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Abstract

The idea of determining the number of fund subg-oups is of central importance in the cur-
rently popular academic field of Risk Parity Portfolio Theory, and especially for practitioners’
direct use of Funds-of-Funds (FoF) managers. Cai. the Gaussian Mixture Distributions plug-
in approach via traditional procedures select 1»~. right number of fund subgroups? Probably
not. According to our in-sample/out-of-sam >le ikelihood score analysis, the actual locations
of subgroups in real data (of both U.S. mu.al funds and hedge funds) are too close to each
other. The information loss incur ed b, parameter uncertainty outweigh those incurred by
mis-specification, and can only "e slig:* y alleviated using the nonparametric density estima-
tors. An arbitrary choice of twe - 1bg oups only causes affordable information loss relative to
more fund subgroups. Thr se ..~dings challenge the reliability of the Gaussian Mixture Distri-

butions plug-in approac’: vi: traditional procedures (e.g., BIC, Likelihood Ratio and Chi-square
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statistics) in selecting the correct number of subgroups.
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e Investigate the two potential concerns on the validity and reliability of GP (D.
e Parameter uncertainty has a larger effect than mis-specification.

o Nonparametric kernel approaches slightly alleviate information loss.

e An arbitrary choice of two subgroups causes affordable informs .. loss.

o Challenge the GMD procedures in selecting the correct number «. subgroups.
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Abstract

The idea of determining the number of fund subgroups is of c .~ importance in the popular
academic field of risk parity portfolio theory, and especia." .or f -actitioners’ direct use of fund-
of-funds managers. Can the Gaussian Mixture Distributio. s plug-in approach via traditional
procedures select the correct number of fund subg. ~ps: Probably not. According to our in-
sample/out-of-sample likelihood score analysis, .= actual locations of subgroups in real data
(of both U.S. mutual funds and hedge funds’ a'e wo close to each other. The information
loss incurred by parameter uncertainty our vo'~hs that incurred by misspecification, and can
only be slightly alleviated using the nony ~ramctric density estimators. An arbitrary choice of
two subgroups only causes affordab’. . ~formation loss relative to more fund subgroups. These
findings challenge the reliabilitv o1 “he fraussian Mixture Distributions plug-in approach via
traditional procedures (e.g., B. ver.an "aformation Criterion, Likelihood Ratio and Chi-squared

statistics) in selecting the c ,.~ect number of subgroups.
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Parameter uncertaintv; .. specification
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1. Introduction

It is a common practice in fund performance evaluation literature, “~ categorize funds into

hY

subgroups based on their performance indicators (e.g., fund alph~_> So, ~ow many subgroups

of funds are there? Theoretically, two subgroups (skilled and u ~<illed) could coexist but it
is also reasonable to conceptualize three subgroups, with z ro, ne, ative, and positive alphas,
respectively. To determine the number of fund subgro’ ps prior to performance evaluation,
most studies use the Gaussian Mixture Distributions hereafte. GMD) plug-in approach (i.e.,
estimating alphas first through factor model regres:‘ons an | then fitting a GMD model on the
estimated alphas) via traditional procedures, such as ...~ Bayesian Information Criterion (BIC),
Likelihood Ratio (LR) test, and the Chi-squared te.* Employing the same sample of mutual
fund monthly returns, Harvey and Liu (2018) fi. . that two subgroups are optimal while Ferson
and Chen (2017) obtain three. Using hedge ‘ui.d monthly returns over the period from 1994
to 2011, Ferson and Chen (2017) find two .tbgroups, while Chen et al. (2017) identify four.
Since these authors rely on slightly differ. nt variants of the same GMD model, it seems difficult
to reconcile their mixed results. and 1. ** surprising that few rigorous statistical analyses have
been conducted to examine the . soc ated information loss. Given the popularity of the GMD
approach, such analyses 2 e €. =ntial to the understanding of the literature and appropriate
applications in future rr sea' ch. Our paper fills this gap using Monte Carlo simulations as well
as two real data samr .es idemn.ical to these of Cai et al. (2018) and similar to these of Ferson and

Chen (2017) and Harv.v r ad Liu (2018) covering both U.S. mutual funds and hedge funds.

The idea of Jeterriining the number of fund subgroups is of central importance in the
popular acac emic t. 21d of risk parity portfolio theory, and especially for practitioners’ direct use
of fund-c” “*nds managers. For instance, in fund performance evaluation studies, our question
is of essenti. | importance for at least two recent strands of literature, including the studies

related to the False Discovery Rate (e.g., Barras et al. (2010); Bajgrowicz and Scaillet (2012);



Criton and Scaillet (2014); Bajgrowicz et al. (2015); Ferson and Chen . 77); Scaillet et al.
(2018)) and Expectation-Maximization algorithm (e.g., Chen et al. 20 7); Harvey and Liu
(2018)). The conclusions of these two strands of literature hinge ¢ ~ the ~orrect presumption
of the number of subgroups, according to traditional wisdom. F r it ~*2nce, if, in reality, there
are only two subgroups of mutual fund managers, a three-si>srou, approach will inevitably
cause one entire group to be a false discovery. Hereafter, . e refer to this misconception as

model misspecification.

Unfortunately, in reality, the true model specificatio.. is not observable, making the de-
termination of the true number of fund subgroups ~spe..ally difficult. In particular, a model
with more fund subgroups could fit the empiric.' data better than a counterpart model with
fewer fund subgroups, given the well-known . ver .....ng problem in econometrics.! Even if we
ignore the overfitting problem, a true funa . ~wution with more subgroups, if approximated
parametrically, requires more parametei. fo v. estimated, as in most of the finance literature,
which will inevitably exacerbate th~ ~~timation errors (i.e., estimation risk issues). In other
words, since the fund alphas are es.'matr s, the estimation error creates an errors-in-variables
problem, which, following th- pc.tfo'.o selection literature we refer to as parameter uncer-
tainty hereafter in this pap - (e.g., brown (1979); Jobson and Korkie (1980); Jorion (1986);
Garlappi et al. (2006); I" .."iguel et al. (2007); Yan and Zhang (2017)).? Hence, the benefits
of a better-specified nroac. with more fund subgroups could be offset by the disadvantages in-

curred by the incre.-=c est’.nation errors brought about by the greater number of parameters

'For instance, H. -vev .ad Liu (2018, page 29) explicitly state that "A central issue is how we choose the
number of cor ponent. for the GMD that models the alpha distribution in the cross-section. A more complex
model (i.e.. a mou.’ .vith more component distributions) can potentially provide a better approximation to the
underlying a. ~F a distribution, but may overfit, leading to a model that has inferior forecasts out of sample."

2For brevity, we do not fully review the portfolio selection papers regarding parameter uncertainty here.



to be estimated.

We explicitly investigate the effects of model misspecification - ad/ r parameter uncer-
tainty on three aspects of the GMD via Monte Carlo simulations: n..~n validity (i.e., bias of
the estimated mean of alphas), density validity (i.e., Mean Inte’ ratr a4 >yuared Errors) and re-
liability (i.e., Standard Deviation of Integrated Squared Err.rs). To do so, we first generate
fund returns series from a CAPM-type of single-factor marke. mo- el with the individual fund
alphas randomly drawn from one of three scenarios: a ni~.cure of two Gaussian distributions
(GMD(2) as in Harvey and Liu (2018), Ferson and Chen (.917)), a mixture of three Gaussian
distributions (GMD(3) as in Ferson and Chen (20:7)) «..d a mixture of four Gaussian distri-
butions (GMD(4) as in Chen et al. (2017)). In ¢ "ery scenario, we estimate the market model
via fund-by-fund Ordinary Least Squares (OL") ¢ .. then employ a GMD model to match the
distribution of the estimated individual fu. « alp.ias. If model specification/misspecification
is more important, we expect to obser." uia. both the validity loss and reliability loss are
lowest when the number of Gaussi~== ~omponents in the GMD model we use to capture the
distribution of fund alphas equals .“e n’ mber of Gaussian components in the data generat-
ing processes. Alternatively, i’ pa am'.ter uncertainty is more important, we conjecture that
there is a monotonic incree .~ in botn the validity loss and reliability loss when the number of
mixed Gaussian distribut .. s grows. We find that, of all the GMD estimators, GMD (2) has the
lowest mean validity loss, 1ensity validity loss and reliability loss in every scenario while the
GMD (4) has the la. ~=s .. Ir other words, parameter uncertainty is more important than model
specification/mi speci.”cation, and the traditional procedures do not always select the correct

number of fur ? suv.oups.® This challenge the use of GMD plug-in approach in selecting the

3Admi. I, ‘¢ the distance between different Gaussian mixture components is large enough, the traditional
procedures co. ‘d still work. However, the fund manager performances from different subgroups are so close to

each other that it is technically challenging to make the traditional methods to work properly. This could change



optimal number of fund subgroups which subsequently motivates us to -.v.'"1ate the potential

information loss incurred by using a wrong number of fund subgroup ..

To what extent can we improve validity and reliability using alte. ~ativc estimators to alle-
viate the parameter uncertainty problem? To answer this questir n, v e 1...nimize the parameter
uncertainty problem by employing two popular nonparamet-.c (i.e., ylobal and adaptive) ker-
nel density estimators that require least parameter estimatio.. (h»-.dwidth being the only one
parameter) and hence are affected the least by the parec m- cer ' ncertainty problem (see, e.g.,
Breiman et al. (1977), Abramson (1982), Silverman (195.)). To our surprise, these two non-

parametric kernel estimators can add only limited =lue . the GMD approach.*

In terms of real data, we apply the traditiona. ~rocedures (i.e., BIC, LR, and Chi-squared
test) to two real data samples, similar to Ferso. 7ad Chen (2017) and Harvey and Liu (2018),
covering both U.S. mutual funds and hedge tu..1s, and find empirical evidence that supports
our prior results. In general, we find that .= traditional procedures do not provide consistent
estimation of the number of fund s.pg:. '1ps, no matter whether we focus on the mutual fund
or hedge fund sample. Since the true = .sity of fund returns is unknown in reality, we employ
the scoring rule proposed by r.'san’, and Giacomini (2007) to examine both the in-sample
and out-of-sample perforr ai.>= of GMD (1) (a single normal density), GMD (2), GMD (3)
and GMD (4). We find nai both the in-sample and out-of-sample likelihood scores for GMD
(2), GMD (3) and G'/ID (4, 1o not differ much from each other, whereas all of them differ

substantially from the > of GMD (1). This result reaffirms our previous simulation results that

in the future wh~~ the . __.ormance of fund managers becomes clearly categorized. For instance, if there are four
modes (say, hi_hly skill :d, moderately skilled, just skilled and poorly skilled) in the density function, then GMD
(4) could I . ~~eferred in this case.

“Howevel, t is possible to enhance the performance of the kernel estimator by correcting or smoothing the

errors-in-variables biases. We thank an anonymous referee for pointing this out.



the information loss is trivial, whether we use GMD (2), GMD (3) or u."D (4). We apply
two nonparametric (i.e., global and adaptive) kernel density estimator s a1 d the scoring rule of
Amisano and Giacomini (2007) to determining the optimal numbe. »f tu. 1 subgroups, which

constitutes a methodological novelty.

Overall, our findings challenge the reliability of tradit’unal nrocedures in selecting the
correct number of subgroups, and the traditional wisdom tha. *he - esults of fund performance
evaluation hinge on the presumption of the correct ni ™"er f subgroups. As the number
of fund subgroups increases, there is a tradeoff between jrecisely estimating the model pa-
rameters and a better empirical fit to the data. .“ere...e, an arbitrary choice of two fund
subgroups might only cause affordable informat..~n loss relative to an alternative assumption
of more fund subgroups, even when the latter 5ts ... empirical data better than the former. Al-
though the importance of parameter unceri...*v 1.as been underscored in the topic of portfolio
selection, we extend this idea to an ent.. ~ty ... w area that has been largely neglected by pre-
vious research. We find that parame* -~ uncertainty plays a dominating role in fund subgroup
selection, suggesting that the effeci.. ~f pz -ameter uncertainty in Finance could be greater than

people currently think and me 7 nr ¢ be limited to one or two particular topics.

Our results provide bo’ n . ~ademic researchers and practitioners with guidance in selecting
the optimal number of un:¢ subgroups in their simulations and real data analysis, intuition
in regards to the potr atial « ~ficiencies in their specifications, and new insights for generating
alternative fund evalu. -ior approaches. For this, methods that take into account the estimation
uncertainty of al bhas a1 4 complement the traditional procedures by feeding both the estimated
alphas and t} eir standard errors into the EM algorithm (i.e., Chen et al. (2017)) can represent
a promising a.-=cton to pursue, as does specifying the likelihood function for the factor model

regression "~ each fund (i.e., Harvey and Liu (2018)).

The remainder of the paper proceeds as follows. Sections 2 and 3 present the results



from Monte Carlo simulations and real data sets (of both mutual fun.s ~nd hedge funds),
respectively. Section 4 concludes. For brevity, we delegate all technica’ co: tents and additional

results to the Appendices.

2. Simulation

In this section we simulate the effects of misspecifiaidon and parameter uncertainty on
the performance of a GMD estimator, we examine th~ renabi’ ¢y of traditional procedures to
select an optimal number of fund subgroups, and * = comj are the performance of the afore-
mentioned density estimators for the cross-sectionar “ind alpha density from three aspects:
mean validity, density validity and reliability. Accoi1.‘ng to the Occam’s Razor, we focus on the
Euclidian distance although we are aware of ma > other more complex density comparing mea-
sures (e.g., Kullback-Leibler divergence (Kulihac.. and Leibler (1951)), Bhattacharyya distance
(Bhattacharyya (1943)), etc.) in the literatu.=. In untabulated results which are available from
the authors upon request, we find < «ppo: ‘ive evidence using the Kullback-Leibler divergence as
well as the Bhattacharyya distar ce, an.' ~e choose to omit the specific results here for brevity.
We conservatively implement o.. GV D estimators via the standard expectation-maximization
(EM) algorithm rather tha . mc = advanced EM algorithms such as the ones in Harvey and Liu

(2018) and Chen et al. 20" 7) to stay on the safe side.

2.1. Data Generating P oce ses

Following Cheng ¢ ad Yan (2017), Zhang and Yan (2018) and other extant studies, for
simplicity w : gene -ate fund returns (r;,) from the CAPM-type of single-factor market model

using the follow...g Data Generating Processes (DGP):

rit:ai'i'ﬁirmt'i'git, fori:].,“',N,t:].,"’,T, (1)



where f3; is generated from a uniform distribution over the support [0.5, 1.~ 1. Market return,
'mt» 1S generated from a Gaussian distribution with a mean of 0.08/12 ‘.na 1 standard deviation
of 4/0.152/12. The disturbance term, e;, is generated from a Gaussic.~ dis..*bution with mean 0
and standard deviation 0.02 denoted as N(0,0.02%). We conside. th * “~llowing representative

scenarios for the generation of a;.

Scenario 1: Following Table 1 of Harvey and Liu (2018), we y ~ner.te a; from a mixture of two
Gaussian distributions: 0.283N(—0.02277/12,1.5'2?,12 +0.717N(—0.00685/12,0.5862/12).

Scenario 2: Following Panel C of Table IV of Ferson ana "hen (2017), we generate a; from
a mixture of three Gaussian distributions®: v 507..70,0.22) + 0.069N (—0.0003,0.22) +
0.424N(—0.002, 0.22).

Scenario 3: Following Table Al of Chen et a. («..7), we generate a; from a mixture of four

Gaussian distributions: 0.1N(0.01,0.,} -0. N (0.003,0.72)+0.4N(0,0.7%)+0.1N(—0.01,0.72).

We randomly generate R = 500 repun.ations in each scenario with (N, T) = (400, 200),
after consulting with the size of actia1 .. 'nd samples in the literature (Harvey and Liu (2018),
Ferson and Chen (2017), Chen e:al. (?0".7)). Although we have obtained qualitatively similar
results using a variety of alter..~t ve » arameter values suggested by earlier literature such as

Barras et al. (2010), we or.n .~em for brevity.
The estimation pre :ed re is as follows.

e For the rth relicr dor (r =1,2,---,500), we estimate model (1) via fund-by-fund Or-
dinary Lear. oquarcs (OLS) and denote estimated fund alpha as @; ,, fori =1,2,--- ,N.

: . N ~ N .
e We then es.'matr the cross-sectional distribution of alpha based on {ocl-,r}i:1 using GMD

>Strict) eneaking, Ferson and Chen (2017) did not rely on normality in their main text but rather extensively
in their (espe “ally internet) appendices. For instance, Ferson and Chen (2017, page 35) end their manuscript
with "We find that the use of an asymptotic normal approximation in these calculations provides improved finite

sample performance for the standard errors. The Internet Appendix provides the details."



(2), GMD (3), GMD (4), global and adaptive kernel estimator, ar a ‘'enote the density
estimates as fgyp(), (@), fompe).-(@)s femp@),r (@), feropar, (@) #0d “gaprive, (@), respec-
tively. The details of global and adaptive kernel estimators . e p..<ented in Appendix

A.

2.2. Do traditional procedures such as BIC select the right nu 1ber o) fund subgroups?

Another vital question pertaining to our analysis is v /het'._ - the prevailing traditional pro-
cedures select the right number of fund subgroups. Give. the Lopularity of using the traditional
procedures to select the number of fund subgroups (. >* rec :nt examples, see, e.g., Chen et al.
(2017); Ferson and Chen (2017); Harvey and Li* F??* )), no rigorous statistical analysis has
been conducted to examine this question, tc “he bes. of our knowledge. Although the tradi-
tional procedures feasible and arguably g- ~una. 4 in the literature, they are mostly designed
for the choice of best empirical fit, and 7~ now necessarily select the right number of fund sub-
groups, given the concerns (e.g., parameter ancertainty) we raised in our previous analysis.
Admittedly, it is difficult, if not im’ ossible to use the real data to examine this question, as the
true fund population in reality ‘s ur observable and hence the true number of fund subgroups,
in reality, is unknown. Fort' nate.,. ,ur Monte Carlo simulation design offers us an opportu-
nity to answer this question, as v. > know the true number of fund subgroups is 2, 3, and 4 for

Scenarios 1, 2 and 3, rc “ne _tively.

In this subsect’ »n, we ‘ollow Chen et al. (2017) and focus on the popular Bayesian In-
formation Criter'on (B'C), for brevity. The results from other traditional procedures such as
Likelihood ratin si.*i=*.cs (see, e.g., Harvey and Liu (2018)) and Chi-squared statistics (Ferson

and Chen (2117)) : re qualitatively similar and hence we delegate them to Section 4.

We p.~s .nt our results of BIC values over 500 replications for Scenarios 1, 2 and 3 in
Table 3. To be specific, we report the mean of BIC values over 500 replications when we specify

two subgroups, three subgroups and four subgroups using GMD (2), GMD (3) and GMD (4)

8



estimators with the corresponding frequency of being selected in parent’ic.s. It is clear that,
the mean of BIC values over 500 replications for GMD (2), GMD (3) ar d € VID (4) do not differ
much from each other, no matter which scenario we look into. Int.esti..7ly and surprisingly,
in all three scenarios, the BIC suggests us to select GMD (2) as it ¢ ~~erates the smallest BIC
value with a probability of at least 96.2% (=481/500 in Scer-+io .. In other words, the BIC
does not always select the right number of fund subgroups, whick may upset many financial
economists who rely on traditional procedures to select ‘ ne  pu. nal number of fund subgroups
and motivates us to evaluate the potential information 1. "< incurred by using a wrong number

of fund subgroups in the next subsection.

2.3. Information loss evaluation

We first investigate the mean validity .7 cc mparing the bias in mean alpha u, in each
scenario, which is defined as the avera, - iz~ 1ce between the true value of mean alpha and

the estimated value of mean alpha obtained from different density estimators.

1 R
Uias = EZ|ﬁa,r_Ma|: (2)
r=1

where u, is the true value and v, is the estimated value of mean based on the rth replication.

The results are pre.~r _ed in Panel A of Table 4, from which we can see that i) the mean
validity loss is negl’ zib! : in magnitude (the maximum is 2.6434982/1000 < 0.3% for GMD
(4) in scenario 2 ior 2ll cstimators; ii) nonparametric kernel estimators only alleviate mean
validity loss by 0.7550" 0/0.751167 — 1 = 0.5%; iii) parameter uncertainty is more important
than model misspe ification in using GMD. As in all three scenarios, the mean validity loss
monotorn ...~ ncreases at the number of unknown parameters and is least when there are the

fewest paran. ~ters to be estimated, not when the GMD is correctly specified.

We then look at the density validity and reliability in general, using the Mean Integrated



Squared Errors (MISE) as the criteria for density validity loss, and th.. C+andard Deviation
of Integrated Squared Errors (SDISE) as the criteria for reliability 1r ss, -espectively. Before
calculating MISE and SDISE, we choose a sequence of grid points {~.;, ,, **, @,y -} for m =

200 and approximate Integrated Squared Errors (ISE) based on .he -:» replication as follows.

ISE(]?GMD(Z),r) ~ %Z (.FGMD(Z),r(ai) —f(ai))Z, ISE(J?GMD(& RS ‘ Z (fGMD(B) o) — fa; ))

i=1 i=1

ISE(.FGMDM)J) A %Z (.)?GMD(4),r(ai) _f(ai))z , ISE( fqlo:Jul P)F ; Z (fgzobaz,r(ai) _f(ai))z

i=1 i=1

~ 1 <« 2
ISE(fadaptive r) N EZ fadaptive,r(ai)_f(ai))
i=1

where f(a;) denote the true density of alpha evaluai..d at point a;.

Upon the obtained ISE values, it is st. ."~hti. rward to compute MISE and SDISE. We use

the GMD (2) estimator as an example ¢ - “he ~teps for other estimators are likewise.

R

~ 1 )
MISE(feup) = R Z (SE(fs 1p@2).r), R=500 (3)
r- 1
-~ ! 1_[; -~ -~ 2
SDISE(feup() = \1 > ISE(foun,) = MISE(fenp(z)) > R = 500. (4)
r=1

The MISE values 7 e r.esented in Panel B of Table 4, from which we find a monotonic
pattern similar to me .n validicy and the magnitude of density validity loss is tiny (the maximum
is 2.6933% for GMD (4, i scenario 2 for all estimators. In all the scenarios, GMD (2) under-
performs the adc ntive } arnel estimator but outperforms the global kernel estimator, while the
global kerne  estin. tor performs better than GMD (3) and GMD (4), reaffirming the previous

finding that the validity loss of using GMD estimators (at least GMD (2)) is small.

With reg ~rds to reliability and SDISE values in Panel C of Table 4, we also find a monotonic

pattern similar to mean and density validity, and the magnitude of reliability loss is subtle (the

10



maximum is 2.7509% for GMD (4) in scenario 1. The GMD estimators .0 '»nger outperform
nonparametric estimators, and the SDISE values of nonparametric est’.na, ors can be one order

of magnitude smaller than the ones of the GMD (4).

To visualize our results, we plot the corresponding density esti-aawcs in Figure 1 and find
that the density estimates obtained from various parametr'c and nonparametric estimators
are very close to each other (The only exception is GMD ") v aich performs slightly less
reliably than the others, probably due to the classical p 'r-.net :r uncertainty problem, which
collaborates with our previous analysis), and reasonably -lose to the true density of alpha.
Overall, although the traditional procedures may nc - be a . cliable indicator to select the optimal
number of fund subgroups, it will not incur to. severe potential information loss using an
incorrect (but not too far from the correct 01.>, ¢. course) number of fund subgroups, which
to some extent comforts the financial econ.w.’<ts who rely on traditional procedures to select

the optimal number of fund subgroups.

3. Real data analysis: Mutual fu.. s ar d hedge funds

In this section, we evall ate ..~ performance of GMD (2), GMD (3) and GMD (4) in real
data of the fund returns net ot "' management expenses and 12b-fees in two scenarios: for
all U.S. mutual funds . nd .edge funds, respectively. We first introduce our fund data sets,
employ the traditior al r.ocedures to select fund subgroups, and use both in-sample and out-
of-sample likelihr _ 1 sco. s to forecast the density of real data of fund returns afterward. As
the true density ¢ € fund returns, in reality, is unknown, we employ the scoring rule proposed by
Amisano anc Giaco nini (2007) to examine both the in-sample and out-of-sample performance
of GMD ) GMbD (2), GMD (3) and GMD (4). Using this scoring rule, we should be able to

decide the b st performer among GMD (1), GMD (2), GMD (3) and GMD (4).

11



3.1. Data and descriptive statistics

Our data set has been used in a companion paper (i.e., Cai et a’ (2/,18)), and hence the
descriptive statistics necessarily follow Cai et al. (2018). Our cross-sc *tion sample of mutual
funds is similar to Ferson and Chen (2017) and Harvey and Liu (7 21¢ . 'lu be specific, we obtain
active U.S. equity mutual funds data from the Center for R .search in Security Prices (CRSP)
Survivor-Bias-Free Mutual Fund database for the 1984-2011 |~~~ d. Our sample period is the
same as that of Harvey and Liu (2018) and Ferson and " ¢n ( :017) for comparison reasons.
We exclude the index funds. To mitigate omission bias (r.'ton et al. (2001)) and incubation
and back-fill bias (Evans (2010)), we exclude obser. ~tious prior to the reported year when the
mutual funds were first entered into the database, “nd the funds which do not report a year of
organization. We only include the funds which Fave initial total net assets (TNA) above $10
million and more than 80% of their holding ~ 1. equity markets. To avoid the look-ahead bias,
we do not exclude funds whose TNA subs.1ueutly fall below $10 million. These screens leave
us with a sample of 3026 (2557) m.... ! funds with at least 8 (30) months of returns data for

the 1984-2011 period.°

Our cross-section sample " necge funds is similar to Ferson and Chen (2017). To be
specific, we obtain U.S. ec iity- ~viented hedge fund data from Lipper TASS for the 1994-2011
period. Our sample pe.iod is the same as that of Ferson and Chen (2017) for comparison
reasons. To mitigate Hack-fi. bias, we remove the first 24 months of returns and returns dated
before funds were firs. *nt .red into the database, and funds with missing values in the field for
the add date (Fe.son an ! Chen (2017)). We only include those categorized for a given month as

either Dedic .ted s! ort bias, Event-driven, Equity market neutral, Fund-of-Funds or Long/short

6Simila1_.  Farvey and Liu (2018) and Ferson and Chen (2017) obtained a sample of 3619 and 3716 mutual
funds with at le..st 8 months of returns over the same period, respectively. We follow Hunter et al. (2014) by

using 30 months as our threshold as it adds robustness to our results.

12



equity hedge. Similar to the mutual fund sample, we require that a fura  2s initial total net
assets (TNA) above $10 million as of the first date. These screens le «ve us with a sample of

3533 (2072) hedge funds with at least 8 (30) months of returns dat.. “or 1..» 1994-2011 period.

Table 5 presents summary statistics of the mutual fund anc hec ge Jand data in our study.
We find that they share similar characteristics with the data sample used in Ferson and Chen

(2017). The main characteristics are listed as follows.

e The range of average returns across funds is muc.. gre-ter in the hedge fund sample
(—0.114 ~ 0.173) than that in the mutual furd samp = (—0.09 ~ 0.06).

e The median of estimated alpha from our line«- model for the hedge funds is positive,
while for the mutual funds it is slightly neg.*ive. The tails of the cross-sectional alpha
distributions extend to larger values for .~e nedge funds. For example, the upper 5% tail
value for the alphas in the hedge func sa.mple is 1.2% per month, while for the mutual
funds it is only 0.4%. In the left taus “he two types of funds also present different alpha
distributions, with a thicker ] ,we. *ail for the alphas in the hedge fund sample.

e The sample volatility of th me *ar hedge fund return (2.8% per month) is smaller than
for the median mutual 1.« (5.3%). The range of volatilities across the hedge funds
is greater, with more n..<s in the lower tail. For example, between the 10% and 90%
quantiles of hedge fu1 ds the volatility range is 1.2% - 7.5% (1.2% - 6.7% in Ferson and
Chen (2017)), - vhile .. ~ the mutual funds it is 3.6% - 7.8% (4.2% - 7.0%) in Ferson and
Chen (2017).

e The autoc rrelati ns of the returns are slightly higher for the hedge funds. The median
autoco refation for the hedge funds is 0.127, compared with 0.121 for the mutual funds,
and son.~ of _ne hedge funds have substantially higher autocorrelations. The 5% left tail
for t1. » autocorrelations is -0.304 for the hedge funds, versus only -0.121 for the mutual

funds.
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3.2. Estimating fund alphas via a linear factor model

Before using the likelihood score methodology in Amisano and Gia .omini (2007) to ex-
amine the in-sample performance of GMD (2), GMD (3) and GMD () we have to estimate
the unobservable fund skills. For brevity, we use the one-factor ma ket model, i.e., model (1)
in the previous simulation section to illustrate our idea, but Jne fz ~tor may not be enough for
empirically analyzing the real data sets, according to the vast .=~.id of asset pricing and fund
performance evaluation literature. As a result, for real  .ca s/ ts, we estimate fund alpha as
the measure of fund skills via various linear factor models To be specific, for mutual funds,
we consider the Fama-French-Carhart four-factor m. el as well as its two most famous special
cases: the one-factor market model (i.e., model (.M and the Fama-French three-factor model.

The Fama-French-Carhart four-factor model c. n '.e written as below:

rie = ; + By MKT, + ;,SMb, + 5. IML, + 3,MOM, + &, t =1,---,T (5)

where r;, denotes the excess retur. of fun |7 at time t. MKT,,SMB,,HML, and MOM, are the
Fama-French-Carhart four factr rs, - vhich to be specific denote the Market excess return (MKT)
factor, the Small-Minus-Big “sMB) > .e factor, the High-Minus-Low (HML) value factor and the
Momentum (MOM) factor 2t time ., respectively. Different from the Fama-French-Carhart four-
factor model, the Fama "r .nch three-factor model does not include the Momentum (MOM)
factor, while the one fac or riarket model (i.e., model (1)) excludes the Small-Minus-Big (SMB)

size factor, the H'gn-Minus-Low (HML) value factor as well as the Momentum (MOM) factor.

For hedg~ ‘unu., we present the results from the analogous Fung-Hsieh seven-factor model
(c.f., Fung a. 4 Hsi:h (1997, 2001)), instead of the Fama-French-Carhart four-factor model.
These sevin t .cwors (i.e., Bond Trend-Following Factor, Currency Trend-Following Factor, Com-
modity Trend-Following Factor, Equity Market Factor, Size Spread Factor constructed from Rus-

sell 2000 index and S&P500, Bond Market Factor and Credit Spread Factor) proposed by Fung
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and Hsieh (1997, 2001) are arguably more suitable for the hedge funds t'.a. the Fama-French-
Carhart four factors(for a recent example, see, e.g., Criton and Scaillet 20 4)). For robustness,
we have also tried the Fama-French-Carhart four-factor model an' the -esults are available

upon request.

3.3. Using traditional procedures to select the optimal numbe * of fun 1 subgroups from real data

Following previous simulation analysis, we follow ‘he . el al. (2017) and use the BIC to
select the optimal number of fund subgroup from the rc. ! data sets of US mutual funds and
hedge funds. The results from other traditional p-~ceu "5 such as Likelihood ratio statistics
(see, e.g., Harvey and Liu (2018)) and Chi-sq. «1eu statistics Ferson and Chen (2017)) are
qualitatively similar and hence we delegate t. <... '~ Appendix B. We present our results of BIC
values over 500 replications for Scenarios ', 2 a, 1 3 in Table 6. To be specific, we report the
BIC values when we specify two subgr. 'u., ©* vee subgroups and four subgroups using GMD
(2), GMD (3) and GMD (4) estimators. In all panels, for robustness, we use two thresholds
to filter out our final sample: at Ic ~<t 8 n onths of returns, and at least 30 months of returns.
We use the one-factor market .norel, +he Fama-French three-factor model, the Fama-French-
Carhart four-factor model 7 1d the . ung-Hsieh seven-factor model to estimate fund alpha in

Panels A, B, C, and D, res; ~ctively.

Interestingly and surp. ~ingly, BIC does not provide a consistent suggestion on the number
of fund subgroups, «. i s svggestions vary from one underlying asset pricing model to another,
and from one s¢ nple 1.'tering method to another. In Panels B, C, and D, the BIC suggests the
optimal num’.c. ot 1und subgroups is three if we filter our sample with at least 30 months
of returns, b.* su¢ gests at least four subgroups when we filter out our sample with at least

8 months f -eturns. In Panel A, the suggested number of subgroups is reversed, as the BIC
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value of -21729.28 (-24721.70) is smallest for four’” (three) subgrours . hen we filter our
sample with at least 30 (8) months of returns. Overall, BIC is not a re.iat ‘e indicator to select
the optimal number of fund subgroups. Consistent with our simula.’on 1. "1lts, the BIC values
for GMD (2), GMD (3) and GMD (4) do not differ much from eac'1 ot - >~ but greatly differ from
that of GMD (1), no matter which scenario we look into. We “rthe * investigate the potential
consequences brought by a not-so-wrong number of fund s *bgror ps via both in-sample and

out-of-sample likelihood score analysis.

3.4. In-sample likelihood score analysis

We first apply the likelihood score methc. -nugy 1n Amisano and Giacomini (2007) to
examine the in-sample performance of GML (., ~MD (3) and GMD (4).2 For comparison
reasons, we also considered the GMD (1) .. ~thc1 (a single normal density). The in-sample

likelihood score for a given density esti. ‘a.= ;(a) can be computed by
e (7 1 7 n
(S (Fon) == f@), (6)
i=1

where @; is the OLS estimatc . ot . 'n¢ alpha for the ith fund, n is the total number of funds. In

our case, n = 3026 or 255/ for .~utual funds and n = 3533 or 2072 for hedge funds.

Table 7 presents ti.~ *zsults of the in-sample likelihood score to two real data samples

70f course, in thi case, *+ 2 number of fund subgroups suggested by BIC might be larger than four if we
try GMD (5), GMD (6), etc. However, this issue is arguably trivial as more subgroups are not grounded in the
literature and 7 < nard to interpret with economic meaning. Hence, we do not consider this possibility in this
paper.

8Some way . e that in-sample analysis is not necessary here, given our strong results from latter out-of-
sample analys.. We agree to disagree as many existing studies on this topic including Harvey and Liu (2018)

include both in-sample and out-of-sample analyses as well.
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similar to Harvey and Liu (2018) and Ferson and Chen (2017) which cc ve® both U.S. mutual
funds and hedge funds, respectively. We present the values of likelihc od core when we spec-
ify one subgroup, two subgroups, three subgroups and four subgr. *ns v-ing GMD (1), GMD
(2), GMD (3) and GMD (4), respectively.’ It is clear in Table 7 cha - he likelihood scores for
GMD (2), GMD (3) and GMD (4) do not differ much from ea~* oti..» while all of them differ
substantially from that of GMD (1), which reaffirms our pr. vious s;imulation results that the

information loss is trivial no matter whether using GML (2, 41D (3) or GMD (4).

For instance, after estimating alphas via the Fama-Fre. ch-Carhart four-factor model from
the sample of mutual funds with at least 8 (30) . onu.. of return data, in Panel C we find
that the likelihood scores of GMD (2), GMD (o, or GMD (4) (i.e., 108.1890, 109.2931 and
109.4282, respectively) are much larger than *ha <. GMD (1), being 88.2091. The likelihood
only increases by about 1% (i.e., 109.2931, "+ 1¢90-1) when we specify three subgroups (i.e.,
using GMD (3)) instead of two subgrouy t1.c., using GMD (2)), and only further increases by
less than 0.1% (i.e., 109.4282/109.7721-1) when we specify four subgroups (i.e., using GMD
(4)) instead of three subgroups (i.c., 1sir s GMD (3)). This finding becomes stronger if we use
the threshold of 8 months ins’ *ad of 70 months to filter out our final sample, and the results
obtained from different fac’. * modeis in Panels A and B are qualitatively similar to the ones in

Panel C.

“Different from the + mu! .tion analysis, we add the special case of one subgroup via GMD (1) for two reasons.
i) to have something t~ com,, ~r . with the results obtained from GMD (2), GMD (3) or GMD (4), although it is not
the focus of this pa; er. ii) Fc -son and Chen (2017) note that "The approach here also generalizes studies such as
Kosowski et al. “_u06); rama and French (2010), who bootstrap the cross-section of mutual fund alphas. In those
studies, all of 1 ‘e infer' nces are conducted under the null hypothesis of zero alphas, so there is only one group
of funds. © « . ~'eis is directed at the hypothesis that all funds have zero alphas, accounting for the multiple
hypothesis tes.  The current approach also accounts for multiple hypothesis tests, but allows that some of the

funds have nonzero alphas."
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Despite a much shorter sample length, the results in Panel D obtainr a ~~om our sample of
U.S. hedge funds are also qualitatively similar to the ones obtained “ror, our sample of U.S.
mutual funds above. In general, if we use 30 months as the threshc'. tu. likelihood scores of
GMD (2), GMD (3) or GMD (4) (i.e., 62.7366, 62.7479 and 64 03<", respectively) are much
larger than that of GMD (1), which is 50.3654. The likelihoo~ inci.~ses by only about 0.01%
(i.e., 62.7479/62.7366-1) when we specify three subgroup. (i.e., 1sing GMD (3)) instead of
two subgroups (i.e., using GMD (2)), and further increas :s b, 0.1y 3% (i.e., 64.6349/62.7479-
1) when we specify four subgroups (i.e., using GMD (4), ‘~stead of three subgroups (i.e., using
GMD (3)). Again, this finding becomes much strong.~ if we use the threshold of 8 months

instead of 30 months to filter out our final sam; ..

It is noteworthy that to stay on the conse var v. side we have not used any penalty factor
to deal with the parameter uncertainty pro. '..m ii. the above analysis, i.e., we did not take the
increased number of estimable parame. *s (..rameter uncertainty) into consideration. The
benefit regarding increased likelihoc? ~~ore brought by a specification of more fund subgroups,
should be of a smaller magnitude .. *ve t ke into account the parameter uncertainty (i.e., the
increased number of estimabl pe.am .ters). In untabulated results which are available from

the authors upon request, v -~ find supportive evidence using the cross-validation method.

3.5. Out-of-sample likeir." o d score analysis

To evaluate the ~.t-of sample (oos) performance of those above-mentioned density es-
timators, we fir t divic = the whole sample into two sub-samples. The first sub-sample (in-
sample) conf...is n; observations, which are used to estimate the density. The second sub-
sample (out-. *-sar ple) contains the rest of n —n, observations to validate the estimated den-

sity. Acco. 1ir g to Cheng et al. (2017), for a given density estimator f(a), the out-of-sample
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likelihood score of Amisano and Giacomini (2007) can be written as bel .

n—n;

D fa@y, 7)

1 =1

1

n—n

LS,s(f (@) =

where n; is the size of in-sample for density estimation, @; the o1.’" ary least squares estimator
of fund alpha for the ith fund, and n the total number of unds. “or brevity we only report
three choices of n;, which are respectively n/3, n/2 anc zn/?. ror instance, when we let n,
equal n/3, n/2 and 2n/3 and use 30 months as the thrshold t.ie out-of-sample length is 1705
(1381), 1279 (1036) and 852 (691) for mutual (he 'ee) fu .ds, respectively.

Table 8 presents the results from applying +h~ ~*-_ementioned out-of-sample likelihood
scores to the mutual funds and hedge fund- data scts. We can see that the out-of-sample
performance of GMD (1), GMD (2), GMD ‘3) a~d GMD (4) has a similar pattern to their in-
sample performance. For all our samp'~< of . utual funds and hedge funds, no matter what
value n, takes (n/3, n/2 or 2n/3), GMD (2), GMD (3) and GMD (4) have similar performance,
far better than that of GMD (1). raking ‘he sample of hedge funds with at least 30 months
of returns data as an example, ~#hra n, equals n/3 and the out-of-sample length is 1381, the
out-of-sample likelihood scc es fo. ©MD (1), GMD (2), GMD (3) and GMD (4) are 46.6932,
62.3785, 63.0389 and 63.3135, vespectively. When n, equals 2n/3 and the out-of-sample
length is 691, the out-c “-se aple likelihood scores for GMD (1), GMD (2), GMD (3) and GMD

(4) are 49.0155, 60 46€ /, 61.9320 and 61.9059, respectively.

4. Concluding 1 mar} s

The Gau. ~ian ? {ixture Distribution (GMD) approach has recently become increasingly pop-
ular in deu 7 ining the number of fund subgroups prior to performance evaluation, while it is
surprising thac no rigorous statistical analysis has been conducted to examine the information

loss of this model. This paper presents evidence that the traditional procedures do not always
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select the correct number of fund subgroups, and we use both Monte (.a.'~ simulations and
real data sets to evaluate the possible information loss in the GMD ap} "oach due to model
misspecification and parameter uncertainty. We find that paramet. ~ un. ~rtainty is more im-
portant than model misspecification when using GMD, since the inf *-mation loss (in terms of
mean validity, density validity and reliability under three scer~+ios, '~ smallest when there are
the fewest parameters to be estimated, not when the numbe * of G} .D components is correctly
specified. Our results stress the importance of paramete un- cr.1inty, which echoes the portfo-
lio selection literature on the same problem (Brown (1%,"M); sobson and Korkie (1980); Jorion

(1986); Garlappi et al. (2006); DeMiguel et al. (2707, Ya-, and Zhang (2017)).

There are, of course, caveats to our analysis. 'deally, we need an economic or financial the-
ory that captures the evolution of fund subgrc 1ps ... the absence of such a generally accepted
theory, we rely on statistical and econome .~ touls to gauge the number of fund subgroups
within both simulated and real data. h.~aiu..ag real data, we follow the mainstream litera-
ture and focus on U.S. equity muti’~! funds and U.S. equity-oriented hedge funds given the
lion’s share of their market size. 1. *his ,aper, we consider neither pension funds, bond mu-
tual funds, nor funds in other dev :lor ed and emerging markets, which is a fruitful direction
for future research. Althou,~ we dia not look into every possible data generating process and
econometric tool, we be!’c. = that our results cannot be easily qualitatively altered given their
current robustness an- th. ‘nformation loss in the GMD model is less than theories lead one to
believe. Albeit of ir..no tan e, in this paper, we did not try to introduce the concepts of Order
Statistics or the "ootst. 1\p methodology to differentiate fund subgroups by luck and skill, since
these have be~~ inv..ugated in companion studies (Cheng and Yan (2017); Cai et al. (2018);
Zhang and Y n (20 18)). There are surely other exciting related questions to ask, since this

area is of “bv ous importance and far from completed.

20



Reference

Abramson, I. S. (1982), ‘On bandwidth variation in kernel estimates-a . - 1are root law’, Annals
of Statistics 10(4), 1217-1223.

Amisano, G. and Giacomini, R. (2007), ‘Comparing density fo’ »ca<.s v.a weighted likelihood
ratio tests’, Journal of Business & Economic Statistics 25(2), 177->90.

Bajgrowicz, P and Scaillet, O. (2012), ‘Technical trading rcvisited False discoveries, persis-
tence tests, and transaction costs’, Journal of Financial ~.ono:..cs 106(3), 473-491.

Bajgrowicz, P, Scaillet, O. and Treccani, A. (2015), Jumps in 1igh-frequency data: Spurious
detections, dynamics, and news’, Management Science <?(8), 2198-2217.

Barras, L., Scaillet, O., Wermers, R. et al. (2010), ‘F. 'se u."~"veries in mutual fund performance:
Measuring luck in estimated alphas’, Journal of Finu. ~e 65(1), 179-216.

Bhattacharyya, A. K. (1943), ‘On a measure of div “rgence between two statistical popula-
tions defined by their probability distributic 1s’ budletin of the Calcutta Mathematical Society
35, 99-109.

Breiman, L., Meisel, W. and Purcell, E. 7977, ‘Variable kernel estimates of multivariate den-
sities’, Technometrics 19(2), 135-144.

Brown, S. (1979), ‘The effect of / stin. tion risk on capital market equilibrium’, Journal of
Financial and Quantitative Anaiy.“s 14(2), 215-220.

Cai, B., Cheng, T. and Yan, C. 2073), ‘Time-varying skills (versus luck) in U.S. active mutual
funds and hedge funds’, Jc urn..' of £mpirical Finance 49(12), 81-106.

Carhart, M. M. (1997), ‘On p.-sistence in mutual fund performance’, Journal of Finance
52(1), 57-82.

Chen, X., Ponomarev-, M. >nd Tamer, E. (2014), ‘Likelihood inference in some finite mixture
models’, Journal ¢ f Ec onometrics 182(1), 87-99.

Chen, Y., Cliff, M. and .lia0, H. (2017), ‘Hedge funds: The good, the bad, and the lucky’,
Journal of Fin 'ncial ¢ 1d Quantitative Analysis 52(3), 1081-1109.

Cheng, T., Ca0, J. and Zhang, X. (2017), ‘Semiparametric localized bandwidth selection in
kernel dei <ity es imation’, Econometric Reviews forthcoming.

Cheng, T. 'nu ..., C. (2017), ‘Evaluating the size of the bootstrap method for fund performance
evaluatio. , Economics Letters 156(7), 36-41.

Criton, G. and Scaillet, O. (2014), ‘Hedge fund managers: Luck and dynamic assessment’,
Bankers, Markets & Investors 129(3-4), 28-38.

21



DeMiguel, V,, Garlappi, L. and Uppal, R. (2007), ‘Optimal versus naive «. "ersification: How
inefficient is the 1/N portfolio strategy?’, Review of Financial Studies ®2(5), 1915-1953.

Elton, E. J., Gruber, M. J. and Blake, C. R. (2001), ‘A first look at the a. " racy of the CRSP mu-
tual fund database and a comparison of the CRSP and Morningsta. mut.al fund databases’,
Journal of Finance 56(6), 2415-2430.

Evans, R. B. (2010), ‘Mutual fund incubation’, Journal of Finance . <(4), 1581-1611.

Fama, E. E and French, K. R. (2010), ‘Luck versus skill in the cr« ss-section of mutual fund
returns’, Journal of Finance 65(5), 1915-1947.

Ferson, W. and Chen, Y. (2017), ‘How many good and b.. fur | managers are there, really?’,
University of Southern California working paper .

Fung, W. and Hsieh, D. A. (1997), ‘Empirical chara-tet.. “ic- of dynamic trading strategies: The
case of hedge funds’, Review of Financial Studies 10, 275-302.

Fung, W. and Hsieh, D. A. (2001), ‘The risk in he. e fund strategies: Theory and evidence
from trend followers’, Review of Financial 5. a1 .> .4(2), 313-341.

Garlappi, L., Uppal, R. and Wang, T. (200">,, ‘Poctfolio selection with parameter and model
uncertainty: A multi-prior approach.’” Revic v of Financial Studies 20(1), 41-81.

Hansen, B. E. (2008), ‘Uniform convergence .ates for kernel estimation with dependent data’,
Econometric Theory 24(03), 726- /4o.

Harvey, C. R. and Liu, Y. (2018), Dete.“ir g repeatable performance’, Review of Financial Studies
31(7), 2499-2552.

Hunter, D., Kandel, E., Kanc =1, S. ai.d Wermers, R. (2014), ‘Mutual fund performance evalua-
tion with active peer be..chn.. *ks’, Journal of Financial Economics 112(1), 1-29.

Jobson, J. D. and Korki :, B (1980), ‘Estimation for markowitz efficient portfolios’, Journal of
the American Statis*icat .. ~sociation 75(371), 544-554.

Jorion, P (1986), ‘b.. e ,-ste .n estimation for portfolio analysis’, Journal of Financial and Quan-
titative Analysi- .1(3), 279-292.

Kosowski, R., Tit. merr.ann, A., Wermers, R. and White, H. (2006), ‘Can mutual fund “stars”
really pick stock~? New evidence from a bootstrap analysis’, Journal of Finance 61(6), 2551—
2595.

Kullback, S. ¢ .. Leibler, R. A. (1951), ‘On information and sufficiency’, The annals of mathe-
matical su. tistics 22(1), 79-86.

Marron, J. and Wand, M. (1992), ‘Exact mean integrated squared error’, Annals of Statistics
20(2), 712-736.

22



Pittau, M. G., Zelli, R. and Massari, R. (2016), ‘Evidence of convergenc . '*1bs using mixture
models’, Econometric Reviews 35(7), 1317-1342.

Scaillet, O., Treccani, A. and Trevisan, C. (2018), ‘High-frequency jun., .nalysis of the bitcoin
market’, Journal of Financial Econometrics forthcoming.

Silverman, B. W. (1986), Density Estimation for Statistics ar { D .ta .inalysis, Chapman &
Hall/CRC, London.

Yan, C. and Zhang, H. (2017), ‘Mean-variance versus naiv. diver: [fication: The role of mis-
pricing’, Journal of International Financial Markets, Ins*  utio... und Money 48(5), 61-81.

Zhang, H. and Yan, C. (2018), A skeptical appraisal of tl.. boo strap approach in fund perfor-
mance evaluation’, Financial Markets, Institutions and .. <truments 27(2), 49-86.

23



Figure 1: Graphical performance of density estimators. Density estimates by a2 .. ~tive kernel estimator,
global kernel estimator, GMD (2), GMD (3) and GMD (4) in Scenario 1, Scenario 2 and Scen.. “o 3 based on one
replication path.
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Table 1: Summary of Density estimators. The first column presents the five densit, ~stimators used in this
paper, including adaptive kernel density estimator, global kernel density estimator, GMD (2), "MD (3) and GMD
(4). The second column summarizes the unknown estimable parameters involved i ea h estimator.

Density estimators Unknown nara.~eters

GMD (2) T, U150 2,0 57

GMD (3) T, T, Uy, A9, U3, 01,02,03

GMD (4) 1,725 T3 Ug, U, U3, Uy, 01,02,03,04
Global kernel estimator with fixed bandwidth h

Adapative kernel estimator with variable bandwidth | P,
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Table 2: Generation of alpha in the simulation study. Based on a CAPM-type of sin‘,. factor model, we con-
sidered the following three representative scenarios for the generation of a;, fori = ,2,--- N. In Scenario 1,
we generate alpha from a mixture of two Gaussian distributions, which follows Tabl¢ 1 « “Harvey and Liu (2018).
In Scenario 2, we generate alpha from a mixture of three Gaussian distributions, - *hicl follows Panel C of Table
IV of Ferson and Chen (2017). In Scenario 3, we generate alpha from a mixtur~ of 1. "+ Gaussian distributions,
which follows Table Al of Chen et al. (2017).

Scenario Simulated distribution for alpha

Scenario 1 | 0.283N(—0.02277/12,1.513%/12) 4+ 0.717! (—0.0. 585/12,0.586%/12)
Scenario 2 | 0.507N(0,0.22) + 0.069N (—0.0003, 0.22) + . 424} (—0.002,0.22)
Scenario 3 | 0.1N(0.01,0.72) 4+ 0.4N(0.003,0.72) +7.4N/" 0.7%) + 0.1N(—0.01,0.72)
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Table 3: BIC model selection results for simulated data. This table reports mear ¢ BIC values over 500
replications for GMD (2), GMD (3) and GMD (4) estimators with the corresponding fiequen. - of being selected
in parentheses.

Scenario GMD (2) GMD (3) GMD (4)
Scenario 1 691.4137 (489/500) 710.5049 (8/500° 722 4898 (3/500)
Scenario 2 369.3813 (481/500) 390.5060 (18/500, 412.2884 (1/500)
Scenario 3 811.6118 (492/500) 831.3073 (8/Fuu) 851.5021 (0/500)
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Table 4: Performance of density estimators. In Panel A, we present the results of . ~n validity, that is, the
bias(x10?) of estimated mean parameter of alpha resulted from adaptive kernel estimaior, glo. !kernel estimator,
GMD (2), GMD (3) and GMD (4) based on 200 grid points when (N, T) = (400,27 u,. In Panel B and Panel C,
we respectively present the results of density validity in terms of MISE and reliabi” ty ir terms of SDISE resulted
from the above five density estimators. In Panel A, we report the value of biasx?0® to = reader-friendly.

Panel A: Mean Validity

Scenario Criteria Adaptive Kernel Global Kernel G (., GMD (3) GMD (4)
Scenario 1 Bias 0.998830 0.998830 (€ 9990%5 0.999249 1.002212
Scenario 2 Bias 0.751167 0.751167 0.,/~16¢.8 0.751840 0.755070
Scenario 3 Bias 2.630384 2.630384 2 220893 2.634982 2.640672
Panel B: Density Validi.y
Scenario Adaptive Kernel Global Kernei GMD (2) GMD (3) GMD (4)
Scenariol  MISE 0.003435 0.00L"41 .003437 0.007097 0.013260
Scenario 2  MISE 0.006366 0.00-101 0.008427 0.016075 0.026933
Scenario3  MISE 0.000716 M 222222 0.000721  0.001379 0.002320
Panel C: Relia. ‘lity
Scenario Adaptive Kernel Gl ba) ne.nel GMD (2) GMD (3) GMD (4)
Scenario 1  SDISE 0.002569 L 903728 0.004004 0.007079 0.027509
Scenario 2  SDISE 0.004053 2006106 0.010818 0.014136 0.025306
Scenario 3  SDISE 0.00047. 17.000522 0.001023 0.001227 0.002160
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Table 5: Summary statistics. Monthly returns are summarized for mutual funds (tor , @nel) and hedge funds
(bottom panel), measured in excess of the one-month return of a three-month Treasury bi... The values at the
cutoff points for various quantiles of the cross-sectional distributions of the sample u1 . inds are reported. Each
column is sorted on the statistic shown. Nobs is the number of available monthly etur is, where for the left top
(and left bottom) panel, there is no restriction while a minimum of 30 are required .. - the right top (and right
bottom) panel. Mean is the sample mean return, Std the sample standard deviation. € return, and Rhol the first
order sample autocorrelation. The alpha estimates are based on OLS regressi ,ns 1cing the Fama-French-Carhart
four factors (Carhart (1997)) for mutual funds, while the Fung-Hsieh seven f ctor, (Fuug and Hsieh (1997, 2001)

are used for the hedge funds.

Quantiles Mutual funds (full sample) Mu..... funds (minimum 30 obs)
Nobs Mean Std  Rhol a,s | Jor, Mean Std  Rhol a,s
Top | 335 0.060 0.512 0.688 0.032 335 0.060 0.512 0.688 0.024
1% | 333 0.021 0.117 0.406 0.008 | 5.5 0.018 0.114 0.361 0.008
5% 263 0.013 0.088 0.303 0.00«+ 277 0.012 0.087 0.284 0.004
10% 223 0.010 0.078 0.254 0.00. 232 0.010 0.077 0.243 0.003
20% 178 0.008 0.069 0.207 . vus 190 0.007 0.068 0.205 0.001
30% | 149 0.006 0.062 0.172 0.00. | 163 0.006 0.062 0.173 0.001
Median 97 0.004 0.053 0.121 -0 buu | 118 0.004 0.054 0.127 -0.000
30% 53 0.002 0.046 0.0 -L 001 76 0.002 0.047 0.079 -0.001
20% 38 -0.000 0.042 0.0206 -2002 58 0.001 0.043 0.049 -0.002
10% 22 -0.003 0.036 -C-:57  90.003 44 -0.002 0.038 0.000 -0.003
5% 13 -0.008 0.030 -0.12. -0.005 38 -0.004 0.034 -0.052 -0.005
1% 9 -0.023 0.018 2287 -0.010 32 -0.010 0.022 -0.149 -0.009
Bottom 8 -0.090 0.0C~ -0.€27 -0.141 31 -0.035 0.004 -0.551 -0.049
Quantiles Hedge fund ,_(fun ~=.nple) Hedge funds (minimum 30 obs)
Nobs Mean St. Rhol d,;s | Nobs Mean Std  Rhol a,s
Top | 192 0.173 0.6.~ 0.814 0.868| 192 0.051 0.324 0.814 0.045
1% | 172 0.02¢ 173 0.579 0.024 | 182 0.021 0.156 0.584 0.020
5% 126 0.014 0.048 0.457 0.012 147 0.012 0.090 0.479 0.011
10% 102 0.,09 0.075 0.390 0.008 124 0.009 0.071 0.409 0.008
20% 73 N.00° 0.053 0.296 0.005 96 0.006 0.052 0.323 0.005
30% 56 0.004 0.042 0.234 0.004 78 0.004 0.042 0.265 0.004
Median 38 00" 0.028 0.127 0.002 57 0.002 0.029 0.170 0.002
30% 2z -00uv2 0.020 0.009 -0.000 46 -0.000 0.022 0.078 0.000
20% .6 -0.)05 0.016 -0.072 -0.001 40 -0.002 0.018 0.021 -0.001
10% 11  J.011 0.012 -0.188 -0.004 36 -0.005 0.014 -0.071 -0.003
5% 8 -0.018 0.009 -0.304 -0.009 33 -0.008 0.010 -0.133 -0.006
1% 2 -0.043 0.005 -0.518 -0.024 31 -0.018 0.007 -0.284 -0.014
Bottoglj_ 1 -0.114 0.000 -0.794 -1.513 31 -0.038 0.001 -0.492 -0.031
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Table 6: BIC model selection results for real data. Panel A, B and C report the BIC v ."'es to the real data set
of U.S. mutual funds with a sample similar to Ferson and Chen (2017); Harvey and viu (2u " R), while Panel D
presents the counterpart results from the real data set of U.S. hedge funds with a < .n,, le similar to Ferson and
Chen (2017). In all panels, for robustness we use two thresholds to filter out our f nal < umple: at least 8 months
of returns, and at least 30 months of returns. We use the one-factor market mod-I, thc "ama-French three-factor
model, the Fama-French-Carhart four-factor model and the Fung-Hsieh seven-factor .. ~del to estimate fund alpha
in Panel A, B, C and D, respectively. We present the BIC values when we spr ity one subgroup, two subgroups,
three subgroups and four subgroups using GMD (1), GMD (2), GMD (3) anc GM'» (4), respectively. The selected

specifications are in bold.

Real data sample n GMD (1) Gl (2) GMD (3) GMD (4)
Panel A: Mutual funds via the one -far .or narket model

Mutual funds with at least 8 obs 3026 —23382.27 -2 .633.67 —24721.70 —24715.99

Mutual funds with at least 30 obs 2557 —21054.07 -21673.89 —21666.05 —21729.28
Panel B: Mutual funds via the Fame. Frer ch three-factor model

Mutual funds with at least 8 obs 3026 —23386.74 —25225.93 —25240.73 —25383.28

Mutual funds with at least 30 obs 2557 —Z_.+s80.// —22135.80 —22188.04 —22167.64

Panel C: Mutual funds via the Fama-Ft. >nch-Carhart four-factor model

Mutual funds with at least 8 obs 3026 —"2,38.89 —25123.16 —25367.55 —25384.46

Mutual funds with at least 30 obs 2557 —21387.96 —22246.82 —22282.35 —22263.22
Panel D: Hedge funds via he Fung-Hsieh seven-factor model

Hedge funds with at least 8 obs 35,2 —.1839.24 —21881.95 —22651.32 —22772.75

Hedge funds with at least 30 obs 2072 --15143.04 —15725.49 —15719.51 —15719.47
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Table 7: In-sample likelihood score comparison for real data. Panel A, B and C prese .. the results when apply
the well-known likelihood score methodology in Amisano and Giacomini (2007) to the 1eal da.. <et of U.S. mutual
funds with a sample similar to Ferson and Chen (2017) and Harvey and Liu (2018, w ile Panel D presents the
counterpart results from the real data set of U.S. hedge funds with a sample simil ¢ to " erson and Chen (2017).
In all panels, for robustness we use two thresholds to filter out our final sampl~: at . ast 8 months of returns,
and at least 30 months of returns. We use the one-factor market model, the Fama-F.. ~ch three-factor model, the
Fama-French-Carhart four-factor model and the Fung-Hsieh seven-factor mod 1 to 2<timate fund alpha in Panel A,
B, C and D, respectively. We present the values of in-sample likelihood scorr whe 1 we specify one subgroup, two
subgroups, three subgroups and four subgroups using GMD (1), GMD (2). GM. “3) and GMD (4), respectively.

Real data sample n GMD (1) “~M. 2y GMD (3) GMD (4)
Panel A: Mutual funds via the one-fz :to” «n. rket model

Mutual funds with at least 8 obs 3026 63.42€~ 84,062 86.8392 87.2844

Mutual funds with at least 30 obs 2557 79.3837  75.3619 96.1793 97.9721
Panel B: Mutual funds via the Fama-r. ~ncb chree-factor model

Mutual funds with at least 8 obs 3026 65.35.2 94.3219 97.1321 98.5232

Mutual funds with at least 30 obs 2557 C-~>10u 106.1217 107.9068 108.0082

Panel C: Mutual funds via the Fama-Frew. h-Carhart four-factor model

Mutual funds with at least 8 obs 3026  5€.3210 94.7754 98.5811 99.2925

Mutual funds with at least 30 obs 255 7 & 2091 108.1890 109.2931 109.4282
Panel D: Hedge funds via th. Fuag-Hsieh seven-factor model

Hedge funds with at least 8 obs 3073 8.4653 37.1801 43.4041 43.8901

Hedge funds with at least 30 obs 2072  50.3654 62.7366  62.7479  64.6349
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Table 8: Qut-of-sample likelihood score comparison for real data. Panel A, B, and C , “=sent the results when
apply the well-known likelihood score methodology in Amisano and Giacomini (20u7) to ." = real data set of
U.S. mutual funds with a sample similar to Ferson and Chen (2017) and Harvey ar « 1. ‘1 (2018), while Panel D
presents the counterpart results from the real data set of U.S. hedge funds with ¢ sam Jle similar to Ferson and
Chen (2017). In all panels, for robustness, we use two thresholds to filter out ou~ fina, =mple: at least 8 months
of returns, and at least 30 months of returns. We use the one-factor market model, .. » Fama-French three-factor
model, the Fama-French-Carhart four-factor model and the Fung-Hsieh seven- act. r moael to estimate fund alpha
in Panel A, B, C, and D, respectively. We present the values of out-of-sample " keli’.0ooa score when we specify one
subgroup, two subgroups, three subgroups and four subgroups using GMD (1), «*D (2), GMD (3) and GMD (4),
respectively.

Real data sample n—n; GMD (1) G.D0(2) GMD(3) GMD (4)
Panel A: Mutual funds via the one-facior m .rket model

Mutual funds with at least 8 obs 2017 66.3361 86.7579 88.4501  88.5952
1513 66.6.74 35.0836 86.6306 86.9012
1009 66.4214 82.7363 82.9075 84.1940
Mutual funds with at least 30 obs 1705  72.2377 96.0531 98.0006 97.6183
1279 76..794 95.0133 97.3747 97.7754
852 /c.2277 94.9824  96.8780 97.6143

Panel B: Mutual funds via ‘he Fa na-French three-factor model
Mutual funds with at least 8 obs 2017  73.3779  98.4090 99.2168  99.3773
22 75.6775 96.0021 97.9590 97.9618
100y 74.0500 92.3150 94.3411 94.3026
Mutual funds with at least 30 obs 705  80.3043 107.2863 107.3153 108.3281
1279 83.4818 106.0315 107.4896 107.0795
52 84,9855 104.5311 106.2564 105.8741

Panel C: Mutual fi ads via *he Fama-French-Carhart four-factor model

Mutual funds with at least 3ou. 2017  73.5300  99.7986 101.0600 101.0935
1513 75.9806 97.4218 98.8737 98.9133
1009 73.4680 92.7965 94.6067  94.6055
Mutual funds with at .eas 30 obs 1705 82.8348 109.2539 110.1331 110.1930
1279 85.8566 107.7597 109.0251 109.0295
852 87.3349 105.8908 107.3995 107.4310

Panc. ): Fadge funds via the Fung-Hsieh seven-factor model
Hedge funds v (th at least 8 obs 2355 11.9880 38.4978 44.2847 44.5295
1767 10.7027 38.6438 43.1439 43.4138
1178 10.3157 36.2571 39.6653 39.8822
Hedge fur ds witl atleast 30 obs 1381 46.6932 62.3785 63.0389  63.3135
1036  48.6866 62.1095 62.8484 62.9377
691 49.0155 60.4667 61.9320 61.9059
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Appendix A

This appendix briefly introduces three density estimators: the ~".ssian Mixture Distri-
bution (GMD) estimator, the global kernel density estimator, anc ‘he ac ptive kernel density

estimator.

GMD is one of the most common parametric estimator: in Ecc 1omics, and it can provide
a natural representation of heterogeneity in a finite nur.ber _” latent classes (see Chen et al.,
2014). If fund alpha a is deemed to be generated fi.m a ..uxture (weighted average) of k

Gaussian distributions, the corresponding GMD (k) e.“imator of x is:
fempay(a) = § 1 fi(a), (8)
i1

where f;(a) = (2no;) 2 exp {—%] ~~.> 9, 7, are weights satisfying 7r; > 0 and Zle T =
1. Empirically, GMD is almost always an approximation of the true density as the components
are unlikely to be normal, especis ly in F nance. Although a few papers argue that GMD can
capture a large domain of non- .a10r aal complex distributions even when the number of Gaus-
sian components, k, is sma!_ (e.g., * rarron and Wand (1992)), the use of GMD suffers from
two aspects regarding the choice uf k: model misspecification and parameter uncertainty. On
the one hand, since th. tr.e value of k is unobservable and may not be an integer (if not
non-existent) in rea’ dat 4, it is not uncommon to mis-specify the GMD estimator with a wrong
choice of k, since w.e extaat studies mainly rely on traditional procedures to pick up a reason-
ably small intege * For instance, Harvey and Liu (2018), Ferson and Chen (2017) and Chen
et al. (2017, only rc ly on a Likelihood Ratio (LR) test, a Chi-squared test and a Bayesian Infor-
mation C ..-~~n (BIC), respectively. Recently, Pittau et al. (2016) proposed a kernel-based test
to determine the number of components k. However, this test does not have sufficient power

to reject the hypothesis of the number of components smaller than that in the true model when
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the components largely overlap. On the other hand, a GMD (k) estimato 1.-< 3k—1 unknown
parameters to be estimated, which increases at k as we have made .t ¢ 2ar in Table 1. The
larger k is, the more estimation errors occur, and the larger the p.-ame.~r uncertainty prob-
lem. Albeit these reasonable and probable doubts, the existence .nd - ~enitude of information

loss due to these two concerns remain unclear.

To answer this question, we do not only focus on the va.’~tio-, of information loss within
the specified GMD (k) estimators, but also compare ther." v .th 1 otential competitors which al-
leviate the above two concerns and better capture the distr,. ution of alphas. Nonparametric es-
timators are of special interests for these purposes: » we _an establish the uniform consistency
results for kernel density estimators (see Hanse1,, 2008) and their performance is super robust
due to their nonparametric nature and hence ~ar cusily beat their parametric counterparts in
the presence of misspecification; ii) usually .'. " sufer the least from the parameter uncertainty
problem as they only require one paramc =1 \v.ndwidth) to be estimated. There are two basic
nonparametric kernel density estim~:~rs: global kernel estimator with fixed bandwidth, and
adaptive kernel estimator with vari.ble b-.ndwidth. For a random sample a,, a,, -, a, drawn

from a density f(a), the globs ke nel density estimator is as follows:

n

fzglobal(a):%Z%K(a;ai): )]

i=1

where K(-) is the G .usc.an ternel function without loss of generality and h is bandwidth sat-
isfying that h — J as r — ©0. Observe that %K (%) is actually the density function for the
Gaussian distribu.'~n -vith mean a; and variance h®. Therefore, the above kernel density es-
timator can He reg: rded as a location-mixture of n Gaussian distributions and the Gaussian
compone ' . ~-ities have a common variance (denoted as h*) and individual mean values.

Unlike the trc ditional GMD (k) estimator with 3k —1 unknown estimable parameters, there is

only one parameter h to be estimated in the nonparametric global kernel density estimator.
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Besides the above global kernel density estimator with fixed bandw’a. we also consider
the sample-point adaptive kernel estimator with variable bandwidtl, w1ich was first intro-
duced by Breiman et al. (1977) and nests the global kernel density . ~tim.*0r as a special case.

The functional form of the sample-point adaptive kernel estima? or i

Frtaprive(@) = %Z %K(a—; ) (10)

i=1 "1

where h; = h(a;) is a function of a,. Note that the ad.tive "crnel density estimator can also
be regarded as a mixture of n Gaussian densities buv ~ach C aussian density component has its
own variance (denoted as hl.z) and individual mean val..  Without loss of generality, we simply
let h; o< f(a;)"'/2, and Abramson (1982) sirooest L.at this adaptive choice outperforms the

fixed bandwidth estimator f;lobal(a) in gereral.
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Appendix B

Likelihood ratio test

The likelihood ratio statistic is commonly used to compa e t' . ~oodness of fit of two
statistical models, one of which (the null model) is a special ~_se o1 "he other (the alternative
model). Let L, and L, denote the likelihood function eval.ated it the model estimates for
M, and M,, respectively. Following Harvey and Liu (2( 18>, w * compute the likelihood-ratio
statistic by

LR=—-2(logLy, -loy " -, (1D

When M, significantly outperforms M,,, LR will be I~rge and positive. Therefore, a large like-
lihood ratio statistic provides evidence agains. ’{,. We present our results for the simulated

data and real data in Table 9 and Table 10, 1 ~>sp.. ctively.

Similar to the fund subgroup selection 1 sults using BIC, in all three simulated scenarios
the Likelihood ratio test suggests “.s to sc'ect GMD (2) as GMD (2) beats GMD (3) and GMD
(4) in at least 87.4% (=437/50"s in Sce..ario 2) cases. In other words, the Likelihood ratio test
does not always select the rig'it nu.~t 2r of fund subgroups. In real data analysis, the Likelihood
ratio test also does not pruvide . consistent suggestion on the number of fund subgroups, as
its suggestion varies frc n o'.e underlying asset pricing model to another, and from one sample

filtering method to .10t .er.

Chi-squared test

Followi. g Fers: n and Chen (2017), we employ the Pearson Chi-squared statistic below as

one of th - ..’“~via for density estimation of fund alphas.

K
(0, — M;)*
2=y 12
1 ; 5 (12)
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where the sum is over K cells, O, is the frequency of OLS estimated fund a., has that appear in
cell i in the data sample, and M, is the frequency of fund alphas that ap ear in cell i using a
certain density estimation method. The null hypothesis is that the ~vpec.~d frequencies from
the density estimation method match those of the data sample. (n : ;~lications, we choose K
cells, with the cell boundaries set so that an approximately ea*~l nu. ~ber of fund alphas in the
data sample appear in each cell. Since in our simulated da.a we ¢ nly have 400 funds which
is much less than the two thousand funds in Ferson and Ch~.1 ,\2017), we set K = 10 to make
sure there are plenty of observations falling into each .1 (1.e., 40 fund alphas in each cell).
In real data analysis, we set K = 101 to roughly mau.-2ir consistency with Ferson and Chen
(2017). We present our results for the simulate ' ... «.d real data in Table 11 and Table 12,
respectively. The results are consistent with ¢ ... 2revious results using BIC and the Likelihood

ratio test.
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Table 9: Likelihood ratio model selection results for simulated data. This table re . ~ts the results of three
likelihood ratio tests, (i) Hy : @ ~ GMD(2) against H; : « ~ GMD(3); (ii) Hy : « ~ GMD\..) against H; : o ~
GMD(4); (iii) Hy : o ~ GMD(3) against H; : & ~ GMD(4). Panel A and B respecti* c1y Jresent the frequency of
each density estimator being favored for each of the above test under 5% and 1% =vel Jf significance.

Scenario GMD (2) VS GMD (3) GMD (2) VS GMD (4 ¢ ﬂD (3) VS GMD (4)
GMD (2) GMD (3) GMD (2) GMD (4) sMD (3) GMD (4)
Panel A: 5% significance leve’

Scenario 1 452 48 438 62 418 82

Scenario 2 437 63 448 52 407 93

Scenario 3 439 61 445 5° 408 92
Panel B: 1% significar e 1evel

Scenario 1 482 18 478 22 472 28

Scenario 2 473 27 480 ~0 465 35

Scenario 3 475 25 482 18 467 33
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Table 10: Likelihood ratio model selection results for real data. Panel A, B and C rr . ~rt the LR test statistics
to the real data set of U.S. mutual funds with a sample similar to Ferson and Chew (201, Harvey and Liu
(2018), while Panel D presents the counterpart results from the real data set of U.S nc 1ge funds with a sample
similar to Ferson and Chen (2017). In all panels, for robustness we use two th >shc’ds to filter out our final
sample: at least 8 months of returns, and at least 30 months of returns. We urc= the ~ne-factor market model,
the Fama-French three-factor model, the Fama-French-Carhart four-factor model anu e Fung-Hsieh seven-factor
model to estimate fund alpha in Panel A, B, C and D, respectively. We presen the TR test statistics when we test
GMD (1) against GMD (2), GMD (2) against GMD (3), GMD (2) against GM" * (4> and GJMD (3) against GMD (4),
respectively. The cases in which we cannot reject the null that the former is as go. * as the latter at 1% significance
level are in bold.

Real data sample n Mvs@2) .3 @vsM@ @B)vs@
Panel A: Mutual funds via the one-facior m .rket model
Mutual funds with at least 8 obs 3026  1275.44  112.08 130.46 18.37
Mutual funds with at least 30 obs 2557 645.76 80.76 101.90 21.13
Panel B: Mutual funds via the Fama-_vencn three-factor model
Mutual funds with at least 8 obs 3026 ooy 161.24 205.44 44.20
Mutual funds with at least 30 obs 2557 67¢ .57 75.78 84.27 8.49
Panel C: Mutual funds via the Fa1 a-r.c..ch-Carhart four-factor model
Mutual funds with at least 8 obs 3027 = 308.31 268.44 309.40 40.96
Mutual funds with at least 30 obs 2557 582.40 59.07 64.83 5.76

Panel D: Hedge funds v - (.2 "'ung-Hsieh seven-factor model
Hedge funds with at least 8 obs 3533 10067.23 793.88 939.82 145.94

Hedge funds with at least 30 obs 2172 605.37 35.20 39.80 4.61
1% critical value 11.34 11.34 16.81 11.34
5% critical value 7.81 7.81 12.59 7.81
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Table 11: Chi-squared model selection results for simulated data. This table report. e results of three Chi-
squared tests, (i) Hy : @ ~ GM D(2) against H, : a does not follow GMD (2); (i) Hy : a ~ GM (3) against H; : a
does not follow GMD (3); (iii) H, : « ~ GMD(4) against H; : a does not follow G} .u '4). Panel A presents the
averaged Chi-squared statistic for each of the above tests over 500 replications; Par ‘| B 7 .1d C respectively present
the frequency of each null being supported for the above test under 5% and 1% 'evel « € significance.

Scenario GMD (2) GMD (3) GMh O (1)
Panel A: Average statistic ~
Scenario 1 15.91 17.26 18.°2
Scenario 2 15.28 16.97 12 33
Scenario 3 16.01 17.73 19.06

Panel B: 5% critical value — 16.9 .

Scenario 1 348 270 254
Scenario 2 365 272 241
Scenario 3 331 255 206
Panel C: 1% critic™! . .lac = 21.67
Scenario 1 459 424 374
Scenario 2 46" 415 373
Scenario 3 152 405 344
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Table 12: Chi-squared model selection results for real data. Panel A, B and C report t’.. hi-squared statistic to
the real data set of U.S. mutual funds with a sample similar to Ferson and Chen (2017 ); Har. v and Liu (2018),
while Panel D presents the counterpart results from the real data set of U.S. hedge .u. 1s with a sample similar
to Ferson and Chen (2017). In all panels, for robustness we use two thresholds o fi' er out our final sample:
at least 8 months of returns, and at least 30 months of returns. We use the one:facto. market model, the Fama-
French three-factor model, the Fama-French-Carhart four-factor model and the Fu.. >-Hsieh seven-factor model
to estimate fund alpha in Panel A, B, C and D, respectively. We present the C} .-sq 12red statistic when we specify
one subgroup, two subgroups, three subgroups and four subgroups using G! D ("5, GwD (2), GMD (3) and GMD
(4), respectively. The specifications which have passed the Chi-squared test at . "~ level are in bold.

Real data sample n GMD (1) SMw= 72) GMD (3) GMD (4)
Panel A: Mutual funds via the one-fz :to” «n. rket model

Mutual funds with at least 8 obs 3026  1000.~6 17,6.57 93.40 91.13

Mutual funds with at least 30 obs 2557 503.05 142.84 105.53 87.92
Panel B: Mutual funds via the Fama-r. ~ncb chree-factor model

Mutual funds with at least 8 obs 3026  148..71 193.21 115.67 79.91

Mutual funds with at least 30 obs 2557 41.54 126.54 91.22 92.19

Panel C: Mutual funds via the Fama-Frew. h-Carhart four-factor model

Mutual funds with at least 8 obs 3026  2130.06 254.30 110.59 95.55

Mutual funds with at least 30 obs 257 567.83 123.04 95.51 93.47
Panel D: Hedge funds via th. Fuag-Hsieh seven-factor model

Hedge funds with at least 8 obs olks  19748.78 896.08 176.38  119.63

Hedge funds with at least 30 obs 2072 516.64 121.16 90.56 88.27

1% critical value is 135.8067

5% critical value is 124.3421
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