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Highlights

 Semi-purified extracts of several microalgae strains were evaluated as photosensitizers

 Photodynamic therapy (PDT) was tested on four tumor cell lines (A549, LNCap, MCF-7, and 

MDA-MB 435) 

 Extracts from cellulase, lysozyme and ultra-sonication treated MA cells were examined. 

 By treatment with MA constituents, viability of tumor cell lines decreased by up to 95% with 

light activation. 

 Majority of the MA constituents showed a higher phototoxicity after exposure to both blue and 

red lights.



Abstract

Background 

In recent years, microalgae (MA) have attracted much interest considering their possible 

therapeutic application. They contain active natural compounds or derivatives (extracts, pure or 

chemically modified compounds) that have increasing applications in the pharmaceutical 

industry. 

Methods

The present study aims to examine microalgae for new photosensitizers, with a potential to be 

used in the light-associated treatment of tumors. Semi-purified extracts of several microalgae 

strains were evaluated as photosensitizers for photodynamic therapy (PDT) applications. Four 

tumor cell lines (A549, LNCap, MCF-7, and MDA-MB 435) were used to assess 34 samples 

extracted by three methods: cellulase enzyme, lysozyme enzyme and ultra-sonication. The 

fluorescence measurements and the recorded images alongside the spectral intensities between 

650- 800 nm wavelengths provided characteristic features to some of the contents of the 

examined extracts. 

Results

Several microalgae constituents activated by blue light (BL), red light (RL) or both (in sequence) 

exhibited significant effects on the viability of the tumor cell lines, decreasing it as much as 95 % 

for certain MA constituents. Majority of the MA constituents showed a higher phototoxicity after 

exposure to both blue and red lights than the photo-induced toxicity when exposed to a single 

light source. The viability of the tumor cells exhibited the dose dependent response with the MA 

constituents.

Conclusion

The results clearly showed that MA constituents are potential photosensitizers that have a 

significant photo-damage effects on the tested cancer cells.
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exposed to a single light source. The viability of the tumor cells exhibited the dose dependent 

response with the MA constituents.

Conclusion

The results clearly showed that MA constituents are potential photosensitizers that have a 

significant photo-damage effects on the tested cancer cells.
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Introduction

Drug resistance is still a major obstacle in the effective chemotherapeutic treatment of cancer, 

despite numerous efforts to overcome these problems [1, 2]. Cancer incidences are increasing 

and therefore effective therapeutic approaches are needed to combat these malignancies [1]. 

Recent data highlight the steps of deregulated cellular proliferation, metastasis and apoptosis 

[2, 3]. In recent years, the study of the chemistry of microalgae has seen a tremendous 

increase due to the need for pharmaceutical applications of potentially bioactive compounds 

[4]. Algae extracts are documented to have anti-cancer activity in vitro and in vivo and 

induce growth inhibition in cancer cells while leaving the non-transformed cells intact [5]. 

The major interest in microalgae is the capacity to modulate their metabolism according to 

environmental conditions. Moreover, microalgae are acknowledged to be a diverse source of 

bioactive molecules that play physiological roles in the organisms [6, 7]. Marine algae, 

including the microalgae, are considered to be a major source of novel natural bioactive 

substances, making them attractive for development by the pharmaceutical sectors [8]. There 

are polysaccharides, protein, peptides, or unsaturated long chain fatty acids in microalgae that 

have chemical structures not found in other natural sources, or which are present at much 

higher concentrations [9]. Several compounds in the algae’s pigments have attracted high 
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levels of interest, such as β carotene, astaxanthin, phycoerythrin, and tetrapyrole [10, 11]. 

Some compounds produced by algae (and the microalgae, in particular) can respond with a 

remarkable selectivity to a wide diversity of molecular targets. (i.e. inhibitors for specific 

enzyme of a particular pathway for tumor proliferation). A variety of red algae as well as that 

of the brown algae (Phaeophyceae) have anti proliferative and anti-inflammatory activities 

[12, 13]. The in vivo and in vitro studies of the seaweed constituents reported the 

antimutagenic mechanisms and potential anticarcinogenic effects of kelp and red algae 

against colon and breast cancers [14]. An aqueous extract of G. corticota showed cytotoxic 

activity against leukemic cell lines Jurkat and Molt-4 [15]. Many of those pigments are 

photosensitive and fluorescent. Development of the fluorescent protein family to include 

optical highlighters and fluorescence resonance energy transfer (FRET) biosensors further 

equips this abundant class of fluorophores with biological probes efficient for 

photoactivation, photoconversion, and detection of molecular interactions beyond the 

resolution limits of optical microscopy [16]. Keeping in mind that some of the modified 

fluorescent proteins based on the fundamental chromophore structure present in green 

fluorescent protein could not only emit fluorescence, but also produce Reactive Oxygen 

Species (ROS) upon excitation with light such as KillerRed [17]. The species such as singlet 

oxygen or free radicals have destructive impact when they are generated within a tumour 

tissue, particularly in photodynamic therapy applications (PDT). PDT is an alternative 

treatment for cancer that involves administration of a photosensitive drug or PS that localizes 

at the tumor tissue followed by in situ excitation at an appropriate wavelength of light. PDT 

is commonly practiced in the treatment of several cancers, including those in the head & 

neck, lungs, bladder and particularly skin cancers [18, 19]. It has also been successfully used 

in the treatment of non-cancerous conditions such as age-related macular degeneration 

(AMD) [20], psoriasis [21] and atherosclerosis [22]. In addition, PDT has shown some 
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efficacy in anti-viral treatments of such conditions as herpes [23]. Unlike traditional methods 

such as chemotherapy and radiotherapy, PDT allows a relatively higher degree of specificity 

by targeting malignant and pre-malignant cells. It is also preferred when surgical removal is 

considered risky in certain cases such as oesophageal [24] and brain tumors [25, 26]. 

There have been few studies on combinations of PDT with standard antitumor regimens; 

PDT can be used in combination with surgery as a neoadjuvant, adjuvant or repetitive 

adjuvant treatment, preferably fluorescence image-guided technique that confine illumination 

to the lesions [19]. Microalgae remain, to date, largely unexplored and unexploited. It 

represents a unique opportunity to obtain novel photosensitizers (PSs) from the naturally 

occurring pigment fractions, which can be exploited for PDT. Therefore, several semi-

purified extracts from different microalgae have been assessed with two cancer cell lines in 

this study, In the light of persistent demands to develop new PSs to fulfill a professed need in 

PDT drug’s array. To our knowledge, this is the first time a wide range of MA constituents 

have been examined in PDT field, evaluating their activities against tumor cell lines. The 

results of this study will provide the starting points for drug design and to understand the role 

of a chemical in advanced strategic PDT technology. We aimed at identifying potentially 

active fractions/extracts, their isolation and identification of novel candidates.

Materials and Methods 

Materials

The extracts of microalgae (MA) were solid materials, some of the samples were off white 

powder and others were green pigments. The samples were divided into three categories, 

depending on their methods of extracting which were described in our previous publication 

[27].  The three Categories were Category I, MA constituents from cellulase treated samples, 

(odd numbers, MA-1 to MA-23). Category II; MA constituents from lysozyme treated 
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samples of MA, (even numbers MA-2 to MA-24), and Category III; MA constituents from 

ultra-sonication treated MA, (MA-25 to MA-31).

[Table 1]

Chemical treatment for MA green dye samples

In order to activate the green pigments constituents that has metal ions such as chlorophylls 

and tetrapyrolles compounds, it was necessary to remove the coordinating metal (magnesium 

or zinc) within the cavity of their structures. The green pigments (Category III samples) were 

dissolved in 50 % aqueous Dimethyl Sulfoxide (DMSO) treated with 5 M hydrochloric acid. 

The samples were stirred at room temperature for 24 h, dialyzed for 24 h against pure water 

in dialysis membrane tubes (Cellulose Membrane, Fisher, UK) with 100 Dalton Cut-off, then 

were freeze dried (-80 °C). The stock solutions of the solid materials were dissolved in ultra-

pure water or DMSO (for the slightly insoluble materials in water, with concentration 100 mg 

of dry weight per ml, therefore DMSO concentration in the cell culture medium didn’t exceed 

more than 1 %). 

Spectral analysis 

The absorbance spectra of all samples (dissolved in water, 20 μg/mL for Category I & II and 

5 μg/ml for category III) were recorded in cells free medium using diode array 

spectrophotometer (Agilent 8453, UK) between the wavelengths of 220 and 850 nm with exit 

slot 10. 

Cell culture preparations

The anticancer activities of the MA constituents were evaluated against two of the most 

common human tumour cell lines using PDT techniques. Cell lines of A549 (human lung 

carcinoma), MCF-7 (human breast adenocarcinoma) were cultured in Dulbecco's Modified 

Eagle Medium (DMEM). The medium were mixed in L-glutamine (20 lM) and phenol red, 
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and supplemented with 10 % fetal bovine serum (FBS), gentamycine (500 units/mL; Life 

Technologies). The cells were grown as monolayers in sterile, vented-capped, angle-necked 

cell culture flasks (Corning) and were maintained at 37 °C in a humidified 5% CO2 incubator 

(IR Autoflow Water-Jacketed Incubator; JenconsNuaire) until confluent. 

Fluorescence measurement

All MA extracts were checked for their fluorescence properties in A549 and MCF-7; cells 

were seeded into 96-well plates in triplicates at a density between 5-8×104 per well. 

Following incubation for 48h, the cells were washed with phosphate buffer saline (PBS) and 

100μl solutions containing each sample at a concentration range of 100 μg/mL to 500 μg/mL 

or to 1000 μg/mL (as specified in the legends under the graphs) were prepared in DMEM 

medium and added to their designated wells. Each well plate contained three control wells 

without MA constituents. Also, one plate contained Pc-al as a reference with 150 μM (≈ 86 μ 

g/mL). The plates were wrapped with aluminum foil to avoid the exposure to any light and 

the cells were incubated for 24 h at 37 °C in 5 % CO2 incubator. The medium was then 

discarded and the cells were washed twice with PBS to remove any excess of materials. MA 

fluorescent constituents were excited at wavelength 395 nm and the spectra of MA 

fluorescence emissions recorded between wavelengths of 600–850 nm. The intracellular 

fluorescence emission intensity was measured at wavelength 670 nm after excitation at 

wavelength 395 nm with fluorescence plate reader spectrophotometer (MR 700 Dynatech, 

Dynex, USA). 

Fluorescence microscopic imaging

The cell line A549 was cultured with MA constituents as described above. Treated cells were 

covered with foil to protect from light. After 24 h incubation, the excess of MA samples in 

the culture medium was discarded. The cells were then washed twice with PBS and phenol 
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red free culture medium was added for the live cell’s fluorescence imaging. a Nikon A1 si 

Confocal microscope (Nikon, Tokyo, Japan model, UK) was used for imaging, with 20x 

objective, and laser settings were as follows; red channel 1, excitation wavelength 398.7 nm, 

emission wavelength 700 nm and red channel 2, excitation wavelength 560.5 nm, emission 

wavelength 595 nm. Sequential laser scanning was used to avoid the bleed through between 

the channels. Nikon NIS Elements software version 3.21.03 (Nikon, Tokyo, Japan) was 

employed for image processing. 

Photodynamic treatment (PDT)

The photocytotoxicity of the cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. Cells were seeded into 96-well plates in 

triplicates at a density between 5-8×104 per well as above. Following incubation for 48 h, the 

cells were washed with PBS and 100μl solutions containing each sample at a concentration of 

between 100 and 500 μg/mL or 1000 μg/mL (according to each set of conditions for the 

experiment) were added to their designated wells. Each well plate contained minimum of 

three control wells without MA constituents and exposed to the same environment of the cells 

with MA constituents. Each experiment also contained the PS, Aluminum-phthalocyanine 

chloride (Pc-AL) with a concentration of 50 μM, 100 μM, and 150 μM as a reference 

compound. The plates were wrapped with aluminum foil to avoid the exposure to any light 

and the cells were incubated for 24 h at 37 °C in 5% CO2 incubator. The cells were washed 

with PBS to remove the excess of the samples and replaced by fresh full medium. The plates 

were irradiated with LED blue light (BL) and red light (RL) sources (Phantom, Shenzhen 

CIDLY Optoelectronic Technology, China), equipped with a fan to eliminate any heat and 

emit a uniform field of low-power, LED (75 W). The BL and RL sources were fixed within 

30 cm distance from the top of the cell culture plates in a black box.  The PDT experiments 

were carried out using three different separate assays; BL for 5 min, RL for 5 min, and 5 min 
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BL followed by 5 min RL, then incubated for 18 h at 37 °C in 5 % CO2 incubator. To 

measure the phototoxicity, cells were incubated with the medium containing MTT (0.5 

mg/mL dissolved in full medium) for 1 h. The insoluble end product (formazan derivatives) 

was dissolved in 100 μL DMSO after removing the medium. UV absorption was quantified at 

550 nm using a 96-well plate reader (MR 700 Dynatech, Dynex). The means of cell survival 

(viabilities) were calculated for each sample and expressed as a percentage of control (cells 

without the samples).

MA concentration dependency effect on the phototoxicity and IC50 determination

To examine the relationship between the concentration of MA samples and the phototoxicity, 

a range of concentrations were optimized and assessed. Cells were seeded and treated as 

above with a range of concentrations. According to their PDT efficacy, the concentrations for 

Category I and II were between 200 to 1000 μg/mL, whereas, Category III were between 20 

to 100 μg/mL. The cell’s viability were calculated as percentages of control (cells without 

MA treatment). The values MA concentrations of that exhibited 50 % cell death (IC50) were 

determined for the most effective samples from each Category       

Cytotoxicity evaluation

The cytotoxicity “dark toxicity” of all MA constituents was examined in A549 and MCF-7 

cell lines to evaluate the intrinsic chemical toxicity of MA samples. Well plates were 

prepared in the same manner as above but without irradiation. The cells were incubated with 

the samples with the highest concentration for each category (1000 μg/mL for Category I and 

II and 100 μg/mL for Category III). The plates were kept in darkness all the time by wrapping 

the plates with aluminum foil and incubated at 37 °C in 5 % CO2 incubator for 24 h. Cells 

were then washed and they were subjected to the MTT assay. The viabilities of the cells were 



9

calculated as percentages of control (untreated cell with MA constituents from the same 

plate). 

Statistics

Each experiment was repeated mostly in triplicates at different dates. The presented results 

are the average of the repeated experiments minimum of three different days to ensure 

reproducibility, with error bars representing the standard deviations. The t-test statistic for 

each experiment was carried out and p < 0.05 considered significant. 

Results

The search for bioactive antitumour agents from microalgae requires varaities of the 

metabolite compositions of the algae extracts. Application of different extraction’s techniqus 

should provide different groups of chemicals, each group sharing some common constituents 

in varible quantities. The sources of biological extracts were obtained seven microalgae 

species with three methods of extracts. The details of extractions were previously published 

and our objective here to identify the most bioactive and photosenstive extracts to be isolated 

and developed later for photodynamic therapy (PDT) applications.  

Spectral analysis of MA constituents 

The data analysis of the absorption spectra for some of the tested categories demonistrated 

the existence of the naturally occurring phenolic and flavonoids groups [28, 29]. The 

absorbance spectra for MA constituents were recorded in water (cell free medium) for all the 

extracts to provide the first insight of the components contained in the samples. The majority 

of MA constituents from all the above categories displayed high absorbance peaks at 

wavelength between 220-300 nm, 400-500 nm and another peak between 650–750 nm, 

(Figure 1-A, -B, and -C). MA Constituents exhibited absorbance intensity variations 

reflecting their characteristic chemical components. Only MA-09, -15, and -17 from Category 
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1, MA-2, -8, -10, -16, -18, and -20 from Category II, and MA-25 to MA-31 from Category III 

have variable absorbance intensities at all the above region peaked at around 670 nm. The 

spectra analysis Category III showed some characteristic features of the tetrapyrroles 

compounds, particularly chlorins, where the Soret bands appeared around 400 nm and Q 

bands between 630 – 800 nm [29]. The rest of MA samples have much weaker absorbance 

due to some aggregation in water. 

[Figure 1]

Biological evaluation

The evaluation of MA extracts was conducted first in two of the most common human 

tumour cell lines A549 and MCF7. Further two cell lines LNCap ) human prostate cells 

derived from metastatic site lymph node) and MDA MB-435 (human breast adenocarcinoma) 

were employed in some experiments in order to check the specify of the cell type and the 

capability of MA for each type. A fluorescence analysis for all MA constituents was 

conducted in all tumor cell lines between 600 to 800 nm wavelengths. The emission spectrum 

of MA samples in A549 cell line presented in Fig 2-A, -B, and -C displayed inherent 

fluorescence features. The emission spectra of fluorescent MA constituents provided 

considerable fluorescence traces for some samples of Category I (MA-09, -15, -17), Category 

II (MA-02, -16, -20), and Category III (MA-25 to MA-31) in the red region of the light 

spectrum between the wavelength 650–800 nm in A549 selected data are presented in Fig 2, 

A, B, and C. In our experimental setting, it wasn’t possible to measure the fluorescence 

below 600 nm wavelength due to the large background of the 96 well plates. 

[Figure 2]

Fluorescence intensities of the samples that showed fluorescent ability of MA samples were 

measured at (ʎexcitation400 nm and ʎemission 670 nm) in the tumor cell lines including A549 cell 
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line and MCF-7 cell lines (Fig 3-A and -B) to give an indication regarding the fluorescent 

materials and their expected phototoxicity. MA Constituents (MA-7, -11, -19 and -23) had 

very weakly fluorescence emission, whereas MA-01, 03, -05, -13, and -21 did not show 

detectable levels of fluorescence at 670 nm wavelength. The samples in Category I (MA-09, -

15, -17) showed the highest fluorescence intensity of that group (between ≈ 100 -250 units). 

However, the fluorescence capacities of MA-16, -18, and -20 from Category II and the 

reference compound Pc-al were much higher than those in Category I in the magnitude of 3-4 

folds (between ≈ 250 to 950 units). This data also reflects MA constituent’s uptake specificity 

by cell lines, in particular MCF-7 showed significantly higher uptake of MA-09, whereas 

MA-15 and -17 were absorbed by A549 more than MCF-7 cell line. MA-16 (≈ 950 units), -18 

(≈ 380 units) -20 (≈ 480 units) and Pc-al (≈ 400 units) were strongly fluorescent reflecting 

their higher cellular uptake by A549 cell line as compared to MCF-7 cell line (≈ 600, 180, 

280, and 350 units, respectively). Samples MA-02, -04, -08 and -10 were moderately 

fluorescent, whereas MA-12 and -24 were very weakly fluorescent. 

[Figure 3]

A dose dependence profile for the fluorescence emissions of MA constituents, Category II 

(ultra-sonication extracts) in MCF-7 and A549 cells were examined and presented in A549 

and MCF-7 (Figure 4-A and –B, respectively) as an example of the strongly fluorescent 

materials. The fluorescence intensities exhibited positive correlation against a range of 

concentrations (100–500 µg/mL) for MA-25, -26, -27, and -28 and MCF-7 (Fig 4-B) cell 

lines. The Pearson correlation, determined between the incubated MA constituents doses and 

the fluorescence signals, was larger than 0.92 in all the samples and both cell lines.

[Figure 4]

Intracellular localization
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Fluorescence microscopy has been extensively used to investigate the micro-distribution and 

detailed examination of drug deposition in cells and tumor tissue. In this study, several MA 

constituents, with potential PSs, are imaged by confocal microscopy in the A549 cell line. 

Figure 5 presented as an example to confirm the identity and the existence of the fluorescent 

materials within the cellular compartments. Imaging data shows that the PSs can readily pass 

through the plasma membrane and mostly accumulated in the cytoplasmic region. Grey 

images are the differential interference contrast (DIC) of the cells. The fluorescence was 

exhibited by the PSs overlaid to indicate both the red fluorescence and the contrast images.

All the imaging data were recorded using constant laser power and gain that was initially 

adjusted according to untreated control. Untreated control cellular images did not show red 

fluorescence thus no significant auto-fluorescence was detected in A549 cell line (Figure 5) 

and LNCap cells (Supporting Data, Figure S-1). Among microalgae samples, highest cellular 

uptake and strongest fluorescence in red channel were pronounced with MA 02, -16, -18, -30, 

and -31, whereas MA -09, -15, and -17, appeared moderately fluorescent. All MA 

constituents that demonstrated strong fluorescence in the cytoplasmic region did not seem to 

display much of the fluorescent signals in the nuclei. The results coincide with the 

fluorescence intensity profiles of the same samples in Figs 2, 3, and 4.

[Figure 5]

PDT effect of MA constituents on tumour cell lines

The phototoxic effect of MA constituents was assessed on the viability of four tumor cell 

lines after activation of the potential PSs within the samples with three techniques using two 

light sources, BL, RL or both light in sequence (5 min each).

PDT of MA constituents with BL
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MA constituents of Category I and II were assessed for their photocytotoxicity on A549 and 

MCF-7 cell’s viability. Both categories showed different quantities of fluorescence in green 

and red regions of the light spectrum. Therefore, following the treatment with MA 

constituents for 24 h, cell lines were irradiated with BL for 5 min after optimizing the time of 

exposure. The cell survival of categories (I) and (II) of MA constituents represented as 

percentages of the control (untreated cells) upon BL activation is shown in Figure 6-A and -

B, respectively. MA constituents; MA-03, -05, 09, -15 and -17 caused ≈ 60-80% cell death in 

A549 and MCF-7 cell line. In Category I samples, MA -09 appeared to be the best candidate 

against all cancer cell lines used from the cellulase extracted groups. MA constituents; MA-

02, -16, -18, -20 caused ≈ 67% phototoxicity in A549 and, while MA-02, -04, -06, -08, -10, -

16, -18, and -20 exhibited significant phototoxcicty between ≈ 4 –84 % in MCF-7 cell lines, 

with the most deleterious effect caused by MA-02 and -18.. Thus MA constituents showed 

selective efficacy towards cancer cell lines. Further 5 min BL exposure didn’t show extra 

significant effect on the above MA samples. Also, the phototoxic effect of the above samples 

that were activated by BL and evaluated against two other cell lines LNCap and MDA MB-

435 showed also specificity towards cell lines (Supporting Data, Figure S-2).

[Figure 6]

PDT of MA constituents with RL

The photcytotoxic effects of categories I, II, and III samples on the viability of A549 and 

MCF-7 cells after irradiation with RL for 10 min illustrated in Figure 7-A, B and C, 

respectively. The viability of the cells was compared with untreated control group and with 

the reference drug (aluminum-phthalocyanine chloride (AlPc, PS used as an anticancer agent 

for PDT). The phototoxicity effect of some of Category I (MA-09, -15, and -17) caused ≈ 60-

85% cell death in both cell lines, A549 and MCF-7. Therefore, photodamaging efficacy of 
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Category I (cellulase treated samples) was improved slightly when activated with RL. In 

contrast, Category II (Lysozyme treated samples) did not show significant difference between 

blue and RL activation (Figure 7-B). PDT effects of Category III samples (ultra-sonication 

extracts, clear green pigments) were also assessed in response to RL irradiation displayed 

high fluorescence features in A549 and MCF-7 cell lines (Figure 7-C). The data indicated 

selective efficacy of MA constituents towards cancer cell line types after 5 min exposure. The 

samples (MA-25, -26, -28, -29, and -31) induced cell death up to ≈ 95% in A549 and 90% in 

MCF-7. The samples (MA-30) lead to ≈ 84% phototoxicity in A549 and 24% in MCF-7 cell 

line. The PS PC-Al chloride was as the reference compound since its fluorescence emission is 

in the red shift at the same region as the effective MA constituents. Pc-Al showed some PDT 

effect of 20% and 30% photodamage in both A549 and MCF-7, respectively with 

concentration of 29 μg/mL (50 μM) (Figure 7-A). Whereas, it exhibited higher phototoxicity 

with relatively low concentrations of 58 μg/mL (100 μM) (Figure 7-B). However, Pc-AL 

experienced also some aggregation at higher concentration of 86 μg/mL (150 μM), although, 

it still gave good phototoxic effects of 80% in A549 and 82% in MCF-7, (Figure 7-C). 

Likewise to BL effect, increasing RL exposure time by 5 min didn’t show more remarkable 

effect on the above MA samples. The phototoxicity of all the three MA categories using RL 

irradiation was assessed similarly in LNCap and MDA MB-435. The phototoxic damage 

showed clear selective effect of some of MA samples for both LNCap and MDA MB-435 

cell lines (Supporting Data, Figures S-3).

[Figure 7]

PDT Effect of MA constituents with dual light sources/ BL and RL

The effect of dual light irradiation (BL and RL) on MA constituents for both cellulase and 

lysozyme extracts was investigated to assess the possible existence of materials with dual 

photoactive functionalities. The 96-well plates with cells incubated with MA constituents 
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were first exposed to BL for 5 min followed by RL for 5 min, (Figure 8-A and –B). The 

efficacy of PDT using dual light sources of Category I and II samples determined in A549 

and MCF-7 cell lines. The only sample that its phototoxic effect was increased in Category I 

was of MA-15 with photodamage values of ≈ 90 and ≈ 87 % in A549 and MCF-7 upon dual 

light activation, respectively. Whereas, MA-09 and -17 performed better with single BL light 

as compared to dual light exposure. Interestingly, the samples in Category II (MA-02, -08, -

10, -16, -18, and -20) demonstrated significant increase to their phototoxic efficacy with both 

BL and RL irradiation. They all have up to 95 % phototoxic damage to both cell lines. Pc-Al 

with concentration of 86 μg/mL (150μM) also increased its efficacy slightly in MCF-7 only 

to ≈ 90%, considering it required the RL for its activation. 

[Figure 8]

Concentration dependence effects of MA on the cell’s viability profile and the phtotoxicity 

IC50 values

The concentration dependence of MA samples on the magnitude of the phototoxicity after 

activation with BL or RL were investigated in A549 and MCF-7 cancer cell lines. Several 

experimental optimizations were carried out and a range of MA concentrations were chosen 

for the samples that displayed PDT efficacy in order to calculate the values of 50 % cell death 

(IC50) (presented in Table 2). 

[Table 2]

The concentration range was between 200-1000 µg/ml for Category I (MA-03, -07, -09, -15, 

and -17) and irradiated with BL, Category II (MA-02, -10, -16, -18, and -20), irradiated with 

RL after several experimental optimizations. The concentration range for Category III (MA-

25 to MA-31) was between 20-100 µg/mL, owing to their higher effect. Pc-Al was also used 

with Category III as reference compound with 5 concentrations between 20 to 100 μg/ml, 
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which was irradiated with RL too. The phototoxicity profile of all the above MA samples 

conferred positive correlation upon the concentration increase (Supporting Data S-4). The 

values of IC50 of Category I was between ≈ 309 to ≈ 700 μg/mL for A549 and ≈ 314 to ≈ 986 

μg/ml for MCF7. The sample MA-09 exhibited the best value of the Category I of ≈ 309 

μg/mL in A549 and ≈ 314 μg/ml in MCF-7. The values of IC50 for Category II were better 

than Category I, ranged between ≈ 130 to ≈ 542 μg/ml in A549 and ≈ 179 to ≈ 429 μg/mL in 

MCF-7. Category III samples exhibited the highest phototoxicity, ranging between ≈ 16 

µg/mL for MA-31 to ≈ 42 µg/mL for MA-29 in A549, while the values of IC50 were between 

≈ 7 µg/mL for MA-31 to ≈ 50 µg/mL for MA-29 in MCF-7 cells. The PDT efficiency of the 

Category III samples was in comparable range to the reference compound (Pc-Al), which has 

IC50 ≈ 24 µg/mL in A549 and ≈ 32 µg/mL in MCF-7. 

Dark/chemical cytotoxic effect of PSs

One of the characteristics of a good PS is being not harmful to the cells in the absence of 

light. Therefore, dark toxicity of MA constituents was investigated in A549 and MCF-7 cell 

lines without irradiating MA constituents Category I, II, and III (Fig 9, A, B, and C). In 

comparison to untreated control cells, MA constituents MA-01, -03, -05, -07, -11, -13, -19 

and -21 caused 5-10 % toxicity in both cell lines under controlled absence of light conditions, 

whereas MA-09, -15, and -17 exhibited damaged 7% to 11% in A549 cells. They 2 to 4 % 

cytotoxicity to MCF-7 cells. The Category III displayed slightly more cytotoxic effects on 

both cell lines with lower concentrations of 100 µg/ml. The latter Category caused between 

8% to 20% chemical toxicity in A549 and 3 to 20 % in MCF-7.  

[Figure 9]

Discussion
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In recent years, a great number of natural products, their derivatives, and many secondary 

metabolites, have been isolated from marine organisms. Among these agents are compounds 

with different activities as inhibitors of transformation of the normal cells into cancer cells, 

retraction of tumor cell growth and formation of micro-tumors, and induction of apoptosis 

[8]. 

Herein, we have investigated several MA constituents with light application and examined 

their photochemical potential on tumor cell lines as a part of a boarder investigation aimed to 

explore MA effects on viruses, and as antioxidant agents. Several samples isolated from 

different MA strains by three methods were evaluated in the most widespread cancer types 

(A549 and MCF-7) with PDT techniques. The details of extraction methods were previously 

published [27]. Our goal was to identify the most active extracts of semi-fractionated 

samples, allowing the isolate and characterize of their bioactive chemical components to take 

place in the next stage. Absorbance spectral analysis was the first tool to provide an insight to 

the components that might be present in the extracted samples. 

In addition, the spectra of MA for certain samples in the three categories confirmed the 

existence of the three well-reported major classes of photosynthetic pigments in microalgae 

including fluorescent protein in variable percentages. The chlorophylls derivatives, 

carotenoids (carotenes and xanthophylls), and phycobilins were more pronounced in 

Category III. It is acknowledged that the fluorescence of the chlorophyll is quenching 

quickly. The characteristic features of the tetrapyrroles compounds, particularly chlorins as 

part of chlorophyll were shifted after removal of the coordinating magnesium. One of the key 

requirements of a good photosensensitizer, is to have strong absorption with a high extinction 

coefficient in the red/near infrared region of the electromagnetic spectrum (600–850 nm) as 

these wavelengths allow deeper tissue penetration [30]. PS fluorescence emission has been 

considered a good marker to reflect local drug concentration or bioavailability for PDT 
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within the cell membrane [31]. It would account for indirect parameter (phototoxicity) to 

reflect the production of reactive oxygen species (ROS) and subsequently, the efficacy of 

their PSs [18, 23]. The strong fluorescence intensities for the majority of all the samples in 

the red shift indicated to the presence of chlorins as the major photosensitisation components. 

However, some samples emitted fluorescence below the red shift region where the groups 

such as coumarins, carotenoids, flavonoids could be also present [32]. It has been reported 

that the fluorescent protein family could be as blue fluorescent protein or yellow fluorescent 

protein to red fluorescent protein which considered as a source of excellent tools for live-cell 

imaging and auto-catalytically built in a host-independent process [33]. Measurement of the 

uptake of new photosensitive materials into cancer cells provides information on the (kinetics 

of) interaction and membrane transport characteristics of those materials. It enables a first 

rough estimation of their behavior to the light interval as a basis for identification of their 

constituents. The methodological approaches described here make use of the inherent 

fluorescence properties of the photosensitive constituents and allow for either absolute 

quantification of their active amount taken up by cells, i.e for estimation of time-dependent 

course of PS uptake. It was found out, the samples that conferred high fluorescence 

intensities, also exhibited high PDT efficacy in both cell lines using BL, RL, or dual (BL then 

RL) light sources with some specificity. The high efficacy of some samples was signifying 

their enrichment with PSs, not only the substances that might be emit their fluorescence at the 

red region of the light spectra, but also below that region. All the samples of Category III 

showed high efficacy against both cell lines (A459 and MCF-7) in variable degrees. On 

contrast, Pc-Al displayed much higher efficacy on the later cell line. Interestingly, by the 

level of the viable tumour cells, the prominent enhancement of PDT-Category I and II 

activated with dual BL followed by RL, in equal energy levels could be endorsed, regardless 

of their effects under BL or RL alone. This could be attributed to presence of different types 
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of constituents that exited at different region of light spectrum. Also, there are large naturally 

occurring molecules including proteins that feature two different light-sensing systems 

coexist in a single chromophore such as chromoprotein (phytochrome 3) [34]. It was reported 

that the N-terminal portion of phytochrome 3 contained the chromophore-binding domain of 

phytochrome (phytochromobilin), and the C-terminal half showed similarity to phototropin 

(pair of flavin derivatives), where both BL- and RL-dependent phototropic responses could 

occur [35]. Additionally, PDT effects by dual light activation could be owing to the presence 

of protein extracted from the light-driven outward sodium pump (KR2) such as 

channelrhodopsins found in the green alga Chlamydomonas reinhardtii (Chronos, and a red-

sensitive channelrhodopsin named Chrimson) [35]. As a pair, these channelrhodopsins 

enabled independent multi-colour activation. MA constituents did not show great deal of 

toxicities without light exposure (in the dark) for the majority of the cells under investigation, 

in general; very few samples showed some cytotoxicity in certain cell lines. It was previously 

reported the inhibition effect of the ethanolic extracts of Chaetoceros calcitrans (MA) on cell 

growth of MCF-7 cells and MCF10A through the induction of apoptosis without cell cycle 

arrest. However, the components of the MA crude extracts would be variable and 

dependences on the methods of the extracts. The extracts could contain the photosensitisers 

that produce the reactive oxygen species (ROS) and in the same time the quenchers 

(antioxidants). The types, numbers, quantum yield of ROS, quantities of the photosensitive 

and the quencher’s constituents in MA species, probably attributed to their variation 

responses to the BL light and RL exposure and their PDT efficacy [36]. 

The data presented in this study, clearly showed that MA constituents provide great 

source of potential photosensitizers and significantly caused photo-damage effects to various 

cancer cell lines. To identify single chemical moieties in the semi-purified extracts from MA, 

chromatographic and spectroscopic analyses are required to determine the chemical 
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composition. The next step of this work will be focused on the isolation of the potentially 

active novel PSs and to get a better understanding of the mechanisms and levels of phototoxic 

agents (ROS), selectivity, and intracellular localization within tumor cells. Among all tested 

strains, it was clearly seen that MA extracts from Chlorella sp. under all treatment methods 

(cellulose, lysozyme and ultrasonication) have shown good activity against both tumor cells 

(A549 and MCF-7), under all light conditions (blue, red and blue-red). Therefore, extracts 

from this strain appears to be the key candidates for the deeper investigation. In addition, 

extracts from the marine strains, namely Nannochloropsis sp. (MA-25) and Tetraselmis sp. 

(MA-26) could also be considered, which have shown good activity under red-light. The 

marine cultures have the advantage of growing in saline water, which reduces the freshwater 

load, needed by other strains.

Conclusions 

Several MA products with antioxidant, anti-inflammatory and antitumor potentials which 

include tetrapyrroles, carotenoids, fatty acids, glycolipids, polysaccharides and proteins have 

not been explored in the field of PDT. Our study revealed the possibility of sourcing new 

molecules with photochemical properties that could be isolated and developed as PS agents 

from several MA species in the frame of PDT applications. The samples of Category I and II 

(especially, Chorolla and M.C. sp. samples) demonstrated variable efficacy with light and 

exerted their effect mostly with dual BL and RL. It is important to consider the possibility 

that more than one constituent may be involved in the observed synergetic biological activity, 

as the extracts are complex mixture of compounds. The samples of Category III extracted 

with ultra-sonication methods of Scenedesmus, M.C. sp., and Chlamydomonas have great 

potential after RL activation and were the most effective photosensitiser. Whereas, the 

samples extracted with the same method from Nannochloropsis, Tetraselmis, and A. braunii 

pronounced significant specifies towards the tumor cell lines. In order to verify the chemical 
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composition of the semi-purified extracts from MA, chromatographic and spectroscopic 

analyses required to be carried out to identify single chemical moieties. Furthermore, it is 

essential to focus on isolation, purification, and categorization of the potentially active novel 

PSs. The development of new natural-PS contents of MA should allow more insights into the 

mechanisms of PDT, including the determination of the levels of the phototoxic agents 

(ROS), selectivity, and intracellular localization within tumor cells.
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Tables Captions
Table 1. MA constituents (numbers assigned to samples of different extraction methods)

Table 2: IC50 for A549 and MCF-7 cell lines treated with different MA samples

Figures Captions
Figure 1. MA Absorbance spectra of microalgae (A), (B), and (C) for the three categories. 
The spectra of each sample and the absorbance at 400 nm, were measured by diode array at 
room temperature

Figure 2. MA fluorescence spectra of microalgae (A), (B), and (C) for the three categories in 
A549. The spectra of the control cells (cells without MA) were deducted from each spectra of 
the photosensitizer. The cells with the incubated samples were excited at 400 nm. The cells 
were scanned and the emission spectra were recorded between 600 to 850 nm.

Figure 3. Fluorescence intensity profile of microalga samples in two cell lines (A549 and 
MCF-7). (A) MA constituents (Category I), (B) MA constituents (Category II). The cells with 
the incubated samples were excited at a wavelength of 400 nm and the fluorescence 
intensities were recorded at a wavelength of 670 nm. Error bars represent standard deviation 
and 0.001<P<0.05

Figure 4. Fluorescence intensity profile of microalga samples in (A) A549 cells and (B) 
MCF-7 Cells (B) for MA constituents (Category III). Cells were incubated with a range of 
concentrations between 100-500 μg/mL for 24 h. The excitation wavelength was 400 nm and 
the fluorescence and emission intensities wavelength were 670 nm. Error bars represent 
standard deviation

Figure 5. A549 cell line treated with MA constituents (Categories I and III) (Red). Gray DIC 
(differential interference contrast), Overlay (combined image of red and DIC). Scale bar 50 
µm. Grey DIC (differential interference contrast), Overlay (combined image red and DIC). 
Scale bar 50 µm

Figure 6. Comparison of PDT effect of MA constituents on A549 and MCF-7 viability with 
BL exposure for 10 min. Cells were incubated with 500 μg/mL of (A) MA constituents 
(Category I), and (B) MA constituents (Category II). Error bars represent the standard 
deviation of three wells and 0.005<P<0.05

Figure 7. Comparison of PDT effect of MA constituents on the viability of A549 and MCF-7 
with RL exposure for 5 min. Cells incubated with: (A) MA constituents (Category I) at a 
concentration of 500 μg/mL and Pc-Al at a concentration of 29 g/mL (50 μM) as reference, 
(B) MA constituents (Category II) at a concentration of 500 μg/mL and Pc-Al at a 
concentration of 58 μg/mL (100 μM) as reference, and (C) MA constituents (Category III) at 
a concentration of 100 μg/mL and Pc-Al at a concentration of 86 μg/mL (150 μM) as 
reference. The control was untreated cells in each well plate.  Error bars represent standard 
deviation, and 0.005<P<0.05

Figure 8. PDT effect of MA samples at a concentration of 500 μg/ml on A549 and MCF-7 
irradiated with dual light sources (BL and RL) for 5 min each. (A) MA constituents 
(Category I), and (B) MA constituents (Category II). Pc-Al at a concentration of 86 μg/mL 
(150 μM) was used as a reference. Error bars represent standard deviation, and 0.005<P<0.05

Figure 9. Dark cytotoxicity effect of MA samples on A549 and MCF-7 treated with 500 
μg/mL MA constituents for 24 h. (A) Microalgae constituents (Category I), and (B) 
Microalgae constituents (Category II)











































Table 1

Category I
Cellulase treated

Category II
Lysozyme treatedMicroalgae strain

2h 4h 16h 2h 4h 16h

Category III
Ultrasonicated

Chlorella sp. MA-01 MA-09 MA-17 MA-02 MA-10 MA-18 MA-30

M.C. sp. MA-03 MA-11 MA-19 MA-04 MA-12 MA-20 MA-29

Scenedesmus sp. MA-05 MA-13 MA-21 MA-06 MA-14 MA-22 MA-28

Chlamydomonas sp. MA-07 MA-15 MA-23 MA-08 MA-16 MA-24 MA-31

Nannochloropsis sp. - - - - - - MA-25

Tetraselmis sp. - - - - - - MA-26

A. braunii - - - - - - MA-27



Table 2

Cat. I/BL
A549

μg/mL
MCF-7
μg/mL

Cat. II/RL
A549

μg/mL
MCF-7
μg/mL

Cat. III/RL
A459

μg/mL
MCF-7
μg/mL

MA-03 399.4 ± 6.9 453.7 ± 10.2 MA-02 501.3 ± 7.2 274.3 ± 4.1 MA-25 29.4 ± 3.7 28.5 ± 5.7

MA-07 569.5.2 ± 5.7 986.0 ± 8.7 MA-10 542.4 ± 6.2 178.7 ± 7.1 MA-26 19.7 ± 2.2 20.5 ± 6.3

MA-09 309.4 ± 6.1 313.7± 0.7 MA-16 130.4 ± 6.7 180.5 ± 1.4 MA-27 18.6 ± 2.3 7.5 ± 3.6

MA-15 695.4 ± 15.8 930.2 ± 2.6 MA-18 218.5 ± 4.9 180.9 ± 4.8 MA-28 23.0 ± 2.8 30.7 ± 5.4

MA-17 352.3 ± 12.1 325.1 ± 2.7 MA-20 214.5 ± 5.1 429.3 ± 5.3 MA-29 42.4 ± 4.7 50.1 ± 4.4

MA-30 17.4 ± 0.6 8.7 ± 4.2

MA-31 16.2 ± 1.8 7.3 ± 4.5

PC-Al 24.2± 6.0 31.9 ± 7.1
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Supporting Data

Figure S-1: LNCap cell line treated with MA constituents (Categories I) (Red). Gray 
DIC (differential interference contrast), Overlay (combined image of red and DIC). 
Scale bar 50 µm. Grey DIC (differential interference contrast), Overlay (combined 

image red and DIC). Scale bar 50 µm
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Figure 11
Figure S-2: Comparison of PDT effect of MA constituents on LNCap and MDA 435 

viability with BL exposure. Cells were incubated with Category I and II. (500 μg/mL) 
and the plates were exposed to BL for 10 min. Error bars represent the standard 

deviation of three wells and 0.005< P<0.05
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Figure S-3: Comparison of PDT effect of MA constituents on LNCap and MDA 435 
viability with RL exposure. Cells were incubated with Category I and II. (500 μg/mL) 

and the plates were exposed to RL for 10 min. Error bars represent the standard 
deviation of three wells and 0.005< P<0.05





Figure S-4: Concentration effect of PDT of MA samples of (A and B) Category II and 
(C and D) Category III on (A) A549 and (B) MCF-7. The cells were exposed to RL 

for 10 min each. Error bars represent standard deviation
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