
1

Zynq SoC based Acceleration of the Lattice Boltzmann Method

Xiaojun Zhai1,2*, Abbes Amira2, Faycal Bensaali3, AlMaha Al-Shibani2, Asma Al-Nassr2,

Asmaa El-Sayed2, Mohammad Eslami2, Sarada Prasad Dakua4, Julien Abinahed4

1School of Computer Science and Electronic Engineering, University of Essex, UK
2Department of Computer Science and Engineering, Qatar University, Qatar
3Department of Electrical Engineering, Qatar University, Qatar
4Department of Surgery, Hamad General Hospital, Qatar

*xzhai@essex.ac.uk

Abstract: Cerebral aneurysm is a life-threatening condition. It is a weakness in a blood vessel that may

enlarge and bleed into the surrounding area. In order to understand the surrounding environmental

conditions during the interventions or surgical procedures, a simulation of blood flow in cerebral arteries is

needed. One of the effective simulation approaches is to use the Lattice Boltzmann (LB) method. Due to

the computational complexity of the algorithm, the simulation is usually performed on high performance

computers. In this paper, efficient hardware architectures of the LB method on a Zynq system-on-chip

(SoC) are designed and implemented. The proposed architectures have first been simulated in Vivado HLS

environment and later implemented on a ZedBoard using the software-defined SoC (SDSoC) development

environment. In addition, a set of evaluations of different hardware architectures of the LB implementation

are discussed in this paper. The experimental results show that the proposed implementation is able to

accelerate the processing speed by a factor of 52 compared to a dual-core ARM processor-based software

implementation.

Keywords: Computational Fluid Dynamic; Zynq; Lattice Boltzmann; Cerebral Aneurysm

1. Introduction

Six million people in the United States have an unruptured brain aneurysm and about 30,000 people

suffer a brain aneurysm rupture 1. Among each fifty people, there is one patient with unruptured brain

aneurysm and there is a brain aneurysm rupturing every 18 minutes. Statistics demonstrate as well, that

about 15% of patients with aneurysmal subarachnoid hemorrhage (SAH) die before arriving to the

hospital and most of the deaths are due to rapid and massive brain injury from an initial bleeding 2. A

major solution to cerebral aneurysm is the clipping surgery where a clip is placed across the neck of the

aneurysm preventing blood from leaking (as shown in Figure 1). However, in order to reduce the risk of

having inaccurate blood flow measurements and efficiency of the clipping surgery, one of the solutions is

2

to apply fluid dynamics to provide hemodynamic estimates for the simulation of blood flow in cerebral

arteries. The impacts are severe since it targets one of the most critical organs in the human body, which

is the brain and any minor mistake could lead to fatal problems. Therefore, the required measurements (i.e.

velocity and blood pressure) for clipping surgery can be generated to provide the surgeons with the

desired support to apply the clipping surgery.

Sun et al. present an analysis of the interactions of red and white blood cells into post-capillary

venues by using a Lattice Boltzmann (LB) approach is presented in their work3. A computational

simulation for the separation of Red Blood Cells (RBCs) is suggested by Zai et al. 4 where the LB method

is used to solve the Navier-Stokes equations. He et al. 5 used LB for flow simulation in cerebral

vasculature geometry along with the level-set method for medical imaging processing. Similarly, LB has

been quite useful to simulate the blood flow in aneurysms. For example, the LB method is used to

simulate the non-Newtonian blood flows in deformable vessels 6 and model the blood flow and clotting in

intracranial aneurysms with different sizes7. The simulation of blood flow in cerebral aneurysms by

Bernsdorf et al. 8 used optimized LB solver to capture non-Newtonian rheology. The work described in 9

focuses on applying the inclusion of critical components (e.g. RBCs, the corrugated wall and the

glycocalyx) within a single unified computational framework to allow them to reproduce blood rheology

in complex flows and geometrical conditions. The results achieved in this work shows that LB algorithm

can provide a reliable and robust estimation for studying biological fluids at different scales. Similarly, a

computational hemodynamics application called HemoSolve that uses LB for the simulation of blood

flow in human vascular system is proposed in 10.

Since the LB algorithm involves massive computationally intensive operations, parallelization has

been widely used to improve the simulation speed of LB method. Although this means it needs more

memory storage to parallelize its iterations as well as other computing resources, the straightforward

formulation of LB algorithm should naturally be adapted to various software and hardware architectures

so that it could be accelerated in high performance computing (HPC) systems with various structures to

exploit efficient parallelization of the simulations, even when slow interconnection network is available

Figure. 1. Surgical clipping of an aneurysm1.

3

11,12. For this reason, several frameworks and packages are available such as MUPHY 13, LUDWIG 14,

HARVEY 15,16, HemeLB 7, Musubi 17, LB3D 18 and OpenLB 19. MUPHY is a multi-physics/scale code

based upon the combination of microscopic molecular dynamics (MD) with a hydro-kinetic LB method

which evaluated on IBM BlueGene supercomputer 13. Randles et al.16 designed a framework based on

HARVEY to enable scalable simulations of large, high-resolution arterial geometries. In fact, the main

aim behind developing HARVEY is a parallel LB system in order to study cardio vascular diseases based

on the vessel geometry derived from the segmentation of MRA data. The HARVEY code successfully

addresses key challenges of image-based hemodynamics on supercomputers, such as limited memory

capacity and bandwidth, flexible load balancing, and scalability. In summary, most of previous HPC

implementations mainly provided solutions to exploit cache-based approach to reuse spatial data for

accelerating the LBM computing 20-22, however, those solutions are not optimized for low-cost and

particularly memory limited embedded platforms.

HemeLB (Hemodynamic Lattice Boltzmann) 9,23,24 is a superior parallel LB library for large-scale

fluid stream in complex geometries. The core HemeLB code comprises of a parallelized LB application

upgraded for sparse geometries, for example, vascular systems by utilization of indirect addresses.

Segmented angiographic information from patients HemeLB setup tool permits the client to show the

geometric space to simulate by utilizing a graphical user interface. Itani et al. presented a tool to

automatically create an ensemble of multiscale blood flow simulations and run these simulations using

supercomputing resources, scales near-linearly up to 32,768 cores 25.

The intention of using LB method for practical purposes requires large computational power such

as supercomputers as mentioned above. However, alternatively, several attempts have been made to

implement LB on different platforms such as graphic processing unit (GPU) and field programmable gate

array (FPGA). The proposed work 26 describes the porting of the LB component of MUPHY to GPUs

using ad-hoc techniques for optimized addressing.

The simulations of D3Q19 LB model were executed successfully on multi-node GPU clusters using

CUDA platform and MPI library 27,28,29. Januszewski et al. 30 present Sailfish, an open source fluid

simulation package implementing the LB on modern GPUs using both CUDA and OpenCL programming

packages. Obrecht et al. 29 extend the software design to achieve more efficient and highly scalable multi-

GPU parallelization within waLBerla framework which is capable to heterogeneous simulations using

CPUs and GPUs in parallel. They evaluates the results on the Tsubame 2.0 cluster for more than 1000

GPUs.

The ultimate limitation for GPU implementation is the global memory access that bounds the

performance of the LB code, however, FPGAs provide flexibility that allows compilers to create memory

topologies for the acceleration of the LB algorithm with higher precision 31,32. The method proposed in 31

used OpenCL to accelerate and implement D2Q9 lattice model of LB on FPGA. Using the OpenCL tool

4

makes it possible to address well-known HPC problems on FPGA more easily 33. Two scalable

approaches for simulating LB on coupled multiple FPGAs are proposed in 34 and 35 which use

accelerator-domain network (ADN) for low-latency and high-speed data transfer between FPGAs.

Investigation study in 36 shows that the network bandwidth is much more important than the memory

bandwidth in multiple FPGAs framework.

In summary, the existing LB implementations did not fully explore the memory utilization and

flexibility of heterogeneous architectures for accelerating the LB operations. In this paper, an efficient

hardware architecture based LB algorithm for a Zynq System-on-Chip (SoC) hardware implementation

are proposed. The proposed implementation utilizes the advantages of heterogeneous SoC, and divides

the calculations of the LB algorithm into two parts: Programmable Logic (PL) and the Processing System

(PS) 32,37, where the PL contains a Xilinx 7 series Artix-based programmable logic and the PS contains a

dual ARM Cortex-A9 based hard core processors38. The major contributions of this work can be

summarized in the following two points: 1) Efficient real-time implementation of LB method on a

heterogeneous SoC; 2) An efficient model partition scheme to increase the efficiency of memory

utilization. The achieved experimental results show that the proposed implementation accelerate the

processing speed by a factor of 52 compared to a pure software implementation and only consume 2 W,

which is only 15% overhead than the software implementation.

The rest of the paper is organized as follows. Section 2 briefly introduces the LB method. The

corresponding software and hardware implementations are presented in Section 3 and 4 respectively. The

experimental results are discussed in Section 5. Finally, Section 6 concludes the paper and highlights

some perspectives of future work.

2. Lattice Boltzmann Method

The LB method is known as a technique being used for the simulation of fluid flow, which models

fluids with particles performing propagation and collision processes over a discrete lattice mesh. In this

paper, a three dimensions, 19 speeds model called D3Q19 model is used, as shown in Figure 1. Each

12

3

4

5

6

78

9 10

1112

13 14

0

15

16

18

17

Figure 2. Lattice nodes of D3Q19 model.

5

point in the model is joined to its neighbours by a set of lattice vectors ei. In the current implementation of

the LB algorithm, we use a cubic lattice with 19 lattice vectors joining each node with its neighbours. The

LB model adopted has the distribution function that is assumed to evolve towards its local equilibrium

value, at a rate controlled by a single relaxation parameter τ [21]:



ff
eq




)(

 (1)

where f is the distribution function of the particles, and Ω is the collision. D3Q19 models are three-

dimensional with 19 directions of velocity as shown in the Figure 1. The resulting lattice equation is



),(),(
),(),(

)(tftf
tfttxf

eq

ii

xx
xex i


 (2)

where the local equilibrium distribution functions are:

)
22

)(
(

24

2

2
sss

i
eq

i
ccc

pwf
uuueue ii 







 (3)

where fi
eq is the equilibrium distribution and τ is the relaxation time towards the equilibrium for collision

which is calculated separately from streaming. wi is a weight coefficient, cs is the speed of sound, ei is the

particle’s velocity in the direction i and the hydrodynamic density p and macroscopic velocity u are

determined by the distribution functions based on:






18

0

)(
18

0 i

eq
i

i

i ffp (4)






18

0

)(
18

0 i

eq
i

i

i ff ii eeu (5)

For each of the 19 directions, the distribution functions are propagated along the lattice velocity ei

to the adjacent sites. More specifically, the equilibrium distribution fi, with velocity ei moves from the site

at position (x, y, z) to the site at position (x, y, z) + ei.

The lattice nodes of macroscopic velocity is defined as:

(0,0,0) 0

(1,0,0), (0, 1,0), (0,0, 1) 1,2,3,4,5,6

(1, 1,0), (1,0, 1), (0, 1, 1) 7,8,9,...,18

l

i

e i

i




    
       

 (6)

The streaming calculation moves to the direction of 19 directions velocity fi. Consequently, the

macroscopic density and velocity are calculated using their equations from fi. In addition, the equilibrium

distribution and the distribution function in collision step are also calculated. Finally, the steps of

streaming to the collision are repeated.

3. Implementation of Lattice-Boltzmann Algorithm

The LB method was implemented using C/C++ and then simulated using Vivado HLS 39. Various

pragmas have been applied in order to generate different architectures in Vivado HLS environment.

During the implementation, the LB algorithm, has been divided into two main calculation phases: 1)

6

collision phase; and 2) streaming phase. The collision phase has been implemented on PL and the

streaming phase on PS.

Figure 3 shows the overall flowchart of the proposed implementation. The memory is firstly

initialised to accommodate the geometry model, and each partition of geometry model is then loaded to

the collision phase for the calculations of hydrodynamic density p and macroscopic velocity u until the

end of geometry model. After this, the movements of each particle in 19 directions are calculated in the

streaming phase for the entire geometry model. Finally, this process is repeated until the end of

simulation.

3.1 Collision phase

Since the collision phase is one of the main calculation stages in LB method and in order to achieve

good data locality, a simple data structure is applied, where the 3D data are reshaped and stored in 1D

arrays. The code to handle the collision phase is illustrated in the Pseudocode 1.

Start

Memory

Initialisation

Load the i
th

Partition of

Geometry Model

Collision

Phase

End of

Geometry?

Streaming

Phase

End of

Geometry?

Yes

End of

Simulation?

No
i++

No
Yes

No

i=0

End

Start

Streaming

Phase

Yes

Figure 3. Flowchart of the proposed LB implementation.

7

During the collision phase, the fluid density and velocity are calculated for each cell within the

predefined grid network. Once the new fluid density and velocity are calculated, the Bhatnagar-Gross-

Kroop (BGK) approximation collision operator is applied in each direction vector of the lattice nodes of

D3Q19 model. Finally, the buffers of particle distribution function are updated with the new calculations.

As it can be seen from Pseudocode 1, the most computational tasks are the calculation of three nested

loops (i.e. line 4, 5 and 6), therefore our main optimisation efforts would be applying pipelining and

parallelism to accelerate the process. In order to optimize the throughput of the operations, a set of

pragmas have been used in the code to guide the complier to optimize the code, for instance, “HLS

PIPELINE” is one of the pragmas to increase the pipelining and parallelism of the implementation. In

addition, arrays are implemented as block-random access memory (BRAM) which has only a maximum

of two data ports. This can limit the throughput of a read/write (or load/store) intensive algorithm. The

bandwidth can be improved by splitting the array (a single BRAM resource) into multiple smaller arrays

(multiple BRAMS), which would effectively increase the number of ports of memory.

In order to effectively adopt the pipeline mechanism, it will need extra memory and other logic

during the implementation. However, it is not possible to duplicate all the cells in the source buffer fold

due to the limitation of the available on-chip memory as well as the size of simulation model. Therefore,

 Pseudocode 1: Collision Phase

1. Input: fold is source buffers of particle distribution function.

2. Output: fold is updated source buffers of particle distribution function after collision phase.

// Nx, Ny, and Nz are the dimensions of grid // d is the number of vectors

float * fold = (float *) malloc(Nx × Ny × Nz × d sizeof(float));

3. for all the sites in z direction

4. for all the sites in y direction

5. for all the sites in x direction

 // Calculate macroscopic parameters

6. pnew = calculate_p(fold, x, y, z); // fluid density

7. unew = calculate_u(fold, pnew, e, x, y, z); // fluid velocity

8. for all the 19 directions

 // BGK approximation collision operator

9. fold [x + ((y + z×ny) ×nx) + (nx×ny×nz×i)] =

 bgk (fold [x + ((y + z×ny) ×nx) + (nx×ny×nz×i)], τ, pnew, wi, ei, unew);

10. end

11. end

12. end

13. end

8

 ...

x

yz

Nx

Nx/n

N
z

Figure. 4. Partitions of simulation grid.

in order to reduce the usage of the on-chip memory, the entire simulation buffer fold has been divided by n.

This means we only calculate the collision within the small partition, and once this is completed, we will

calculate the following partitions until the end of the simulation grid. Since the partitions are independent

from each other, this makes it very suitable to implement them in parallel. Figure 4 demonstrates this

partition process, where Nx, Ny and Nz are the dimensions of simulation grid. An example of the

simulation model was divided by a factor of n in x axis direction.

In Figure 4, the total number of cells in the simulation buffer fold is Ny×Nz×Nx×d when we partition

the buffer by a factor of n. The total number of cells in each partition is then equal to Ny×Nz×Nx×d/n.

When Nx = n, the total number of cells within the simulation becomes Ny×Nz×d. Let fy and fz denote the

total number of cells in y and z axes directions respectively, and the partition buffer is fpold. If the fpold is

partitioned into two smaller arrays (i.e. applying #pragma HLS ARRAY_PARTITION cyclic factor = 2),

and then each array will contain fy× fz cells. By applying these pragmas, the buffer fpold will therefore be

divided into two arrays, one is with even memory addresses and the other one is with odd memory

addresses, and the three nested loops in pseudocode 1 (i.e. line 4, 5 and 6) could be flatten and unroll in a

pipeline manner, which would potentially significantly increase the throughput of the design. Based on

this optimization, Pseudocode 1 can then be rewritten as Pseudocode 2. In addition to this optimisation, a

number of implementations with different other optimisation parameters have been introduced and

compared in the result section.

9

3.2 Streaming phase

In the streaming phase, the particle distribution function is caculated among lattice points in the

predefined directions (i.e. D3Q19 model). Generally, the fluid particles are streamed from one cell to a

neighbouring cell according to the velocity of the fluid particles in this cell. Depending on the velocity of

each cell, the streaming can either be performed as a pushing operation from one cell to the surrounding

cells or pulling operation in a reverse direction. In addition, the boundary conditions are also considered

within this phase. The bounce back rule is applied to the no-slip wall surrounding the system, and the

procedure of handling the streaming phase is illustrated in the Pseudocode 3. Since the streaming phase

involves mainly I/O operations, e.g. memory accesses, and there is little arithmetic calculation within this

phase, therefore, the implementation of this phase has been performed on the PS side.

 Pseudocode 2: Collision Phase with optimisation

1. Input: fold is source buffers of particle distribution function.

2. Output: fnew is updated source buffers of particle distribution function after collision phase.

3. #pragma HLS ARRAY_PARTITION variable=fpold cyclic factor=2 dim=3

4. for all the sites in z direction

5. #pragma HLS PIPELINE

6. for all the sites in y direction

 // Calculate macroscopic parameters

7. pnew = calculate_p(fold, y, z); // fluid density

8. unew = calculate_u(fold, pnew, e, y, z); // fluid velocity

9. for all the 19 directions

 // BGK approximation collision operator

10. fold[y + ((z + i×nz) ×d)] =

bgk(fold[y + ((z + i×nz) ×d)], τ, pnew, wi, ei, unew);

11. end

12. end

13. end

10

4. Experimental Results

The proposed LB implementation has first been validated in Vivado HLS, and then synthesised and

translated to a hardware description language (HDL) code. A set of pragma directives have been used to

optimise the hardware implementation with the goal to achieve the optimal throughput with reasonable

usage of hardware recourses. The IP core is connected via AXI4 interfaces to the accelerator coherency

port (ACP) of the ARM CPU in the Zynq-7000 SoC device. The solution is then exported as an IP core

connected with AXI4 interface to the ACP on AP SoC PS. The connection is made through a direct

memory access (DMA) core in the PL subsystem. SDSoC (v2016.4) 40 has been used to interface the AP

SoC PL hardware, the peripheral, the DMA engine, an AXI timer as well as other data mover logics. The

SDSoC is also used to design the AP SoC PS software to manage the peripherals and loading the testing

data.

The collision phase block have been implemented in Vivado HLS, and has been integrated with the

other blocks of the design to be a heterogeneous embedded system as shown in Figure 5. The proposed

hardware implementation uses 32-bit floating-point arithmetic, a C/register transfer level simulation is

performed before exporting the RTL as a Vivado’s IP core. The generated IP cores have later been used

in SDSoC (v2016.4) in order to move the IP cores to hardware and generate the corresponding firmware

for the hardware/software codesign. As shown in Figure 5, the IP core (i.e. collision phase) is

interconnected with Zynq PS 7 via AXI interconnection blocks. The AXI2FIFO adapter block is used to

 Pseudocode 3: Streaming Phase

1. Input: fold is source buffers of particle distribution function.

2. Output: fnew is updated source buffers of particle distribution function after streaming phase.

3. for all the sites in z direction

4. for all the sites in y direction

5. for all the sites in x direction

 // Calculate forces in different directions

 //i and i’ are from 0 to d directions,

 // calculate the directions of the streams one by one,

 // d is the total number of the vectors.

6. fnew[x + ((y + z×ny) ×nx) + (nx×ny×nz×i)] =

 fmax [0.0, fold(x + ((y + z×ny) ×nx) + (nx×ny×nz×i’))]

7. end

8. end

9. end

11

convert the interface from AXI to FIFO in order to connect with the IP cores. The AXI DMA is used to

move the processed data back to Zynq PS7.

4.1 Vivado HLS Simulation

Prior to the hardware implementation, the proposed system was validated using Vivado HLS C

simulator. Once the implementation has passed the Vivado C simulation, the C++ codes were translated

to HDL, and then register transfer level simulation is performed in order to validate the generated HDL

architecture. The same C++ test bench used in the C/C++ simulation was used for the C/ register transfer

level co-simulation; however, instead of using the C++ function, the synthesized register transfer level

architectures are used to perform the calculation. The simulator used in the C/ register transfer level co-

simulation was XSIM where VHDL was selected as the generated HDL. The clock period for the

simulation was set to 10 ns. Table 1 summarises the hardware utilization results for implementing the

collision phase.

The hardware utilization results are based on the implementation using only the pipeline pragma on

a Zynq-7000 xc7z020 SoC. Based on the utilisation report, 41% of the LUTs, 13% of the FFs and 62% of

the DSP48E are used to implement the BGK collision operator within the collision phase (i.e. line 10 in

Pseudocode 2), as this function contains most of the arithmetic calculations of the entire collision phase, it

uses most of the resources. In addition to the BGK function, the calculation of fluid velocity function

PS (Streaming

Phase)
DDR3 DMA

AXI

SD

Card

Collision

Phase

AXI2FIFO

Adapter

Figure 5. Implementation overview.

Table 1. Hardware utilization estimate of collision phase

(C/RTL co-simulation)

Collision Phase LUT (%) FF (%) DSP48E (%) BRAM_18K (%)

BGK 41 13 62 0

Fluid Velocity

Function
16 6 7 0

Others 8 2 3 2

Total 65 21 72 2

12

consumes 16%, 6% and 7% of the used LUTs, FFs and DSP48E resources. It is worth noting that the

target Zynq SoC has a relatively small chip capacity in Xilinx 7 series family, which means that the

proposed architecture is area-efficient, and can be easily deployed on a low-cost FPGA or integrated on a

large chip. In the proposed work, we firstly performed system level profiling of the software

implementation, and then optimised the software in terms of throughput, latency and area trade-offs for

various hardware acceleration configurations in the Zynq based multi-processor system-on-chip. Figure 6

presents a diagram that shows a comparison of hardware resource usage for different implementations

with various optimisation conditions. Table 2 summarises the tested optimisation conditions in Figure 6.

Table 2. Optimization conditions for the different implementations in Figure 6

Configurations
Array Partition factor

(dimension = 3)

Array Partition factor

(dimension = 2)

Array Partition factor

(dimension = 1)
Pipeline

Configuration 1 0 0 0 No

Configuration 2 2 0 0 Yes

Configuration 3 2 4 4 Yes

Configuration 4 4 4 4 Yes

Configuration 5 19 4 4 Yes

As it can be seen in Figure 6, the implementation requiring the least hardware resources in the

configuration 1, where no pipeline or array partition is required. However, the processing speed of this

implementation is limited, it needs 2105 us to process the collision phase. In configuration 2, the array

partition and pipeline pragmas have been applied, it improves the processing speed to 335 us and as

expected using more hardware resources. For configurations 3, 4, and 5, although the factors of array

partitions have been increased accordingly and more hardware resources have been used, however, the

processing speed has not improved significantly. Therefore, configuration 2 has been chosen for the final

hardware implementation.

13

4.2 Hardware Implementation

The proposed system has been implemented on the Xilinx Zedboard, which is equipped with a

Zynq-7000 All Programmable SoC XC7Z020-CLG484, 512 MB DDR3 memory and 16 GB SD card. In

addition, the corresponding software (i.e. drivers, control codes and streaming phase) and hardware (i.e.

collision phase) are partitioned and implemented using the Xilinx SDSoC development environment. In

the proposed implementation, the model size is Nx = 8, Ny = 4 and Nz = 4, and a pure software processor

based and a heterogonous SoC implementations are performed and implementation results are compared

in the following sections.

4.2.1 Power Consumption

The on-chip power consumption consists mainly of two parts, which are static and dynamic power

consumption. The static power is consumed due to transistor leakage. The dynamic power is consumed

by fluctuating power as the design runs, i.e. Zynq7 Processing System (PS7), clock, power, logic power,

signal power, BRAMs power, etc., which are directly affected by the chip clock frequency and the usage

of chip area. The details of estimated power consumption of the implementation are summarised in Table

3. The PS7 consumes much more power than the PL; this is because that the ARM dual core Cortex-A9

based processing system has much higher running frequency than the PL and it runs at a fixed clock

frequency. Compared to the PS7, the programmable logic blocks consume only a small portion of the

total on-chip power consumption, and it handles manly the collision phase and consumes only additional

15% of the overall power consumption. The total on-chip power consumption estimations for the

heterogeneous SoC implementation is about 2 W.

Figure. 6. A comparison of hardware resources usages with different optimization configurations.

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

3000

3500

4000

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5

T
im

e
(u

s)

H
ar

d
w

ar
e

R
es

o
u
rc

es

BRAM_18K DSP48E FF×100 LUT×100 Time (us)

14

4.2.2 Timing Analysis

The ARM processor runs at 650 MHz and the PL clocked at 100 MHz. The processing time of the

proposed system is measured by counting the number of clock cycles of the ARM processor for obtaining

the calculated results from the collision phase. Table 4 shows the comparison between the software and

hardware implementations of collision phase in terms of the processing time in CPU clock cycles and

millisecond.

Based on the implementation results from Table 2 and 3, the proposed heterogeneous SoC

implementation achieves the throughput 1.7×105 grid-points/sec, which is 57 times higher than the PS7

only implementation. In addition, in terms of power consumption, the proposed heterogeneous

implementation consumes only 15% overhead than the solo software implementation.

5. Conclusion

In this paper, efficient hardware architectures of the LB method on a Zynq System-on-Chip (SoC)

platform are designed and implemented. The two main parts of the LB method, collision and streaming

phases have been implemented on PL and PS respectively. In addition, of the proposed architectures have

been tested and evaluated under different implementation configurations. The experimental results show

that the proposed heterogeneous implementation is able to accelerate the processing speed by a factor of

52 with a power consumption of only 2 W. In the future, the performance of the proposed implementation

Table 3. Power consumption

Utilization Details Power (W) Utilization (%)

Dynamic Power

Consumption

 Clock 0.084 4%

 Signals 0.081 4%

 Logic 0.055 3%

 BRAM 0.019 1%

 DSP 0.065 3%

 PS7 1.526 76%

Static Power

Consumption

Device Static 0.169 9%

Table 4. Processing time of the proposed implementation

 Collision Phase

(clock cycles)

Collision Phase

(ms)

Heterogeneous

Implementation
466556 0.718

Software Implementation 26691550 41.063

15

scheme will be further evaluated using different computing platforms (e.g. HPC and GPU, etc.),

geometries and integrated with the aneurysm segmentation algorithm as well as the virtual reality

facilities to create an interactive environment for treatment planning and training purpose.

6. Acknowledgments

This paper was made possible by National Priorities Research Program (NPRP) grant No. 5-792-2-

328 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein

are solely the responsibility of the authors.

7. References

1. Komotar RJ, Mocco J, Solomon RA. Guidelines for the surgical treatment of unruptured

intracranial aneurysms: the first annual J. Lawrence pool memorial research symposium—

controversies in the management of cerebral aneurysms. Neurosurgery. 2008;62(1):183-194.

2. Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial

aneurysms. Journal of neurosurgery. 1968;28(1):14-20.

3. Sun C, Migliorini C, Munn LL. Red blood cells initiate leukocyte rolling in postcapillary

expansions: a lattice Boltzmann analysis. Biophysical Journal. 2003;85(1):208-222.

4. Zai-Yi S, Ying H. A lattice Boltzmann method for simulating the separation of red blood cells at

microvascular bifurcations. Chinese Physics Letters. 2012;29(2):024703.

5. He X, Duckwiler G, Valentino DJ. Lattice Boltzmann simulation of cerebral artery hemodynamics.

Computers & Fluids. 2009;38(4):789-796.

6. De Rosis A. Analysis of blood flow in deformable vessels via a lattice Boltzmann approach.

International Journal of Modern Physics C. 2014;25(04):1350107.

7. Ouared R, Chopard B, Stahl B, Rüfenacht DA, Yilmaz H, Courbebaisse G. Thrombosis modeling

in intracranial aneurysms: a lattice Boltzmann numerical algorithm. Computer Physics

Communications. 2008;179(1):128-131.

8. Bernsdorf J, Wang D. Non-Newtonian blood flow simulation in cerebral aneurysms. Computers &

Mathematics with Applications. 2009;58(5):1024-1029.

9. Groen D, Hetherington J, Carver HB, Nash RW, Bernabeu MO, Coveney PV. Analysing and

modelling the performance of the HemeLB lattice-Boltzmann simulation environment. Journal of

Computational Science. 2013;4(5):412-422.

10. Abrahamyan L, Schaap JA, Hoekstra AG, et al. A problem solving environment for image-based

computational hemodynamics. Paper presented at: International Conference on Computational

Science2005.

11. Schulz M, Krafczyk M, Tölke J, Rank E. Parallelization strategies and efficiency of CFD

computations in complex geometries using Lattice Boltzmann methods on high-performance

computers. High performance scientific and engineering computing. 2002;21:115-122.

12. Pohl T, Deserno F, Thurey N, et al. Performance evaluation of parallel large-scale lattice

Boltzmann applications on three supercomputing architectures. Paper presented at:

Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference2004.

13. Bernaschi M, Melchionna S, Succi S, Fyta M, Kaxiras E, Sircar JK. MUPHY: A parallel MUlti

PHYsics/scale code for high performance bio-fluidic simulations. Computer Physics

Communications. 2009;180(9):1495-1502.

14. Desplat J-C, Pagonabarraga I, Bladon P. LUDWIG: A parallel Lattice-Boltzmann code for

complex fluids. Computer Physics Communications. 2001;134(3):273-290.

15. Randles AP, Kale V, Hammond J, Gropp W, Kaxiras E. Performance analysis of the lattice

Boltzmann model beyond Navier-Stokes. Paper presented at: Parallel & Distributed Processing

(IPDPS), 2013 IEEE 27th International Symposium on2013.

16

16. Randles A, Draeger EW, Bailey PE. Massively parallel simulations of hemodynamics in the

primary large arteries of the human vasculature. Journal of Computational Science. 2015;9:70-75.

17. Hasert M, Masilamani K, Zimny S, et al. Complex fluid simulations with the parallel tree-based

Lattice Boltzmann solver Musubi. Journal of Computational Science. 2014;5(5):784-794.

18. Schmieschek S, Shamardin L, Frijters S, et al. LB3D: A parallel implementation of the Lattice-

Boltzmann method for simulation of interacting amphiphilic fluids. Computer Physics

Communications. 2017;217:149-161.

19. Heuveline V, Krause MJ. OpenLB: towards an efficient parallel open source library for lattice

Boltzmann fluid flow simulations. Paper presented at: International Workshop on State-of-the-Art

in Scientific and Parallel Computing. PARA2010.

20. Li D, Xu C, Wang Y, et al. Parallelizing and optimizing large‐scale 3D multi‐phase flow

simulations on the Tianhe‐2 supercomputer. Concurrency and Computation: Practice and

Experience. 2016;28(5):1678-1692.

21. Tran N-P, Lee M, Hong S. Performance optimization of 3D lattice Boltzmann flow solver on a

GPU. Scientific Programming. 2017;2017.

22. Liu S, Zou N, Cui Y, Wu W. Accelerating the Parallelization of Lattice Boltzmann Method by

Exploiting the Temporal Locality. In Ubiquitous Computing and Communications (ISPA/IUCC),

2017 IEEE International Symposium on Parallel and Distributed Processing with Applications, pp.

1186-1193. IEEE, 2017.

23. Pontrelli G, Halliday I, Melchionna S, Spencer TJ, Succi S. The Lattice Boltzmann Method and

Multiscale Hemodynamics: Recent Advances and Perspectives. IFAC Proceedings Volumes.

2012;45(2):30-39.

24. Mazzeo MD, Coveney PV. HemeLB: A high performance parallel lattice-Boltzmann code for

large scale fluid flow in complex geometries. Computer Physics Communications.

2008;178(12):894-914.

25. Itani MA, Schiller UD, Schmieschek S, et al. An automated multiscale ensemble simulation

approach for vascular blood flow. Journal of Computational Science. 2015;9:150-155.

26. Bernaschi M, Fatica M, Melchionna S, Succi S, Kaxiras E. A flexible high‐performance Lattice

Boltzmann GPU code for the simulations of fluid flows in complex geometries. Concurrency and

Computation: Practice and Experience. 2010;22(1):1-14.

27. Xian W, Takayuki A. Multi-GPU performance of incompressible flow computation by lattice

Boltzmann method on GPU cluster. Parallel Computing. 2011;37(9):521-535.

28. Calore E, Gabbana A, Kraus J, Schifano SF, Tripiccione R. Performance and portability of

accelerated lattice Boltzmann applications with OpenACC. Concurrency and Computation:

Practice and Experience. 2016;28(12):3485-3502.

29. Obrecht C, Kuznik F, Tourancheau B, Roux J-J. Multi-GPU implementation of the lattice

Boltzmann method. Computers & Mathematics with Applications. 2013;65(2):252-261.

30. Januszewski M, Kostur M. Sailfish: A flexible multi-GPU implementation of the lattice

Boltzmann method. Computer Physics Communications. 2014;185(9):2350-2368.

31. Nallatech. FPGA Acceleration Acceler Ation of Lattice Boltzmann Using OpenCL. 2017.

32. Zhai X, Ait Si Ali A, Amira A, Bensaali F. ECG encryption and identification based security

solution on the Zynq SoC for connected health systems. Journal of Parallel and Distributed

Computing. 2017;106:143-152.

33. Abdelfattah MS, Hagiescu A, Singh D. Gzip on a chip: High performance lossless data

compression on fpgas using opencl. Paper presented at: Proceedings of the International

Workshop on OpenCL 2013 & 20142014.

34. Sano K, Kono Y, Suzuki H, et al. Efficient custom computing of fully-streamed lattice boltzmann

method on tightly-coupled FPGA cluster. ACM SIGARCH Computer Architecture News.

2013;41(5):47-52.

35. Sano K. FPGA-Based Scalable Custom Computing Accelerator for Computational Fluid

Dynamics Based on Lattice BoltzmannMethod. In: Sustained Simulation Performance 2014.

Springer; 2015:187-201.

17

36. Kono Y, Sano K, Yamamoto S. Scalability analysis of tightly-coupled FPGA-cluster for lattice

Boltzmann computation. Paper presented at: 22nd International Conference on Field

Programmable Logic and Applications (FPL), 2012.

37. Djelouat H, Zhai X, Disi MA, Amira A, Bensaali F. System-on-Chip Solution for Patients

Biometric: A Compressive Sensing-Based Approach. IEEE Sensors Journal. 2018;18(23):9629-

9639.

38. Xilinx Inc. Zynq-7000 All Programmable SoC. 2012; http://www.xilinx.com/products/silicon-

devices/soc/zynq-7000/index.htm, 2013. [Accessed in Feb, 2018]

39. Xilinx Inc. Vivado HLS User Guide. 2017; www.xilinx.com. [Accessed in Feb, 2018]

40. Xilinx Inc. SDSoC User Guide. 2017; www.xilinx.com. [Accessed in Feb, 2018]

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm
http://www.xilinx.com/
http://www.xilinx.com/

18

Table 1. Hardware utilization estimate of collision phase

(c/rtl co-simulation)

Collision Phase LUT (%) FF (%) DSP48E (%) BRAM_18K (%)

BGK 41 62 13 0

Fluid Velocity

Function
16 6 7 0

Total 65 21 72 2

Table 4. Processing time of the proposed implementation

 Collision Phase

(clock cycles)

Collision Phase

(ms)

Heterogeneous

Implementation
466556 0.718

Software Implementation 26691550 41.063

List of Tables:

Table 2. Optimization conditions for the different implementations in Figure 6

Configurations
Array Partition factor

(dimension = 3)

Array Partition factor

(dimension = 2)

Array Partition factor

(dimension = 1)
Pipeline

Configuration 1 0 0 0 No

Configuration 2 2 0 0 Yes

Configuration 3 2 4 4 Yes

Configuration 4 4 4 4 Yes

Configuration 5 19 4 4 Yes

Table 3. Power compsuption

Utilization Details Power (W) Utilization (%)

Dynamic Power

Consumption

 Clock 0.084 4%

 Signals 0.081 4%

 Logic 0.055 3%

 BRAM 0.019 1%

 DSP 0.065 3%

 PS7 1.526 76%

Static Power

Consumption

Device Static 0.169 9%

