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In this paper, we present a novel approach for forecasting Value-at-Risk (VaR) by combining a Bayesian
GARCH(1,1) model with Student’s-t distribution for the underlying volatility models, vine copula func-
tions to model dependence, and peaks-over-threshold (POT) method of extreme value theory (EVT) to
model the tail behaviour of asset returns. We further propose a new approach for threshold selection in
extreme value analysis, which we call a hybrid method. The empirical results and back-testing analysis
show that the model captures VaR quite well through periods of calmness and crisis; therefore, it is
suitable for use as a measure of risk. Our results also suggest that with a correct implementation of the
VaR model, Basel III is not needed.

Keywords: Value-at-risk; Risk management; Extreme value theory; GARCH; Volatility model; Vine
copulas.

JEL Classification: C15, C58, G11, G32

1. Introduction

Over the past few decades, Value-at-Risk (VaR) has become an influential tool for measuring
market risk as it provides risk managers with a quantitative measure of the downside risk of a firm
or investment portfolio during a given time frame. VaR attempts to summarise the total risk in a
portfolio of asset returns in a single number over a target horizon.

There are many methods to estimate VaR, and the most common methods used by banks and fi-
nancial institutions include the variance-covariance method, historical simulation and Monte Carlo
simulation (Holton (2014), Jorion (2007), Malz (2011) and the references therein). Except for his-
torical simulation, the conventional VaR models assume that asset returns in financial markets are
normally distributed, which is a major weakness. Financial asset returns are leptokurtic and heavy
tailed with nonconstant volatility (Berkowitz et al. 2011, Sheikh and Qiao 2010). Normality assump-
tion in cases of nonnormality will lead to inaccurate estimates in the tails of the distribution and
hence, the probability of extreme events, which leads to underestimation of the likelihood of extreme
tail losses. To avoid this problem, researchers tend to use extreme value theory (EVT) to model
the tail behaviour of asset returns. However, EVT also assumes extreme events to be independent
and identically distributed, which might not hold in periods of severe crisis (Wong 2013). Sampid
and Hasim (2018) proposed a multivariate copula-based volatility model for estimating VaR in the
banking sector of some selected European countries by combining dynamic conditional correlation
(DCC) multivariate GARCH (M-GARCH) volatility model and copula functions. Their results
showed that the DCC M-GARCH copula-based approach captures VaR reasonably well based on
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the differences in the numbers of exceptions produced during different observation periods at the
same confidence level.

Our work is motivated by the work of McNeil and Frey (2000) who suggest applying EVT to the
noise variable of the return series, which is normally distributed, to obtain the qth quantile used to
estimate conditional, robust VaR estimates. By doing so, the problem of volatility clustering and
other related effects, such as excess kurtosis, is accounted for. This approach was further investi-
gated by Soltane et al. (2012); they combined a GARCH(1,1) model as the underlying volatility
model with EVT to estimate VaR and showed that the GARCH-EVT-based VaR approach ap-
pears to be more effective and realistic than the conventional VaR estimation methods. Hsu et al.
(2012) and Bob (2013) also used combined GARCH-EVT and copula functions in estimating VaR.
Their findings showed better performance compared to conventional VaR estimation methods, or
methods that combined copulas with conventionally employed empirical distributions.

The Basel Committee on Banking and Supervision (BCBS) recognised VaR models as the official
risk management tool for measuring market risk in the Basel II Accord. Basel requires banks to
have appropriate risk management measures in place that include effective supervisory protocol
and assets disclosure (Resti 2008). As such, banks must calculate minimum capital to face market
risks based on the internal model approach (IMA), which can be determined by the banks’ VaR
estimates. In the aftermath of the 2008 global financial crisis and following the Basel III, the
minimum capital requirements (MCR) were further increased by the introduction of a stress VaR
metric (sVaR). Moreoever, cushion buffers were placed over the MCR to guarantee that banks have
enough capital in periods of stress; these buffers provide pool of cash from which to draw when
losses are incurred.

1.1. The Basel Capital Accord

Following the collapse of the Herstatt Bank in Cologne in 1974, the central bank governors of the
Group of Ten countries established the Basel Committee of Banking and Supervision (BCBS),
which drafted rules and regulations for the banking industry to avoid future major bank collapses
(Goodhart 2011). In 1988, BCBS adopted the first Basel Accord (Basel I) by introducing minimum
capital requirements (MCR) of 8% of risk-weighted assets (RWA) that must be held by banks. Basel
I mainly addressed the problem of credit risk by raising deposits and lending to households and
businesses (Carmassi and Micossi 2012). Interest rates and market risks were ignored as no capital
requirements were defined. A banking system faced credit risk with insufficient capital to provide
proper cushion capable of withstanding sudden losses in periods of huge distress.

Following criticisms from regulators and banks, Basel II was adopted in the late 1990s by amend-
ing Basel I to incorporate capital requirements to guard against market risks. Designed to encourage
banks to engage in sensible risk-taking, Basel II allows banks to calculate MCR for market risk
based on their internal 99% VaR models using the internal model approach (IMA), which is the
maximum of the average within the last 60 days VaR or the most recent VaR:

MCRt = max

(
k

60

60∑
i=1

V aRt−i, V aRt−1

)
, (1a)

k =

3 if T1 ≤ 4, green zone
3 + 0.2(T1 − 4) if 5 ≤ T1 ≤ 9, yellow zone
4 if T1 ≥ 10, red zone.

(1b)

Basel II also introduced a back-testing procedure to validate the reliability of the banks’ internal
99% VaR model from which the supervisory multiplier k is determined. Back-testing was designed
to compare the subsequent VaR estimates with the actual returns and recording the number of days
T1 in which the realised losses exceeded the 99% VaR for a 250-days observation period. Basel also
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requires a liquidation period of 60 days, which they believe is enough for a financial institution that
is in trouble to raise funds. Eqn.(1a) is designed such that V aRt−1 >

k
60

∑60
i=1 V aRt−i will occur

only in periods of extreme crisis, such as a crash, and the internal VaR model must be validated
by supervisors.

After the 2008 global financial crisis, some researchers pointed out that Basel II failed to provide
proper cushions to guard against the banks’ actual losses on their market risks. For example, the
International Monetary Fund (IMF) published the Global Financial Stability Report (International
Monetary Fund 2009) in April 2009, and revealed that during the 2008-9 financial crisis, the
risk-weighted capital ratios were unable to distinguish between banks that were in distress or
bailed out with taxpayer money and banks that could cope on their own (Carmassi and Micossi
2012). The Financial Services Authority of the United Kingdom stated that the assumption of a
normal distribution with short-term observations could lead to a massive underestimation of the
probability of extreme loss events (Turner et al. 2009). Banks that were bailed out or collapsed
showed higher and improving solvency ratios in the months preceding their collapse (Rossignolo
et al. 2012, Carmassi and Micossi 2012). However, McAleer et al. (2011) pointed out that Basel
II was operational in Europe only starting in 2008, and the effects of the global financial crisis of
2008 could not be associated to any failings of Basel II because it was never implemented in the
United States, which was the epicentre of the crisis.

In late 2010, the BCBS adopted a more practical framework by introducing Basel III that incor-
porated stricter measures to strengthen regulation, supervisions, risk management, transparency
and disclosures in the banking sector. Under this framework, banks are still allowed to calculate
their MCR for market risk using the IMA as required in Basel II; however, the BCBS introduces
a stressed VaR (sVaR) metric that automatically increases MCR for market risk. In this version,
the sVaR must be calculated from a data set from a continuous 12-month period of substantial
financial stress (Rossignolo et al. 2012):

MCRt = max

(
k

60

60∑
i=1

V aRt−i, V aRt−1

)
+max

(
k

60

60∑
i=1

sV aRt−i, sV aRt−1

)
. (2)

Evidence indicating that capital ratios higher than up to 2.5% of RWA was needed to correct
internal model errors for market risk that resulted in underestimating losses, led Basel III to
introduce a micro-prudential 2.5% conservation buffer (Carmassi and Micossi 2012), i.e. a cushion
to protect MCR against falling below its minimum during financial distress or a crash. This buffer
will lead to the restriction of dividend payouts once it falls below its minimum and reversed only
when restored to its original value. Basel III also introduces a “macro-prudential countercyclical
buffer” ranging from 0-2.5% and applied by the national authorities depending on the banks’
credit-to-GDP ratio. Uylangco and Li (2016) assessed VaR models for Australian banks in a ten
year period from 1 July 2001 to 30 June 2011. Their conclusion, based on results, supported the
VaR methodology adopted under Basel II revision and the forthcoming Basel III proposal.

In this paper, we investigate the validity of VaR models, in line with Basel III, constructed using
Bayesian-GARCH(1,1), vine copula functions, and EVT. We combine the Bayesian-GARCH(1,1)
model with a Student-t distribution to model the volatility equation, vine copula functions to
model dependence, and peaks-over-threshold (POT) method based on EVT to model the left tail,
to estimate VaR in some selected banks in the United Kingdom (UK) using actively traded stocks on
the London Stock Exchange. The motivation of Bayesian-GARCH(1,1) model is because Bayesian
estimation method provides reliable results even for finite samples, and is usually straightforward
to obtain the posterior distribution of any non-linear function of the model parameters whereas for
the classical maximum likelihood method, it is not easy to perform inferences on non-linear function
of the model parameters, the convergence rate is slow, and presents limitations when the residuals
are heavy tailed. The constraints on the GARCH parameters to guarantee a positive variance can
be incorporated via priors whereas the classical maximum likelihood method may impede some
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optimization procedures (Virbickaite et al. 2015, Hall and Yao 2003). The motivation of Student’s-t
distribution is because it is able to account for the the excess kurtosis in the conditional distribution
common with financial time series processes (Ardia and Hoogerheide 2010).

The rest of the paper is structured as follows: In section 2, we discuss Bayesian statistics in
relation to the GARCH(1,1) model with Student’s-t distribution, the basic theory of copula and
vine copulas, EVT and the POT method. In section 3, we present the data and discuss some
important characteristics of the data before proceeding to empirical analysis. We propose a hybrid
method as a new approach for the threshold selection in EVT; and the results of robust VaR
estimates are presented in section 4. In section 5, we check the reliability of the VaR model by
conducting back-testing, followed by the summary and conclusion in section 6.

2. Methodology

2.1. Bayesian GARCH(1,1) model with Student’s-t innovations

The GARCH(1,1) model, first proposed by Bollerslev (1986), allows conditional variance to be
dependent upon previous lags. The GARCH(1,1) model following the Student’s-t distribution has
the form

rt = µt + at, at = εt

(
v − 2

v
ωtht

)1/2

(3a)

ht = α0 + α1a
2
t−1 + β1ht−1, (3b)

εt
iid∼ N(0, 1); ωt

iid∼ IG
(v

2
,
v

2

)
; t = 1, . . . , T,

where rt are the log-returns of daily stock prices and µt is the unconditional mean of the log-
returns. IG and N(0, 1) symbolises the inverted gamma and standard normal distributions with
probability density functions

f(ω) =
ω−(κ+1)e−

1

b
ω

Γ(κ)bκ
and ϕ(ε) =

1√
2π
e−

1

2
ε2 ,

respectively, where κ is the shape parameter and b the scale parameter. The probability density
function (PDF) of a standardized Student’s-t distribution is defined as

fs(ε, ν) =
Γ(ν+1

2 )√
(ν − 2)πΓ(ν2 )

(
1 +

ε2

ν − 2

)− ν+1

2

, ε ∈ R, (4)

where Γ(·) is the Gamma function. The degrees of freedom parameter v > 2 guarantees finite
conditional variance (Ardia 2008). Eqns.(3a) and (3b) are the mean and variance equations, re-
spectively.

We use Bayesian statistics, following the procedures delineated in Ardia and Hoogerheide (2010)
and Ardia (2015) to estimate the parameter values of the variance equation. Let a = (a1, . . . , aT )′,
ω = (ω1, . . . , ωT )′ and α = (α0, α1)′, a diagonal matrix is defined by

Σ = Σ(ψ, ω) = diag

{(
ωt
v − 2

v
ht(α, β1)

)T
t=1

}
, (5)
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where ψ = (α, β1, v) for

ht(α, β1) = α0 + α1a
2
t−1 + β1ht−1(α, β1). (6)

Because the data samples are independent and drawn from a normal distribution, the likelihood
function can be written as

L(ψ, ω|a) ∝ (detΣ)−1/2exp

[
−1

2
a′Σ−1a

]
. (7)

The prior distribution of ωt given v represented by

p(ω|v) =
(v

2

)Tv
2
[
Γ
(v

2

)]−T ( T∏
t=1

ωt

)− v
2
−1

exp

[
−1

2

T∑
t=1

v

ωt

]
, (8)

where ωt
iid∼ IG(•) (e.g. Geweke (1993)). For the degrees of freedom, the prior distribution is a

translated exponential distribution with parameters λ > 0 and δ ≥ 2 (e.g. Deschamps (2006))
represented as

p(v) = λ exp[−λ(v − δ)]1{v > δ}. (9)

Ardia and Hoogerheide (2010) and Deschamps (2006) point out two important considerations
for the prior density p(v): (i) It is useful to guarantee that v � 2 so the conditional variance
will be finite. (ii) The error term can be assumed to be normally distributed when δ is chosen to
be large. This is possible while still maintaining reasonably tight priors, which can lead to better
convergence of the sampler. Assuming independence among the model parameters of the joint prior
distribution (i.e. p(ψ, ω) = p(α)p(β)p(ω|v)p(v)), the likelihood function of the model parameters is
combined with the prior density to obtain the posterior density as

p(ψ, ω|a) ∝ L(ψ, ω|a)p(ψ, ω). (10)

We employ the Metropolis Hastings (MH) algorithm to estimate parameter values from the
posterior distribution of the variance equation because the MH algorithm allows draws to be
generated from any density, even if the normalising constant is unknown (Greenberg 2012).

In the MH algorithm, (ψ, ω) is a random variable with Markov chains constructed as
(ψ[0], ω[0]), . . . , (ψ[j], ω[j]), . . . in the parameter space. As the number of realised chains goes to
infinity, p(ψ, ω|a) tends to a normalised probability distribution with a random variable (ψ[j], ω[j])
(Ardia and Hoogerheide 2010). The chain converges to its stationary distribution and the optimal
mean values of the posterior distribution parameters are realised.

2.2. Vine copulas

The copula theory was first developed by Sklar (1959) to describe the dependence structure be-
tween random variables. It was later introduced to the finance literature by Embrechts and McNeil
(1999), Li (2000) and Frey et al. (2001). Consequently, Embrechts et al. (2002) introduced the
application of copula theory to financial asset returns, and Patton (2004) expanded the framework
of copula theory with respect to the time-varying nature of financial dependence schemes. The
copula theory has also been used in risk management to measure the VaR of portfolios, including
both unconditional (Cherubini and Luciano 2001, Embrechts et al. 2001, Cherubini et al. 2004)
and, recently, conditional distributions (Silva Filho et al. 2014, Huang et al. 2009, Fantazzini 2008).

Copula functions enable the construction of a flexible multivariate distribution with varying
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margins and dependence structures; this allows the joint distribution of a portfolio to be free from
assumptions of normality or linear correlation. Additionally, copulas can easily capture extreme
dependencies such as tail dependence, while the normal distribution assumes no extreme depen-
dencies.

In multivariate settings, we use the following version of Sklar’s theorem (Sklar 1959) as given by
Cherubini et al. (2004) for the purpose of VaR estimation:

Theorem 2.1 Sklar’s theorem: Let F1(x1), . . . , Fn(xn) be known marginal distribution functions.
Then, for every X = (x1, . . . , xn) ∈ <±n, where <±n = [−∞,+∞]n.

Definition 1 An n−dimensional copula C(u1, u2, u3, . . . , un)
′

is a distribution function on In

with standard uniform marginal distributions (Tsay 2013).

Sklar’s theorem states that for every n-dimensional distribution of a random vector X =
(x1, . . . , xn) with marginals F1(x1), . . . , Fn(xn) can be written as

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), (11)

where C is uniquely determined on In = [0, 1]n for distributions F with absolutely continuous
margins

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (un)). (12)

Each copula C(u1, . . . , un) has a density c(u1, . . . , un) related to it and defined as

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1, . . . , ∂un
, (13)

and the density function for the copula is

f(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))
n∏
i=1

fi(xi) (14)

in In for a continuous random variable, where fi are the marginal densities that can be different
from each other (Ghalanos 2015, Tsay 2013, Huang et al. 2009, Cherubini et al. 2004).

The most commonly used families of copulas in financial applications are the elliptical and
Archimedean copulas (Cherubini et al. 2011). Elliptical copulas are derived from multivariate el-
liptical distributions. The two most common elliptical copulas are the Gaussian and Student’s-t
copulas, which are symmetric. Their dependence structure is determined by a standardised corre-
lation or dispersion matrix because of the invariant property of copulas. Archimedean copulas are
very useful in financial applications and risk management because they capture an asymmetric tail
dependences between financial asset returns. The most commonly used Archimedean copulas in
financial applications are the Gumbel (1960), Clayton (1978) and Frank (1979) copulas (Yan et al.
2007).

For higher dimensions, standard multivariate copulas can become inflexible and do not allow
for different dependent structures between pairs of variables (Krämer and Schepsmeier 2011). In
particular, the vine copulas, which are built from a set of bivariate copulas, provide more flexibility
in modelling dependence for higher dimensional distribution that allows for different dependence
structures between pairs of variables. For a bivariate case, we use the following version of Sklar’s
theorem (Cherubini et al. 2004, Krämer and Schepsmeier 2011, Tsay 2013, Ghalanos 2015):

Definition 2 A 2−dimensional copula C(u, v) is a distribution function on I2 with standard
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uniform margins.

Let F be a joint distribution function with margins F1 and F2, then a copula C such that:

∀(x1, x2) ∈ I2;F (x1, x2) = C(F1(x1), F2(x2)). (15)

If F1 and F2 are continuous, then C is unique; and for every (u, v),

C(u, v) = F (F−1
1 (u), F−1

2 (v)) (16)

c(u, v) =
∂2C(u, v)

∂u, ∂v
(17)

f(x1, x2) = cuv(F1(x1), F2(x2))f1(x1).f2(x2). (18)

Each copula has a density (Eqn.(17)), joint density (Eqn.(18)), and conditional densities

f(x1|x2) = cuv(F1(x1), F2(x2))f1(x1) (19a)

f(x2|x1) = cuv(F1(x1), F2(x2))f2(x2), (19b)

where cuv is the pair-copula density for F1(x1) and F2(x2). For a d−dimensional vector v, we have

f(x1, . . . , xd) = c1...d(F1(x1), . . . , Fd(xd)).f1(x1) . . . fd(xd) (20)

f(x|v) = cxvj |v−j (F (x|v−j), F (vj |v−j)).f(x|v−j), (21)

where Eqn.(20) is the joint density function, and Eqn.(21) is a general formula for the pair-copula
multiplied by their conditional marginal densities (Aas et al. 2009). Bedford and Cooke (2001)
presented a tree diagram for selecting the possible pair-copula constructions referred to as the
regular vine structure. This includes the canonical vines (C-vines), where each tree has a unique
node connected to all other nodes, and the drawable vines (D-vines), where each tree is a path
(Krämer and Schepsmeier 2011). In particular, for a D-vine, f(x1, . . . , xd) is given by

f(x1, . . . , xd) =

d∏
k=1

f(xk)

d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

× (F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1)), (22a)

and for a C-vine, the density is equal to

f(x1, . . . , xd) =
d∏

k=1

f(xk)
d−1∏
j=1

d−j∏
i=1

cj,j+i|1,...,j−1

× (F (xj |x1, . . . , xj−1), F (xj+i|x1, . . . , xj−1)), (23a)

where index j identifies the trees, and i denoted the edges in each tree. (Aas et al. 2009).

2.3. Extreme value theory

EVT is a statistical technique for estimating extreme events with low frequency but high severity.
This technique is widely used in financial risk management since empirical evidence from various
studies (e.g. Sheikh and Qiao (2010), Berkowitz et al. (2011)) show that in the majority of cases,
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financial asset return distributions are heavy-tailed, especially in times of financial instability.
There are two methods for modelling extreme events with low frequency but high severity: the

block maxima method and the POT method. The POT method is a commonly used method to
model extreme events in financial time series data. On the other hand, the block maxima method
is not commonly used for statistical inference on financial time series data for a few reasons: (i)
the method does not make sufficient use of data as it uses only the sub-period maxima, (ii) the
choice of sub-period length is not clearly defined, and (iii) the method is unconditional and does
not take into account the effects of other explanatory variables (Tsay 2014). In this paper, we use
the POT method based on the generalised Pareto distribution (GPD). The POT method focuses
on modelling exceedances of losses above a certain threshold η and the time of occurrence. The
threshold is selected such that there are enough data points to carry out a meaningful statistical
analysis. Techniques for selecting the proper threshold are discussed later in the subsequent section.

Let {xi}Ti=1 represent the loss variables of an asset return, then as T → ∞, {xi}Ti=1 is assumed
to be independent and identically distributed, and (x − µ)/σ follows a generalised extreme value
(GEV) distribution,

Fξ,µ,σ(x) =

{
exp[−(1 + ξx)−1/ξ] for ξ 6= 0,

exp[−e−x] for ξ = 0,
(24)

where ξ is the shape parameter and 1/ξ is the tail index of the GEV distribution. x < −1/ξ if
ξ < 0 and x > −1/ξ if ξ > 0. Taking into consideration the conditional distribution of the excesses
over the threshold η, i.e. xi − η = y|xi > η, we have

Pr(x− η ≤ y|x > η) =
Pr(η ≤ x ≤ y + η)

Pr(x > η)
=
Pr(x ≤ y + η)− Pr(x ≤ η)

1− Pr(x ≤ η)
(25)

=
F (y + η)− F (η)

1− F (η)
= Fη(y). (26)

Again, as T →∞, (y + η − µ)/σ follows a GEV distribution (Eqn.24), therefore

Pr(x− η ≤ y|x > η) =
F (y + η)− F (η)

1− F (η)

=

exp

[
−
(

1 + ξ(y+η−µ)
σ

)−1/ξ
]
− exp

[
−
(

1 + ξ(η−µ)
σ

)−1/ξ
]

1− exp
[
−
(

1 + ξ(η−µ)
σ

)−1/ξ
] .

From the Taylor series for the expansion of exp(−x), i.e,

e−x =
∞∑
n=0

(−x)n

n!
=

(−x)0

0!
+

(−x)1

1!
+

(−x)2

2!
+

(−x)3

3!
+ . . .

= 1− x+
x2

2!
− x3

3!
+ . . .

≈ 1− x. (27)
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Therefore, we have

exp

[
−
(

1 +
ξ(y + η − µ)

σ

)−1/ξ
]
≈ 1−

(
1 +

ξ(y + η − µ)

σ

)−1/ξ

exp

[
−
(

1 +
ξ(η − µ)

σ

)−1/ξ
]
≈ 1−

(
1 +

ξ(η − µ)

σ

)−1/ξ

.

Thus,

Pr(x− η ≤ y|x > η) =

1−
(

1 + ξ(y+η−µ)
σ

)−1/ξ
−
[
1−

(
1 + ξ(η−µ)

σ

)−1/ξ
]

1−
[
1−

(
1 + ξ(η−µ)

σ

)−1/ξ
]

=
[σ + ξ(η − µ)]−1/ξ − [σ + ξ(y + η − µ)]−1/ξ

[σ + ξ(η − µ)]−1/ξ

= 1−
(

1 +
ξy

σ + ξ(η − µ)

)−1/ξ

. (28)

where y > 0 and σ+ξ(η−µ) > 0. Let ψ(η) = σ+ξ(η−µ), then as η →∞, Eqn.(28) is approximated
by the GPD

Gξ,ψ(η)(y) =

{
1−

[
1 + ξy

ψ(η)

]−1/ξ
for ξ 6= 0,

1− exp[−y/ψ(η)] for ξ = 0,
(29)

with shape parameter ξ and scale parameter ψ(η), where ψ(η) > 0, y ∈ [0, x − η] when ξ ≥ 0,

and y ∈ [0,−ψ(η)
ξ ] when ξ < 0. If ξ = 0, then Eqn.(29) becomes an exponential distribution with

parameter 1/σ (Tsay 2014). Let y = x− η, then Eqn.(26) can be written as

F (y + η)− F (η)

1− F (η)
=
F (x)− F (η)

1− F (η)
≈ Gξ,ψ(η)(x− η)

=⇒ F (x) = F (η) + [1− F (η)]Gξ,ψ(η)(x− η). (30)

To construct the tail estimator for the distribution, F (x), we need an estimate of F (η). This is
obtained using the empirical distribution of F (η) = (T −Nη)/T . Substituting F (η) and Gξ,ψ(η)(x−
η) in Eqn.(30), we have:

F (x|ξ, ψ(η)) =
T −Nη

T
+

[
1−

(
T −Nη

T

)][
1−

{
1 +

ξ(x− η)

ψ(η)

}−1/ξ
]
.

After some algebra, we have that:

F (x|ξ, ψ(η)) ≈ T −Nη

T

[
1 +

ξ(x− η)

ψ(η)

]−1/ξ

(31)

where Nη is the number of observations above the threshold and T is the total number of observa-
tions.
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We obtain V aRq(Z), the qth quantile of F−1
q = V aRq(Z), by simply inverting Eqn. (31) or

solving for x for any given small upper tail probability p to obtain

V aRq(Z) = η − ψ(η)

ξ

{
1−

[
T

Nη
(1− q)

]−ξ}
, (32)

where q = 1− p (see Tsay (2014), Soltane et al. (2012), Bhattacharyya and Ritolia (2008)).
Assuming that the number of points above the threshold η is independent and identically dis-

tributed, the parameters ψ(η) and ξ can be estimated by means of maximum likelihood estimation
with likelihood function

l(xi, . . . , xNη |ξ, σ, µ) =

Nη∏
i=1

f(xi) for xi > η, (33)

where Nη is the total number of points above η.
The choice of the threshold η is an important step in the POT method because Eqn.(32) is

dependent on η and the number of points (i.e. exceedances) above η since the parameters are
estimated based on the exceedances. Thus, it is very important to find the proper threshold value.
There is no clear-cut or wholly satisfactory method to determine a proper threshold that has been
determined to date. Danielsson and de Vries (1998) developed a semi-parametric estimator for
the tails of the distribution that estimated the threshold through the bootstrap approximation
of the mean square error (MSE) of the tail index and by minimising MSE through the choice of
the threshold. Danielsson et al. (2001) further used a two-step subsample bootstrap method to
determine the threshold that minimised the asymptotic MSE. Hill et al. (1975) and Davison and
Smith (1990) proposed graphical tools to identify the proper threshold known as the Hill plot and
the mean excess plot, respectively. In this paper, we use the mean excess plot and propose its
extension, which we call the hybrid method for threshold selection.

A mean excess function of x over a certain threshold η is defined as

e(η) = E(x− η|x > η). (34)

Following GPD, e(η) is a linear function of η defined as

e(η) =
σ + ξη

1− ξ
, (35)

where η is identified as the lowest point on the mean excess plot above which the graph appears
to be approximately linear.

The choice of η from the mean excess plot is very subjective (Wong 2013, Tsay 2014), which
might differ from one institution to another using the same data because of different risk tolerances.
In this context, different η values will give different estimates of the shape and scale parameters,
and hence different VaRs. A very high threshold will result in too few data points in the left tail
for any meaningful statistical analysis. In contrast, a very low threshold will result in a number
of data points above the threshold lying close to the body of the sample data. This will result
in a poor approximation because the GPD is a limiting distribution as η → ∞; data beyond the
threshold will deviate from the GPD since the GPD is not a good approximation for the body of
the sample data (Bhattacharyya and Ritolia 2008, Wong 2013). We propose a hybrid method for
selecting a proper threshold value that will restrict inferences to the left tail of the distribution.

10
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2.3.1. The hybrid method for threshold selection. Identify from the mean excess plot
the lowest point above which the graph appears to be approximately linear and call this point
η0, then insert a tangent line from η0 through the rest of the points ηi where ηi > η0. Since the
tangent to a linear curve is the tangent itself and the mean excess function is a linear function of the
threshold, we take an average of the set of points that lie on the tangent line as the threshold value.
We call this point η∗. η∗ will lead to a better approximation of VaR estimates than η0 because
the inference is restricted to the left tail. Apart from better approximation of VaR estimates, this
method significantly reduces the probability of having different VaR estimates on the same data
and also the probability of selecting a very low or very high threshold value. Let ηi = η1, . . . , η} be
a set of points that lie on the straight line, then we obtain the value of η∗ as

η∗ =
1

}

}∑
i=1

ηi, ηi ≥ η0 (36)

where } is the number of points in the set.

3. Empirical Analysis

3.1. Data

The data employed in this analysis consist of 2870 observations of daily stock prices actively traded
on the London Stock Exchange. The stocks belong to the banking sector and of the top five banks
in UK i.e, HSBC bank, LLOYDS Banking Group, Barclays bank, Royal Bank of Scotland, and
Standard Chartered PLC bank. Our motivation for these banks is because we want to test the
reliability of the VaR model in banks with relatively high ratings in periods of distress and also
investigate the risk of collapse in banks with insufficient capital to provide proper cushions in
periods of distress. If the top banks are not able to cope during financial distress, then the risk of
collapse in the country’s banking system is large. Therefore, our data covers the period from 31st

of December 2004 to the 31st of December 2015, covering the 2008 global financial crisis and 2011
European financial crisis. For example, the United Kingdom (UK) economy was in recession for
15 months from the second quarter of 2008 to the second quarter of 2009 (DAmuri and Peri 2014,
Jenkins et al. 2012, Lin et al. 2012). All data are from DataStream.

We use out-of-sample data of m = T − n observations for back-testing; thus we have n = 1869,
i.e. the sample of the return observations for VaR estimation procedure containing the 2008 global
financial crisis period, and m = 1000 of return observations for back-testing. VaR is estimated for
day t = n + 1 using data from day t = 1 to day t = n, VaR for day t = n + 2 is estimated using
data from day t = 2 to day t = n+ 1, and so on until the out-of-sample data are all used up.

Figure 1 shows the trends in the stock prices during the study period. The effects of the 2008
global financial crisis and the 2011 European financial crisis are clearly seen.
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Figure 1. Trends in stock prices over the period from 31 December 2004 to
31 December 2015 showing an effect of the 2008 global financial crisis and the
2011 European financial crisis.

Some literature measures the stability in the financial systems using a portfolio of several banks;
i.e. considering the dependence among the banks, while others focus on individual banks. This
paper considers both measures. By using the stock prices for each bank, we calculate the simple
return series and apply risk factor mappings to construct a simulated portfolio returns consisting of
all banks involved. Since the stocks are all from banks of almost the same strength and ratings (i.e,
the top five banks in the UK), we assume equal weights. That is, consider a portfolio consisting of
N stocks represented in vector form as SN = (s1t, . . . , sNt), the simple returns, Rt, are calculated
as

Ri,t = (R1,t, . . . , RN,t) =

[(
P1,t − Pt−τ

Pt−τ

)
, . . . ,

(
PN,t − PN,t−τ

PN,t−τ

)]
. (37)

and the expected return on the portfolio at time t is given by

R̄p,t = E (Rp,t) =

N∑
i=1

wiRi,t,

N∑
i=1

wi = 1. (38)

which is a weighted average of the individual stocks in the portfolio, where wi is the weight applied
to stock i and Pi,t is the price of stock i at time t. Since simple returns are not additive across time,
we convert the simple returns for each stock and the portfolio to log-returns for further analysis.
This is important in case we would want to calculate the portfolio VaR for different time horizons.
The simple returns are converted to log-returns as

ri,t = log(Ri,t + 1) (39)

Figure 2 shows time plots of the log-return series and the portfolio; this shows evidence of
volatility clustering in the return series. Table 1 presents summary statistics of the data. We see
from the table that the log-return series for each bank and the portfolio are far from being normally
distributed1 as indicated by the Jarque-Bera normality test in addition to their high excess kurtosis
and skewness.

1A normal distribution is symmetric with excess skewness and kurtosis equals to zero.
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Furthermore, the Ljung-Box test on the squared residuals of the mean equation
{
a2
i,t

}
; where

ai,t = ri,t − µi, and a Lagrange multiplier test for Autoregressive Conditional Heteroscedasticity
(ARCH LM test) on the residuals of the mean equation {ai,t}, as described by Tsay (2005, 2014),
rejects the null hypothesis of no ARCH effect or serial correlation in the log-return series.
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Figure 2. Time plots of the log-return series and the portfolio indicating the
presence of volatility clustering in the data.

Table 1. Summary statistics of daily log-return series.

UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN Portfolio

Mean -0.0001 -0.0004 -0.0003 -0.0010 -0.0001 -0.0002
Variance 0.0003 0.0011 0.0010 0.0015 0.0006 0.0006
Stdev 0.0171 0.0328 0.0321 0.0388 0.0244 0.0236
Skewness -0.3367 -1.0549 1.4387 -8.4013 0.3161 -0.0350
Excess Kurtosis 16.9080 37.2754 40.2179 235.5263 13.0850 21.3981
SE 0.0003 0.0006 0.0006 0.0007 0.0005 0.0004

Jarque-Bera
X -squared 34284.9000 166881.0700 194636.6700 6674449.8600 20550.5600 54823.4918
Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ARCH Test
Chi-squared 698.1700 933.2600 449.4000 45.1000 818.4000 544.2900
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ljung-Box Test
X -squared 2475.7000 2552.4000 948.1000 58.8670 3727.3000 132.1500
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: Stdev = Standard deviation, SE = Standard error.

3.2. Modelling the marginal distributions of volatility equations

As explained earlier, the data in the log-return series are leptokurtic. Thus, to capture the tail
distribution and the dynamics of fluctuations in the time series data, we fit a GARCH(1,1) model
with Student’s-t distribution to the time series data to accommodate the heavy tails and estimate
the GARCH parameters using Bayesian statistics as follows: (i) We assign a prior distribution
with initial hyperparameters following GARCH specifications (i.e. α0 > 0, α1, β1 ≥ 0 and α1 +
β1 < 1) and generate two Markov chain Monte Carlo (MCMC) of 100000 draws each; (ii) if
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convergence is attained, we discard the first 50000 draws and select only the 50th draw from
each chain such that auto-correlation between draws is reduced to almost zero. We merge the
two chains together to obtain a sample data set of 2000 observations. (iii) If convergence is not
attained, repeat (i) using parameter estimates from the previous draw as the hyperparameters to
increase the chance of convergence. The mean value of each parameter with respect to its respective
posterior distribution is the optimal parameter estimate of the Bayesian-GARCH(1,1) model with
a Student’s-t distribution. We test for convergence of the sampler with the help of a diagnostic test
by Gelman and Rubin (1992) (i.e. for example, Figures 3, 4, 5, and 6 in the case of the portfolio
return series). Estimation results are presented in Table 2 with standard errors in parenthesis.
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Figure 3. Trace plots of 2000 iterations against the values of the draws of the
parameters at each iteration after merging the two chains. The plots show no
evidence against convergence.
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Figure 4. Autocorrelation plots of 2000 samples for α1 and β1 after merging the two chains.
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Figure 5. Autocorrelation plots of 2000 samples for α0 and ν after merging the two chains.
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Figure 6. Density plots of the posterior distributions of the model parame-
ters. nu = density of degrees of freedom. Density plots are used to test the
covariance stationarity condition. For GARCH(1,1) model, α1 + β1 < 1.

Table 2. Parameter estimates of Bayesian-GARCH(1,1)
model with Student-t distribution.

Parameter Diagnostic check
α0 α1 β1 v a.rate (α) a.rate (β1) psrf

UK.HSBA 2.078e-06(1.355e-08) 0.0934(3.105e-4) 0.9057(2.781e-4) 4.9740(1.097e-4) 92.72% 97.63% 1.01

UK.BARC 2.526e-06(1.733e-08) 0.0827(3.014e-04) 0.9171(2.663e-04) 5.2000(1.138e-02) 89.59% 97.63% 1.00

UK.LLOY 6.375e-06(3.827e-08) 0.1022(3.532e-04) 0.8951(3.259e-04) 5.3501(1.196e-02) 92.66% 97.71% 1.00

UK.RBS 3.446e-06(2.477e-08 ) 0.0876(4.046e-04) 0.9077(3.386e-04) 4.8620(1.328e-02) 90.98% 97.64% 1.00

UK.STAN 1.106e-05( 7.034e-08) 0.1290(5.029e-04) 0.8558(5.383e-04) 5.3920(1.253e-02) 94.20% 97.70% 1.00

Portfolio 2.364e-06(1.4060e-09) 0.0973(3.0960e-05) 0.9009(2.8370e-05) 7.6750(2.480e-03) 90.17% 97.66% 1.00

Note: Standard error in parenthesis. a.rate = parameter acceptance rate, which is the proportion of the total number of single values
in the MCMC chain to the total number of values in the chain. A high acceptance rate tells us that the chain does not get stuck in

certain areas in the parameter space, thus producing good mixing as seen in the example of Figure 3. psrf =

√
ˆV ar(x)
W

; the potential scale

reduction factor and should be < 1.2, where ˆV ar(x) is a weighted average of the average of the m within-sequence variance, s2j , each based

on n−1 degrees of freedom, and the variance between the m sequence means, x̄j , each based on n values of x: ˆV ar(x) = (n−1
n

)W + 1
n
B;

W = 1
m

∑m
j=1 s

2
j , B = n

m−1

∑m
j=1(x̄j − x̄..)2, s2j = 1

n−1

∑n
j=1(xij − x̄j)2. If psrf > 1.2, then the length of the chain should be increased

to improve convergence to a stationary distribution (see Gelman and Rubin (1992) for more details).

Applying Eqn.(3), we then obtain a matrix Σ, which consists of marginal standardised residuals

{εi,t}Tt=1. That is

Σi,t = εi,t = (ri,t − µi)
(
v − 2

v
ωi,thi,t(αi, βi)

)−1/2

, i = 1, . . . , 5; t = 1, . . . , T, (40)

where the vectors (ri,t − µi)
′

are the residuals of the mean equation.
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To check for conditional heteroscedasticity in the standarsised residuals, we employ the Ljung-
Box test statistics, Qk(m) and its modification known as robust, Qrk(m). The modification involves
discarding those observations from the return series whose corresponding standardised residuals
exceed 95th quantile in order to reduce the effect of heavy tails. The motivation for the Qrk(m) test
is because Qk(m) may fare poorly in finite samples when the residuals of the time series, at, have
heavy tails (Tsay 2013). The Ljung-Box test statistics is given by

Qk(m) = T 2
m∑
i=1

1

T − i
b′i(ρ̂

−1
0 ⊗ ρ̂

−1
0 )bi ≈ χ2

k2(m), (41)

where k is the dimension of at, T is the sample size, bi = vec(ρ̂′i) with ρ̂j being the lag-j cross-

correlation matrix of a2
i,t. The test indicates the presence of conditional heteroscedasticity in the

standardised residuals with Qk(10) = 92.6690, p-value= 1.5e−15, and Qrk(10) = 318.6257, p-value=
0.0022.

3.3. Modelling dependence

We model the dependence structure among the stock returns using vine copula functions. The C-
and D-vine copula parameters are estimated by maximising the likelihood function:

lC−vine(θ|x) =

d−1∑
j=1

d−j∑
i=1

T∑
t=1

log[cj,j+i|1,...,j−1(F (xj,t|x1,t, . . . , xj−1,t),

F (xj+i,t|x1,t, . . . , xj−1,t)|θj,j+i|1,...,j−1)]; (42a)

lD−vine(θ|x) =

d−1∑
j=1

d−j∑
i=1

T∑
t=1

log[ci,i+j|i+1,...,i+j(F (xi,t|xi+1,t, . . . , xi+j−1,t),

F (xi+j,t|xi+1,t, . . . , xi+j−1,t)|θi,i+j|i+1,...,i+j−1)], (42b)

where xi ∈ [0, 1] are pseudo observations of the standardised residuals and, θi and θj are the pair-
copula parameters of the joint distribution function (Schepsmeier and Brechmann 2015, Aas et al.
2009).

The conditional distribution functions in C-vine (i.e. Eqn.(42a)) and D-vine (i.e. Eqn. (42b))
copulas are obtained from the conditional distribution

h(x,v, θ) = F (x|v) =
∂Cxvj |v−j (F (x|v−j), F (vj |v−j))

∂F (vj |v−j)
, (43)

where Cxvj |v−j is a bivariate copula distribution function.
We select the best pair-copula for the decomposition of the n-variate copula densities based on

the paired copula with the smallest AIC value from a range of copula families (Table 3). To select
which of the vine copulas is the best to model the dependence among the risk factors, we follow
the procedure of Vuong (1989). That is, we use a likelihood-ratio based test to compare non-nested
models. We cannot select between the two vine copulas based on their likelihoods because the two
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copulas are non-nested (Aas et al. 2009). The test statistics is given by

ν =
1
N

∑N
i=1mi√∑N

i=1(mi − m̄)2

(44)

mi = log

[
c1(ui|θ̂1)

c2(ui|θ̂2)

]
, ui ∈ [0, 1], i = 1, . . . , N

where ν is the standardised sum of the log differences of the pointwise likelihoods, mi, between two
competing vine copulas c1 and c2 and the estimated parameters θ̂1 and θ̂2. Vine model 1 is selected in
favor of vine model 2 at a certain level of confidence α if and only if ν > Φ−1

(
1− α

2

)
, and vine model

2 is selected in favor of vine model 1 if and only if ν < −Φ−1
(
1− α

2

)
. If |ν| ≤ Φ−1

(
1− α

2

)
then no

decision among the models is possible (Schepsmeier and Brechmann 2015). Based on the likelihood
ratio test, C-vine copula is selected in favor of D-vine with ν = 2.4989 and Φ−1

(
1− α

2

)
= 1.96 at

α = 5%. From now on, we proceed with the C-vine copula. The estimated copula parameters are
used to simulate 10000 pairs (ui, uj) of observations of [0, 1] uniformly distributed random variables
with the joint distribution function C(ui, uj) (see Cherubini et al. (2004) for a detailed simulation
technique). The simulated data is then transformed to the original scales of the noise variables
using the inverse quantile function F−1

i (ui), of the desired marginal distributions to obtain a new
matrix:

Σ̂ = {ζi,t} , i = 1, . . . , 5, t = 1, . . . , 10000, (45)

which is free from assumptions of normality or linear correlations. Here, we compare between
Student’s-t and normal marginal distributions by changing the marginals but keeping the copula
fixed.

Multivariate ARCH test, Eqn.(41), on {ζi,t} at 95% significance level shows no evidence of
conditional heteroscedasticity (Table 4). Therefore, the Bayesian-GARCH(1,1) C-vine copula model
is a better model in terms of describing the conditional heteroscedasticity in the log return series and
modelling dependence as compared to the Bayesian-GARCH(1,1) model without copula functions
where there is evidence of ARCH effect in the standardised residuals.
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Table 3. C-vine and D-vine copula parameter
estimates.

Unconditional
and conditional Selected
pairs copulas copula family Parameter Log-likelihood paired AIC

C-vine Copula

Tree1 C1,2 Student’s-t copula ρ = 0.5536, v = 5.98 545.2690 -1086.54
C1,3 Student’s-t copula ρ = 0.6222, v = 6.27 716.3512 -1428.70
C1,4 Student’s-t copula ρ = 0.5701, v = 5.80 573.0684 -1142.14
C1,5 Student’s-t copula ρ = 0.6384, v = 6.63 758.9981 -1513.10

Tree2 C2,3|1 Frank copula λ = 4.0043 497.7722 -993.54
C2,4|1 Student’s-t copula ρ = 0.5870, v = 7.94 602.6068 -1201.21
C2,5|1 Frank copula λ = 1.9893 140.8872 -279.77

Tree3 C3,4|1,2 Student’s-t copula ρ = 0.3687, v = 8.7657 222.7078 -441.42
C3,5|1,2 Student’s-t copula ρ = 0.2124, v = 10.8326 74.4631 -144.93

Tree4 C4,5|1,2,3 Frank copula λ = 0.5513 10.8833 -19.77

Log-likelihood 4143.0070

D-vine Copula

Tree1 C1,2 Student’s-t copula ρ = 0.5536, v = 5.98 545.2690 -1086.54
C2,3 Student’s-t copula ρ = 0.6969, v = 6.19 688.4580 -1893.67
C3,4 Student’s-t copula ρ = 0.7197, v = 4.91 464.5665 -2106.17
C4,5 Student’s-t copula ρ = 0.5385, v = 6.11 726.9948 -972.03

Tree2 C1,3|2 Student’s-t copula ρ = 0.3915, v = 8.26 440.2784 -493.94
C2,4|3 Student’s-t copula ρ = 0.4342, v = 8.50 548.5746 -620.12
C3,5|4 Student’s-t copula ρ = 0.3534, v = 9.67 115.0825 -396.34

Tree3 C1,4|2,3 Student’s-t copula ρ = 0.1499, v = 12.11 184.4686 -76.18
C2,5|3,4 Student’s-t copula ρ = 0.1434, v = 12.83 50.6013 -71.75

Tree4 C1,5|2,3,4 Student’s-t copula ρ = 0.3787, v = 12.44 -189.6890 -447.73

Log-likelihood 3574.6050

Note: The copula types for the decomposition of n-variate bivariate copulas for unconditional and conditional pairs are selected
based on AIC values. That is, the paired copula with the smallest AIC value.

Table 4. Multivariate ARCH test (Eqn.(41)) on the
standardised residuals after modelling dependence with

copulas.

m = 5 m = 10 m = 15 m = 20 m = 30

t-distribution Qk(m) 1.8923 4.9683 7.1327 9.3807 19.0364
p-value 0.8638 0.8933 0.9539 0.9781 0.9392

Qrk(m) 117.9122 251.0490 371.3950 519.748 764.4626
p-value 0.6608 0.4694 0.5429 0.2619 0.3489

Normal distribution Qk(m) 2.6596 5.1806 10.9645 15.7037 28.9405
p-value 0.7523 0.8788 0.7551 0.7348 0.5207

Qrk(m) 123.6943 245.9011 348.5009 491.0212 705.8559
p-value 0.5162 0.5614 0.8332 0.6043 0.8740

Note: p-values > 5% suggest no evidence of ARCH effect or conditional heteroscedasticity.
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4. Results

4.1. Threshold selection and robust VaR estimates

We follow the approach by McNeil and Frey (2000) and apply the POT method of EVT to each of
the marginal distributions of {ζi,t} (i.e. Eqn.(45)) to obtain the qth quantile, V aR(Z)q of the noise
variables for VaR estimation. Let {χi,τ} be the negative variables of the marginal distributions of
{ζi,t} such that {χi,τ} ⊆ {ζi,t}. Then, from the ordered sample of {χi,τ}, we calculate and plot the
mean excess function to help identify the threshold. For example, we use the mean excess function
plot for Bank 4 (Figure 7), following the Bayesian-GARCH(1,1) C-vine copula with t-margins,
to demonstrate the threshold selection method. Based on the outcome of the plot, we select a
subjective threshold value of approximately 1.2. That is, η1 = 1.2, which is the lowest point on the
graph; note that the graph appears to be approximately linear. However, if we select this point as
the threshold value, we will have 1470 exceedances, which are too many compared to the size of
the data (i.e. T = 10000), and the number of exceedances will lie towards the center of the data,
which will inevitably result in a poor approximation of the GPD parameters and hence lead to
inaccuracies in the VaR estimate.
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Figure 7. Mean excess function plot of standardised residuals for the threshold
selection following the Bayesian-GARCH(1,1) C-vine copula model.

Following the hybrid method, as demonstrated in Figure 8, we obtain a threshold value of 2.1146
and 465 exceedances. The threshold range plot; Figure 9, which is a plot of reparameterised scale of
the shape parameter suggest that η∗ = 2.1146 is a reasonable choice to use as the threshold value
because 2.1146 seems to yield POT parameter estimates that will not change significantly within
uncertainty bounds. The number of exceedances produced is also sufficient to allow for reasonable
statistical inferences with EVT.
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Figure 8. Mean excess function plot of standardised residuals following the
Bayesian-GARCH(1,1) C-vine copula model demonstrate the hybrid method
of threshold selection. The threshold is the average of all the points that lie
on the tangent line.
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Figure 9. The threshold range plot shows that η = 2.1146 is appropriate to
use as the threshold value as it seems to yield POT parameter estimates that
will not change significantly within uncertainty bounds.

Table 5 shows the POT parameter estimates and the qth quantile VaR, V aRq(Z), estimates of
the noise variables at q = 99% and q = 95%. From Eqn. (29), where ψ(η) > 0, y ∈ [0, x− η] when

ξ ≥ 0, and y ∈ [0,−ψ(η)
ξ ] when ξ < 0, thus the appropriate values for the shape parameter ξ for

a financial time series data must be greater than zero since the upper bound of financial losses
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cannot be fixed (Bhattacharyya and Ritolia 2008, Soltane et al. 2012, Gilli et al. 2006). Therefore,
the GARCH(1,1) C-vine copula-EVT model with normal margins is not a suitable model in this
case as the shape parameters are all less than zero. The shape parameter indicates the thickness
of the tail of the distribution. ξ < 0 implies a lighter tail.

Table 5. POT parameter estimates and qth quantile
VaRs, V aRq(Z).

Parameters V aRq(Z)
ξ ψ(η∗) η∗ Nη∗ µ σ 99% 95%

C-vine copula: t margins UK.HSBA 0.0400 0.9593 2.5481 270 -0.6778 0.8301 3.5200 1.9642
UK.BARC 0.0889 0.9077 2.7751 200 -0.2242 0.6411 3.4240 1.9764
UK.LLOY 0.1765 0.7017 2.6973 501 0.4316 0.4137 3.3712 2.0646
UK.RBS 0.1654 0.7941 2.1146 465 0.2040 0.4780 3.5043 2.0573
UK.STAN 0.0736 0.7696 1.9858 495 -0.0890 0.6166 3.2922 1.9781

C-vine copula: normal margins UK.HSBA -0.1523 0.4265 1.4231 560 -0.1204 0.6616 2.0694 1.4710
UK.BARC -0.1784 0.4202 1.5786 379 -0.2893 0.7536 2.0770 1.4593
UK.LLOY -0.0771 0.3749 1.5762 380 0.1820 0.4824 2.0517 1.4722
UK.RBS -0.1326 0.3880 1.6775 260 -0.1437 0.6294 2.0257 1.4124
UK.STAN -0.0665 0.3274 1.6628 280 0.3407 0.4154 1.9886 1.4692

Note: With normal margins, ξ < 0. For financial data, the upper bound losses cannot be fixed; thus, the only applicable
situation is when ξ ≥ 0. Hence normal margins with ξ < 0 is inappropriate.

Employing the risk formula, we can now compute the portfolio quantile VaRs, V aRpq(Z) for
holding multiple investments in all five banks as

V aRpq(Z) =

 m∑
i=1

w2
i V aR

2
q,i(Z) + 2wiwj

m∑
i<j

ρijV aRq,i(Z)V aRq,j(Z)

1/2

, (46)

where ρi,j is the Pearson’s cross-correlation coefficient between the returns of the ith and jth
stocks. For simplicity, and since the stocks are all from banks of almost the same strength and
ratings, i.e., the top 10%, we assume equal weights w. This gives: V aRp99%(Z) = 2.7891 and

V aRp95%(Z) = 1.6363.

4.2. Robust VaR estimates

Using Eqn.(46), the portfolio VaR for a single period is defined as

V aRpq,t =µ̂t+1 + V aRpq(Z)ĥ
1/2
t+1, (47)

where ĥt is the estimate of the conditional variances and µ̂t is an estimate of the conditional mean
obtained by fitting a univariate Bayesian GARCH(1,1) model with Student’s-t distribution to the
portfolio log returns (Eqn.(3a) and (3b)). The data used are from daily stock returns; thus, these
are daily VaR estimates referred to as robust because they incorporate volatility clustering and are
free from any normality assumption. The results of Eqn.(47) can be used in conjunction with the
α− root of time rule to obtain VaR estimates of any desired time horizon k as

V aRpq,t(k) =k1/αV aRpq,t, 1/α = ξ, (48)

where ξ is the shape parameter of the POT method of EVT and α is the tail index (Tsay 2014,
Danielsson and De Vries 2000). Figure 10 shows a time plot of profit and loss (P&L) of the portfolio
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return series and portfolio VaR estimates. A visual observation of the plot suggests that the VaR
model performs quite well in capturing the dynamics in the portfolio return series. However, the
model has to be validated through back-testing.
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Figure 10. Estimated daily VaRs and profit and loss (P&L) plot for an invest-
ment in a portfolio consisting of all five banks following Bayesian-GARCH(1,1)
with Student’s-t distribution, C-vine copula functions, and EVT.

5. Back-testing

To check the reliability of the VaR model in the portfolio, i.e. checking whether the model does not
overestimate or underestimate the level of risk in the portfolio, we do back-testing on the model.
This involves comparing the estimated VaRs over a given observation period with the subsequent
returns. The number of days T1 in which the loss on the portfolio exceeds VaR is recorded as the
number of exceptions or failures. Too many exceptions imply that the VaR model underestimates
the level of risk, and too few exceptions imply the model overestimates risk. For the VaR model to
be accepted as a reliable risk measure, the number of exceptions produced for any given observation
period should satisfy the unconditional coverage (UC) and independent (IND) property. Consider
an indicator function on the exceptions

It(1− q) = I{Lt>V aRpq,t} =

{
1, if Lt > V aRpq,t
0, otherwise,

(49)

explained as I registers a 1 on day t if the loss on the portfolio Lt on day t > V aRpq,t, and 0 if

the loss on day t ≤ V aRpq,t. Note that q is the choice of confidence level. For the UC property,
P [It(1−q) = 1] ≈ 1−q,∀t; i.e. the number of exceptions should be reasonably close to Tw(1−q)%,
depending on the choice of q, and should follow a binomial distribution. Tw is the size of the window
over which back-testing is being conducted. For the IND property, the exceptions produced on day
t− 1 should be independent of exceptions produced on day t and evenly spread over time.

Several back-testing methods have been proposed to test the UC and IND properties of reliable
VaR models. The most common back-testing methods include Kupiec’s “proportion of failures”
(POF) test for the UC (Kupiec 1995), Christoffersen’s test for the IND and conditional coverage
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(CC) (Christoffersen 1998), and the Basel “traffic light” (Basel Committee on Banking Supervision
1996).

Kupiec defined an approximate 95% confidence region whereby the number of exceptions pro-
duced by the VaR model must lie within this interval for it to be considered a reliable risk mea-
surement model. The test is based on the likelihood ratio

LRPOF = −2ln
qT0(1− q)T1(

1− T1

Tw

)T0
(
T1

Tw

)T1
, (50)

asymptotically distributed χ2
1 with one degree of freedom, where T0 = Tw−T1. Under the UC, the

null hypothesis for LRPOF is H0 : E[It1− q] = T1

Tw
= 1− q against Ha : E[It(1− q)] = T1

Tw
6= (1− q).

The VaR model is rejected if LRPOF > χ2
1 = 3.841. Alternatively, we can obtain a rejection region

[x1, x2] by equating Eqn.(50) to χ2
1 and solving for T1. The VaR model is rejected if T1 /∈ [x1, x2]

and accepted if T1 ∈ [x1, x2].
Christoffersen (1998) extended Kupiec’s POF test to test the independence of conditional cover-

age. Under the null hypothesis that the number of exceptions produced are independent and evenly
spread over time, π01 = π11 = π with likelihood ratio

LRIND = −2ln
(1− π)(T00+T10)π(T01+T11)

(1− π01)T00πT01

01 (1− π11)T10πT11

11

, (51)

asymptotically distributed χ2
1 with one degree of freedom, where Tij , with i, j =

0(noviolation), 1(violation), is the number of observed events with the jth event following ith,
and π01, π01 and π are estimates of the probabilities of Ti,j (Argyropoulos and Panopoulou 2017).
The model is rejected for the independent property if LRIND > χ2

1 = 3.841. Christoffersen’s condi-
tional coverage test is a joint test of Kupiec’s POF test and the IND test that tests both properties
of UC and IND instantaneously. The conditional coverage test has likelihood ratio

LRCC = LRPOF + LRIND, (52)

asymptotically distributed χ2
2 with two degree of freedom. The hypothesis is P [It(1−q) = 1|Ωt−1] =

1− q,∀t against P [It(1− q) = 1|Ωt−1] 6= 1− q,∀t, where Ωt−1 is the information available on day
t− 1. The model is rejected for the conditional coverage property if LRCC > χ2

2 = 5.99.
BCBS came up with a set of requirements that the VaR model must satisfy for it to be considered

a reliable risk measure. That is, (i) VaR must be calculated with 99% confidence, (ii) back-testing
must be done using a minimum of a one year observation period and must be tested over at least
250 days, (iii) regulators should be 95% confident that they are not erroneously rejecting a valid
VaR model, and (iv) Basel specifies a one-tailed test —it is only interested in the underestimation
of risk (Resti 2008). Table 6 summarises the acceptance region for the Basel “traffic light” approach
to back-testing VaR models. In the red zone, the VaR model underestimates risk, which indicates
that anything in this range should be rejected.
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Table 6. Acceptance region for Basel “traffic light”
approach to back-testing VaR models.

Zone Number of exceptions Cumulative Probability

Green ≤ 4 89.22%

Yellow 5 95.88%
6 98.63%
7 99.60%
8 99.89%
9 99.97%

Red ≥ 10 99.99%

Note: q = 99%, T = 250 (Jorion 2007).

We also consider the new independence test carried out by Santos and Alves (2012). The test
statistics is defined as

TN,[N/2] = log 2
DN :N − 1

D[N/2]:N
− logN, (53)

where D1:N ≤ . . . ≤ DN :N are the order statistics of durations D1, . . . DN . Di = ti − tt−1 is the
duration between two consecutive exceptions and i is the time until the first exception. There are
clustering of exceptions if the median of DN :N/D[N/2]:N is higher than the median under the IDN
hypothesis (see Santos and Alves (2012) for more details).

We divide the out-of-sample data into blocks of 250, 500, and 1000 trading days to observe how
the model behaves for longer and shorter observation periods. The division of out-of-sample data
is also employed to meet the BCBS requirements. Table 7 presents the expected and observed
number of exceptions produced at q = (1%, 5%) for a portfolio consisting of all five banks.

Table 7. Exceptions on the porfolio following
Bayesian-GARCH(1,1) C-vine copula-EVT VaR model.

Expected no. of exceptions Observed no. of exceptions

q 250 500 1000 250 500 1000

99% 3 5 10 0 0 0
95% 13 25 50 7 16 32

Note: The out-of-sample data after the 2011 financial crisis is di-
vided into blocks of 250, 500 and 1000 trading days (observation
periods); time horizon = 1 day.

At the 99% confidence level, we expect to observe 3, 5, and 10 exceptions for 250, 500, and 1000
trading days, respectively. The model produced zero exceptions. The model does not underestimate
risk; rather, it is assumed to be too conservative. With zero exceptions, the model passed the “traffic
light” test and is placed in the green zone (see Table 6). Most financial institutions will prefer this
model at 99% confidence level. In this context, routinely produced profit and loss (P&L) plots of
financial institutions show no violation of their 99% confidence VaR over long periods, proclaiming
that this supports their risk model. This reveals the amount of the economic capital banks currently
hold is in excess of their regulatory capital. Thus, banks may prefer to report higher VaR numbers
to avoid a possibility of regulatory intrusion (Jorion 2007).

Tables 8 presents back-testing results at q = 95%. We expect to observe 13, 25, and 50 exceptions
for 250, 500, and 1000 trading days, respectively. The model produced 7, 16, and 32, respectively,
and performs better at shorter observation periods compared to longer observation periods. During
longer observation periods, the model will have longer term memory and is not be easily affected
by sudden changes in the underlying volatility. Volatility in financial markets fluctuates as time
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passes with most recent price changes providing more information with regards to current volatility
as compared to older price changes. Thus, shorter observation periods will be more responsive to
changes in volatility than longer observation periods. These results confirmed the findings of Best
(2000) where he showed that VaR at 95% was more effective with shorter observation periods.

Table 8. Back-testing results after the 2011 financial
crisis following Bayesian GARCH(1,1) C-Vine Copula

EVT VaR model.

Back-test type

Trading window Exceptions T1
Tw

LRPOF LRIND LRCC TN,[N/2] Test results

250 trading days 7 0.028 3.009 (0.083) 0.952 (0.329) 3.961 (0.138) 1.916 (0.448) (AAAA)

500 trading days 16 0.032 3.888 (0.049) 0.011 (0.916) 3.899 (0.142) -0.693 (0.882) (RAAA)

1000 trading days 32 0.032 7.777 (0.005) 0.813 (0.367) 8.590 (0.014) -0.693 (0.861) (RARA)

Note: The analysis is based on 5% significance levels with p-values in parenthesis. The VaR model performs better at shorter

observation periods compared to longer observation periods. A = Accept, R = Reject. Coverage rate = T1
Tw
≈ 1− q.

The out of sample data was taken immediately after the 2011 financial crisis. We, therefore, use
VaR estimates during this period to calculate MCR for market risk in accordance with Basel II
(i.e. Eqn.(1a)). To comply with Basel III rules, we consider back-testing for the periods of January
to December 2008 and January to December 2011. This constitutes a continuous 12-months crisis
period for the 2008 global financial crisis and the 2011 European financial crisis, which gives an
observation period of 262 trading days for 2008 and 260 trading days for 2011. VaR estimates
during these periods are referred to as stress VaR (sVaR) estimates because they are calculated
during a period of significant financial distress. Moreover, sVaR estimates are used to calculate
MCR for market risk in accordance with Basel III rules (Eqn.(2)). As shown in Tables 9, back-
testing results during these periods suggest that the VaR measure can capture the dynamics of
volatility in periods of severe crisis.

Table 9. Back-testing results conducted separately for
the 2008 and 2011 financial crises periods at p = 5%.

Back-test type

Trading window Exceptions T1
Tw

LRPOF LRIND LRCC TN,[N/2] Test results

262 trading days (2008) 16 0.061 0.633 (0.426) 3.918 (0.048) 4.551 (0.103) 1.802 (0.275) (ARAA)

260 trading days (2011) 10 0.038 0.789 (0.374) 1.628 (0.202) 2.417 (0.299) -0.322 (0.808) (AAAA)

Note: The VaR model shows reliability in periods of severe crisis. A = Accept, R = Reject, Coverage rate = T1
Tw
≈ 1− q. We expect

to have 13 exceptions for the 2008 and 2011 crisis period. However, the model produced 16 exceptions for 2008 and 10 exceptions
for 2011.

Table 10 shows MCR for market risk in accordance with Basel II rules, calculated from current
VaR estimates; from February 2012 to December 2015, i.e., covering the out of sample data. MCR
for market risk in accordance with Basel III rules are calculated from current VaR estimates for a
continuous 12-month period of significant financial stress. We consider the 2008 and 2011 financial
crises periods. Regulatory multiplier is fixed to k = 3 in all cases because at 99% confidence level
we observe ≤ 4 exceptions.
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Table 10. Minimum Capital Requirements (MCR) for
market risk in accordance with Basel II and Basel III.

Current VaR estimates k = 3 MCR

VaR estimation period V aR(99%) 1
60

∑60
i=1(V aR(99%)) k

60

∑60
i=1(V aR(99%)) Basel II Basel III

Feb.2012 to Dec.2015 3.75% 3.98% 11.94% 11.94% -

sVaR: Jan.2008 to Dec.2008 9.05% 15.24% 45.73% 45.73% 57.67%

sVaR: Jan.2011 to Dec.2011 6.42% 5.99% 19.27% 19.27% 31.21%

Allen et al. (2017) employed R-Vine and C-Vine copula functions to model dependencies between
10 major European stock markets using their individual market indices and the composite blue
chip STOXX50 European index. Their conclusion was that the R-Vine approach gave potentially
better results. In this light, we also test the performance of the VaR model using R-Vine copula
functions. For more details on R-Vine copula functions, see Schellhase and Spanhel (2018), Barthel
et al. (2018), Allen et al. (2017) and the complete R-package by Schepsmeier et al. (2018).

Table 11 presents the unconditional and conditional pair copula type selection following R-Vine
copula functions. Figure 11, a plot of the estimated daily VaRs and daily profit and loss of the
portfolio returns series, show that the VaR model is capable of capturing the dynamics in the
return series. Back-testing results are presented in Tables 12, 13, and 14. We also observe zero
exceptions at q = 99%. At q = 95% confidence level and 250 observation period, the R-Vine copula
VaR model produce exactly the same number of exceptions as the C-Vine copula VaR model. For
500 and 1000 observation periods, the number of exceptions produced is increased by one. None
of the back-testing methods rejects the R-Vine copula VaR model for the 2008 and 2011 crisis
periods, whereas Christoffersen’s conditional coverage test rejects the C-Vine copula VaR model
for the 2008 crisis period (see Tables 9 and 14). The MCR for market Risk following the R-Vine
copula VaR model, presented in Table 15, is slightly lower than the MCR for market risk following
C-Vine copula VaR model.

We use as a benchmark, VaR models constructed using well known GJR-GARCH(1,1) and
sGARCH(1,1) (standard GARCH(1,1)) volatility models with skewed Student’s-t distribution to
compare the performance of the vine copula EVT VaR models. In reference to Eqn.(4), the PDF of
a standardized Student’s-t distribution, skewness is introduced by an additional parameter γk > 0
as defined in Fernández and Steel (1998); that is

p(εk|v, γk) =
2

γk + 1
γk

{
fs

(
εk
γk

)
I[0,∞)(εk) + fs(γkεk)I(−∞,0)(εk)

}
. (54)

When γk 6= 1, the posterior distribution, p(εk|v, γk) loses symmetry (see Trottier and Ardia (2016),
Ardia et al. (2016), Fernández and Steel (1998) for more details on skewed Student’s-t probabil-
ity distribution). Results are presented in Tables 16 and 17. Comparing these results with the
Bayesian GARCH(1,1) vine copula EVT VaR models, the GJR-GARCH(1,1) and sGARCH(1,1)
VaR models also record zero exceptions at 99% confidence level. At 95% confidence level, we record
the best performance at 250 observation periods, i.e, no rejection and the worst performance at
1000 observation periods for the four VaR models. The GJR-GARCH(1,1) VaR model performs
the least at both 500 and 1000 observation periods. With exception of the crisis periods, the the
sGARCH(1,1) VaR model seems to produce the same results as the Bayesian GARCH(1,1) C-Vine
copula VaR model as seen in Table 18. We should keep in mind that the stocks used to construct
these VaR models are the top performing stocks in the banking sector in UK. Thus, it is no surprise
that the results are quite close.
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Table 11. R-vine parameter estimates.

Unconditional
and conditional Selected
pairs copulas copula family Parameter Log-likelihood paired AIC

Tree1 C3,1 Student’s-t copula ρ = 0.6221 v = 6.23 16.4518 -30.90
C4,2 Student’s-t copula ρ = 0.7150, v = 5.12 25.7210 -49.44
C4,3 Student’s-t copula ρ = 0.7197, v = 4.91 174.1620 -344.32
C1,5 Student’s-t copula ρ = 0.6384, v = 6.63 758.9981 -1514.00

Tree2 C3,2|4 Student’s-t copula ρ = 0.3736, v = 7.83 38.6780 -73.36
C3,5|1 survival BB8 copula Λ = 6.0000, v = 0.34 81.7662 -159.53
C4,1|3 Student’s-t copula ρ = 0.2255, v = 10.74 716.3524 -1428.70

Tree3 C2,1|4,3 Student’s-t copula ρ = 0.1424, v = 11.03 222.8991 -441.80
C4,5|3,1 Frank copula λ = 0.84 1034.6563 -2065.31

Tree4 C2,5|4,3,1 Frank copula λ = 0.6694 1055.084 -2106.168

Log-likelihood 3574.6050

Note: The copula types for the decomposition of n-variate bivariate copulas for unconditional and conditional pairs are selected
based on AIC values. That is, the paired copula with the smallest AIC value.
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Figure 11. Estimated daily VaRs and profit and loss (P&L) plot for an invest-
ment in a portfolio consisting of all five banks following Bayesian-GARCH(1,1)
with Student’s-t distribution, R-vine copula functions, and EVT.

Table 12. Exceptions on the porfolio following
Bayesian-GARCH(1,1) R-vine copula-EVT VaR model.

Expected no. of exceptions Observed no. of exceptions

q 250 500 1000 250 500 1000

99% 3 5 10 0 0 0
95% 13 25 50 7 17 33

Note: Time horizon = 1 day.
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Table 13. Back-testing results after the 2011 financial
crisis following Bayesian GARCH(1,1) R-Vine Copula

EVT VaR model.

Back-test type

Trading window Exceptions T1
Tw

LRPOF LRIND LRCC TN,[N/2] Test results

250 trading days 7 0.028 3.009 (0.083) 0.952 (0.329) 3.961 (0.138) 1.916 (0.449) (AAAA)

500 trading days 17 0.034 3.021 (0.082) 0.057 (0.811) 3.078 (0.215) 1.029 (0.487) (AAAA)

1000 trading days 33 0.033 6.878 (0.009) 0.976 (0.323) 7.854 (0.020) 1.009 (0.433) (RARA)

Note: The analysis is based on 5% significance levels with p-values in parenthesis. The VaR model performs better at shorter

observation periods compared to longer observation periods. A = Accept, R = Reject, Coverage rate = T1
Tw
≈ 1− q.

Table 14. Back-testing results conducted separately for
the 2008 and 2011 financial crises periods at p = 5%

following analysis with R-Vine copulas.

Back-test type

Trading window Exceptions T1
Tw

LRPOF LRIND LRCC TN,[N/2] Test results

262 trading days (2008) 17 0.065 1.122 (0.289) 1.118 (0.290) 2.240 (0.326) 1.530 (0.364) (AAAA)

260 trading days (2011) 10 0.038 0.789 (0.374) 1.628 (0.202) 2.417 (0.299) -0.322 (0.806) (AAAA)

Note: The VaR model shows reliability in periods of severe crisis. A = Accept, R = Reject, Coverage rate = T1
Tw
≈ 1 − q. The

model produced 17 exceptions for 2008 and 10 exceptions for 2011.

Table 15. Minimum Capital Requirements (MCR) for
market risk in accordance with Basel II and Basel III

following analysis with R-Vine.

Current VaR estimates k = 3 MCR

VaR estimation period V aR(99%) 1
60

∑60
i=1(V aR(99%)) k

60

∑60
i=1(V aR(99%)) Basel II Basel III

Feb.2012 to Dec.2015 3.60% 3.82% 11.47% 11.47% -

sVaR: Jan.2008 to Dec.2008 8.70% 14.64% 43.92% 43.92% 55.39%

sVaR: Jan.2011 to Dec.2011 6.17% 5.76% 18.50% 18.50% 29.98%
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Table 16. Back-testing results following sGARCH(1,1)
and GJR-GARCH(1,1) models with skewed student’s-t

errors at 5% significance level

sGARCH Back-test type

Window Exceptions T1
Tw

LRUC LRIND LRCC TN,[N/2] Test results

250 7 0.028 3.009 (0.083) 0.962 (0.327) 3.971 (0.137) 1.916 (0.448) (A A A A)
500 16 0.032 3.888 (0.049) 0.011 (0.916) 3.899 (0.142) -0.069 (0.708) (R A A A)
1000 32 0.032 7.777 (0.005) 0.007 (0.933) 7.784 (0.020) 0.416 (0.541) (R A R A)

GJR-GARCH(1,1) Back-test type

Window Exceptions T1
Tw

LRUC LRIND LRCC TN,[N/2] Test results

250 7 0.028 3.009 (0.083) 0.962 (0.327) 3.971 (0.137) 4.119 (0.228) (A A A A)
500 14 0.028 6.018 (0.014) 0.032 (0.858) 6.050 (0.049) -0.773 (0.908) (R A R A)
1000 26 0.026 14.597 (0.000) 0.263 (0.608) 14.860 (0.001) -0.975 (0.928) (R A R A)

Note: p-values in parenthesis.

Table 17. Back-testing results following sGARCH(1,1)
and GJR-GARCH(1,1) models with skewed student’s-t

errors during the 2008 and 2011 financial crisis.

sGARCH Back-test type

p Window Exceptions T1
Tw

LRUC LRIND LRCC TN,[N/2] Test results

1% 262 trading days (2008) 0 0.000 - - - - (- - - -)
260 trading days (2011) 0 0.000 - - - - (- - - -)

5% 262 trading days (2008) 16 0.061 0.633 (0.426) 0.454 (0.500) 1.087 (0.581) 2.946 (0.148) (A A A A)
260 trading days (2011) 10 0.038 0.789 (0.374) 1.615 (0.204) 2.404 (0.301) -0.322 (0.808) (A A A A)

GJR-GARCH(1,1) Back-test type

p Window Exceptions T1
Tw

LRUC LRIND LRCC TN,[N/2] Test results

1% 262 trading days (2008) 0 0.000 - - - - (- - - -)
260 trading days (2011) 0 0.000 - - - - (- - - -)

5% 262 trading days (2008) 14 0.053 0.064 (0.800) 0.110 (0.740) 0.174 (0.917) 1.173 (0.392) (A A A A)
260 trading days (2011) 8 0.030 2.332 (0.127) 1.017 (0.313) 3.349 (0.187) -0.539 (0.990) (A A A A)

Note: p-values in parenthesis.
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Table 18. Exceptions produced for a time horizon of
one day.

Observed number of exceptions: VaR Model

p Trading window B-GARCH(1,1) EVT C-Vine B-GARCH(1,1) EVT R-Vine GJR-GARCH(1,1) sGARCH(1,1)

1% 250 0 0 0 0
500 0 0 0 0
1000 0 0 0 0

262 0 0 0 0
260 0 0 0 0

5% 250 7 7 7 7
500 16 17 14 16
1000 32 33 26 32

262 16 17 16 14
260 10 10 10 8

Note: We expect to observe 3, 5, and 10 exceptions for 250, 500, and 1000 trading days, respectively, and 13, 25, and 50 exceptions
for 250, 500, and 1000 trading days, respectively.

6. Conclusion

VaR is the most common risk measure used by financial institutions to assess market risk of
financial assets. Because VaR models often focus on the behaviour of asset returns in the left tail,
the models must be calibrated in such a way that they do not underestimate or overestimate the
proportion of outliers, as this will have significant effects on the allocation of the economic capital
of investments. To implement a reliable VaR model, the chosen time horizon and type of volatility
model are very important. We construct our VaR model by combining a Bayesian-GARCH(1,1)
model with Student’s-t distribution as the underlying volatility model, vine copula functions to
model dependence, and EVT to model the left tail, thereby creating the Bayesian-GARCH(1,1)
vine copula-EVT VaR models. Back-testing results show that the VaR models are reliable for
forecasting risk of financial assets in periods when the market is relatively calm and periods of
severe financial crisis.

Looking at Tables 10 and 15, the MCRs for market risk in relation to Basel II are almost three
times the maximum loss per day and much higher in relation to Basel III. This results suggest that
with the correct VaR model, Basel III is not needed. Moreover, these results also confirmed the
previous findings by McAleer et al. (2011) that indicated that the global financial crisis could not be
associated with the failure of Basel II since it was implemented in Europe prior to 2008 and never
in the United States. Banks that displayed higher solvency ratios and higher credit-to-GDP ratios
prior to their collapse or bailouts, probably manipulated their internal risk models for market risk
to show positive results, or because of poor VaR models that were unable to capture the fat-tail
risk. However, this assertion is not proven as the model needs to be tested in countries where banks
were severely affected by the crisis such as Greece, which was in recession for 63 months from the
third quarter of 2008 to the second quarter of 2014 and 27 months from the first quarter of 2015
to the first quarter of 2017 (DAmuri and Peri 2014, Jenkins et al. 2012, Lin et al. 2012).

It is also important to draw attention to the fact that Eqn.(32) depends on the threshold and
the number of points above the threshold (i.e. exceedances) because the parameters are estimated
based on the exceedances. Thus, it is logical to say that the reliability of Eqn.(32) rests solely on
the choice of the subjective thresholds. Adopting the proposed hybrid method for the threshold
selection reduces the possibility of selecting varying thresholds by different analysts on the same
data, which can lead to different VaR estimates.
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Statistical tools

We use R-software to estimate Bayesian GARCH(1,1) parameters, vine copula functions, and EVT
analysis. GARCH(1,1) parameters estimated using the bayesGarch package, vine copula functions
are estimated using the VineCopula and CDVine packages, and finally the POT method of EVT
is estimated using the evir package.
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