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Abstract

We challenge the two most prominent one-factor mean-reverting models for variance/volatil-

ity indices and propose the Inhomogeneous Geometric Brownian Motion (IGBM) process to

price VIX options. We study the roles of the equilibrium level, speed of reversion, volatility

and expiration date in the pricing of VIX options and obtain analytic solutions for perpetual

American options as well as some Greeks. We price the finite-lived American options using

their transformed process to build a binomial tree. We also derive the closed-form Mean First-

Passage Time (MFPT) for perpetual American options and find a long optimal exercising time.

Other things being equal, the European ones are cheaper than their American counterparts,

which reflects an early exercise premium.
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‘VIX options and futures are among the most actively traded contracts at CBOE and CFE ... Al-

though these new assets certainly offer additional investment and hedging opportunities for fi-

nancial market participants, their correct use requires reliable valuation models that adequately

capture the features of the underlying volatility index.’

Mencía and Sentana (2013)

Introduction

Unlike many financial products, theoretical considerations of the pricing of VIX deriva-

tives appear in academia long before their actual introduction. The concept of variance trad-

ing, such as variance swap contracts, appears first in Neuberger (1990, 1994). After further

developments in the literature (e.g., Carr and Madan (1998), Demeterfi, Derman, and Kamal

(1999); Demeterfi, Derman, Kamal, and Zou (1999)), many volatility derivatives became ac-

tively traded in financial markets. These volatility instruments do not only allow investors

to hedge the volatility risk of their equity market positions, but also provide opportunities for

them to bet on the implied volatility speculatively. Although so far only European-type volatility

derivatives are available for trading in the industry, examining the characteristics and behav-

iors of American options written on VIX (hereafter, VIX options) are interesting for two main

reasons. On the one hand, as opposed to standard European-type contracts where options

can only be exercised at expiration dates (hereafter, expiration, in short), American options

can be exercised at any time before expiration. Consequently, the whole prospective path is

important and the optimal exercise boundary is crucial to pricing. On the other hand, with

a mean-reverting underlying VIX index, the characteristics of VIX options are quite different

from the ones of the conventional options with a Geometric Brownian Motion underlying asset.

When pricing a European option and a futures contract with the same underlying asset

and the same expiration, we can simply model the futures price as following a martingale

(i.e., with no drift) under the risk-neutral measure by using the bank account as the standard

measure (i.e., numeraire). Similarly, when pricing an American option, we also have a conve-
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nient martingale for the process of the underlying asset. However, an American option with

an underlying index (i.e., the VIX index) which is not a tradable asset is more complicated.

Researchers have to take into account the varying drift and the diffusion component of the

process, both of which affect the option value. More specifically, when the drift is larger than

the riskless return, the situation can be regarded as if the asset gains a convenience yield. It is

optimal to wait to exercise American call options. In contrast, when the drift is smaller than the

riskless return, the situation can be regarded as if the asset pays a dividend, and it is worth-

while to exercise American call options early. However, the convenience yield (or apparent

dividend rate) now varies stochastically depending on the level of the underlying asset/index.

The presence of mean-reversion can switch the convenience yield to a dividend rate and back

again. Hence, both American call options and put VIX options are different from their European

counterparts.

Earlier models for VIX derivatives include the Black-Scholes Geometric Brownian Motion

(GBM) type model by Whaley (1993)1, the Feller (1951) process by Grünbichler and Longstaff

(1996)2, and the Geometric Ornstein-Uhlenbeck (GOU) by Detemple and Osakwe (2000)3. In

the recent literature, Mencía and Sentana (2013) empirically analyze the pricing performance

of VIX derivatives under these two most prominent mean-reverting processes (as well as as

well as their variants such as time-varying central tendency, volatility jumps, and stochastic

1Hence, it implicitly assumes that the VIX does not mean-revert at all, which is understandable given the fact

that earlier literature in the 1980s and 1990s (see, e.g., Pagan and Schwert (1990); Schwert (1990)) finds a unit

root in stock volatility when the data span the 1930s. However, recent literature identifies strong evidence and

convincingly argues that the VIX has become mean-reversing, especially during and after the late 2000s Global

Financial Crisis (GFC) (see, e.g., Schwert (2011), which excludes the GBM model as a candidate for our analysis.).

2The Feller (1951) process is also called the Heston (1993) process, which is widely used in finance. For

instance, Lin and Chang (2009) assume that the S&P 500 index, rather than the VIX dynamics, follows the

Heston (1993) process, which is usually called the consistent pricing framework (see, e.g., Egloff, Leippold, and

Wu (2010), Zhu and Lian (2012)).

3They price options on instantaneous variance.
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volatility of variance) proposed so far for the VIX4. Mencía and Sentana (2013) documents

that the arguably "success" and popularity of both the Feller and the GOU process, as well

as their variants, are because the sample periods only cover a relatively long and quite bull

market, which ends at the GFC. Despite these glaring deficiencies of these two fundamental

processes, Mencía and Sentana (2013) did not propose an alternative one-factor process to

replace them.

Neither the Feller model nor the GOU model is able to capture the most relevant stylized

fact of the VIX market, which is a positive skew of the implied volatility, as documented by Wang

and Daigler (2011) and Mencía and Sentana (2013). The transition density functions of both

the GBM and the GOU are log-normal, generating a constant implied volatility across strikes.

The Heston process and its variations are widely adopted in modeling stochastic volatility of

the VIX and particularly of the equity index dynamics, generating a negative skew of the im-

plied volatility. Beyond the Heston process and these processes with log-normal distributions,

the lack of analytical solution to option pricing has hindered progress in the development of

continuous time volatility modeling. Other than the GOU and Feller models, we also consider

the Inhomogeneous Geometric Brownian Motion (IGBM) process (aka the GARCH diffusion

model for the variance rather than volatility in Nelson (1990); Lewis (2000)), whose steady-

state distribution displays a heavy right tail capturing the positive skew of the implied volatility.

A couple of reasons motivate our choice of IGBM model rather than the GOU and Feller

model. On the one hand, the Black-Scholes implied volatility of VIX options is positively

skewed, while neither the Feller process nor the process with log-normal distributions can

capture this most relevant stylized fact of the VIX market. Traditionally, the literature on eq-

uity index option pricing, address the deficiencies of the one-factor stochastic volatility mod-

els by adding a jump process5 or more factors (e.g., Huang and Wu (2004); Christoffersen,

4They alternatively call the Feller process and the GOU process, the SQuare Root (SQR) process and the

Log-normal Ornstein-Uhlenbeck (LOU) process, respectively.

5See, e.g., Bates (1996, 2000); Bakshi, Cao, and Chen (1997); Andersen, Benzoni, and Lund (2002); Pan
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Jacobs, Ornthanalai, and Wang (2008); Christoffersen, Heston, and Jacobs (2009); Branger,

Kraftschik, and Völkert (2016))6. Similarly, Branger, Kraftschik, and Völkert (2016) show that

both adding positive sized jumps to the variance process and introducing a stochastic volatil-

ity of variance factor which positively correlates to the variance process can achieve positive

implied skews. This study does not question the usefulness of this approach. Alternatively, we

take a much simpler approach to capture positive skews, than do these jump or multi-factor

models. The simplicity is particularly necessary for this issue as it allows us to derive the close-

form solution for American-style VIX options and compare them with their European-style

counterparts. On the other hand, Aït-Sahalia and Kimmel (2007) find that the coefficient β in

the CEV model (a more general model covers both the GOU (β = 0) and the IGBM (β = 1)) is

estimated by 0.94 using the daily VIX., which also motivates our choice of IGBM model rather

than the GOU model.

We investigate the roles of the equilibrium level, the speed of reversion, the volatility and

expiration date in the valuation, with perpetual options as a limiting case. Our closed-form

expressions for the perpetual American case provide a straightforward way to examine the

roles played by the equilibrium mean level, the speed of reversion, and the volatility. The

optimal exercising boundary is unique to price American options. Typically, investors are inter-

ested in knowing when the option will be exercised. To measure the optimal exercising time,

we compute its Mean First-Passage Time (MFPT). The MFPT plays an important role in the

valuation of perpetual (real) options: e.g., Mauer and Ott (1995) use the MFPT to estimate

the optimal time to undertake a replacement investment. Due to the nature of volatility, we

find that the MFPT is quite long in exercising volatility options. We then consider three dif-

(2002); Chernov et al. (2003); Eraker, Johannes, and Polson (2003); Eraker (2004); Carr and Wu (2004); Huang

and Wu (2004); Broadie, Chernov, and Johannes (2007); Santa-Clara and Yan (2010).

6It is worthwhile to note that, as pointed by (Christoffersen, Heston, and Jacobs, 2009, p. 1915–1916), "As

a consequence, many papers use a single-factor stochastic volatility model as the starting point for more complex

models...multifactor models have not yet become more popular in the option valuation literature".

4
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ferent mean-reverting processes which have very different properties and discuss the impact

of different mean-reverting dynamics for the pricing of American VIX options. We find that

American option values are more sensitive to the choice of the underlying process than their

European counterparts, which underscores the importance of our proposed IGBM for American

VIX options.

Our paper directly draws upon studies that seek to price VIX options, and is also linked,

albeit more indirectly, with studies investigating the pricing of options with a mean-reverting

underlying index. A concurrent purely theoretical paper, Detemple and Kitapbayev (2018),

captures this stylized fact using a mixture of the generalized 3/2 and 1/2 models, but sacrifices

model simplicity and parsimony. Our model can be used as a new starting point for the pricing

of VIX options and other options with a mean-reverting underlying asset/index, by adding

volatility jump components (see, e.g., Wu (2011)), volatility on volatility (see, e.g., Branger,

Kraftschik, and Völkert (2016)), and more factors (see, e.g., Christoffersen, Heston, and Jacobs

(2009)).

This paper also contributes to the literature on real options, as the valuation of investment

in an irreversible project is pricing the perpetual American options. We assume the project

value follows a stochastic process, and K denotes the initial cost in implementing the project.

The investment decision problem in capital budgeting is equivalent to pricing an American per-

petual (call) option with strike K . For instance, Bhattacharya (1978), Dixit and Pindyck (1994),

Metcalf and Hassett (1995), Sarkar (2003) examine the project value under the mean-reverting

assumption. The paper complements these studies by providing additional analytical insights

about the impact of the speed of reversion, the equilibrium mean level, and the volatility on

the valuation of irreversible projects.

1. Inhomogeneous Geometric Brownian Motion Process

According to the extant literature (see, e.g., Wang and Daigler (2011) and Mencía and

Sentana (2013)), the two most well-known mean-reverting processes to describe the VIX dy-

5
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namics are the Geometric Ornstein-Uhlenbeck (GOU) process and the square root process of

Feller (Feller (1951)). The GOU process is governed by

d ln X t = λ(θ − ln X t)d t +σdWt , X0 = x0. (1)

The GOU has gained popularity because it is a continuous version of the EGARCH pro-

cess (Nelson (1990)), which is often used as a model of the market variance process.

The process {ln X t}t≥0 is an Ornstein-Uhlenbeck process (OU). The transition density func-

tions of the OU process have Gaussian distributions. Hence, the transition density functions

of the GOU have log-normal distributions. Detemple and Osakwe (2000) examine finite-lived

European and American options on the volatility under the GOU assumption. Because of the

log-normal distributions, vanilla option valuation under the GOU assumption is analytically

tractable. However, there is one major limitation of using the GOU to describe the VIX dynam-

ics. Due to the log-normal distributions, the implied volatility of VIX options under the GOU

assumption is constant across strikes, which we shall see that this assumption is not empirically

tenable for VIX options.

The Feller process is governed by

dX t = λ(θ − X t)d t +σ
p

X t dWt . (2)

In the stochastic volatility field, the process is known as the Heston (1993) model. To guarantee

that {X t}t≥0 cannot reach zero requires 2λθ ≥ σ2. This inequality is called the Feller condi-

tion. The Feller process provides one of the earliest stochastic volatility models. This model is

important because the process is mean-reverting with a great deal of tractability. Many deriva-

tive products are analytically tractable under the Heston stochastic volatility framework. The

steady-state distribution has a gamma distribution (Cox, Ingersoll Jr, and Ross (1985))7. Grün-

7For brevity, we choose to omit the details of the gamma distribution, inverse gamma distribution, as well as

6
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bichler and Longstaff (1996) assume that the dynamics of VIX are driven by a Feller process.

Not surprisingly, a process of this kind generates very negatively skewed distributions, as the

diffusion term is scaled by
p

X t instead of X t . Unfortunately the most relevant stylized fact of

the VIX market is a positive skew of the implied volatility, as documented by Wang and Daigler

(2011) and Mencía and Sentana (2013).

Other than the GOU and Feller models, we also assume that the VIX dynamics are driven

by an Inhomogeneous Geometric Brownian Motion (IGBM). The reason is that it is engineered

to yield a closed-form solution for American VIX option valuation, and compare with their

European-style counterparts consequently. The IGBM process satisfies

dX t = λ(θ − X t)d t +σX t dWt , X0 = x0 (3)

where σ is the instantaneous volatility, θ the equilibrium mean level, λ the speed of reversion

and {Wt}t≥0 is a standard Wiener process. Since the discrete version of the model is a GARCH

(1,1) process (Nelson (1990)), the process is also known as the GARCH diffusion process.

Lewis (2000) uses the diffusion process (3) to describe the stochastic volatility. The process is

also adopted to describe the value of real options by Bhattacharya (1978) and by Brennan and

Schwartz (1980) to study the instantaneous interest rate.

The boundary 0 is an entrance, and the boundary∞ is natural. Put differently, the pro-

cess will only take positive values. In fact, using Ito’s lemma, it can be demonstrated that an

analytical solution is given by

X t = e−(λ+
1
2σ

2)t+σWt

�

X0 +λθ

∫ t

0

e(λ+
1
2σ

2)s−σWs ds

�

,

This positivity feature is appealing in describing many financial assets, such as volatility.

The steady-state of the process {X t}t≥0 follows an inverse gamma distribution (see, e.g., Nelson

the Feller condition in this paper, which are available in a companion paper of Yan and Zhang (2018).

7
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(1990)).

Let κ= 2λ
σ2 , the steady-state X∞ of the IGBM process (3) has the density function 1

Γ (κ+1)(κθ )
κ+1 x−κ−2e−

κθ
x .

This leads to the moment calculations of the steady-state:

EX n
∞ =







Γ (κ+1−n)
Γ (κ+1) κ

nθ n, n< κ+ 1;

∞, otherwise.

The IGBM process generates a positively skewed distribution which we shall find is much better

suited to modeling VIX than the first two processes.

2. Empirical Stylized Facts

We review the history of the VIX and consider evidence on the suitability of each of the

three models looking at the time series of both options prices and the VIX.

The CBOE volatility index (VIX) was introduced in 1993. The index, commonly known

as the investor fear factor,8 reflects a market consensus view of the implied volatility of S&P

500 index options over the next 30 days. On March 26, 2004, the Chicago Futures Exchanges

(CFE) launched its first-ever traded VIX futures (VX), which are standard futures contracts. VIX

options were launched on Feb 24, 2006. The volume of VIX options is growing at a much faster

rate than the VIX futures, and the average daily volume of VIX options (687,181 contracts) is

8We are aware of the existence of two versions of VIX, with a pairwise correlation coefficient larger than 0.99.

Initially, VIX is based on the implied volatility of S&P 100 index At-The-Money (ATM) options, determined by

inverting the Black and Scholes (1973) formula. On September 23, 2003, the original calculation of VIX was

revamped to accommodate more robustness and back-calculated to 1990, following the model-free calculation

method of Demeterfi, Derman, and Kamal (1999); Britten-Jones and Neuberger (2000); Jiang and Tian (2005).

The principal idea of favoring the new calculation is based on the fact that variance swaps can be replicated by the

corresponding option prices of the underlying. The CBOE kept the VIX as the new volatility index while renamed

the old one the VXO. A historical development of these two volatility indices is presented in Carr and Wu (2006).

8
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about three fold larger than the VIX futures (283,342 contracts) in 20149. They are analogous

to the standard options written on stocks. In this study, we obtain the historical time series

data of VIX from the CBOE website, which range between January 2, 1990 and September 30,

2012 with a total of 5,732 observations.10 We collect the VIX option data from Market Data

Express (MDE).

2.1. Implied volatility

Under an equivalent risk-neutral measure, we cannot use the Black-Scholes model (Black

and Scholes (1973)) to describe the VIX dynamics. This is because the VIX is mean-reverting,

while the underlying in the Black-Scholes framework can reach indefinitely high levels in con-

trast. In order to get the implied volatility of VIX, we use the futures dynamics:

dFt,T = σFt,T dWt , (4)

where {Wt}t≥0 is a standard Brownian Motion process, σ is the instantaneous volatility

and T is the maturity. SDE (4) is also called the Black model (Black (1976)). The only un-

known variable appearing in the Black model is the constant volatility σ. However, it is widely

acknowledged that the volatility is far from constant. This empirical difficulty leads to the de-

velopment of implied volatility. The implied volatility connects the Black option price with the

corresponding market option price. Precisely speaking, the implied volatility is defined to be

the value with which the Black option price at a given strike K (or log moneyness k := ln K
F0,T

)

and expiration T matches the corresponding market option price. The total implied variance

is defined to be the implied variance multiplied by the time to expire.

9http://markets.businessinsider.com/news/stocks/VIX-Options-and-Futures-Set-New-Daily-Volume-

Records-1002250217.

10Our sample period is comparable to the latest literature such as Mencía and Sentana (2013) and Branger,

Kraftschik, and Völkert (2016).

9

Page 11 of 50 The Financial Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

To intuitively understand the shortcomings of the existing models such as the GOU and

Feller models as well as the improvements provided by our IGBM model, it is instructive to

graphically show some of the models’ statistical properties that are key for option pricing. As

a representative example, Figure 1a plots the total implied variances of VIX options on March

24, 2010. The implied variance curve is upward sloping, suggesting the slope of the implied

volatility is positive. The positive slope means that volatility tends to have a heavier right tail

distribution. Figure 1b reports the total implied variances of VIX options against log moneyness

for the three dynamics. The implied variance curve from the Feller process is downward sloping

from left to right. The slope of implied volatility is negative, which is in stark contrast with what

is empirically observed in the market. If the dynamics are driven by a GOU process, the implied

variance is constant, which is also empirically biased. If we assume the VIX dynamics are driven

by an IGBM process, the implied variance curve is upward sloping from left to right, and the

slope of implied variance is positive. Overall, the implied volatility examination demonstrates

that neither the Feller nor the GOU process but the IGBM model is empirically consistent with

the upward sloping implied variance in the markets, which is the most relevant stylized fact of

the VIX market, as documented by Wang and Daigler (2011); Mencía and Sentana (2013).

2.2. Time series analysis

To add robustness to our estimates, we split the data into two non-overlapping subperi-

ods (shown in the left and right columns) and use two different approaches. The top panel

(Panel A) in Table 1 shows the results of fitting each of the three processes to its steady-state

distribution; the bottom panel (Panel B) in Table 1 shows the results of fitting changes into

the discretized diffusion equation. In each case, we use the maximum likelihood method. In

the top panel (Panel A) in Table 1, the maximum likelihood method is carried out to estimate

steady-state distributions of these processes. Table 2 summarizes the the stationary state dis-

tributions. However, the steady-state distributions depend only on θ and κ. To estimate the

volatility σ, we apply Ito’s Lemma to first transform the original process to the one whose

Brownian coefficient is σ. We then compute the quadratic variation of the transformed pro-

cess to estimate σ. Table 2 reports the transformed process and the quadratic variation. The

10
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bottom panel (Panel B) in Table 1 shows the maximum likelihood method which is directly

based on the transition density functions proposed by Aït-Sahalia (2002) and Yu (2007).

Table 1 reports the calibrated parameter values. The Feller condition is satisfied, which

means that zero is not attainable for the Feller model. The estimated coefficients are qualita-

tively similar across different periods and different methods, though there are slightly slower

reversions in the second period. More importantly, the IGBM provides a significantly better

fit in both sub-periods than the other two models, while the Feller model is the worst fit in

both periods. Over the whole sample period, our calibrated parameters from the maximum

likelihood method proposed by Aït-Sahalia (2002) and Yu (2007) are λ = 3.625, θ = 0.205,

σ = 0.965. We take them to further analysis throughout this paper, although our results are

robust to other parameters.11

3. Perpetual American Options

Perpetual American options are limiting cases of finite-lived American options. They have

no expiration date and can be exercised at any time. Assuming the value process of the under-

lying asset is {X t}t≥0 and the strike price is K , a perpetual American call pays (X t − K)+ if it

is exercised at time t, while a perpetual American put pays (K − X t)+ if it is exercised at time

t. The valuation of (perpetual) American options written on stocks was originally investigated

by Merton (1973) where he assumed that the stock dynamics are governed by a Geometric

Brownian Motion. In option pricing, perpetual American options have at least two obvious

advantages over conventional American options. First, unlike finite-lived American options,

perpetual American options admit tractable solutions. Consequently, they provide an analyti-

11In Table 1, for the GOU model, the estimated value for θ is negative. This is the estimated long-run mean for

the natural log of volatility, not for the level of volatility. To convert this number to a volatility level and make it

comparable to the long-run mean estimates for the Feller and IGBM models, we only need to take the exponential

of the negative numbers (i.e., -1.684, -1.613, -1.678, -1.623) to get rid of the logarithm. The comparable numbers

are 0.186, 0.199, 0.187, 0.197, respectively.

11

Page 13 of 50 The Financial Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

cal view on how the changes of the underlying index, the speed of reversion, the equilibrium

mean level and the volatility affect the American option values. Second, they offer asymptotic

boundaries for their finite-lived counterparts.

The pricing of perpetual American options relates to the theory of optimal stopping (see,

e.g., Peskir and Shiryaev (2006)). The general approach is well-established. There are also

some precedents for valuing perpetual American options on mean-reverting processes, par-

ticularly in the real options literature (see, e.g., Dixit and Pindyck (1994)). Since the IGBM

provides an empirically consistent implied volatility, we use the IGBM process to price perpetual

American VIX options.

Let r be the constant risk-adjusted rate of discount, the optimal present value of the per-

petual American option is given by

V (x) = sup
τ
Ex

�

e−rτ f (Xτ)
�

, (5)

where the supremum is taken over stopping time τ who satisfies τ≥ 0, f (·) is the payoff when

the option is exercised and x represents the initial level of the process. This optimal stopping

problem is equivalent to finding a barrier h, such that V (x) achieves the supremum when the

process first hits the optimal exercising region. In the case of put options, the stopping time is

τh = inf{t ≥ 0 : X t ≤ h}. In the case of call options, the stopping time is τh = inf{t ≥ 0 : X t ≥

h}. The unique value h is the critical value, the threshold value or the optimal exercise boundary.

Replacing the stopping time τh to Equation (5), we have

V (x) = Ex

�

e−rτh f (Xτh
)
�

= Ex

�

e−rτh
�

f (h).

In the region where it is not yet optimal to exercise, the value function satisfies

λ(θ − x)
d

d x
V (x) +

1
2
σ2 x2 d2V

d x2
= rV (x). (6)

12
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12

By Lemma 1, the solution to (6) takes the form

V (x) = Ax−aM(a, b;
c
x
) + Bx−aU(a, b;

c
x
).

where M(a, b; x) and U(a, b; x) are confluent hypergeometric functions of the first and second

kinds respectively (see Appendix B) and

a =

p

(2λ+σ2)2 + 8rσ2 − (2λ+σ2)
2σ2

, b =
2λ
σ2
+ 2a+ 2, c =

2λθ
σ2

.

In order to determine A and B, we shall need the boundary conditions. The two cases of put

and call options are treated separately in the following two subsections.

12 Under a general time-homogeneous diffusion

dX t = µ(X t)d t +σ(X t)dWt ,

the discounted expectation of a contingent payoff V (XT , T ) under a constant interest rate r is a function V (X t , t)

which evolves (backwards in time) under the Feyman-Kac equation

∂ V (x , t)
∂ t

+µ(x)
∂

∂ x
V (x , t) +

1
2
σ2(x)

∂ 2V (x , t)
∂ x2

− rV (x , t) = 0

The Black-Scholes partial differential equation is a special case of this. This equation also applies to the evolution

of American option values in the region where it is not yet optimal to exercise. For perpetual options, its value

no longer depends on time, because it is always an infinite time away from expiration. We can write its value at

any time as V (x) instead of V (x , t). For our IGBM process, this specializes to:

λ(θ − x)
d

d x
V (x) +

1
2
σ2 x2 d2V

d x2
− rV (x) = 0. (7)

This equation holds in the region where it is not optimal to exercise. There is free boundary problem of where it

is optimal to exercise subject to other boundary conditions which characterize the value when it is exercised.

13
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3.1. Perpetual American put options

Let us change the previous V (x) to P(x) to make it clear that this is the value for perpetual

put options. The boundary conditions are:

P(h) = K − h, (8)

P ′(h) = −1, (9)

P(x)→ 0, as x →∞ (10)

Equation (8) is called the value matching condition. Equation (9) is called the smooth pasting

condition, which states that the optimal barrier is selected such that the value function V (x) is

smooth around that point. In other words, the slope of the value function exactly equals the

slope of the exercise value (Merton (1973)). Condition (10) holds, because∞ is the natural

boundary. A natural boundary is a point in which the process can neither reach in finite mean

time nor can it be started from (Karlin and Taylor (1981)). Thus, if the process starts from the

natural boundary, it will take an infinite mean time to reach any interior point. Since b > 2,

the boundary condition (10) and the asymptotic expansion (B.1) imply B = 0.

We show that the solution h that satisfies the conditions (8) and (9) is unique. The recur-

sive relationship (v − u)M(u, v + 1; x) = vM(u, v; x)− vM ′(u, v; x) and P(h)
P ′(h) = h− K yield

c(b− a)
b

M(a, b+ 1; c
h)

M(a, b; c
h)

=
−(a+ 1)h2 + (aK − c)h+ cK

K − h
. (11)

Proposition 1. The solution h to Equation (11) exists and is unique. Moreover, we have K
p

a+1−1p
a+1

<

h< K.

The condition (8) implies

A=
K − h

h−aM
�

a, b; c
h

� ,

14
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therefore, we get the optimal present value for the perpetual put option

P(x) =







(K − h) x−a M(a,b; c
x )

h−a M
�

a,b; c
h

� , if x > h;

K − x , if 0< x ≤ h.
(12)

Note that to calculate the solution for a given strike, we first find the value of h which solves

equation (11). To find h, we can use some numerical methods, such as the bisection algorithm,

to search within the bounded range (K
p

a+1−1p
a+1

, K).

3.2. Perpetual American Call Options

For the same reason, we change the previous V (x) to C(x) to make it clear that this is the

value of call options. The boundary conditions are:

C(h) = h− K , (13)

C ′(h) = 1, (14)

C(x)<∞, as x → 0+ . (15)

Again, Equation (14) comes from the smooth fit principle, and condition (15) holds since 0 is

the entrance. An entrance boundary is a point if the process begins there, it quickly moves to the

interior of the state space and never returns to that point any more (Karlin and Taylor (1981)).

The asymptotic behavior (B.3) and the boundary condition (15) imply A = 0. We show the

solution h that satisfies the conditions (13) and (14) is unique. The derivative U ′(u, v; x) =

−uU(u+ 1, v + 1; x) and C(h)
C ′(h) = h− K yield

U(a+ 1, b+ 1; c
h)

U(a, b; c
h)

=
(a+ 1)h2 − aKh

ac(h− K)
. (16)

Proposition 2. The solution h to Equation (16) exists and is unique. Furthermore, h> b−a−1
b−a−2 K .

15
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The condition (13) implies

B =
h− K

h−aU
�

a, b; c
h

� ,

which implies the optimal present value of the perpetual American call option has the expres-

sion given by

C(x) =







(h− K) x−aU(a,b; c
x )

h−aU
�

a,b; c
h

� , if x < h;

x − K , if x ≥ h.
(17)

To value the calls, we also have an easy bisection search13 for the value of h which solves

equation (16) following by evaluating equation (17).

3.3. Sensitivity analysis of perpetual American options

We adopt the standard Greeks in finance to analyze the sensitivity of the value function

V (x) to changes in different parameters. The option del ta, ∂ V (X )
∂ x , measures the rate of change

of the value function with respect to a change in the underlying asset price. The option gamma,
∂ 2V (x)
∂ x2 , is the rate of change of the del ta with respect to a change in the underlying asset price.

Since it is easy to differentiate both the M(a, b; x) and U(a, b; x) functions with respect to

their final arguments, we can give the following expressions for the del ta and gamma of each

option.

Proposition 3.

∂ P(x)
∂ x

=







− a
x

M(a+1,b; c
x )

M(a,b; c
x )

P(x), if x > h;

−1, if 0< x ≤ h.

∂ 2P(x)
∂ x2

=







a(a+1)
x2

M(a+2,b; c
x )

M(a,b; c
x )

P(x), if x > h;

0, if 0< x ≤ h.

13Note the value 1
h is bounded between 0 and b−a−2

b−a−1
1
K .

16

Page 18 of 50The Financial Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Proposition 4.

∂ C(x)
∂ x

=







a(b−a−1)
x

U(a+1,b; c
x )

U(a,b; c
x )

C(x), if 0< x < h;

1, if x ≥ h.

∂ 2C(x)
∂ x2

=







a(a+1)(b−a−1)(b−a−2)
x2

U(a+2,b; c
x )

U(a,b; c
x )

C(x), if 0< x < h;

0, if x ≥ h.

They have the expected properties and are easy to evaluate. The partial derivatives with

respect to σ, θ and λ are mathematically more complicated. To get these sensitivities, we

examine the asymptotic value of the optimal exercising boundary when the relevant parameter

approaches either 0 or∞.

Proposition 5. Let h be the critical value of perpetual American put option, then

lim
λ→0+

h=
p
σ2 + 8r −σ
p
σ2 + 8r +σ

K , lim
σ→0+

h=min
§

K ,
λθ + rK

r +λ

ª

, lim
θ→0+

h=
aK

a+ 1
,

lim
λ→+∞

h=min{K ,θ}, lim
σ→+∞

h= 0, lim
θ→+∞

h= K .

Let h be the critical value of perpetual American call option, then

lim
λ→0+

h=
p
σ2 + 8r +σ
p
σ2 + 8r −σ

K , lim
σ→0+

h=max
§

K ,
λθ + rK

r +λ

ª

, lim
θ→0+

h=
b− a− 1
b− a− 2

K ,

lim
λ→+∞

h=max{K ,θ}, lim
σ→+∞

h=∞, lim
θ→+∞

h=∞.

Proposition 5 offers an intuitive view of the behaviors of critical value to a change of these

parameters. The impact of the volatility on the option pricing is easy to understand. When

volatility increases, the process is more likely to move into a broader region for a given period

of time. Thus, increasing the volatility σ increases the value of both kinds of options.

The equilibrium level and the speed of reversion are unique for a mean-reverting asset.

It is worth discussing their roles. As expected, decreasing the equilibrium level of the process

increases the value of the puts and decreases that of the calls.

17
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The speed of reversion measures the strength of the restoring force by which it pulls the

process toward the equilibrium mean level. A higher level of the speed of reversion means

the force is stronger and the process will be more likely to move within a narrow scope of

the equilibrium mean level. Any departure from the equilibrium mean level becomes difficult.

In contrast, a lower level of the speed of reversion means that the restoring force is weaker.

Due to the Brownian Motion shock, the process is likely to move in a wide range around the

equilibrium mean. When the initial level is far away from the equilibrium mean level, it may

take a considerably longer time for the process with a lower speed of reversion to move back

to the equilibrium mean than it would a process with a higher speed of reversion. The tradeoff

between moving into a wider range and taking a longer period suggests that the option prices,

with respect to the speed of reversion, might be mixed. Indeed, depending on the chosen

parameters, as a function of the speed of reversion, Proposition 5 shows that the critical value

can be either monotonically increasing or monotonically decreasing. In addition, it can be

initially increasing and eventually decreasing in the case of call options, and initially decreasing

and eventually increasing in the case of put options. These different possibilities lead to mixed

results when considering the relation between the speed of reversion and the perpetual options.

Figure 2 shows the sensitivity of the put and call curves to each of the three process pa-

rameters. Within a reasonable range of parameters, a lower speed of reversion is associated

with a lower (higher) critical value and a higher perpetual option value for put (call) options.

3.4. Mean-first passage time

In pricing perpetual options, it is interesting to know the length of the exercise time. A

measurement of the optimal exercise time is the Mean First-Passage Time (MFPT). Knowing

MFPT will allow investors to know the expected time the option is exercised. In order to get

the MFPT, we compute the Laplace transform of the First-Passage Time (FPT). The relation

between the Laplace transform of FPT and the MFPT is established by equation

Ex(τy) = − lim
r→0+

∂ Ex(e−rτy )
∂ r

.
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The Laplace transform Ex(e−rτy ) is essentially the discounted present value at the time the

option is exercised. The MFPT is the marginal rate change of the discounted present value as

the riskless interest rate approaches zero.

From the perpetual put and perpetual call values, the discounted present value is given by

Ex(e
−rτh) =







P(x)
K−h =

x−a M(a,b; c
x )

h−a M
�

a,b; c
h

� , x ≥ h;

C(x)
h−K =

x−aU(a,b; c
x )

h−aU
�

a,b; c
h

� , x < h.

Using a reasonable set of parameter values, the critical value, the MFPT and the perpetual

option values for several strikes and initial levels under the IGBM assumption are reported in

Table 3. It seems that the average time to optimally exercise perpetual options on volatility is

quite long. This stems from the process followed by volatility. In the short-term, high levels

of volatility tend to be followed by high ones, low levels of volatility tend to be followed by

low ones and volatility does not depart too far away from the starting level. In the long-term,

however, the mean-reverting property dominates. The volatility in the long-term can achieve

both high and low values. Thus, for perpetual American options, the optimal time to exercise

is on average quite long.

4. Finite-lived American Options

This section valuates American options with finite expiries. Unlike perpetual options, no

analytical solutions to finite-lived American options are available. Either numerical or approxi-

mation methods are generally taken. Kim (1990), Carr, Jarrow, and Myneni (1992) decompose

an American option into the corresponding European option and the early exercise premium.

They then use the numerical method to solve the early exercise premium recursively. Alterna-

tively, Barone-Adesi and Whaley (1987) derive the result of the early exercise premium in the

perpetual case after approximating the exercise premium by a quadratic function.

More straightforward, we use a binomial lattice method (Cox, Ross, and Rubinstein (1979))

to price American options directly. Nelson and Ramaswamy (1990) propose a binomial lattice
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method for a general diffusion process. A computationally simple binomial tree can be con-

structed when the volatility of the underlying process {X t} is constant. When the volatility of

the underlying process {X t} is level dependent, the total displacement from an initial down-

ward movement followed by an upward movement does not reconnect from an initial upward

movement followed by a downward movement. As a consequence, the number of binomial

nodes doubles at each time step. It is costly in computation. To overcome the computational

complexity, Nelson and Ramaswamy (1990) transform the original process {X t} to a new one

in which the volatility component is constant. Once the displacements of an upward movement

and a downward movement are specified, the upward movement and down movement prob-

abilities are specified to match the drift of the transformed process. The transformed process

is converted back to the original one to value options.

There are also some technical adjustments when the volatility of the original process has

singularity points. The singularity is a boundary point of the spot price at which the volatility

term vanishes or explodes. Without the adjustment, the upward movement displacement of

the original process from a binomial node close to the low boundary point is so small that it

is hard to match the drift term. In other words, the upward movement probability will not

lie between 0 and 1. To adjust it, Nelson and Ramaswamy (1990) assume several upward

movements to match the drift and to ensure that the upward movement probability is valid

when the spot is close to the low boundary. A similar procedure is adopted for the downward

movement when the spot is close to the upward boundary. Following their methodology, we

convert the original process to the one we report in Table 2. We use the converted process to

build a binomial tree14 and price finite-lived American options.

Figure 3 plots the values of American call and put options against the initial value of the

underlying for different times to expire. Naturally, as these are American options, the perpetual

ones have the highest value, providing an upper bound for the finite expiration ones which nest

underneath. In order to obtain reasonable vertical spacings on the two figures we have used a

14In Table 2, the Brownian coefficient of the converted process is σ, but 1 in Nelson and Ramaswamy (1990).
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coarser spacing of expiration periods for the calls than the puts. The length of the expiration

period makes a large difference in the pricing the call options, even for very low strikes.

For conventional expiration periods, the put options lie much closer to the perpetual case

than do the calls. This comes about because of the positively skewed nature of our distributions.

The behavior of the asymptotes (puts at high strikes and calls at low ones) is also interesting.

Because of the mean-reverting nature of the process, it is rarely optimal to exercise immediately.

5. Alternative Mean-Reverting Processes

Throughout the paper, we assume that the dynamics of VIX are driven by an IGBM process.

The natural question of model risk/uncertainty arises. How different are our results if the

dynamics of VIX are governed by a different mean-reverting process?

Alternatively, we consider that the dynamics of VIX are governed by the Feller process

and the GOU process. Figure 4 compares both European and American options across the

three different assumptions for the dynamics. The figure shows that, other things being equal,

American options are more expensive than their European counterparts. The excess value

reflects an early exercise premium. Based on the implied volatility study in Section 1, the

implied volatility is upward sloping for the IGBM process, while it is downward sloping for the

Feller process and constant for the GOU process. Translating into the distribution of VIX, the

IGBM process places more density weights on the high level than the Feller process and the

GOU process; the Feller process places more weights on the low level than the IGBM process

and the GOU process.

For the European options, as we expected, these results in the IGBM model giving higher

values than other models for out-of-the-money (high strike) call options, and lower ones for

out-of-the-money (low strike) put options. The American options exhibit a greater divergence

across the three models illustrating the importance of the nature of the paths as well as the

distribution of the underlying at the expiration date.

The valuation of American options under mean-reverting processes also depends on the
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nature of the boundaries of the dynamic process. Since the call option is monotonically increas-

ing at the underlying price, the minimum call option is achieved when the starting level is 0. If

the point 0 is a natural boundary, the minimum call option value is 0. However, if the point 0

is an entrance, the minimum call option value is strictly positive. Similarly, as the put option is

monotonically decreasing at the underlying price, the minimum put value is realized when the

underlying price approaches∞. If the point∞ is an entrance, the put option always has a

strictly positive minimum value. However, if the point∞ is a natural boundary, the minimum

put option is 0. Table 4 lists the boundary types for the three mean-reverting processes.

6. Concluding Remarks

This study explores the pricing of American VIX options by investigating the roles of the

equilibrium level, the speed of reversion, and the volatility and expiration date in the valuation.

It is essential to have a simple yet robust model that is relevant from both a theoretical and

practical perspective, and we believe that our IGBM model satisfies this criterion. At least it

is able to capture the positively skewed Black-Scholes implied volatility of VIX options, while

neither the Heston process nor the process with log-normal distributions is able to capture this

empirical stylized fact.15

We provide closed-form solutions for perpetual American options. The impact of the equi-

librium mean level on the pricing of American VIX options is straightforward. Increasing the

15Similarly, Mencía and Sentana (2013) conclude that "We initially focus on the two existing mean-reversion

models: the square root (SQR) and the log-normal Ornstein-Uhlenbeck processes(LOU). Although SQR is more popular

in the empirical literature, we find that the LOU model yields a better fit, especially during the crisis. However, both

models yield large price distortions during the crisis. In addition, they do not seem to capture either the level or the

slope of the term structure of futures prices, or indeed the volatility skews. ... In this sense, we show that the simple

AR(1) structure that they imply in discrete time is not consistent with the empirical evidence of ARMA dynamics for

the VIX. In addition, these models are also inconsistent with the strong presence of GARCH-type heteroskedasticity

that we find in this volatility index."
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equilibrium mean level will increase both the critical values of the call and the put, which re-

sults in the drop of put option value and the rise of call option value. The influence of the

speed of reversion on the pricing of American VIX options is mixed. However, using a reason-

able range of parameters, our calibrations show that increasing the speed of reversion will both

drop the call and put option values of VIX.

We compute the MFPT of the optimal exercising time of perpetual American options. We

find that the MFPT in exercising is quite long. We also investigate two other mean-reverting

processes with different properties and examine the pricing of finite-lived American and Euro-

pean options. We find that American option values are more sensitive to the choice of underly-

ing process than their European-style counterparts, which underscores the importance of our

proposed IGBM for American VIX options.

While this study contributes to the pricing of options (including real options) with a mean-

reverting underlying, several limitations have yet to be overcome. For instance, it would

be interesting (especially from the perspective of building trading strategies) to extend our

one-factor models by adding volatility jump components (see, e.g., Wu (2011)) , volatility

on volatility (see, e.g., Branger, Kraftschik, and Völkert (2016)), and more factors (see, e.g.,

Christoffersen, Heston, and Jacobs (2009)), although many researchers (including us) hold the

opinion that they may only provide second-order improvements for pricing VIX derivatives.16

We follow the mainstream literature such as Mencía and Sentana (2013) to estimate our one-

factor models by maximum likelihood, while a closed-form expression for the likelihood may

not be available for many of these extensions. We leave them as directions for future research.

16For instance, Mencía and Sentana (2013) conclude that "We also find evidence of time-varying volatility in the

VIX. As expected, stochastic volatility plays a much more important role for options while leaving futures prices almost

unaffected. The CSQR model, though, seems unable to generate the positive slope of the option-implied volatility skews.

It is also worth mentioning that jumps only provide a minor improvement for options and do not change futures prices

(up to first order). Nevertheless, we would like to emphasise that jumps seem to be a relevant feature to describe the

historical dynamics of the VIX, even though they only yield second-order gains for pricing VIX derivatives."
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(a) Total implied variances of VIX on March 24, 2010
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(b) Total implied variances of European VIX options against log moneyness

Figure 1

Total implied variances of VIX options against log moneyness for the three processes.
Figure 1a plots the total implied variances of VIX options on March 24, 2010, while Figure 1b reports the total
implied variances of VIX options against log moneyness (i.e., k := ln K

F0,T
) for the three mean-reverting processes.

The dates in the legend in the upper left corner of Figure 1b correspond to the expiration dates of the option
contracts. In Figure 1b, the base parameters are T = 0.5, r = 6%, X0 = 0.2. For the GOU process, λ= 3.832,θ =
−1.651,σ = 0.969. For the Feller process, λ = 4.605,θ = 0.205,σ = 0.469. For the IGBM process, λ = 3.625,
θ = 0.205, σ = 0.965. σ is the instantaneous volatility, θ the equilibrium mean level, and λ the speed of
reversion.
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Figure 2

Sensitivity analysis of perpetual American options for the IGBM process.
The base parameters are: K = 20%, λ = 3.625, θ = 0.205, σ = 0.965, r = 6%. σ is the instantaneous volatility,
θ the equilibrium mean level, and λ the speed of reversion. The base parameters are taken by averaging the
calibrated parameter values in Table 1.
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Figure 3

American options for different expiration times.
The base parameters are: X0 = 20%, λ= 3.625, θ = 0.205, σ = 0.965, r = 6%. σ is the instantaneous volatility,
θ the equilibrium mean level, and λ the speed of reversion.
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(b) American call option price
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(c) European put option price
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Figure 4

American options and European options for the three mean-reverting processes.
The base parameters are T = 1, r = 6%, X0 = 0.2. For the GOU process, λ = 3.832,θ = −1.651,σ = 0.969. For
the Feller process, λ = 4.605,θ = 0.205,σ = 0.469. For the IGBM process, λ = 3.625, θ = 0.205, σ = 0.965. σ
is the instantaneous volatility, θ the equilibrium mean level, and λ the speed of reversion.
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Table 1

Calibrated parameter values for the three mean-reverting processes.
This table reports the calibrated parameter values for the three mean-reverting processes. In Panel A, parameters
are estimated from stationary distributions and quadratic variations. In Panel B, parameters are estimated from
the maximum likelihood method proposed in Aït-Sahalia (2002) and Yu (2007). In sub-period one, data start
from January 2, 1990 to December 31, 2001. In sub-period two, data start from January 1, 2002 to September
30, 2012. σ is the instantaneous volatility, θ the equilibrium mean level, and λ the speed of reversion.

1st sub-period 2nd sub-period
GOU Feller IGBM GOU Feller IGBM

Panel A
λ 4.453 4.770 4.198 3.434 3.877 3.278
θ −1.684 0.195 0.195 −1.613 0.216 0.215
σ 0.911 0.415 0.911 1.023 0.519 1.023

Log likelihood 4390.698 4353.171 4398.39 3073.601 2931.874 3149.607
Panel B

λ
4.467 4.994 4.198 3.444 4.397 3.653

(0.8731) (0.9210) (0.9264) (0.8079) (0.9030) (0.9346)

θ
−1.678 0.196 0.196 −1.623 0.215 0.211

(0.0591) (0.0107) (0.0130) (0.0909) (0.0167) (0.0190)

σ
0.915 0.417 0.915 1.026 0.521 1.027

(0.0119) (0.0054) (0.0119) (0.0140) (0.0071) (0.0141)
Log likelihood 9456.37 9292.71 9456.86 7956.18 7613.76 7958.10
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Table 2

Stationary state distributions of the three mean-reverting processes.
This table summarizes the steady-state distributions and quadratic variations of the three mean-reverting pro-
cesses. In the steady-state column, κ = 2λ

σ2 . σ is the instantaneous volatility, θ the equilibrium mean level, λ the
speed of reversion and {Wt}t≥0 is a standard Wiener process.

Steady-State Transformed Process σ2T
GOU ln N(θ , 1

κ) d (ln X t) = λ(θ − ln X t)d t +σdWt

∑T−1
i=0 (ln X i+1 − ln X i)2

Feller γκθ
κ d(2
p

X t) =
�

4λθ−σ2

4
p

X t
−λ
p

X t

�

d t +σdWt 4
∑T−1

i=0 (
p

X i+1 −
p

X t)2

IGBM κθ
γκ+1

d (ln X t) =
�

λθ
X t
−λ− σ

2

2

�

d t +σdWt

∑T−1
i=0 (ln X i+1 − ln X i)2
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Table 3

MFPT and the perpetual option values for put and call options.
This table reports the MFPT and the perpetual option values for several strikes and initial levels under the IGBM
assumption using a reasonable set of parameter values as well as critical values. The base parameter values:
λ= 3.625, θ = 0.205, σ = 0.965, r = 6%. σ is the instantaneous volatility, θ the equilibrium mean level, and λ
the speed of reversion.

X0 = 15% X0 = 25% X0 = 40%
Strike Threshold MFPT Price MFPT Price MFPT Price

(%) (%) (years) (%) (years) (%) (years) (%)

Put

10 7.92 11.41 1.24 11.90 1.20 12.12 1.19
15 8.95 4.11 4.87 4.60 4.73 4.82 4.67
20 9.54 2.58 9.07 3.07 8.81 3.29 8.69
25 9.99 1.90 13.49 2.39 13.11 2.61 12.93
30 10.35 1.51 18.04 2.00 17.53 2.22 17.29
40 10.94 1.06 27.35 1.55 26.57 1.77 26.21
60 11.85 0.63 46.43 1.12 45.11 1.34 44.51

Call

10 45.30 6.15 25.67 5.59 26.53 2.63 31.16
15 46.86 7.22 22.11 6.66 22.86 3.70 26.84
20 48.61 8.62 18.74 8.05 19.37 5.10 22.75
25 50.59 10.50 15.57 9.94 16.10 6.98 18.91
30 52.84 13.11 12.66 12.54 13.09 9.59 15.37
40 58.34 22.21 7.75 21.64 8.02 18.69 9.41
60 74.06 89.63 2.15 89.07 2.22 86.11 2.61
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Table 4

Boundary types.
This table lists the boundary types of the three mean-reverting processes. σ is the instantaneous volatility, θ the
equilibrium mean level, λ the speed of reversion and {Wt}t≥0 is a standard Wiener process.

Dynamics 0 ∞
GOU d ln X t = λ(θ − ln X t)d t +σdWt Natural Natural

Feller dX t = λ(θ − X t)d t +σ
p

X t dWt Entrance Natural
IGBM dX t = λ(θ − X t)d t +σX t dWt Entrance Natural
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Appendix A. Ordinary Differential Equation (ODE)

Lemma 1. Let r > 0 and θ > 0, the general solution to ODE

λ(θ − x)
d

d x
V (x) +

1
2
σ2 x2 d2V

d x2
= rV (x) (A.1)

is given by

V (x) = Ax−aM
�

a, b;
c
x

�

+ Bx−aU
�

a, b;
c
x

�

where

a =

p

(2λ+σ2)2 + 8rσ2 − (2λ+σ2)
2σ2

, b =
2λ
σ2
+ 2a+ 2, c =

2λθ
σ2

and the coefficients A, B ∈ R.

Proof. Let V (x) = xαW ( 1
x ). After rearranging, ODE (A.1) becomes

xαW (
1
x
)(σ2α(α− 1)− 2λα− 2r)

+xα−1
�

σ2 1
x

W ′′(
1
x
) + 2
�

λ− (α− 1)σ2 −λθ
1
x

�

W ′(
1
x
) + 2λθαW (

1
x
)
�

= 0

The root of the quadratic equation

σ2α(α− 1)− 2λα− 2r = 0

is

α=
(2λ+σ2)±
p

(2λ+σ2)2 + 8rσ2

2σ2

We choose

α=
(2λ+σ2)−
p

(2λ+σ2)2 + 8rσ2

2σ2
< 0.
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Let y = 1
x , we have

σ2 yW ′′(y) + 2
�

λ− (α− 1)σ2 −λθ y
�

W ′(y) + 2λθαW (y) = 0.

Let W (y) = U(w) where w= 2λθ y
σ2 , then

wU ′′(w) + (
2λ
σ2
− 2(α− 1)−w)U ′(w) +αU(w) = 0. (A.2)

ODE (A.2) is the Kummer equation. It has two independent solutions M and U (see Appendix

B). Therefore the general solution to ODE (A.1) is given by

V (x) = AxαM
�

−α,
2λ
σ2
− 2(α− 1);

2λθ
σ2 x

�

+ BxαU
�

−α,
2λ
σ2
− 2(α− 1);

2λθ
σ2 x

�

.
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Appendix B. Confluent Hypergeometric Functions

The Ordinary Differential Equation (ODE)

x
d2 f
d x2

+ (b− x)
d f
d x
− a f = 0

has two independent solutions M(a, b; x) and U(a, b; x). The solution

M(a, b; x) = 1+
ax
b
+
(a)2 x2

(b)22!
+ . . .+

(a)n xn

(b)nn!
+ . . . ,

where (a)n =
Γ (a+n)
Γ (a) = a(a + 1) . . . (a + n− 1) is the Pochhammer symbol with the convention

(a)0 = 1, is called the confluent hypergeometric function of first kind (also called the Kummer

function). The solution

U(a, b; x) =
π

sinπb

�

M(a, b; x)
Γ (1+ a− b)Γ (b)

− x1−b M(1+ a− b, 2− b; x)
Γ (a)Γ (2− b)

�

is called the confluent hypergeometric function of second kind (also called the Tricomi function).

The Tricomi is not defined everywhere. For details, we refer to Abramowitz and Stegun (1972).

The first order derivative of the Kummer function is

dM(a, b; x)
d x

=
a
b

M(a+ 1, b+ 1; x).

Asymptotic behaviors for the confluent hypergeometric functions M and U are as follows.

When |x | → 0

U(a, b; x) =
Γ (b− 1)
Γ (a)

x1−b +O(|x |b−2), as b > 2. (B.1)

M(a, b; 0) = 1, as b 6= −n. (B.2)

When |x | →∞

M(a, b; x) =
Γ (b)
Γ (a)

ex x a−b(1+O(x−1)), as x > 0. (B.3)
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M(a, b, x) =
Γ (b)
Γ (b− a)

(−x)−a(1+O((−x)−1)), as x < 0. (B.4)

U(a, b; x) = x−a(1+O(x−1)), as x > 0. (B.5)
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Appendix C. Proofs

Lemma 2. For v > u> 0 and x ∈ R, M(u,v+1;x)
M(u,v;x) is a strictly decreasing function with respect to x.

Proof. The integral representation M(u, v; x) = Γ (v)
Γ (v−u)Γ (u)

∫ 1

0
ex t tu−1(1− t)v−u−1d t implies 0 ≤

M(u, v; x), M(u, v + 1; x). We have

(ln M(u, v + 1; x)− ln M(u, v; x))′ =
v − u

v
M(u, v + 1; x)

M(u, v; x)
−

v + 1− u
v + 1

M(u, v + 2; x)
M(u, v + 1; x)

.

From the integral representation and the fact that ex t tu−1(1− t)v−u−1 and ex t tu−1(1− t)v−u+1

are not linearly dependent, we use the Cauchy-Schwarz inequality and get

Γ 2(v + 1− u)Γ 2(u)
Γ 2(v + 1)

M2(u, v + 1; x)<
Γ (v + 2− u)Γ (v − u)Γ 2(u)

Γ (v + 2)Γ (v)
M(u, v + 2; x)M(u, v; x),

which reduces to
v − u

v
M(u, v + 1; x)

M(u, v; x)
<

v + 1− u
v + 1

M(u, v + 2; x)
M(u, v + 1; x)

.

Therefore ln M(u,v+1;x)
M(u,v;x) is strictly decreasing. The proof holds as ln(·) is a strictly increasing

function.

Proof of Proposition 1. Let f (x) = c(b−a)
b

M(a,b+1; c
x )

M(a,b; c
x )

and g(x) = −(a+1)x2+(aK−c)x+cK
K−x . From

g ′(x) =
(a+ 1)x2 − 2(a+ 1)K x + aK2

(K − x)2
,

we see that g(x) is strictly increasing when 0 ≤ x < K
p

a+1−1p
a+1

and strictly decreasing when

K
p

a+1−1p
a+1
≤ x < K . Since b − a > 0, the continuous function f (x) is strictly increasing by

Lemma (2). Furthermore, by using the asymptotic expansions, we have

lim
x→∞

f (x) =
c(b− a)

b
, lim

x→0+
f (x) = 0.
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And in addition

lim
x→0

g(x) = c, lim
x→K−

g(x) = −∞.

Since c(b−a)
b < c, when 0≤ x ≤ K , it yields that f (x) and g(x) intersect and they intersect only

once. Moreover, the intersection point is somewhere on (K
p

a+1−1p
a+1

, K).

Proposition 6. For x ≥ h and n ∈ Z+, we have

∂ nV (x)
∂ xn

= (−1)n
Γ (a+ n)
Γ (a)

M(a+ n, b; c
x )

M(a, b; c
x )xn

V (x). (C.1)

Proof. The proof is by induction on n. An easy computation shows

∂ V (x)
∂ x

= −
a
x

M(a+ 1, b; c
x )

M(a, b; c
x )

V (x).

Therefore, Equation (C.1) holds for n = 0 and n = 1. Assume it is true for n ≤ k, we prove it

is true for n= k+ 1. We have

∂ kV (x)
∂ x k

= −
a+ k− 1

x

M(a+ k, b; c
x )

M(a+ k− 1, b; c
x )
∂ k−1V (x)
∂ x k−1

. (C.2)

�

a+ k− 1
x

M(a+ k, b; c
x )

M(a+ k− 1, b; c
x )

�′

=
(a+ k− 1)2

x2

M2(a+ k, b; c
x )

M2(a+ k− 1, b; c
x )
−
(a+ k− 1)(a+ k)

x2

M(a+ k+ 1, b; c
x )

M(a+ k− 1, b; c
x )

.

Taking the derivation of Equation (C.2) on both sides, we have

∂ k+1V (x)
∂ x k+1

= (−1)k+1 Γ (a+ k+ 1)
Γ (a)

M(a+ k+ 1, b; c
x )

M(a, b; c
x )x k+1

V (x)

Lemma 3. For u, v > 0 and x ∈ R, U(u,v+1;x)
U(u,v;x) is strictly decreasing at x.

Proof. The integral representation U(u, v; x) = 1
Γ (u)

∫∞
0

e−x t tu−1(1 + t)v−u−1d t implies 0 ≤

U(u, v; x)< U(u, v+1; x). Using the derivative relation U(u, v; x) = U(u, v; x)−U(u, v+1; x),
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we have

(ln U(u, v + 1; x)− ln U(u, v; x))′ =
U(u, v + 1; x)

U(u, v; x)
−

U(u, v + 2; x)
U(u, v + 1; x)

.

From the integral representation and the fact that e−x t tu−1(1+ t)v−u−1 and e−x t tu−1(1+ t)v−u+1

are not linearly dependent, after using the Cauchy-Schwarz inequality, we have

U2(u, v + 1; x)< U(u, v + 2; x)U(u, v; x),

which implies ln U(u,v+1;x)
U(u,v;x) is strictly decreasing. The proof holds as ln(·) is a strictly increasing

function.

Proof of Proposition 2. Let f (x) = a
x

U(a+1,b+1; c
x )

U(a,b; c
x )

and g(x) = (a+1)x−aK
c(x−K) , then g ′(x) = − K

c(x−K)2

which implies g(x) is a decreasing function when x ≥ K . By the recursive relation

xU(u, v + 1; x) = (v − u)U(u, v; x) + U(u− 1, v; x),

uU(u+ 1, v; x) = U(u, v; x)− U(u, v − 1; x),

we have

f (x) =
a
x

U(a+ 1, b+ 1; c
x )

U(a, b; c
x )

=
a(b− a− 1)U(a+ 1, b; c

x ) + aU(a, b; c
x )

cU(a, b; c
x )

=
a(b− a− 1)U(a+ 1, b; c

x )

cU(a, b; c
x )

+
a
c

=
(b− a− 1)(U(a, b; c

x )− U(a, b− 1; c
x ))

cU(a, b; c
x )

+
a
c

=−
(b− a− 1)

c

U(a, b− 1; c
x )

U(a, b; c
x )

+
b− 1

c
.

Since b − a − 1 > 0, b − 1 > 0 and
U(a,b−1; c

x )
U(a,b; c

x )
is a strictly decreasing function with respect to

x by Lemma 3, we see that f (x) is a strictly increasing function. Furthermore, by using the
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asymptotic expansions of function U , we have

lim
x→0+

f (x) =
a
c

, lim
x→∞

f (x) =
b− 1

c
.

In addition,

lim
x→k+

g(x) =∞, lim
x→∞

g(x) =
a+ 1

c
.

Since a+1
c <

c−1
c , when x ≥ k, f (x) and g(x) intersect and they intersect only once. On the

other hand, the critical value h is the value such that g(h)< b−1
c , which implies h> b−a−1

b−a−2 K .

Proposition 7. For 0< x < h and n ∈ Z+, we have

∂ nV (x)
∂ xn

=
Γ (a+ n)Γ (b− a)
Γ (a)Γ (b− a− n)xn

U(a+ n, b; c
x )

U(a, b; c
x )

V (x). (C.3)

Proof. The proof is by induction on n. An easy computation shows

∂ V (x)
∂ x

=
a(b− a− 1)

x

U(a+ 1, b; c
x )

U(a, b; c
x )

V (x).

Therefore, Equation (C.3) holds for n = 0 and n = 1. Assume it is true for n ≤ k, we prove it

is true for n= k+ 1. We have

∂ kV (x)
∂ x k

=
(a+ k− 1)(b− a− k)

x

U(a+ k, b; c
x )

U(a+ k− 1, b; c
x )
∂ k−1V (x)
∂ x k−1

. (C.4)

�

(a+ k− 1)(b− a− k)
x

U(a+ k, b; c
x )

U(a+ k− 1, b; c
x )

�′

= −
(a+ k− 1)2(b− a− k)2

x2

U2(a+ k, b; c
x )

U2(a+ k− 1, b; c
x )

+
(a+ k− 1)(a+ k)(b− a− k)(b− a− k− 1)

x2

U(a+ k+ 1, b; c
x )

U(a+ k− 1, b; c
x )

.

Taking the derivation of Equation (C.4) on both sides, we have

∂ k+1V (x)
∂ x k+1

=
Γ (a+ k+ 1)Γ (b− a)

Γ (a)Γ (b− a− k− 1)x k+1

U(a+ k+ 1, b; c
x )

U(a, b; c
x )

V (x)
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Proof of Proposition 5. Critical value for perpetual put options:

1. As λ → 0+, a →
p
σ2+8r−σ

2σ , c → 0, b and h are bounded. From asymptotic expansions

of the Kummer function, we have M(a, b; c
h)→ 1 and M(a, b + 1; c

h)→ 1, which yields

h→ aK
a+1 =

p
σ2+8r−σp
σ2+8r+σ

K from solving Equation (11).

2. As σ → ∞, we have a → 0 and c → 0. Since b > 0, we have M(a, b; c
h) = 1 and

M(a, b+ 1; c
h) = 1, which leads to h→ 0.

3. As θ → 0+, c → 0+, both a and b are bounded away from 0. From Proposition 1,

h > K
p

a+1−1p
a+1

is bounded away from 0. Therefore, the left side of Equation (11) is 0.

Solving equation −(a+1)h2+(aK−c)h+cK
K−h = 0 yields h= aK

a+1 .

4. As θ →∞, c→∞. From the asymptotic expansion of the Kummer function,
M(a,b+1, c

h )
M(a,b, c

h )
→

bh
c , therefore, h solves the quadratic equation

(b− 2a− 1)h2 + (2aK − bK − c)h+ cK = 0.

The solution

h=
(b− 2a)K + c −

p

(2aK − bK + c)2 + 4cK
2(b− 2a− 1)

→ K .

5. When σ → 0 or λ → ∞, both b and z = c
x in M(a, b; z) become large. To analyze

the asymptotic behavior, we use the result from López and Pagola (2010) who provide

asymptotic expansions of confluent hypergeometric function M(a, b; z) (and U(a, b; z))

for large b and z. Let

α=
b− a− 1

z
=

x
θ

�

1+
(a+ 1)σ2

2λ

�

.
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The asymptotic analysis depends on the sign of

z + a+ 1− b =
c
x
+ a+ 1− b =

2λθ
σ2 x
−

2λ
σ2
− a− 1=

2λ
σ2

�

θ

x
− 1
�

− a− 1.

i) If θ < x , then z + a+ 1− b < 0, López and Pagola (2010) show

M(a, b; z) =
Γ (b)
Γ (b− a)

1
(b− a− z − 1)a

�

1+O
�

1
b

��

,

U(a, b; z) =
1
Γ (a)

�α

e

�αz
(α− 1)a−1

√

√2απ
z

�

1+O
�

1
z

��

.

Therefore,

M(a, b+ 1, c
x )

M(a, b, c
x )
∼

b
b− a

�

b− a− c
x − 1

b− a− c
x

�a

∼
b

b− a

�

1+ a ln

�

1−
1

b− a− c
x

��

∼
b

b− a

�

1−
a

b− a− c
x

�

, (C.5)

U(a+ 1, b+ 1, c
x )

U(a, b, c
x )

∼
1
a

�

b− a− 1
c
x

− 1

�

. (C.6)

ii) If θ > x , then z + a+ 1− b > 0, López and Pagola (2010) show

M(a, b, z) =
Γ (b)ez(1−α)a−1

Γ (a)Γ (b− a)

�α

e

�αz
√

√2απ
z

�

1+O
�

1
z

��

,

U(a, b; z) =
1

(z + a+ 1− b)a

�

1+O
�

1
b

��

.

Therefore,

M(a, b+ 1, c
x )

M(a, b, c
x )
∼
(b− a)x

c
, (C.7)

U(a+ 1, b+ 1, c
x )

U(a, b, c
x )

∼
1

c
x + a+ 1− b

. (C.8)
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A) If K < θ , on the one hand, limc→∞ g(x) = c, for x < K and limx→K− g(x) = −∞.

On the other hand, from the asymptotic analysis of the Kummer function,

lim
c→∞

f (x) = lim
c→∞

c(b− a)
b

M(a, b+ 1, c
x )

M(a, b, c
x )

=
cx
θ
< c, for x < θ .

Thus, the intersection point must be h= K .

B) If θ < K , from the asymptotic analysis, we have

lim
b→∞

f (x) =















(b− a)2

b
x , x ≤ θ ;

c

�

1−
a

b− a− c
x

�

, θ < x < K .

The critical barrier h, thus, solves the quadratic equation

c

�

1−
a

b− a− c
x

�

=
−(a+ 1)x2 + (aK − c)x + cK

K − x
,

which yields

h∼
c + abK − a2K
(b− a)(a+ 1)

.

As λ→∞, it is seen that a ∼ r
λ , limλ→∞ ab = 2r

σ2 , which gives limλ→∞ h= θ .

As σ→ 0, it is seen that a→ r
λ , limσ→0 h= θ+aK

a+1 =
λθ+rK

r+λ .

Critical value for perpetual call options: The recurrence relation

(b− a− 1)U(a+ 1, b; z) + U(a, b; z) = zU(a+ 1, b+ 1; z)

implies
(b− a− 1)U(a+ 1, b; z)

U(a+ 1, b+ 1; z)
+

U(a, b; z)
U(a+ 1, b+ 1; z)

= z,

(b− a− 1)U(a+ 1, b; c
x )

U(a+ 1, b+ 1; c
x )

+
ac(x − K)

(a+ 1)x2 − aK x
=

c
x

. (C.9)
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If c→ 0+, from the asymptotic expansion (B.1), the critical barrier h solves

(b− a− 1)c
(b− 1)x

+
ac(x − K)

(a+ 1)x2 − aK x
=

c
x

,

which gives

h=
b− a− 1
b− a− 2

K . (C.10)

1. As λ → 0+, a →
p
σ2+8r−σ

2σ , b > 2 and c → 0. From Equation (C.10) it leads to h →
(a+1)K

a =
p
σ2+8r+σp
σ2+8r−σ

K .

2. As σ→∞, we have a→ 0, c→ 0 and b→ 2. From Equation (C.10), it leads to h→∞.

3. As θ → 0+, limθ→0+ c = 0. From Equation (C.10), it yields

h=
b− a− 1
b− a− 2

K .

4. As θ → ∞, c → ∞. From Equation (C.9) and the asymptotic expansion (B.5), the

critical value h solves

(b− a− 1) +
ac(x − K)

(a+ 1)x2 − aK x
=

c
x

,

which leads to

h=
aK

a+ 1
+

c
(b− a− 1)(a+ 1)

→∞.

5. When σ→ 0 or λ→∞, both b and z = c
x in M(a, b; z) become large. We use the results

from asymptote (C.6) and asymptote (C.8)

A) If θ < b−a−1
b−a−2 K , as c→∞. On the one hand,

g(x) =
(a+ 1)x − aK

c(x − K)
→ 0 for x >

b− a− 1
b− a− 2

K ,
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and g(K+) =∞. On the other hand, when x > b−a−1
b−a−2 K > θ ,

f (x) =
a
x

U(a+ 1, b+ 1, c
x )

U(a, b, c
x )

∼
�

b− a− 1
c
−

1
x

�

=
1
θ
−

1
x
> 0.

It implies the intersection point must be h= K .

B) If b−a−1
b−a−2 K < θ ,

lim
b→∞

f (x) =











�

b− a− 1
c
−

1
x

�

, x > θ ;

a
c + (a+ 1− b)x

,
b− a− 1
b− a− 2

K < x < θ .
(C.11)

The critical barrier h solves the quadratic equation

a
c + (a+ 1− b)x

=
(a+ 1)x − aK

c(x − K)
,

which yields

h∼
c + (b− a− 1)aK
(b− a− 1)(a+ 1)

.

As λ→∞, it is seen that a ∼ r
λ , limλ→∞ ab = 2r

σ2 , which gives limλ→∞ h= c
b = θ .

As σ→ 0, it is seen that a→ r
λ , limσ→0 h= c+abK

ba+b =
λθ+rK

r+λ .
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