.1364/OL.23.001465
https://doi.org/10.1364/AO.10.002252
https://doi.org/10.1063/1.1621740
https://doi.org/10.1063/1.1660760
https://doi.org/10.1063/1.1660760
https://doi.org/10.1103/PhysRevB.6.4370
https://www.fiberoptics4sale.com/blogs/archive-posts/95048070-basic-optics-for-optical-fiber
https://www.fiberoptics4sale.com/blogs/archive-posts/95048070-basic-optics-for-optical-fiber
https://www.fiberoptics4sale.com/blogs/archive-posts/95048070-basic-optics-for-optical-fiber
https://www.fiberoptics4sale.com/blogs/archive-posts/95048070-basic-optics-for-optical-fiber
https://www.rp-photonics.com/lp_modes.html
https://www.rp-photonics.com/lp_modes.html
https://www.rp-photonics.com/lp_modes.html
https://www.rp-photonics.com/lp_modes.html
https://www.rp-photonics.com/lp_modes.html
https://doi.org/10.1002/j.1538-7305.1969.tb01166.x

	XML ID funding

