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Generalized Fibonacci groups H.r; n; s/ that are
connected labelled oriented graph groups

Gerald Williams

Communicated by Alexander Olshanskii

Abstract. The class of connected Labelled Oriented Graph (LOG) groups coincides with
the class of fundamental groups of complements of closed, orientable 2-manifolds
embedded in S4, and so contains all knot groups. We investigate when Campbell and
Robertson’s generalized Fibonacci groupsH.r; n; s/ are connected LOG groups. In doing
so, we use the theory of circulant matrices to calculate the Betti numbers of their abelian-
izations. We give an almost complete classification of the groups H.r; n; s/ that are con-
nected LOG groups. All torus knot groups and the infinite cyclic group arise and we
conjecture that these are the only possibilities. As a corollary we show that H.r; n; s/
is a 2-generator knot group if and only if it is a torus knot group.

1 Introduction

A Labelled Oriented Graph (LOG) consists of a finite graph (possibly with loops
and multiple edges) with vertex set V and edge set E together with three maps
�; �; � W E ! V called the initial vertex map, terminal vertex map, and labelling
map, respectively. The LOG determines a corresponding LOG presentation

hV j �.e/�1�.e/�1�.e/�.e/ .e 2 E/i:

A group with a LOG presentation is called a LOG group [18]. When the underlying
graph is connected, we have a connected LOG, a connected LOG presentation,
and a connected LOG group. A k-knot group (k � 0) is the fundamental group of
the complement of an k-sphere Sk in SkC2; we refer to a 1-knot group as a knot
group. The Wirtinger presentation of a knot group is a connected LOG presentation
and so all knot groups are connected LOG groups; in particular, the infinite cyclic
group is a connected LOG group. Further examples of LOG groups include right
angled Artin groups and braid groups. Clearly the abelianization of a LOG group
is torsion-free, and the abelianization of a connected LOG group is the infinite
cyclic group.

As pointed out in [14] and [13], by [28] a group is a connected LOG group if
and only if it is the fundamental group of the complement of a closed, orientable
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24 G. Williams

2-manifold embedded in S4. It follows that every k-knot group is a connected
LOG group [16]. A particular instance of [16, Theorem 1.1] is that, given a finite
presentation of a group, there is no algorithm that can decide if that group is a con-
nected LOG group. Another is that, given a finite presentation of a group, there
is no algorithm that can decide if that group is a knot group (see also [23, Theo-
rem 9.2.1] and [29]).

A cyclically presented group is a group defined by a presentation of the form

Gn.w/ D hx0; : : : ; xn�1 j w.xi ; xiC1; : : : ; xiCn�1/ .0 � i < n/i

where
w D w.x0; x1; : : : ; xn�1/

is some fixed element of the free group F.x0; : : : ; xn�1/. Connections between
HNN extensions of cyclically presented groups and LOG groups have been investi-
gated in [14,19,31]. Asphericity of certain cyclic presentations that are (connected)
word labelled oriented graph (WLOG) presentations is established in [17, Sec-
tion 3]. In this paper we investigate a particular family of cyclically presented
groups and aim to classify when they are connected LOG groups or when they are
knot groups. Namely, we investigate the generalized Fibonacci groups

H.r; n; s/ D

*
x0; : : : ; xn�1

ˇ̌̌̌
ˇ
r�1Y
jD0

xiCj D

s�1Y
jD0

xiCjCr .0 � i < n/

+
where r; s � 1, n � 2, and subscripts are taken mod n, that were introduced in [6].
Setting r D 2; s D 1, we get the Fibonacci groups F.2; n/ introduced in [9].

These groups have been considered from algebraic and topological perspec-
tives. Finite groups H.r; n; s/ have been obtained in [6], [5], [3, Corollary E] and
[4, Corollary 11]; conditions under which H.r; n; s/ is infinite are given in [6]
and [7]; and conditions under which H.r; n; s/ is large, SQ-universal, or contains
a non-abelian free subgroup can be extracted from [32]. Asphericity of the presen-
tations H.r; n; s/ is considered in [26, Theorem 3]. A class of groups H.r; n; s/
that are fundamental groups of closed 3-manifolds was obtained in [30, Proposi-
tion 3]. In the opposite direction, conditions under whichH.r; n; s/ is not the fun-
damental group of a hyperbolic 3-dimensional orbifold of finite volume are given
in [8, Corollary 3.2]. Corollary 5.5 of [8] gives that, for r ¤ s, the natural HNN
extension of the groupH.r; n; s/ is a 3-knot group if and only if jr � sj D 1. Note
that by inverting the relators, replacing each generator by its inverse, and negating
the subscripts we have that

H.r; n; s/ Š H.s; n; r/:

Our main result is the following (recall that a group G is perfect if Gab D 1).
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Generalized Fibonacci groups H.r; n; s/ 25

Theorem A. Let r; s � 1, n � 2. IfH.r; n; s/ is a connected LOG group, then one
of the following holds:

(a) r D s and .r; n/ D 1 in which case H.r; n; s/ Š ha; b j an D bri, the funda-
mental group of the complement of the .r; n/-torus knot in S3.

(b) .r; n; s/ D 2, jr � sj D 2 and either r � 0 mod n or s � 0 mod n, in which
case H.r; n; s/ Š Z.

(c) .r; n; s/ D 2, jr � sj D 2, ¹r; sº ¤ ¹4; 2º, .n; rCs/ D 2, r 6� 0 mod n, s 6� 0
mod n, and the group H.r=2; n=2; s=2/ is perfect.

We conjecture that condition (c) cannot hold.

Conjecture 1. Let r; s � 1 and n � 2 such that r 6� 0 mod n, s 6� 0 mod n. Then
H.r; n; s/ab ¤ 1.

Knots (i.e. complements of S1 in S3) for which the minimum number of gener-
ators required to generate the corresponding knot group is equal to two are called
2-generator knots and the corresponding knot group is a 2-generator knot group.
Since the only knot for which the corresponding group is cyclic is the unknot,
2-generator knots are, from one perspective, the “simplest” non-trivial knots. All
tunnel number one knots (in particular all torus knots) are 2-generator knots, and
it has been conjectured that all 2-generator knots are tunnel number one knots
(in [1] this is attributed to Scharlemann [27], who attributes it to Casson; see
also [25, Conjecture 3.9]). The conjecture has been shown to hold for cable
knots [1] and the satellite knots that have a two-generator presentation in which at
least one generator is represented by a meridian for the knot are classified in [2]. As
a corollary to Theorem A we classify whenH.r; n; s/ is a 2-generator knot group.

Corollary B. Let r; s � 1, n � 2. Then H.r; n; s/ is a 2-generator knot group if
and only if r D s and .r; n/ D 1, in which case H.r; n; s/ Š ha; b j an D bri, the
fundamental group of the complement of the .r; n/-torus knot in S3.

Since connected LOG groups abelianize to the infinite cyclic group Z, the
abelianization of H.r; n; s/ is of interest to us. Any finitely generated abelian
group A is isomorphic to a group of the form A0 ˚ Zˇ , where A0 is a finite
abelian group and ˇ � 0. The number ˇ D ˇ.A/ is called the Betti number (or
torsion-free rank) of A, and we write d.A/ to denote the minimum number of
generators of A. Clearly A is infinite if and only if ˇ.A/ � 1 and if G is a con-
nected LOG group, then ˇ.Gab/ D d.Gab/ D 1. Theorem 1 of [6] asserts that for
r ¤ s we have that ˇ.H.r; n; s/ab/ � 1 if and only if the greatest common divisor
.r; n; s/ � 2. In Theorem C we generalize this to give the value of ˇ.H.r; n; s/ab/

in all cases.
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26 G. Williams

Theorem C. Let r; s � 1, n � 2.

(a) If r ¤ s, then ˇ.H.r; n; s/ab/ D .r; n; s/ � 1.

(b) If r D s, then ˇ.H.r; n; s/ab/ D .r; n/.

In support of Conjecture 1 we have the following.

Corollary 2. Let r � 1 (resp. s � 1). Then there are at most finitely many values
of n � 2, s � 1 (resp. r � 1) such that H.r; n; s/ab D 1.

Remark 3. It is not hard to prove that H.r; n; s/ab Š H.r C ˛n; n; s C ˛n/ab for
all ˛ � 0, so if there is a choice of r; s � 1, n � 2, r 6� 0 mod n, s 6� 0 mod n
such that H.r; n; s/ab D 1, then there are infinitely many such choices of r; n; s
such that H.r; n; s/ab D 1. Therefore Corollary 2 does not imply that there are at
most finitely many r; s � 1, n � 2 such that H.r; n; s/ab D 1.

The proofs of Theorem C and Corollary 2 use the theory of circulant matri-
ces. The circulant matrix C D circn.a0; : : : ; an�1/ is the n � n matrix whose first
row is .a0; : : : ; an�1/ and where each subsequent row is a cyclic shift of its pre-
decessor by one column. Thus if, for each 0 � i < n, the exponent sum of xi in
w.x0; : : : ; xn�1/ is ai , then the relation matrix ofGn.w/ is the circulant matrix C .
The representer polynomial of C is the polynomial

f .t/ D

n�1X
iD0

ai t
i

and we define g.t/ D tn � 1. It is well known that

jdet.C /j D
ˇ̌̌̌ Y
g.�/D0

f .�/

ˇ̌̌̌
(1.1)

and so this is the order jGn.w/abj when it is non-zero, and Gn.w/ab is infinite
otherwise. This fact has long been used in the theory of cyclically presented groups
(see [21]) and, in particular, it was used to obtain [6, Theorem 1]. The rank of C
can also be expressed in terms of the polynomials f; g; specifically

rank.C / D n � deg.gcd.f .t/; g.t/// (1.2)

where deg. � / denotes the degree (see [20, Proposition 1.1] or [24, Theorem 1])
and so

ˇ.Gn.w/
ab/ D deg.gcd.f .t/; g.t/// (1.3)
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Generalized Fibonacci groups H.r; n; s/ 27

and this is the engine of the proof of Theorem C. While formula (1.2) is old, we
believe that it has not been applied to cyclically presented groups before. More-
over, we expect it to be of independent interest in studying other classes of cycli-
cally presented groups, and with wider applications than that considered here. The
proof of Corollary 2 uses a result from [11] for determining when jdet.C /j D 1;
that is, when C is a unimodular matrix.

2 A class of groups H.r; n; s/ that are knot groups

We have that

H.2; n; 2/ D hx0; : : : ; xn�1 j xixiC1 D xiC2xiC3 .0 � i < n/i: (2.1)

The n � 1 relations xixiC1 D xiC2xiC3 (0 � i < n � 1) imply the nth relation
xn�1x0 D x1x2, so this redundant relation may be eliminated to give the n gener-
ator, n � 1 relation presentation

hx0; : : : ; xn�1 j xixiC1 D xiC2xiC3 .0 � i < n � 1/i

of H.2; n; 2/. When n is odd, this is precisely the Dehn presentation for the
.2; n/-torus knot (see, for example, [15, p. 155], where the case n D 5 is illus-
trated).

Furthermore, if n is odd, then the following sequence of relations are implied
by the relations of (2.1):

xixiC1 D xiC2xiC3 D xiC4xiC5 D � � � D xiCn�3xiCn�2 D xi�1xi

and, in particular, xixiC1 D xi�1xi . Conversely, the relations xixiC1 D xi�1xi
(0 � i < n) imply the sequence of relations

xixiC1 D xi�1xi D xi�2xi�1 D xi�3xi�2 D � � � D xiC2xiC3

and, in particular, xixiC1 D xiC2xiC3. Thus the groupH.2; n; 2/ is also given by
the presentation

hx0; : : : ; xn�1 j xixiC1 D xi�1xi .0 � i < n/i

which is a (cyclic) Wirtinger presentation for the .2; n/-torus knot (see, e.g.,
[15, pp. 151–153]) arising from a LOG where the underlying graph is a cycle.

Thus if n is odd we have that H.2; n; 2/ is the fundamental group of the com-
plement of the .2; n/-torus knot in S3. More generally we have the following.
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28 G. Williams

Lemma 4. Let r � 1, n � 2. If .r; n/ D 1, then

H.r; n; r/ Š ha; b j an D bri;

the fundamental group of the complement of the .r; n/-torus knot in S3.

Proof. Since .r; n/ D 1, there exist ; ı such that

r � ın D 1:

Let H D H.r; n; r/. Then

H D

* x0; : : : ; xn�1;
a0; : : : ; an�1;

b0; : : : ; bn�1

ˇ̌̌̌
ˇ
xixiC1 : : : xiCr�1 D xiCrxiCrC1 : : : xiC2r�1;

ai D xixiC1 : : : xiCr�1;

bi D xixiC1 : : : xiCn�1 .0 � i < n/

+

D

* x0; : : : ; xn�1;
a0; : : : ; an�1;

b0; : : : ; bn�1

ˇ̌̌̌
ˇ
ai D aiCr ;

ai D xixiC1 : : : xiCr�1;

bi D xixiC1 : : : xiCn�1 .0 � i < n/

+
:

Now

aiaiCraiC2r : : : aiC.�1/r D .xixiC1 : : : xiCn�1/
ıxi D b

ı
i xi

and
x�1i bixi D xiC1xiC2 : : : xiCn�1xi D biC1

so we may add the relations

aiaiCraiC2r : : : aiC.�1/r D b
ı
i xi

and
x�1i bixi D biC1

to get

H D

* x0; : : : ; xn�1;
a0; : : : ; an�1;

b0; : : : ; bn�1

ˇ̌̌̌
ˇ
ai D aiCr ; aiaiCraiC2r : : : aiC.�1/r D b

ı
i xi ;

ai D xixiC1 : : : xiCr�1; x
�1
i bixi D biC1;

bi D xixiC1 : : : xiCn�1 .0 � i < n/

+
:

Now .r; n/ D 1 so the sequence of equalities

a0 D ar D a2r D � � � D a.n�1/r D a0

includes all ai , so ai D a0 for all i and so we can eliminate a1; : : : ; an�1 and
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Generalized Fibonacci groups H.r; n; s/ 29

write a D a0 to get

H D

*
x0; : : : ; xn�1;

a; b0; : : : ; bn�1

ˇ̌̌̌
ˇ
a D bıi xi ;

a D xixiC1 : : : xiCr�1; x
�1
i bixi D biC1;

bi D xixiC1 : : : xiCn�1 .0 � i < n/

+

D

*
x0; : : : ; xn�1;

a; b0; : : : ; bn�1

ˇ̌̌̌
ˇ
xi D b

�ı
i a ;

a D xixiC1 : : : xiCr�1; x
�1
i bixi D biC1;

bi D xixiC1 : : : xiCn�1 .0 � i < n/

+

D

*
x0; : : : ; xn�1

a; b0; : : : ; bn�1;

ˇ̌̌̌
ˇ
xi D b

�ı
i a ;

a D xixiC1 : : : xiCr�1; a
�bia

 D biC1;

bi D xixiC1 : : : xiCn�1 .0 � i < n/

+

D

*
a; b0; : : : ; bn�1

ˇ̌̌̌
ˇ
a D .b�ıi a /.b�ıiC1a

 / : : : .b�ıiCr�1a
 /;

a�bia
 D biC1;

bi D .b
�ı
i a /.b�ıiC1a

 / : : : .b�ıiCn�1a
 / .0 � i < n/

+

D

*
a; b0; : : : ; bn�1

ˇ̌̌̌
ˇ a D

Qr�1
jD0 b

�ı
iCja

 ; a�bia
 D biC1;

bi D
Qn�1
kD0 b

�ı
iCk

a .0 � i < n/

+
:

The relations a�bia D biC1 imply a�b�ıi a D b�ıiC1 so b�ıi a D ab�ıiC1.
Therefore

r�1Y
jD0

b�ıiCja

D arb�ıriCr

so we have the following equivalences:

a D

r�1Y
jD0

b�ıiCja

” a D arb�ıriCr

” ar�1 D bıriCr

” aın D bıriCr

so the set of relations

a D

r�1Y
jD0

b�ıiCja


is equivalent to the set of relations

aın D bıri .0 � i < n/:

Brought to you by | Periodicals Section, Albert Sloman Library (University of Essex)
Authenticated | gerald.williams@essex.ac.uk author's copy

Download Date | 1/8/19 5:12 PM



30 G. Williams

Similarly we have
n�1Y
kD0

b�ıiCka

D anb�ıniCn

so the following equivalences hold:

bi D

n�1Y
kD0

b�ıiCka

” bi D a

nb�ıni

” b1Cıni D an

” b
r
i D a

n:

Thus

H D

*
a; b0; : : : ; bn�1

ˇ̌̌̌
ˇ bıri D a

ın; a�bia
 D biC1;

b
r
i D a

n .0 � i < n/

+

D

*
a; b0; : : : ; bn�1

ˇ̌̌̌
ˇ bıri D a

ın; bj D a
�jb0a

j .1 � j < n/;

b
r
i D a

n .0 � i < n/; a�nb0a
n D b0

+
D ha; b j bır D aın; br D an; a�nban D bi where b D b0

D ha; b j bır D aın; br D ani:

Now

an D an�1 D an.r�ın/ D .an/r � .aın/�n D .br/r � .bır/�n

D .br/r�ın D .br/1 D br

so we may add the relation an D br and then eliminate the redundant relations
bır D aın; br D an to get H D ha; b j an D bri, as required.

3 Betti numbers and perfect groups

In this section we prove Theorem C and Corollary 2.

Proof of Theorem C. Let d D .r; n; s/, R D r=d , N D n=d , S D s=d . The rep-
resenter polynomial of H.r; n; s/ is

f .t/ D 1C t C � � � C tr�1 � tr � trC1 � � � � � trCs�1: (3.1)
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Generalized Fibonacci groups H.r; n; s/ 31

Since H.r; n; s/ Š H.s; n; r/, we may assume s � r . If s D r , then

f .t/ D .1 � tr/.1C t C t2 C � � � C tr�1/

D .1 � tr/.1C t C t2 C � � � C td�1/.1C td C � � � C t .R�1/d /I

if s > r , then

f .t/ D .1 � tr/.1C t C t2 C � � � C tr�1/ � t2r.1C t C � � � C ts�r�1/

D .1 � tr/.1C t C t2 C � � � C td�1/.1C td C � � � C t .R�1/d /

� t2r.1C t C t2 C � � � C td�1/.1C td C � � � C t .S�R�1/d /:

That is,
f .t/ D .1C t C t2 C � � � C td�1/F.t/;

where
F.t/ D .1 � tr/.1C td C � � � C t .R�1/d / (3.2)

when s D r and

F.t/ D .1� tr/.1C td C� � �C t .R�1/d /� t2r.1C td C� � �C t .S�R�1/d / (3.3)

when s > r . By (1.3) we must find the degree of the highest common factor of
f .t/ and g.t/ D tn � 1. Observe that

g.t/ D .1C t C t2 C � � � C td�1/G.t/;

where
G.t/ D .1 � t /.1C td C t2d C � � � C t .N�1/d /:

Therefore .f .t/; g.t// D .1C t C t2 C � � � C td�1/.F.t/; G.t//.
Suppose r D s; then F.t/ is as given at (3.2). Now, writingˆm.t/ to denote the

mth cyclotomic polynomial, we have

.1C td C � � � C t .R�1/d ; 1C td C t2d C � � � C t .N�1/d /

D

� Y
ıjR; ı>1

ˆı.t
d /;

Y
ıjN; ı>1

ˆı.t
d /

�
D 1

since .R;N / D 1. Therefore .F.t/; G.t// D .1 � tr ; 1 � t / D 1 � t so

.f .t/; g.t// D .1C t C t2 C � � � C td�1/.1 � t / D 1 � td ;

which is of degree d D .r; n; s/, as required.
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32 G. Williams

Suppose then that s > r so F.t/ is as given at formula (3.3). We must show
.F.t/; G.t// D 1. If �d D 1, then � is not a root of F.t/ (for otherwise we get
a contradiction to S > R). Therefore � is a root of F.t/ and of G.t/ if and only if
it is a root of .1 � td /F.t/ and of .1 � td /G.t/. Assume � is such a root. Then,
after simplifying, the equations .1 � �d /F.�/ D 0, .1 � �d /G.�/ D 0 imply

1 � 2�r C �rCs D 0;

1 � �n D 1:

Since �n D 1, we have � D ei� for some � , and 1 D j�j D � N� so ��1 D N�. Tak-
ing the complex conjugate of the first equation then gives

1 � 2��r C ��r�s D 0:

Multiplying the equations �rCs D 2�r � 1 and ��.rCs/ D 2��r � 1 and simpli-
fying gives .�r � 1/2 D 0, so

�r D 1:

Similarly, multiplying the equations 2�r D 1C �rCs and 2��r D 1C ��.rCs/

and simplifying gives .�rCs � 1/2 D 0, so �rCs D 1 and hence

�s D 1:

Therefore we have
�r D 1; �n D 1; �s D 1;

or equivalently
.�d /R D 1; .�d /N D 1; .�d /S D 1:

But .R;N; S/ D 1 so �d D 1, contradicting the fact that � is a root of F.t/. There-
fore F.t/; G.t/ have no common roots so .F.t/; G.t// D 1, as required.

Proof of Corollary 2. Let r � 1. By (1.1) if H.r; n0; s/ab D 1 for some n0, then
f .1/ D ˙1 (where f is as given at (3.1)) and so jr � sj D 1. (Alternatively, the
map from H.r; n0; s/

ab to Zjr�sj that sends each xi to some fixed generator of
Zjr�sj is an epimorphism, so jr � sj D 1.) In particular, .r; s/ D 1 and there are at
most two possible values of s, namely s D r ˙ 1. If f .t/ has a cyclotomic factor
ˆn0

.t/, then this is also a factor of g.t/ D tn0 � 1 so deg..f .t/; g.t/// > 0. But
.r; n0; s/ D .r; n0; r ˙ 1/ D 1 so Theorem C (a) (or [6, Theorem 1]) gives that
ˇ.H.r; n0; s/

ab/ D 0 and so by (1.3) we have deg.f .t/; g.t// D 0, a contradic-
tion. Therefore f .t/ has no cyclotomic factors. Since also f .0/ ¤ 0, Theorem 1
of [11] implies that the set of integers n > r such that the relation matrix of the
presentationH.r; n; s/ has determinant equal to 1 or �1 is finite. Therefore the set
of integers n for which H.r; n; s/ab D 1 is finite.
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4 Minimum number of generators for H.r; n; s/ab

Lemma 5. The minimum number of generators

d.H.r; n; s/ab/ �

´
.n; r C s/ if .r C s/=.n; r C s/ is even;
.n; r C s/ � 1 if .r C s/=.n; r C s/ is odd:

Hence if H.r; n; s/ is a connected LOG group, then

.n; r C s/

´
D 1 if .r C s/=.n; r C s/ is even;
� 2 if .r C s/=.n; r C s/ is odd.

Proof. Using an idea from the proof of [6, Lemma 4], we see that the group
H.r; n; s/ab maps onto

Q D

*
x0; : : : ; xn�1

ˇ̌̌̌
ˇ
r�1Y
jD0

xiCj D

s�1Y
jD0

xiCjCr ; x
2
i .0 � i < n/

+ab

D

*
x0; : : : ; xn�1

ˇ̌̌̌
ˇ
rCs�1Y
jD0

xiCj ; x
2
i .0 � i < n/

+ab

:

The remainder of the proof is similar to that of [33, Theorem C]. Let ı D .n; rCs/.
Then there exist p; q 2 Z such that ı D p.r C s/C qn so ı � p.r C s/ mod n.
The relation xixiC1 : : : xiCrCs�1 D 1 implies xi .xiC1 : : : xiCrCs/ D xiCrCs so
xi D xiCrCs and hence xi D xiCrCs D xiC2.rCs/ D � � � D xiCp.rCs/. But we
have xiCp.rCs/ D xiCı and so xi D xiCı for each 0 � i < n. Eliminating gener-
ators xı ; : : : ; xn�1 gives

Q D hx0; : : : ; xı�1 j .xixiC1 : : : xiCı�1/
.rCs/=ı ; x2i .0 � i < ı/i

ab

D hx0; : : : ; xı�1 j .x0x1 : : : xı�1/
.rCs/=ı ; x2i .0 � i < ı/i

ab

D hx0; : : : ; xı�1; y j y
.rCs/=ı ; y D x0x1 : : : xı�1; x

2
i .0 � i < ı/i

ab

D hx0; : : : ; xı�2; y j y
.rCs/=ı ; y2; x2i .0 � i < ı � 1/i

ab

D hx0; : : : ; xı�2; y j y
..rCs/=ı;2/; x2i .0 � i < ı � 1/i

ab

Š Z2 � � � � � Z2„ ƒ‚ …
�

;

where � D ı if .r C s/=ı is even and � D ı � 1 otherwise. Hence H.r; n; s/ab

maps onto Z�2 so d.H.r; n; s/ab/ � �. If H.r; n; s/ is a connected LOG group,
then d.H.r; n; s/ab/ D 1, and the result follows.
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In connection with Conjecture 1 we record the following.

Corollary 6. If H.r; n; s/ is perfect, then jr � sj D 1 and .n; r C s/ D 1.

Proof. The map from H.r; n; s/ab to Zjr�sj that sends each xi to some fixed
generator of Zjr�sj is an epimorphism, so if H.r; n; s/ is perfect, we have that
jr � sj D 1. By Lemma 5 if .n; r C s/ > 1, then H.r; n; s/ is not perfect.

Remark 7. When jr � sj D 1 and .n; r C s/ D 1, computer experiments using
GAP [12] indicate that the order jH.r; n; s/abj is often a product of large primes
so straightforward quotient methods, such as those employed in the proof of Lem-
ma 5, are unlikely to suffice for proving Conjecture 1 in general. Since the order
jF.2; n/abj D jH.2; n; 1/abj is increasing in n (e.g., [10]), one might hope to be
able to prove Conjecture 1 by showing that for any r � 2 the order jH.r; n; r�1/abj

is increasing in n; however, this is not the case since, for example, jH.3; 5; 2/abj D

16 and jH.3; 6; 2/abj D 13.

We also note the following corollary to Lemma 5 which generalizes [6, Lem-
ma 4] (which deals with the case r C s � 0 mod n). It follows immediately from
[22, Theorem 9 (i)] which states that if a group G defined by a balanced presenta-
tion is finite, then d.Gab/ � 3.

Corollary 8. If either

(a) .r C s/=.n; r C s/ is even and .n; r C s/ � 4, or

(b) .r C s/=.n; r C s/ is odd and .n; r C s/ � 5,

then H.r; n; s/ is infinite.

Lemma 9. Let r; s � 1, n � 2 and suppose that .r; n; s/ D 2. If jr � sj ¤ 2, then
d.H.r; n; s/ab/ � 2, and hence H.r; n; s/ is not a connected LOG group.

Proof. The abelianization H.r; n; s/ab maps onto

A D

*
x0; : : : ; xn�1

ˇ̌̌̌
ˇ
Qr�1
jD0 xiCj D

Qs�1
jD0 xiCjCr .0 � i < n/;

x2j D x0; x2jC1 D x1 .0 � j < n=2/

+ab

D hx0; x1 j .x0x1/
.r�s/=2

i
ab

Š Zjr�sj=2 ˚ Z

which is non-cyclic if jr � sj ¤ 2, and hence d.H.r; n; s/ab/ � 2.
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Lemma 10. Let r; s � 1, n � 2 and suppose that .r; n; s/ D 2 and jr � sj D 2.

(a) If H.r=2; n=2; s=2/ab ¤ 1, then d.H.r; n; s/ab/ � 2.

(b) The group H.r; n; s/ is not a 2-generator knot group.

Proof. Since H.r; n; s/ Š H.s; n; r/, we may assume r > s, and so r D s C 2.
Let R D r=2;N D n=2 and let H D H.r; n; s/ D H.2R; 2N; 2R � 2/. Then

H D

*
xi

ˇ̌̌̌
ˇ
2R�1Y
˛D0

xiC˛ D

2R�3Y
˛D0

xiC2RC˛ .0 � i < 2N/

+

D

*
xi

ˇ̌̌̌
ˇ
QR�1
ˇD0 xiC2ˇxiC2ˇC1

D
QR�2
ˇD0 xiC2.RCˇ/xiC2.RCˇ/C1 .0 � i < 2N/

+

D

*
x2j ;

x2jC1

ˇ̌̌̌
ˇ
QR�1
ˇD0 x2.jCˇ/x2.jCˇ/C1 D

QR�2
ˇD0 x2.jCRCˇ/x2.jCRCˇ/C1;QR�1

ˇD0 x2.jCˇ/C1x2.jCˇC1/

D
QR�2
ˇD0 x2.jCRCˇ/C1x2.jCRCˇC1/ .0 � j < N/

+

D

* x2j ;
x2jC1;

yj ; zj

ˇ̌̌̌
ˇ
QR�1
ˇD0 yjCˇ D

QR�2
ˇD0 yjCRCˇ ;QR�1

ˇD0 zjCˇ D
QR�2
ˇD0 zjCRCˇ ;

yj D x2jx2jC1; zj D x2jC1x2jC2 .0 � j < N/

+

D

* x2j ;
x2jC1;

yj ; zj

ˇ̌̌̌
ˇ
QR�1
ˇD0 yjCˇ D

QR�2
ˇD0 yjCRCˇ ;QR�1

ˇD0 zjCˇ D
QR�2
ˇD0 zjCRCˇ ;

yj D x2jx2jC1; x2jC1 D zjx
�1
2jC2 .0 � j < N/

+

D

*
x2j ;

yj ; zj

ˇ̌̌̌
ˇ
QR�1
ˇD0 yjCˇ D

QR�2
ˇD0 yjCRCˇ ;QR�1

ˇD0 zjCˇ D
QR�2
ˇD0 zjCRCˇ ;

yj D x2j zjx
�1
2jC2 .0 � j < N/

+
(4.1)

D

*
x2j ;

zj

ˇ̌̌̌
ˇ
QR�1
ˇD0 x2.jCˇ/zjCˇx

�1
2.jCˇ/C2

D
QR�2
ˇD0 x2.jCRCˇ/zjCRCˇx

�1
2.jCRCˇ/C2

;QR�1
ˇD0 zjCˇ D

QR�2
ˇD0 zjCRCˇ .0 � j < N/

+

D

*
x2j ;

zj

ˇ̌̌̌
ˇ
x2j

�QR�1
ˇD0 zjCˇ

�
x�1
2.jCR/

D x2.jCR/
�QR�2

ˇD0 zjCRCˇ
�
x�1
2.jC2R�1/

;QR�1
ˇD0 zjCˇ D

QR�2
ˇD0 zjCRCˇ .0 � j < N/

+
:
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By setting each x2j D x0, we have that H maps onto

Q D

*
x0; zj

ˇ̌̌̌
ˇ
R�1Y
ˇD0

zjCˇ D

R�2Y
ˇD0

zjCRCˇ .0 � j < N/

+

Š hx0 j i �

*
zj

ˇ̌̌̌
ˇ
R�1Y
ˇD0

zjCˇ D

R�2Y
ˇD0

zjCRCˇ .0 � j < N/

+

Š Z �H.R;N;R � 1/ D Z �H.r=2; n=2; s=2/:

It follows that H.r; n; s/ab maps onto Z˚H.r=2; n=2; s=2/ab, so if we have
H.r=2; n=2; s=2/ab ¤ 1, this is non-cyclic and so d.H.r; n; s/ab/ � 2, proving
part (a).

For part (b), suppose for contradiction that H.r; n; s/ is a 2-generator knot
group; then in particular d.H.r; n; s/ab/ D 1 so by part (a) we have that

H.r=2; n=2; s=2/ab
D 1:

IfH.r=2; n=2; s=2/ is non-trivial, then it is non-cyclic soQ, and henceH.r; n; s/,
is not a 2-generator group, a contradiction. Therefore H.r=2; n=2; s=2/ D 1 and
it follows from (4.1) that H.r; n; s/ D hx2j j x2j D x2jC2 .0 � j < N/i Š Z,
a contradiction.

5 Proof of Theorem A and Corollary B

First observe the following:

Lemma 11. Let r; s � 1, n � 2 and suppose r � 0 mod n or s � 0 mod n. Then

H.r; n; s/ Š Zjr�sj=.n;r�s/ � Z � � � � � Z„ ƒ‚ …
.n;r�s/�1

:

Hence H.r; n; s/ is a connected LOG group if and only if .r; n; s/ D 2 and
jr � sj D 2, in which case H.r; n; s/ Š Z.

Proof. Since H.r; n; s/ Š H.s; n; r/, we may assume that r � 0 mod n. Then
the set of relations of H.r; n; s/ are xi : : : xiCr�1 D xi : : : xiCs�1 (0 � i < n)
which, after cancelling, become the set of relations xi : : : xiCjr�sj�1 D 1. That is,
H.r; n; s/ Š Gn.x0x1 : : : xjr�sj�1/ which by [33, Theorem C] is isomorphic to

Zjr�sj=.n;r�s/ � Z � � � � � Z„ ƒ‚ …
.n;r�s/�1

:
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Generalized Fibonacci groups H.r; n; s/ 37

If H.r; n; s/ is a connected LOG group, then we have H.r; n; s/ab Š Z which
happens if and only if .n; r � s/ D 2 and jr � sj D 2 (equivalently .r; n; s/ D 2
and jr � sj D 2, since r � 0 mod n), in which case H.r; n; s/ Š Z.

Proof of Theorem A. If H.r; n; s/ is a connected LOG group, then

ˇ.H.r; n; s/ab/ D 1

so by Theorem C we may assume that either r D s and .r; n/ D 1 or r ¤ s and
.r; n; s/ D 2. In the first case the result follows from Lemma 4 so assume r ¤ s
and .r; n; s/ D 2. If we have that r � 0 mod n or s � 0 mod n, the result follows
from Lemma 11, so we may assume further that r 6� 0 mod n and s 6� 0 mod n.
If jr � sj ¤ 2, then H.r; n; s/ is not a connected LOG group by Lemma 9, and if
jr � sj D 2 and H.r=2; n=2; s=2/ab ¤ 1, then H.r; n; s/ is not a connected LOG
group, by Lemma 10. Now r C s � 2 mod 4 so .r C s/=.n; r C s/ is odd and by
Lemma 5 we may assume .n; r C s/ � 2 so .n; r C s/ D 2. If ¹r; sº D ¹4; 2º, then
H.r=2; n=2; s=2/ Š F.2; n=2/ and it is well known (see, for example, [10]) that
F.2; n/ab ¤ 1 so we may assume further that ¹r; sº ¤ ¹4; 2º. Thus we have that
r; s 6� 0 mod n, .r; n; s/ D 2, jr�sj D 2,H.r=2; n=2; s=2/ab D 1, .n; rCs/ D 2
and ¹r; sº ¤ ¹4; 2º, as in part (c).

Proof of Corollary B. If H D H.r; n; s/ is a 2-generator knot group, then H is
a connected LOG group so one of the conclusions (a)–(c) of Theorem A hold.
In (b) we have that H.r; n; s/ Š Z, a contradiction, and in (c) H.r; n; s/ is not
a 2-generator knot group by Lemma 10.

Acknowledgments. I thank Bill Bogley for helpful comments on a draft of this
article.
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