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Abstract: Cerebral aneurysm is a life-threatening condition. It is a weakness in a blood vessel that may 

enlarge and bleed into the surrounding area. In order to understand the surrounding environmental 

conditions during the interventions or surgical procedures, a simulation of blood flow in cerebral arteries is 

needed. One of the effective simulation approaches is to use the Lattice Boltzmann (LB) method. Due to 

the computational complexity of the algorithm, the simulation is usually performed on high performance 

computers. In this paper, efficient hardware architectures of the LB method on a Zynq system-on-chip 

(SoC) are designed and implemented. The proposed architectures have first been simulated in Vivado HLS 

environment and later implemented on a ZedBoard using the software-defined SoC (SDSoC) development 

environment. In addition, a set of evaluations of different hardware architectures of the LB implementation 

are discussed in this paper. The experimental results show that the proposed implementation is able to 

accelerate the processing speed by a factor of 52 compared to a dual-core ARM processor-based software 

implementation. 
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1. Introduction 

Six million people in the United States have an unruptured brain aneurysm and about 30,000 people 

suffer a brain aneurysm rupture 1. Among each fifty people, there is one patient with unruptured brain 

aneurysm and there is a brain aneurysm rupturing every 18 minutes. Statistics demonstrate as well, that 

about 15% of patients with aneurysmal subarachnoid hemorrhage (SAH) die before arriving to the 

hospital and most of the deaths are due to rapid and massive brain injury from an initial bleeding 2. A 

major solution to cerebral aneurysm is the clipping surgery where a clip is placed across the neck of the 

aneurysm preventing blood from leaking (as shown in Figure 1). However, in order to reduce the risk of 

having inaccurate blood flow measurements and efficiency of the clipping surgery, one of the solutions is 
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to apply fluid dynamics to provide hemodynamic estimates for the simulation of blood flow in cerebral 

arteries. The impacts are severe since it targets one of the most critical organs in the human body, which 

is the brain and any minor mistake could lead to fatal problems. Therefore, the required measurements (i.e. 

velocity and blood pressure) for clipping surgery can be generated to provide the surgeons with the 

desired support to apply the clipping surgery.  

Sun et al. present an analysis of the interactions of red and white blood cells into post-capillary 

venues by using a Lattice Boltzmann (LB) approach is presented in their work3. A computational 

simulation for the separation of Red Blood Cells (RBCs) is suggested by Zai et al. 4 where the LB method 

is used to solve the Navier-Stokes equations. He et al. 5 used LB for flow simulation in cerebral 

vasculature geometry along with the level-set method for medical imaging processing. Similarly, LB has 

been quite  useful to simulate the blood flow in aneurysms. For example, the LB method is used to 

simulate the non-Newtonian blood flows in deformable vessels 6 and model the blood flow and clotting in 

intracranial aneurysms with different sizes7. The simulation of blood flow in cerebral aneurysms by 

Bernsdorf  et al. 8 used optimized LB solver to capture non-Newtonian rheology. The work described in 9 

focuses on applying the inclusion of critical components (e.g. RBCs, the corrugated wall and the 

glycocalyx) within a single unified computational framework to allow them to reproduce blood rheology 

in complex flows and geometrical conditions. The results achieved in this work shows that LB algorithm 

can provide a reliable and robust estimation for studying biological fluids at different scales. Similarly, a 

computational hemodynamics application called HemoSolve that uses LB for the simulation of blood 

flow in human vascular system is proposed in 10. 

Since the LB algorithm involves massive computationally intensive operations, parallelization has 

been widely used to improve the simulation speed of LB method. Although this means it needs more 

memory storage to parallelize its iterations as well as other computing resources, the straightforward 

formulation of LB algorithm should naturally be adapted to various software and hardware architectures 

so that it could be accelerated in high performance computing (HPC) systems with various structures to 

exploit efficient parallelization of the simulations, even when slow interconnection network is available 

 

Figure. 1.  Surgical clipping of an aneurysm1. 
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11,12. For this reason, several frameworks and packages are available such as MUPHY 13, LUDWIG 14, 

HARVEY 15,16, HemeLB 7, Musubi 17, LB3D 18 and OpenLB 19. MUPHY is a multi-physics/scale code 

based upon the combination of microscopic molecular dynamics (MD) with a hydro-kinetic LB method 

which evaluated on IBM BlueGene supercomputer 13. Randles et al.16 designed a framework based on 

HARVEY to enable scalable simulations of large, high-resolution arterial geometries. In fact, the main 

aim behind developing HARVEY is a parallel LB system in order to study cardio vascular diseases based 

on the vessel geometry derived from the segmentation of MRA data. The HARVEY code successfully 

addresses key challenges of image-based hemodynamics on supercomputers, such as limited memory 

capacity and bandwidth, flexible load balancing, and scalability. In summary, most of previous HPC 

implementations mainly provided solutions to exploit cache-based approach to reuse spatial data for 

accelerating the LBM computing 20-22, however, those solutions are not optimized for low-cost and 

particularly memory limited embedded platforms. 

HemeLB (Hemodynamic Lattice Boltzmann) 9,23,24 is a superior parallel LB library for large-scale 

fluid stream in complex geometries. The core HemeLB code comprises of a parallelized LB application 

upgraded for sparse geometries, for example, vascular systems by utilization of indirect addresses. 

Segmented angiographic information from patients HemeLB setup tool permits the client to show the 

geometric space to simulate by utilizing a graphical user interface. Itani et al. presented a tool to 

automatically create an ensemble of multiscale blood flow simulations and run these simulations using 

supercomputing resources, scales near-linearly up to 32,768 cores 25. 

The intention of using LB method for practical purposes requires large computational power such 

as supercomputers as mentioned above. However, alternatively, several attempts have been made to 

implement LB on different platforms such as graphic processing unit (GPU) and field programmable gate 

array (FPGA). The proposed work 26 describes the porting of the LB component of MUPHY to GPUs 

using ad-hoc techniques for optimized addressing. 

The simulations of D3Q19 LB model were executed successfully on multi-node GPU clusters using 

CUDA platform and MPI library 27,28,29. Januszewski  et al. 30 present Sailfish, an open source fluid 

simulation package implementing the LB on modern GPUs using both CUDA and OpenCL programming 

packages. Obrecht et al. 29 extend the software design to achieve more efficient and highly scalable multi-

GPU parallelization within waLBerla framework which is capable to heterogeneous simulations using 

CPUs and GPUs in parallel. They evaluates the results on the Tsubame 2.0 cluster for more than 1000 

GPUs. 

The ultimate limitation for GPU implementation is the global memory access that bounds the 

performance of the LB code, however, FPGAs provide flexibility that allows compilers to create memory 

topologies for the acceleration of the LB algorithm with higher precision 31,32. The method proposed in 31 

used OpenCL to accelerate and implement D2Q9 lattice model of LB on FPGA. Using the OpenCL tool 
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makes it possible to address well-known HPC problems on FPGA more easily 33. Two scalable 

approaches for simulating LB on coupled multiple FPGAs are proposed in 34 and 35 which use 

accelerator-domain network (ADN) for low-latency and high-speed data transfer between FPGAs. 

Investigation study in 36 shows that the network bandwidth is much more important than the memory 

bandwidth in multiple FPGAs framework.  

In summary, the existing LB implementations did not fully explore the memory utilization and 

flexibility of heterogeneous  architectures for accelerating the LB operations. In this paper, an efficient 

hardware architecture based LB algorithm for a Zynq System-on-Chip (SoC) hardware implementation 

are proposed. The proposed implementation utilizes the advantages of heterogeneous SoC, and divides 

the calculations of the LB algorithm into two parts: Programmable Logic (PL) and the Processing System 

(PS) 32,37, where the PL contains a Xilinx 7 series Artix-based programmable logic and the PS contains a 

dual ARM Cortex-A9 based hard core processors38. The major contributions of this work can be 

summarized in the following two points: 1) Efficient real-time implementation of LB method on a 

heterogeneous SoC; 2) An efficient model partition scheme to increase the efficiency of memory 

utilization. The achieved experimental results show that the proposed implementation accelerate the 

processing speed by a factor of 52 compared to a pure software implementation and only consume 2 W, 

which is only 15% overhead than the software implementation. 

The rest of the paper is organized as follows. Section 2 briefly introduces the LB method. The 

corresponding software and hardware implementations are presented in Section 3 and 4 respectively. The 

experimental results are discussed in Section 5. Finally, Section 6 concludes the paper and highlights 

some perspectives of future work. 

 

2. Lattice Boltzmann Method  

The LB method is known as a technique being used for the simulation of fluid flow, which models 

fluids with particles performing propagation and collision processes over a discrete lattice mesh. In this 

paper, a three dimensions, 19 speeds model called D3Q19 model is used, as shown in Figure 1. Each 
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Figure 2.  Lattice nodes of D3Q19 model. 
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point in the model is joined to its neighbours by a set of lattice vectors ei. In the current implementation of 

the LB algorithm, we use a cubic lattice with 19 lattice vectors joining each node with its neighbours. The 

LB model adopted has the distribution function that is assumed to evolve towards its local equilibrium 

value, at a rate controlled by a single relaxation parameter τ [21]: 


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where f is the distribution function of the particles, and Ω is the collision. D3Q19 models are three-

dimensional with 19 directions of velocity as shown in the Figure 1. The resulting lattice equation is 



),(),(
),(),(

)( tftf
tfttxf

eq

ii

xx
xex i


      (2) 

where the local equilibrium distribution functions are: 

)
22

)(
(

24

2

2
sss

i
eq

i
ccc

pwf
uuueue ii 







       (3) 

where fi
eq is the equilibrium distribution and τ is the relaxation time towards the equilibrium for collision 

which is calculated separately from streaming. wi is a weight coefficient, cs is the speed of sound, ei is the 

particle’s velocity in the direction i and the hydrodynamic density p and macroscopic velocity u are 

determined by the distribution functions based on: 
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For each of the 19 directions, the distribution functions are propagated along the lattice velocity ei 

to the adjacent sites. More specifically, the equilibrium distribution fi, with velocity ei moves from the site 

at position (x, y, z) to the site at position (x, y, z) + ei. 

The lattice nodes of macroscopic velocity is defined as: 

(0,0,0)                                           0

( 1,0,0), (0, 1,0), (0,0, 1)        1,2,3,4,5,6

( 1, 1,0), ( 1,0, 1), (0, 1, 1)    7,8,9,...,18
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     (6) 

The streaming calculation moves to the direction of 19 directions velocity fi. Consequently, the 

macroscopic density and velocity are calculated using their equations from fi. In addition, the equilibrium 

distribution and the distribution function in collision step are also calculated. Finally, the steps of 

streaming to the collision are repeated. 

3. Implementation of Lattice-Boltzmann Algorithm  

The LB method was implemented using C/C++ and then simulated using Vivado HLS 39. Various 

pragmas have been applied in order to generate different architectures in Vivado HLS environment. 

During the implementation, the  LB algorithm, has been divided into two main  calculation phases: 1) 
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collision phase; and 2) streaming phase. The collision phase has been implemented on PL and the 

streaming phase on PS.  

Figure 3 shows the overall flowchart of the proposed implementation. The memory is firstly 

initialised to accommodate the geometry model, and each partition of geometry model is then loaded to 

the collision phase for the calculations of hydrodynamic density p and macroscopic velocity u until the 

end of geometry model. After this, the movements of each particle in 19 directions are calculated in the 

streaming phase for the entire geometry model. Finally, this process is repeated until the end of 

simulation.  

 

3.1 Collision phase 

Since the collision phase is one of the main calculation stages in LB method and in order to achieve 

good data locality, a simple data structure is applied, where the 3D data are reshaped and stored in 1D 

arrays. The code to handle the collision phase is illustrated in the Pseudocode 1. 
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Figure 3.  Flowchart of the proposed LB implementation. 
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During the collision phase, the fluid density and velocity are calculated for each cell within the 

predefined grid network. Once the new fluid density and velocity are calculated, the Bhatnagar-Gross-

Kroop (BGK) approximation collision operator is applied in each direction vector of the lattice nodes of 

D3Q19 model. Finally, the buffers of particle distribution function are updated with the new calculations. 

As it can be seen from Pseudocode 1, the most computational tasks are the calculation of three nested 

loops (i.e. line 4, 5 and 6), therefore our main optimisation efforts would be applying pipelining and 

parallelism to accelerate the process. In order to optimize the throughput of the operations, a set of 

pragmas have been used in the code to guide the complier to optimize the code, for instance, “HLS 

PIPELINE” is one of the pragmas to increase the pipelining and parallelism of the implementation. In 

addition, arrays are implemented as block-random access memory (BRAM) which has only a maximum 

of two data ports. This can limit the throughput of a read/write (or load/store) intensive algorithm. The 

bandwidth can be improved by splitting the array (a single BRAM resource) into multiple smaller arrays 

(multiple BRAMS), which would effectively increase the number of ports of memory. 

In order to effectively adopt the pipeline mechanism, it will need extra memory and other logic 

during the implementation. However, it is not possible to duplicate all the cells in the source buffer fold 

due to the limitation of the available on-chip memory as well as the size of simulation model. Therefore, 

   Pseudocode 1: Collision Phase 

1. Input: fold is source buffers of particle distribution function. 

2. Output: fold is updated source buffers of particle distribution function after collision phase.  

// Nx, Ny, and Nz are the dimensions of grid // d is the number of vectors 

float * fold = (float *) malloc(Nx × Ny × Nz × d sizeof(float));  

3. for all the sites in z direction 

4.     for all the sites in y direction 

5.         for all the sites in x direction 

       // Calculate macroscopic parameters 

6.             pnew = calculate_p(fold, x, y, z); // fluid density 

7.             unew = calculate_u(fold, pnew, e, x, y, z); // fluid velocity 

8.             for all the 19 directions 

                // BGK approximation collision operator 

9.                 fold [x + ((y + z×ny) ×nx) + (nx×ny×nz×i)] = 

 bgk (fold [x + ((y + z×ny) ×nx) + (nx×ny×nz×i)], τ, pnew, wi, ei, unew); 

10.            end 

11.         end 

12.     end 

13. end    
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Figure. 4.  Partitions of simulation grid. 

in order to reduce the usage of the on-chip memory, the entire simulation buffer fold has been divided by n. 

This means we only calculate the collision within the small partition, and once this is completed, we will 

calculate the following partitions until the end of the simulation grid. Since the partitions are independent 

from each other, this makes it very suitable to implement them in parallel. Figure 4 demonstrates this 

partition process, where Nx, Ny and Nz are the dimensions of simulation grid. An example of the 

simulation model was divided by a factor of n in x axis direction. 

In Figure 4, the total number of cells in the simulation buffer fold is Ny×Nz×Nx×d when we partition 

the buffer by a factor of n. The total number of cells in each partition is then equal to Ny×Nz×Nx×d/n. 

When Nx = n, the total number of cells within the simulation becomes Ny×Nz×d. Let fy and fz denote the 

total number of cells in y and z axes directions respectively, and the partition buffer is fpold. If the fpold is 

partitioned into two smaller arrays (i.e. applying #pragma HLS ARRAY_PARTITION cyclic factor = 2), 

and then each array will contain fy× fz cells. By applying these pragmas, the buffer fpold will therefore be 

divided into two arrays, one is with even memory addresses and the other one is with odd memory 

addresses, and the three nested loops in pseudocode 1 (i.e. line 4, 5 and 6) could be flatten and unroll in a 

pipeline manner, which would potentially significantly increase the throughput of the design. Based on 

this optimization, Pseudocode 1 can then be rewritten as Pseudocode 2. In addition to this optimisation, a 

number of implementations with different other optimisation parameters have been introduced and 

compared in the result section. 
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3.2 Streaming phase 

In the streaming phase, the particle distribution function is caculated among lattice points in the 

predefined directions (i.e. D3Q19 model). Generally, the fluid particles are streamed from one cell to a 

neighbouring cell according to the velocity of the fluid particles in this cell. Depending on the velocity of 

each cell, the streaming can either be performed as a pushing operation from one cell to the surrounding 

cells or pulling operation in a reverse direction. In addition, the boundary conditions are also considered 

within this phase. The bounce back rule is applied to the no-slip wall surrounding the system, and the 

procedure of handling the streaming phase is illustrated in the Pseudocode 3. Since the streaming phase 

involves mainly I/O operations, e.g. memory accesses, and there is little arithmetic calculation within this 

phase, therefore, the implementation of this phase has been performed on the PS side. 

   Pseudocode 2: Collision Phase with optimisation 

1. Input: fold is source buffers of particle distribution function. 

2. Output: fnew is updated source buffers of particle distribution function after collision phase.  

3. #pragma HLS ARRAY_PARTITION variable=fpold cyclic factor=2 dim=3 

4. for all the sites in z direction 

5.    #pragma HLS PIPELINE 

6.     for all the sites in y direction 

   // Calculate macroscopic parameters 

7.         pnew = calculate_p(fold, y, z); // fluid density 

8.         unew = calculate_u(fold, pnew, e, y, z); // fluid velocity 

9.          for all the 19 directions 

              // BGK approximation collision operator 

10.               fold[y + ((z + i×nz) ×d)] =  

bgk(fold[y + ((z + i×nz) ×d)], τ, pnew, wi, ei, unew); 

11.         end 

12.      end 

13. end    
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4. Experimental Results 

The proposed LB implementation has first been validated in Vivado HLS, and then synthesised and 

translated to a hardware description language (HDL) code. A set of pragma directives have been used to 

optimise the hardware implementation with the goal to achieve the optimal throughput with reasonable 

usage of hardware recourses. The IP core is connected via AXI4 interfaces to the accelerator coherency 

port (ACP) of the ARM CPU in the Zynq-7000 SoC device. The solution is then exported as an IP core 

connected with AXI4 interface to the ACP on AP SoC PS. The connection is made through a direct 

memory access (DMA) core in the PL subsystem. SDSoC (v2016.4) 40 has been  used to interface the AP 

SoC PL hardware, the peripheral, the DMA engine, an AXI timer as well as other data mover logics. The 

SDSoC is also used to design the AP SoC PS software to manage the peripherals and loading the testing 

data. 

The collision phase block have been implemented in Vivado HLS, and has been integrated with the 

other blocks of the design to be a heterogeneous embedded system as shown in Figure 5. The proposed 

hardware implementation uses 32-bit floating-point arithmetic, a C/register transfer level simulation is 

performed before exporting the RTL as a Vivado’s IP core. The generated IP cores have later been used 

in SDSoC (v2016.4) in order to move the IP cores to hardware and generate the corresponding firmware 

for the hardware/software codesign. As shown in Figure 5, the IP core (i.e. collision phase) is 

interconnected with Zynq PS 7 via AXI interconnection blocks. The AXI2FIFO adapter block is used to 

   Pseudocode 3: Streaming Phase 

1. Input: fold is source buffers of particle distribution function. 

2. Output: fnew is updated source buffers of particle distribution function after streaming phase.  

3. for all the sites in z direction 

4.     for all the sites in y direction 

5.         for all the sites in x direction 

       // Calculate forces in different directions 

      //i and i’ are from 0 to d directions,  

      // calculate the directions of the streams one by one, 

      // d is the total number of the vectors. 

6.         fnew[x + ((y + z×ny) ×nx) + (nx×ny×nz×i)] =  

       fmax [0.0, fold(x + ((y + z×ny) ×nx) + (nx×ny×nz×i’))] 

7.       end 

8.    end    

9. end 
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convert the interface from AXI to FIFO in order to connect with the IP cores. The AXI DMA is used to 

move the processed data back to Zynq PS7. 

 

4.1 Vivado HLS Simulation 

Prior to the hardware implementation, the proposed system was validated using Vivado HLS C 

simulator. Once the implementation has passed the Vivado C simulation, the C++ codes were translated 

to HDL, and then register transfer level simulation is performed in order to validate the generated HDL 

architecture. The same C++ test bench used in the C/C++ simulation was used for the C/ register transfer 

level co-simulation; however, instead of using the C++ function, the synthesized register transfer level 

architectures are used to perform the calculation. The simulator used in the C/ register transfer level  co-

simulation was XSIM where VHDL was selected as the generated HDL. The clock period for the 

simulation was set to 10 ns. Table 1 summarises the hardware utilization results for implementing the 

collision phase. 

 

The hardware utilization results are based on the implementation using only the pipeline pragma on 

a Zynq-7000 xc7z020 SoC. Based on the utilisation report, 41% of the LUTs, 13% of the FFs and 62% of 

the DSP48E are used to implement the BGK collision operator within the collision phase (i.e. line 10 in 

Pseudocode 2), as this function contains most of the arithmetic calculations of the entire collision phase, it 

uses most of the resources. In addition to the BGK function, the calculation of fluid velocity function 

PS (Streaming 

Phase)
DDR3 DMA

AXI

SD 

Card

Collision 

Phase

AXI2FIFO 

Adapter
  

Figure 5.  Implementation overview. 

Table 1. Hardware utilization estimate of collision phase 

(C/RTL co-simulation) 

Collision Phase LUT (%) FF (%) DSP48E (%) BRAM_18K (%) 

BGK 41 13 62 0 

Fluid Velocity 

Function 
16 6 7 0 

Others 8 2 3 2 

Total 65 21 72 2 
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consumes 16%, 6% and 7% of the used LUTs, FFs and DSP48E resources. It is worth noting that the 

target Zynq SoC has a relatively small chip capacity in Xilinx 7 series family, which means that the 

proposed architecture is area-efficient, and can be easily deployed on a low-cost FPGA or integrated on a 

large chip. In the proposed work, we firstly performed system level profiling of the software 

implementation, and then optimised the software in terms of throughput, latency and area trade-offs for 

various hardware acceleration configurations in the Zynq based multi-processor system-on-chip. Figure 6 

presents a diagram that shows a comparison of hardware resource usage for different implementations 

with various optimisation conditions. Table 2 summarises the tested optimisation conditions in Figure 6. 

Table 2. Optimization conditions for the different implementations in Figure 6 

Configurations 
Array Partition factor 

(dimension = 3) 

Array Partition factor 

(dimension = 2) 

Array Partition factor 

(dimension = 1) 
Pipeline 

Configuration 1 0 0 0 No 

Configuration 2 2 0 0 Yes 

Configuration 3 2 4 4 Yes 

Configuration 4 4 4 4 Yes 

Configuration 5 19 4 4 Yes 

 

As it can be seen in Figure 6, the implementation requiring the least hardware resources in the 

configuration 1, where no pipeline or array partition is required. However, the processing speed of this 

implementation is limited, it needs 2105 us to process the collision phase. In configuration 2, the array 

partition and pipeline pragmas have been applied, it improves the processing speed to 335 us and as 

expected using more hardware resources. For configurations 3, 4, and 5, although the factors of array 

partitions have been increased accordingly and more hardware resources have been used, however, the 

processing speed has not improved significantly. Therefore, configuration 2 has been chosen for the final 

hardware implementation. 
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4.2 Hardware Implementation 

The proposed system has been implemented on the Xilinx Zedboard, which is equipped with a 

Zynq-7000 All Programmable SoC XC7Z020-CLG484, 512 MB DDR3 memory and 16 GB SD card. In 

addition, the corresponding software (i.e. drivers, control codes and streaming phase) and hardware (i.e. 

collision phase) are partitioned and implemented using the Xilinx SDSoC development environment. In 

the proposed implementation, the model size is Nx = 8, Ny = 4 and Nz = 4, and a pure software processor 

based and a heterogonous SoC implementations are performed and implementation results are compared 

in the following sections. 

4.2.1 Power Consumption 

The on-chip power consumption consists mainly of two parts, which are static and dynamic power 

consumption. The static power is consumed due to transistor leakage. The dynamic power is consumed 

by fluctuating power as the design runs, i.e. Zynq7 Processing System (PS7), clock, power, logic power, 

signal power, BRAMs power, etc., which are directly affected by the chip clock frequency and the usage 

of chip area. The details of estimated power consumption of the implementation are summarised in Table 

3. The PS7 consumes much more power than the PL; this is because that the ARM dual core Cortex-A9 

based processing system has much higher running frequency than the PL and it runs at a fixed clock  

frequency. Compared to the PS7, the programmable logic blocks consume only a small portion of the 

total on-chip power consumption, and it handles manly the collision phase and consumes only additional 

15% of the overall power consumption. The total on-chip power consumption estimations for the 

heterogeneous  SoC implementation is about 2 W. 

 

Figure. 6.  A comparison of hardware resources usages with different optimization configurations. 
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4.2.2 Timing Analysis 

The ARM processor runs at 650 MHz and the PL clocked at 100 MHz. The processing time of the 

proposed system is measured by counting the number of clock cycles of the ARM processor for obtaining 

the calculated results from the collision phase. Table 4 shows the comparison between the software and 

hardware implementations of collision phase in terms of the processing time in CPU clock cycles and 

millisecond. 

Based on the implementation results from Table 2 and 3, the proposed heterogeneous SoC 

implementation achieves the throughput 1.7×105 grid-points/sec, which is 57 times higher than the PS7 

only implementation. In addition, in terms of power consumption, the proposed heterogeneous 

implementation consumes only 15% overhead than the solo software implementation. 

 

5.  Conclusion 

In this paper, efficient hardware architectures of the LB method on a Zynq System-on-Chip (SoC) 

platform are designed and implemented. The two main parts of the LB method, collision and streaming 

phases have been implemented on PL and PS respectively. In addition, of the proposed architectures have 

been tested and evaluated under different implementation configurations. The experimental results show 

that the proposed heterogeneous implementation is able to accelerate the processing speed by a factor of 

52 with a power consumption of only 2 W. In the future, the performance of the proposed implementation 

Table 3. Power consumption 

 

 

Utilization Details Power (W) Utilization (%) 

Dynamic Power 

Consumption 

 Clock 0.084 4% 

 Signals 0.081 4% 

 Logic 0.055 3% 

 BRAM 0.019 1% 

 DSP  0.065 3% 

 PS7 1.526 76% 

Static Power 

Consumption 

 
Device Static 0.169 9% 

 

Table 4. Processing time of the proposed implementation 

 Collision Phase  

(clock cycles) 

Collision Phase 

(ms) 

Heterogeneous 

Implementation  
466556 0.718 

Software Implementation  26691550 41.063 

 



15 

 

 

scheme will be further evaluated using different computing platforms (e.g. HPC and GPU, etc.), 

geometries and integrated with the aneurysm segmentation algorithm as well as the virtual reality 

facilities to create an interactive environment for treatment planning and training purpose.  
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Table 1. Hardware utilization estimate of collision phase 

(c/rtl co-simulation) 

Collision Phase LUT (%) FF (%) DSP48E (%) BRAM_18K (%) 

BGK 41 62 13 0 

Fluid Velocity 

Function 
16 6 7 0 

Total 65 21 72 2 

 

Table 4. Processing time of the proposed implementation 

 Collision Phase  

(clock cycles) 

Collision Phase 

(ms) 

Heterogeneous 

Implementation  
466556 0.718 

Software Implementation  26691550 41.063 

 

List of Tables: 

Table 2. Optimization conditions for the different implementations in Figure 6 

Configurations 
Array Partition factor 

(dimension = 3) 

Array Partition factor 

(dimension = 2) 

Array Partition factor 

(dimension = 1) 
Pipeline 

Configuration 1 0 0 0 No 

Configuration 2 2 0 0 Yes 

Configuration 3 2 4 4 Yes 

Configuration 4 4 4 4 Yes 

Configuration 5 19 4 4 Yes 

 

Table 3. Power compsuption 

 

 

Utilization Details Power (W) Utilization (%) 

Dynamic Power 

Consumption 

 Clock 0.084 4% 

 Signals 0.081 4% 

 Logic 0.055 3% 

 BRAM 0.019 1% 

 DSP  0.065 3% 

 PS7 1.526 76% 

Static Power 

Consumption 

 
Device Static 0.169 9% 

 


