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Abstract. One model of message delivery in a computer network is based on

labelling each edge by a subset of a (reasonably small) universal set, and then
encoding a path as the union of the labels of its edges. Earlier work suggested

using random edge labels, and that approach has a disadvantage of producing

errors (false positives). We demonstrate that if we make an assumption about
the shape of the network (in this paper we consider networks with a dense

core and a tree-like periphery) and assume that messages are delivered along

shortest paths, we can label edges in a way which prevents any false positives.

1. Introduction

Consider an undirected graph G = (V,E) and a universal set U . The graph G
models a computer network, and U , as we shall see, models the header of a message
sent from one computer in G to another; accordingly, we assume that the size |V |
and |E| is approximately in the range 103 − 105 and the size |U | is approximately
in the range 102 − 103. Suppose each edge e ∈ E is labelled by a subset of U ; we
shall denote the label of e by [e] ⊆ U . The label of a set of edges S ⊆ E is defined
as [S] =

⋃
e∈S [e]. We shall say that an edge e ∈ E is recognised by a label [S] if

[e] ⊆ [S]. Obviously, if e ∈ S then e is recognised by [S]; however, it is also possible
that e 6∈ S and e is recognised by [S]; one refers to this situation as a false positive.
We shall say that a set of edges S is represented faithfully by its label [S] if none
of the edges e 6∈ S which are adjacent to S are recognised by [S]. A particular
scenario we have in mind is when S is a path connecting vertices u and v, and [S] is
used for routing a message from u to v (or from v to u); thus, [S] is sent along with
the message as its header. We assume that each vertex v ∈ V is a computer which
cannot access information about the general shape of the network when it is used
for routing messages, but can access the labels of the edges which are incidental
to v; accordingly, v can compare the header of the message [S] with these labels
and decide along which edge the message should be sent next. If S is represented
faithfully by [S] then at each vertex on S it is clear from inspecting [S] along which
edge the message should be sent next. However, if S is not represented faithfully
by [S], that is, there is a false positive f ∈ E adjacent to the path S then it will
be impossible to find out from inspecting [S] whether the message should be sent
along f or not.

In practice, a subset [S] ⊆ U would be represented as a binary array of length
|U |, in which each position corresponds to one fixed element of U ; in the array
representing [S], a bit at a certain position equal to 0 (or 1) means that this
element of U does not belong to S (or belongs to S). Thus, the header attached
to the message to describe where and by what route it should be delivered has
size |U |. When a computer at a vertex v decides where to forward the message, it
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considers each edge e incidental to v and checks whether [e] ⊆ [S]; in practice, this
comparison is implemented as a bitwise comparison of two binary arrays of length
|U | which represent [e] and [S]; this operation can be performed very fast; in fact, it
can be performed while the header is passing through v (for example, as an optical
signal), without the need to store the bits of the header at v and then perform
any arithmetic operations on them. Such fast performance makes this model an
attractive possibility for routing in computer networks [4], [7].

One useful labelling (which we shall refer to as the bit-per-edge labelling) is to
take U = E and, for each e ∈ E, [e] = {e}. Thus, the label of a set S ⊆ E is simply
the set of edges in S, that is, [S] = S. Note that this labelling represents faithfully
not only every path, but every subset of E. The shortcoming of this labelling is
that unless G is small, the size |U |, which is equal to |E|, is too large to be usable.

In our research we assume that S is a path and, more precisely, if S is a path
from a vertex u to a vertex v, we assume that S is one of the shortest paths from
u to v. Our research concentrates on looking for ways of labelling edges of a given
graph so that, on the one hand, each shortest path is represented faithfully, and,
on the other hand, the size |U | is reasonably small. In our previous research we
studied the cases when G is a square grid or a hexagonal grid [9, 8]; without going
into much detail, in both cases we found labellings such that each shortest path
is represented faithfully and the size |U | is of the order O(

√
|V |) or, equivalently,

O(
√
|E|).

In this paper we concentrate on considering graphs that have a dense core and
a tree-like periphery, because some computer networks have this shape [12, 14] or
are approximated by trees [10],[11],[13],[15, 16] or stars [5, 6, 1].

We describe how for such a graph, a labelling can be defined which represents
each shortest path faithfully; actually, our labellings satisfy a stronger property:
for each shortest path S and each edge e, [e] ⊆ [S] if and only if e ∈ S; that is, our
labellings produce no false positives at all, providing that they are used only for
labelling shortest paths and not other sets of edges.

Our methodology in this paper is as follows: we prove that the labellings we
introduce produce no false positives; then we check experimentally what size |U | is
required by these labellings, and whether it is within a realistic range.

In practical applications, it is sometimes possible that a message must be deliv-
ered via a path which is not a shortest path. Also, sometimes a message must be
delivered to multiple destinations (this is what is called multicast, as opposed to
unicast). In this paper we do not consider these generalisations. Another direction
of research is to consider directed graphs, with edges pointing in opposite directions
(that is, from vertex u to vertex v and from vertex v to vertex u) having distinct
labels; in this paper we consider undirected graphs.

2. Labelling edges

2.1. A bit per vertex. Suppose G is a dense graph; then |E| is relatively large,
and the bit-per-edge labelling from Section 1 is obviously not optimal. Instead, let
us consider a labelling such that U = V and, for each e ∈ E, [e] = {u, v}, where u
and v are the end vertices of e; we shall call it the bit-per-vertex labelling.

Proposition 1. If the bit-per-vertex labelling is used to represent a shortest path
then it has no false positives.
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Proof. Indeed, consider a shortest path from a vertex v0 to a vertex vn consisting of
edges ek = {vk, vk+1}, where k = 0, . . . , n−1. Suppose that there is a false positive
f ∈ E; hence, f = {vi, vj} for some i, j; let us assume that i < j. Since f is a
false positive, it does not coincide with any ek; hence, j − i > 1. Consider a path
consisting of edges {v0, v1}; . . . ; {vi−1, vi}; f = {vi, vj}; {vj , vj+1};. . . ; {vn−1, vn}.
This path is a path from v0 to vn whose length is less than n; this conclusion
contradicts the assumption that the path consisting of edges ek is a shortest path.
Thus, there are no false positives. �

2.2. Encoding for star graphs. Consider a star graph G with n edges. For
a non-negative integer R, let K be defined as d R

√
n e, that is, the smallest integer

which is not less than R
√
n. Thus, KR ≥ n; therefore, there is a one-to-one mapping

from E to the set of R-tuples of integers in the range {0, . . . ,K − 1}; for an edge
e, let us denote the corresponding tuple by (π1(e), . . . , πR(e)). Let U consist of
pairs (r, k) for each r = 1, . . . , R and k = 0, . . . ,K − 1 and triples (r, s, k) for all
1 ≤ r < s ≤ R and k = 0, . . . ,K − 1. Let the label [e] of an edge e include pairs
(r, πr(e)) for each r = 1, . . . , R and triples (r, s, πr(e)+πs(e)) for all 1 ≤ r < s ≤ R,
with addition πr(e) + πs(e) performed modulo K. Let us refer to this labelling as
the star labelling.

Proposition 2. If the star labelling is used to represent a shortest path then it has
no false positives.

Proof. Indeed, consider a shortest path P in a star graph G. If it consists of 0
edges or 1 edge, it is obvious that there can be no false positives. Now suppose it
consists of two edges e and f , and assume there is a false positive g ∈ E.

Since g 6= e, there is r such that πr(g) 6= πr(e). For this value of r, in [P ] there
are at most two pairs of the form (r, k), being (r, πr(e)) and (r, πr(f)). Since g is a
false positive and πr(g) 6= πr(e), we conclude that πr(g) = πr(f).

Using the same argument, starting from g 6= f we conclude that there is s such
that πs(g) 6= πs(f) and πs(g) = πs(e).

Obviously r 6= s; assume that r < s. For these values of r and s, in [P ] there are
at most two triples of the form (r, s, k), being (r, s, πr(e) + πs(e)) and (r, s, πr(f) +
πs(f)). Since g is a false positive, πr(g) + πs(g) is equal to either πr(e) + πs(e) or
πr(f) + πs(f). If πr(g) + πs(g) = πr(e) + πs(e), since πs(g) = πs(e), we conclude
that πr(g) = πr(e), and this fact contradicts our earlier conclusion πr(g) 6= πr(e).
Likewise, the case πr(g) +πs(g) = πr(f) +πs(f) is also impossible. Thus, there are
no false positives. �

For R = 1 the star labelling coincides with the bit-per-edge encoding, and this
value of R is best to use when n is small. For larger values of n, larger values of
R become optimal; for each specific size of a star, the optimal value of R can be

found simply by calculating the size |U | =
(
R+ R(R−1)

2

)
d R
√
n e for all reasonably

possible values of R, that is, for R ranging from 1 to log2 n (because, obviously,
2 is the smallest possible value of K). The following table shows optimal values
of R and the corresponding size |U | for some sizes of stars. As you can see, even
for unrealistically large values of n the size |U | remains reasonably small. Our
computational experiments1 show that if the optimal value of R is used, the size

1We are grateful to an anonymous referee who has suggested the following sketch of a proof as
to why this growth rate is observed. The size of U is O(R2n1/R), so one can take the derivative
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|U | of the star labelling grows at the rate O(log2 n). For comparison, the column
‘theoretical smallest size’ is calculated as the logarithm to the base 2 of the total
number of shortest paths in the graph; that is, this is the smallest number of bits
needed to distinguish between shortest paths. The theoretical smallest size grows
at the rate O(log n).

n = |E| theoretical smallest size |U | optimal R

10 6 10 1
102 13 30 2
103 19 60 3
104 26 100 4
105 33 147 6
106 39 210 6

3. Decomposing graphs for encoding

Suppose a graph G can be decomposed into its core C and its periphery P ; now
we shall describe how to combine labellings for C and P into a labelling for G.
Consider a graph G = (V,E) and a subset VC ⊂ V . Let C = (VC , EC) be the
subgraph induced by VC , and let P = (VP , EP ) be the graph produced from G by
contracting C into one vertex.

Suppose G is a graph decomposed into a core C and a periphery P . Suppose
labellings are introduced in C and P . Then each edge e ∈ EC has a label [e]C ∈ U
and each edge e ∈ EP has a label [e]P ∈ V , where U and V are two sets; assume
that U and V are disjoint. Slightly abusing notation, we shall identify edges in EP

with the corresponding edges in E. Let the universal set for labelling edges in G
be W = U ∪V , and for each e ∈ E let [e] = [e]C if e ∈ EC and [e] = [e]P if e ∈ EP .
Let us refer to this labelling as the combined labelling. Note that the size |W | is
the sum of sizes |U |+ |V |.

Proposition 3. Assume that the periphery P is a tree. Assume that the labellings
used for C and P produce no false positives when used to encode shortest paths.
Then if the combined labelling is used to represent a shortest path then it has no
false positives.

Proof. For each shortest path S in G, denote by SC the set of the edges of S
contained in C, and denote by SP the set of the edges of S contained in P . It is
obvious that both SC and SP are not just sets of edges, but paths, and, moreover,
shortest paths. Note that [S] = [SC ] ∪ [SP ] and [SC ] = [SC ]C ⊆ U and [SP ] =
[SP ]P ⊆ V . Assume that there is a false positive f ∈ E; that is, f /∈ S and [f ] ∈ [S].
Hence, we conclude that [f ] ∈ [SC ]C or [f ] ∈ [SP ]P . From [f ] ∈ [SC ]C it follows
that [f ] ⊆ U and, therefore, f ∈ EC and [f ] = [f ]C . By assumption, labelling [·]C
has no false positives; therefore, it is not possible to have f such that f /∈ SC and
[f ]C ∈ [SC ]C . Similarly, the case [f ] ∈ [SP ]P is also impossible. �

of the function f(R) = R2n1/R and set it equal to zero to determine the local optimum, which
turns out to be at R = O(logn), giving a size of U of O(log2 n).
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Let us consider an example of a useful decomposition of a graph. The graph on
the figure, with a dense core (circled) and a tree-like periphery can be decomposed
into the core (a) and the periphery (b), as shown; then the bit-per-vertex labelling
for its core can be introduced as in Subsection 2.1. To deal with the tree (b), decom-
pose it into the central star (c) and the periphery of the tree (d), as shown; continue
in the same fashion until the periphery of the tree is completely decomposed into
stars, like (d) in our example is decomposed into stars (e), (f). Then for each star,
star labelling can be introduced as in Subsection 2.2. After that, combine all these
labellings using the combined labelling described in this subsection.

4. Models of computer networks

In this section we consider several kinds of examples inspired by practice.

4.1. Core-periphery graphs. Suppose n is a positive integer. Suppose a graph
G consists of a dense graph with n vertices (this is the core of G), and each of these
n vertices is adjacent to n− 1 hanging vertices (this is the periphery of G). Thus,
there are n2 vertices in G in total, and G decomposes into a dense graph with n
vertices and a star with n(n − 1) edges. Suppose we label edges in the core using
the bit-per-vertex labelling, as in Subsection 2.1, and edges in the periphery using
the star labelling, as in Subsection 2.2, and then combine these labels using the
combined labelling, as in Section 3. The table below shows the combined size |U |
needed for routing in G.

n |V | = n2 |E| theoretical smallest size |U |
100 10000 14850 26 200
200 40000 59700 30 326
300 90000 134550 32 447
400 160000 239400 34 565
500 250000 374250 35 668

4.2. Binary trees. Consider a rooted binary tree G of height h; more precisely, we
require that the tree be perfect, that is, every vertex except leaves has exactly two
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children, and every leaf is at the distance h from the root. Suppose we decompose
G into stars, following the procedure in Section 3, by first contracting the 2-edge
star centered at the root of the tree, then contracting the 4-edge star centered
at the root, etc., until the last remaining tree is a 2h-edge star (corresponding to
the hanging edges of the original tree). Suppose we label edges in each star using
the star labelling, as in Subsection 2.2, and then combine these labels using the
combined labelling, as in Section 3. The table below shows the combined size |U |
needed for routing in G. Our computational experiments show that the size |U |
grows at the rate O(h3). For comparison, the theoretical smallest size grows at the
rate O(h).

h |V | theoretical smallest size |U |
5 63 8 44
10 2047 15 252
15 65535 22 733

4.3. Random labels. In the research that preceded ours [7, 4], labels [e] for edges
are chosen not in the way we do it in this paper, but as random subsets of U of
a fixed size k; such labels are called Bloom filters. Bloom filters were introduced
in [2] and then studied by various authors; see, for example, the survey article [3].
Bloom filters produce false positives with a certain probability, which is usually

approximated [2] by the formula
(

1− e−kn
m

)k
, where m = |U |, n = |S| and k is the

size of [e] for each e ∈ E.
The table below demonstrates the false positive rates for stars with a varying

size |E| if random Bloom filters are used instead of star labelling to encode paths
of length 2. In this comparison, the parameters of random Bloom filters are the
same as with star labelling, that is, m = |U | and n = 2; however, instead of using

k = R+R(R−1)
2 , we optimise it to make this comparison fairer towards Bloom filters.

Indeed [3], if the expected size n is known in advance, the value of the parameter k
can be chosen to minimise the probability of false positives when representing sets
of size n; thus, we use the optimal value, which is given by the formula k = m

n ln 2.
Here is how the numbers in the table should be interpreted. We assume that

each message is delivered from a leaf of the star to another leaf; that is, the delivery
path consists of 2 edges. For |E| = 40 the false positive rate is 0.6%; this means
that any given edge out of the 38 edges which are not on the path can be a false
positive with probability 0.6%; thus, there is a total probability 20% that there
will be at least one false positive. Therefore, with roughly every fifth message, the
central node of the star will not be able to find out along which edge the message
should be forwarded.
|E| |U | false positive rate

10 10 9.1%
20 15 2.7%
30 18 1.3%
40 21 0.6%
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5. Conclusion

We started this work after several colleagues conducting research in electronic
engineering told us that in their experiments, using random Bloom filters (as de-
scribed in Subsection 4.3) seems a reasonably good approach, producing relatively
few false positives when a reasonably small size |U | is used. Our results convinc-
ingly show that with some light assumptions (we assume that the network has a
certain shape, and that messages are delivered along shortest paths) it is possible
to introduce labelling which both requires a reasonably small size |U | and has no
false positives at all.
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