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Abstract. A generalized triangle group is a group that can be presented in the form
G ¼ hx; y j xl ¼ ym ¼ wðx; yÞn ¼ 1i where l;m; n A f2; 3; 4; . . .gU fyg and wðx; yÞ is an ele-
ment of the free product hx; y j xl ¼ ym ¼ 1i involving both x and y. A homomorphism
f : G ! G is said to be essential if fðxÞ, fðyÞ, fðwðx; yÞÞ have orders l, m, n respectively. Every
generalized triangle group G admits an essential representation to PSLð2;CÞ. In most cases
there will be such a representation with infinite or non-elementary image.

Vinberg and Kaplinsky say that G is pseudo-finite if the image of any essential representation
G ! PSLð2;CÞ is finite and they have obtained a partial classification of such groups. Ex-
tending this concept, we call G pseudo-elementary if the image of any essential representation
G ! PSLð2;CÞ is elementary. In this paper we classify the pseudo-elementary generalized tri-
angle groups G with nd 3 and obtain partial results in the case n ¼ 2.

1 Introduction

We consider groups that can be presented in the form

G ¼ hx; y j xl ¼ ym ¼ wðx; yÞn ¼ 1i ð1Þ

where l;m; n A f2; 3; 4; . . .gU fyg, lcm, ðl;mÞ0 ð2; 2Þ, where

wðx; yÞ ¼ xa1yb1 . . . xak ybk

with

ai ¼
1; 2; . . . ; ðl � 1Þ if l < y;

. . . ;�2;�1; 1; 2; . . . if l ¼ y;

�
bi ¼

1; 2; . . . ; ðm� 1Þ if m < y;

. . . ;�2;�1; 1; 2; . . . if m ¼ y;

�

and where wðx; yÞ is not a proper power. Such groups are called generalized triangle

groups, and these have been studied for a variety of algebraic, geometric, and topo-
logical reasons. One problem concerns the Tits alternative. A group is said to satisfy
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the Tits alternative if it either contains a non-abelian free subgroup or has a soluble
subgroup of finite index. A pair of elements fu; vg of a group G is called a Ree–

Mendelsohn pair if there exists some integer N such that huN ; vNi is free of rank
2. Clearly if G has a Ree–Mendelsohn pair, then G contains a non-abelian free
subgroup.

Rosenberger has conjectured that every generalized triangle group satisfies the Tits
alternative. (See [9] or [13] for a survey of this problem, and [3], [2], [15] for more
recent results.) Related to this conjecture is the question of which generalized triangle
groups contain Ree–Mendelsohn pairs.

A homomorphism f : G ! G (for some group G) is called essential if fðxÞ, fðyÞ,
fðwðx; yÞÞ have orders l, m, n respectively. Every generalized triangle group G admits
an essential representation to PSLð2;CÞ (see [1], [7], [10]), and admits an essential
representation to SOð3Þ (see [4]). A subgroup of PSLð2;CÞ is called elementary if
it contains no non-abelian free subgroup. In most cases a generalized triangle group
G will admit an essential representation to PSLð2;CÞ with non-elementary image,
and thus G will contain a non-abelian free subgroup. Moreover, by [8, Theorem 8], in
these cases G will contain a Ree–Mendelsohn pair.

There are, however, generalized triangle groups G that contain non-abelian free
subgroups but whose essential representations to PSLð2;CÞ all have elementary
image. Similarly, there exist infinite generalized triangle groups G whose essential
representations to PSLð2;CÞ all have finite image. Vinberg and Kaplinsky [12] have
termed a generalized triangle group G pseudo-finite if the image of any essential
representation G ! PSLð2;CÞ is finite. We likewise call G pseudo-elementary if the
image of any essential representation G ! PSLð2;CÞ is elementary. Vinberg and
Kaplinsky have classified the pseudo-finite generalized triangle groups G for nd 3,
and for n ¼ 2, kc 3.

In this paper we carry out similar investigations for pseudo-elementary generalized
triangle groups. We classify all such groups for k ¼ 1 (Section 4), for nd 3 (Section
5), and provide partial results in the case n ¼ 2 (Sections 3 and 6). For nd 3 the
classification of the pseudo-elementary generalized triangle groups was already im-
plicit in the papers of Fine, Rosenberger, et al. [6], [8], [9], [10], [13], [14], and for
n ¼ 2 the partial classification was already implicit in [16], but never formally stated.
Here we codify the results and simplify the methods.

2 Preliminaries

Throughout this paper G will refer to the generalized triangle group defined by the
presentation (1). There are some obvious transformations of this presentation that
lead to an isomorphic group. We shall take such transformations into account as
follows. Two cyclically reduced words wðx; yÞ, w 0ðx; yÞ A hx; y j xl ¼ ym ¼ 1i are
said to be equivalent if wðx; yÞ can be transformed to w 0ðx; yÞ by a sequence of moves
of the form:

(1) cyclic permutation;

(2) inversion;
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(3) automorphism of hxjxli (if l < y) or hyjymi (if m < y);

(4) interchanging x and y (if l ¼ m).

If two words wðx; yÞ, w 0ðx; yÞ are equivalent then the corresponding generalized
triangle groups are said to be equivalent. Equivalent groups are isomorphic, and so
for this reason we consider generalized triangle groups only up to equivalence, al-
though we will not explicitly state this in each result.

We now recall some facts concerning the groups SLð2;CÞ and PSLð2;CÞ.
For a matrix A A SLð2;CÞ we shall denote by ½A� the corresponding projective
matrix fA;�Ag of PSLð2;CÞ. The element ½A� has order Nd 2 if and only if
trA ¼ 2 cosðrp=NÞ where ðr;NÞ ¼ 1. Let A;B A SLð2;CÞ. The group h½A�; ½B�i is
said to be reducible if and only if tr½A;B� ¼ 2 (where ½A;B� ¼ ABA�1B�1). Note that

tr½A;B� ¼ ðtrAÞ2 þ ðtrBÞ2 þ ðtrABÞ2 � ðtrAÞðtrBÞðtrABÞ � 2:

The subgroup h½A�; ½B�i of PSLð2;CÞ is elementary if and only if it is finite, infinite
dihedral, or reducible. The finite subgroups of PSLð2;CÞ are the alternating groups
A4, A5, the symmetric group S4, the finite dihedral groups, and the finite cyclic
groups (see for example [5, pp. 84–86]). If h½A�; ½B�i is a finite cyclic group then A

and B commute, so that ½A;B� ¼ I and tr½A;B� ¼ 2. The group h½A�; ½B�i is dihedral
if and only if two or more of ½A�, ½B�, ½AB� are of order 2. We record the above facts:

Theorem 1 (see [5]). Let A;B A SLð2;CÞ. Then h½A�; ½B�icPSLð2;CÞ is elementary if

and only if one or more of the following holds:

(1) h½A�; ½B�i is isomorphic to A4, S4 or A5;

(2) ðtrAÞ2 þ ðtrBÞ2 þ ðtrABÞ2 � ðtrAÞðtrBÞðtrABÞ � 4 ¼ 0;

(3) at least two of trA, trB, trAB are equal to zero.

Every generalized triangle group admits an essential representation to PSLð2;CÞ
(see [1], [7], [10]), as we now describe. Let X , Y be elements of SLð2;CÞ such that ½X �,
½Y � have orders l, m respectively. We shall obtain necessary and su‰cient conditions
on X , Y for the map r : G ! PSLð2;CÞ given by x 7! ½X �, y 7! ½Y � to define an es-
sential representation.

If n ¼ y then G is not pseudo-elementary (see Section 3), and so we may as-
sume that n < y. If r is essential then the element wð½X �; ½Y �Þ has order n so that
trwðX ;YÞ ¼ 2 cosðrp=nÞ where ðr; nÞ ¼ 1. Now trwðX ;Y Þ is a polynomial in trX ,
trY and l :¼ trXY , of degree k in l. We call this the trace polynomial and (sup-
pressing trX , trY in the notation) write twðlÞ :¼ trwðX ;Y Þ. Thus r defines an es-
sential representation if and only if l is a root of

twðlÞ ¼ 2 cosðrp=nÞ ð2Þ

where ðr; nÞ ¼ 1.
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If l;m < y then trX ¼ 2 cosðpp=lÞ, trY ¼ 2 cosðqp=mÞ where ðp; lÞ ¼ ðq;mÞ ¼ 1.
But, up to equivalence, G is unchanged by applying an automorphism of hxjxli or
hyjymi and so we may assume that p ¼ q ¼ 1. Moreover, we can choose X , Y to be
any elements of SLð2;CÞ with these traces. Case 2 of Theorem 1 is then equivalent to
l ¼ 2 cosðp=lG p=mÞ.

We wish to single out the cases where the generalized triangle group G can admit
essential representations to any of the finite subgroups A4, S4, A5 of PSLð2;CÞ. Sup-
pose that ½A�, ½B� have orders l, m, respectively where lcm. Then ½A�, ½B� can gen-
erate A4, S4, or A5 only if

ðl;mÞ ¼ ð2; 3Þ; ð2; 4Þ; ð2; 5Þ; ð3; 3Þ; ð3; 4Þ; ð3; 5Þ; ð4; 4Þ; or ð5; 5Þ ð3Þ

(see [12]). We shall say that G is exceptional if ðl;mÞ is one of the pairs listed in (3),
and non-exceptional otherwise.

If G is non-exceptional then the roots of twðlÞ are either l ¼ 0 or
l ¼ 2 cosðp=lG p=mÞ. In the latter case there also exists an essential representation of
G to a cyclic subgroup of PSLð2;CÞ, given by x 7! ½X �, y 7! ½Y � where

X ¼ eip=l 0

0 e�ip=l

� �
; Y ¼ eip=m 0

0 e�ip=m

� �
: ð4Þ

3 Infinite exponents

In this section we consider the case when at least one of l, m, n is equal to y.
If n ¼ y then G ¼ hx; y j xl ¼ ym ¼ 1i, which is isomorphic to a Fuchsian group
of signature ð0 : l;m;yÞ and so there is a faithful (and hence essential) repre-
sentation G ! Zl � Zm cPSLð2;CÞ. Since ðl;mÞ0 ð2; 2Þ, the group G is not pseudo-
elementary. If l ¼ m ¼ y then, by Ree and Mendelsohn [11], G is not pseudo-
elementary.

Suppose then that l; n < y and m ¼ y. The results [9, Lemmas 1–3] (or [13,
Lemmas 7.3.3.1–7.3.3.3]) cover most cases:

Theorem 2 ([9]). Let l; n < y, m ¼ y and suppose that one of the following holds:

(1) ðl; nÞ0 ð2; 2Þ;

(2) ðl; nÞ ¼ ð2; 2Þ and either

(a) k is even or

(b) kd 3 is odd and
Pk

i¼1 bi 0 0.

Then G is not pseudo-elementary.

If ðl; nÞ ¼ ð2; 2Þ and k is odd then G can be pseudo-elementary in very many cases.
We consider the pseudo-elementary groups G for k ¼ 1; 3; 5.

Let X , Y be the matrices in SLð2;CÞ defined by
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X ¼ 0 1

�1 0

� �
; Y ¼ z 0

l z�1

� �
;

where z; l A C and zþ z�1 0 2 cosðrp=NÞ for any Nd 2, ðr;NÞ ¼ 1. Then trX ¼ 0,
trY ¼ zþ z�1, and trXY ¼ l. The conditions on z are necessary and su‰cient for
½Y � to be of infinite order. Theorem 1 implies that G is pseudo-elementary if and only

if the roots of the trace polynomial twðlÞ either are l ¼ 0 or satisfy l2 ¼ �ðz� z�1Þ2.
Note that if z0G1 then

Y b ¼ zb 0

lpbðzÞ z�b

� �

where

pbðzÞ ¼ ðzb � z�bÞ=ðz� z�1Þ;

and the leading coe‰cient of twðlÞ ¼ trwðX ;Y Þ is given by c ¼
Qk

i¼1 pbiðzÞ.
If k ¼ 1 the trace polynomial is given by twðlÞ ¼ cl (if z0G1) or twðlÞ ¼ b1l (if

z ¼G1), with root l ¼ 0. Thus G is pseudo-elementary. Consider the case k ¼ 3.

Proposition 3. G is pseudo-elementary if and only if b1 þ b2 þ b3 ¼ 0.

Proof. If z0G1, a calculation shows that the trace polynomial

twðlÞ ¼ trðXY b1XY b2XY b3Þ

is given by

twðlÞ ¼ cl l2 � ðz� z�1Þ2Q3
i¼1ðzbi � z�biÞ

PðzÞ
 !

where

PðzÞ ¼ ðzb1�b2þb3 � z�b1þb2�b3Þ þ ðzb1þb2�b3 � z�b1�b2þb3Þ þ ðz�b1þb2þb3 � zb1�b2�b3Þ:

By Theorem 2 we may assume that b1 þ b2 þ b3 ¼ 0, so that

PðzÞ ¼ �
Y3

i¼1

ðzbi � z�biÞ;

and hence

twðlÞ ¼ clðl2 þ ðz� z�1Þ2Þ;

which is equal to zero if and only if l ¼ 0 or l2 ¼ �ðz� z�1Þ2.
If z ¼G1 then twðlÞ ¼Gb1b2b3l

3 which is equal to zero if and only if l ¼ 0. r
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Consider now the case k ¼ 5. By Theorem 2, if G is pseudo-elementary thenP5
i¼1 bi ¼ 0. Suppose first that z0G1. A calculation shows that the trace polyno-

mial is given by

trwðX ;Y Þ ¼ cl l4 þ 1 þ QðzÞQ5
i¼1ðzbi � z�biÞ

 !
ðz� z�1Þ2l2 þ ðz� z�1Þ4

QðzÞQ5
i¼1ðzbi � z�biÞ

 !

where

QðzÞ ¼ ðzB1 � z�B1Þ þ ðzB2 � z�B2Þ þ ðzB3 � z�B3Þ þ ðzB4 � z�B4Þ þ ðzB5 � z�B5Þ

with

B1 ¼ b1 þ b2 � b3 þ b4 � b5;

B2 ¼ b1 � b2 þ b3 � b4 þ b5;

B3 ¼ b1 � b2 þ b3 þ b4 � b5;

B4 ¼ �b1 þ b2 � b3 þ b4 þ b5;

B5 ¼ �b1 þ b2 þ b3 � b4 þ b5:

If G is pseudo-elementary then the restrictions on the roots of the trace polynomial
mean that twðlÞ takes one of three forms:

twðlÞ ¼ cl5;

twðlÞ ¼ cl3ðl2 þ ðz� z�1Þ2Þ;

twðlÞ ¼ clðl4 þ 2ðz� z�1Þ2
l2 þ ðz� z�1Þ4Þ:

The first form does not arise as it requires both 1 þQðzÞ=
Q5

i¼1ðzbi � zbiÞ ¼ 0 and
QðzÞ ¼ 0, which is impossible. Consider the second form.

Proposition 4. Suppose that z0G1. Then twðlÞ ¼ cl3ðl2 þ ðz� z�1Þ2Þ if and only if

ðb1; b2; b3; b4; b5Þ is of one of the following forms, where a; b A f. . . ;�2;�1; 1; 2; . . .g:

(1) ða; b; b� a;�a� b; a� bÞ where b0Ga;

(2) ða; b;�2aþ b;�b; a� bÞ where b0 a, b0 2a;

(3) ða;�a� 2b;�a; b; aþ bÞ where b0�a, a0�2b;

(4) ða;�a� 2b;�a� b; b; aþ 2bÞ where a0�b, a0�2b.

Proof. The polynomial twðlÞ takes this form if and only if QðzÞ ¼ 0 for all allowed z,
which occurs if and only if fB1;B2;B3;B4;B5g ¼ f�B1;�B2;�B3;�B4;�B5g. Note

106 Gerald Williams

Brought to you by | Periodicals Section, Albert Sloman Libr. (Periodicals Section, Albert Sloman Libr.)
Authenticated | 172.16.1.226

Download Date | 5/25/12 11:25 AM



that each bi 0 0. A straightforward combinatorial argument shows the following:
B1 0�B2; B1 0�B5; B1 ¼ �B1 if and only if Case 1 holds, in which case B2 ¼ �B3,
B4 ¼ �B5; B1 ¼ �B3 if and only if Case 2 or Case 3 holds, and then B2 ¼ 0,
B4 ¼ �B5 or B2 ¼ �B5, B4 ¼ 0, respectively; B1 ¼ �B4 if and only if Case 4 holds,
in which case B2 ¼ �B5, B3 ¼ 0. r

If z ¼G1 then the trace polynomial is given by

twðlÞ ¼Gðb1b2b3b4b5l
5 � ðb1b2b3 þ b2b3b4 þ b3b4b5 þ b4b5b1 þ b5b1b2Þl3Þ:

In each of the cases obtained in Proposition 4 it is easy to check that the coe‰cient of
l3 equates to zero, and thus G is pseudo-elementary precisely in these cases.

The third form of twðlÞ arises if and only if
Q5

i¼1ðzbi � z�biÞ ¼ QðzÞ for all allowed
z. We have not been able to classify the groups G corresponding to this case. For the
remainder of the paper we assume that l;m; n < y.

4 The case kF 1

Theorem 5. Suppose that k ¼ 1 and a1jl, b1jm, and set k ¼ a1=l þ b1=mþ 1=n.

(1) If k > 1 then G is pseudo-elementary if and only if G is pseudo-finite.

(2) If k ¼ 1 then G is pseudo-elementary but not pseudo-finite.

(3) If k < 1 then G is not pseudo-elementary.

Proof. Note that the trace polynomial has precisely one root.
(1) Consider a homomorphism r : G ! Zlmn. If r is essential, then rðxÞ ¼ pmn,

rðyÞ ¼ qln where ðp; lmnÞ ¼ ðq; lmnÞ ¼ 1. By applying an automorphism to hxjxli or
hyjymi we may assume that p ¼ q ¼ 1. If r is essential then rðxa1yb1Þ is of order n,
i.e. we can write

a1mnþ b1ln ¼ rlm ð5Þ

with ðr; lmnÞ ¼ 1. Since k > 1, we have fl=a1;m=b1; ng ¼ f3; 3; 2g; f3; 4; 2g; f3; 5; 2g,
or f2; 2; jg where jd 2. It is then easy to show that (5) has no solution in these cases,
and hence G does not admit any essential representation to a cyclic group. Thus the
numbers 2 cosðp=lG p=mÞ do not occur as roots of twðlÞ and Case 2 of Theorem 1
cannot arise. In Case 1, l corresponds to an essential representation to a finite sub-
group of PSLð2;CÞ, and so G is pseudo-finite. In Case 3, one of l, m is equal to 2 and
l ¼ 0, so that G only admits an essential representation to a finite dihedral group and
hence is pseudo-finite.

(2) In this case there exists an essential representation G ! Zlmn given by x 7! mn,
y 7! ln. Thus there exists a homomorphism G ! PSLð2;CÞ given by x 7! ½X �,
y 7! ½Y � where X , Y are the matrices defined at (4). Since trXY ¼ 2 cosðp=l þ p=mÞ,
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the only essential representations of G are to elementary subgroups of PSLð2;CÞ, and
so G is pseudo-elementary. Since G has an essential representation to a cyclic group,
[12, Proposition 1] implies that G is not pseudo-finite.

(3) Let G be the (ordinary) triangle group G ¼ hx; y j xl=a1 ¼ ym=b1 ¼ ðxyÞn ¼ 1i.
Since k < 1, there exists an essential representation f : G ! PSLð2;CÞ given by
x 7! ½X �, y 7! ½Y � (for some projective matrices ½X �, ½Y �) with non-elementary im-
age. Let ½X � be an ða1Þth root of ½X � and let ½Y � be a ðb1Þth root of ½Y � in PSLð2;CÞ.
Then the map f : G ! PSLð2;CÞ given by x 7! ½X �, y 7! ½Y � defines a faithful (and
hence essential) representation with non-elementary image; thus G is not pseudo-
elementary. r

Theorem 5 completely deals with the group G when k ¼ 1, since by passing to an-
other generating pair (if necessary) we may assume that a1jl, b1jm. The pseudo-finite
groups G with k ¼ 1 were classified in [12]. For the following corollary we tempo-
rarily ignore the ordering lcm.

Corollary 6. Let k ¼ 1 and suppose that a1jl, b1jm. Then G is pseudo-elementary but not

pseudo-finite if and only if ðl;m; nÞ is equal to ð2a1; 3b1; 6Þ, ð3a1; 2b1; 6Þ, ð2a1; 6b1; 3Þ,
ð6a1; 2b1; 3Þ, ð3a1; 6b1; 2Þ, ð6a1; 3b1; 2Þ, ð2a1; 4b1; 4Þ, ð4a1; 2b1; 4Þ, ð4a1; 4b1; 2Þ, or

ð3a1; 3b1; 3Þ.

In the situation of Corollary 6, if a1 ¼ b1 ¼ 1 then G is a Euclidean triangle
group, and so is soluble. In all other cases 1=l þ 1=mþ 1=n < 1 so that, by [1,
Theorem B], G contains a non-abelian free subgroup. These observations, together
with the fact that G contains a non-abelian free subgroup if it is not pseudo-
elementary, form a special case of [8, Theorem 6] (or [9, Theorem 2] or [13, Theorem
7.3.2.2]).

From now on we assume that kd 2.

5 The case nd 3

The following argument is due to Vinberg and Kaplinsky [12]. The group G admits an
essential representation to PSLð2;CÞ if and only if l is a root of (2), where ðr; nÞ ¼ 1.
Varying the value of r, we obtain fðnÞ di¤erent equations of this form with the fixed
polynomial twðlÞ on the left-hand side. These equations have no common roots. Let
p denote the total number of roots of these equations, counting multiplicities, that
are repeated; let q denote the total number of roots that are not repeated; and let N
denote the total number of di¤erent roots, not counting multiplicities. Each of the
unrepeated roots is di¤erent and so qcN. Each repeated root is a root of the de-
rivative t 0wðlÞ and this has k � 1 roots (counting multiplicities), so that pc k � 1.
The total number of roots (counting multiplicities) of the fðnÞ equations is kfðnÞ.
Thus kfðnÞ ¼ pþ qc ðk � 1Þ þN, or equivalently

kðfðnÞ � 1ÞcN � 1: ð6Þ
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If G is pseudo-elementary then in each case it is possible to calculate the possible
values of trXY and thus the value of N. If fðnÞd 2 then inequality (6) gives upper
bounds on k and fðnÞ.

We first consider the non-exceptional cases.

Theorem 7. Suppose G is non-exceptional and that one of the following holds:

(i) fðnÞd 4 and kd 1;

(ii) fðnÞ ¼ 2 and kd 3;

(iii) fðnÞ ¼ 2, k ¼ 2 and ld 3.

Then G is not pseudo-elementary.

Proof. Suppose that G is pseudo-elementary. Since G is non-exceptional we only need
consider Cases 2 and 3 of Theorem 1, so that Nc 3 in (i) and (ii), and Nc 2 in (iii).
We thus obtain a contradiction to (6) and hence G is not pseudo-elementary. r

Theorem 7 is a special case of the proof of [8, Theorem 7], which was obtained by
di¤erent methods. That theorem is reproduced as [9, Theorem 3] and [13, Theorem
7.3.2.3]; we also refer the reader to the proofs of those theorems in [9], [13] when
taken in combination with the remarks of [6, p. 117] concerning the proof of [8,
Theorem 7].

Consider then the case k ¼ 2. Let

X ¼ epi=l 1

0 e�pi=l

� �
; Y ¼ epi=m 0

t e�pi=m

� �
:

Then

trX ¼ 2 cosðp=lÞ; trY ¼ 2 cosðp=mÞ

and

l :¼ trXY ¼ tþ 2 cosðp=l þ p=mÞ:

Noting that

X a ¼
eapi=l

sinðap=lÞ
sinðp=lÞ

0 e�api=l

 !
; Y b ¼

ebpi=m 0
sinðbp=mÞ
sinðp=mÞ t e�bpi=m

 !
;

we may calculate that

trX a1Y b1X a2Y b2 ¼ At2 þ Btþ C;

where
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A ¼ sinða1p=lÞ sinðb1p=mÞ sinða2p=lÞ sinðb2p=mÞ
sin2ðp=lÞ sin2ðp=mÞ

;

B ¼ 1

sinðp=lÞ sinðp=mÞ

�
sin

ða1 þ a2Þp
l

� �
sin

ðb1 þ b2Þp
m

� �

� 4 sinða1p=lÞ sinðb1p=mÞ sinða2p=lÞ sinðb2p=mÞ
�
;

C ¼ 2 cos
ða1 þ a2Þp

l
þ ðb1 þ b2Þp

m

� �
:

ð7Þ

Theorem 8. Suppose that l ¼ 2, md 6 and that fðnÞ ¼ 2, k ¼ 2. Then G is pseudo-

elementary if and only if one of the following holds:

(1) n ¼ 3 and fb1; b2g ¼ fm=2;m=6g, fm=2; 5m=6g, where m is divisible by 6;

(2) n ¼ 4 and fb1; b2g ¼ fm=2;m=4g, fm=2; 3m=4g, where m is divisible by 4;

(3) n ¼ 6 and fb1; b2g ¼ fm=2;m=3g, fm=2; 2m=3g, where m is divisible by 6.

Proof. Suppose that G is pseudo-elementary. Setting t ¼ l� 2 cosðp=l þ p=mÞ, we
find that the fðnÞ equations of the form (2) are

At2 þ Btþ C ¼ D; ð8Þ

At2 þ Btþ C ¼ �D ð9Þ

where D ¼ 2 cosðrp=nÞ with ðr; nÞ ¼ 1 and (using (7))

A ¼ sinðb1p=mÞ sinðb2p=mÞ
sin2ðp=mÞ

; B ¼ �4 sinðb1p=mÞ sinðb2p=mÞ
sinðp=mÞ ;

C ¼ �2 cosððb1 þ b2Þp=mÞ:
ð10Þ

The possible roots of (8), (9) are ti ¼ li þ 2 sinðp=mÞ for i ¼ 0; 1; 2, where l0 ¼ 0,
l1 ¼ 2 sinðp=mÞ, l2 ¼ �2 sinðp=mÞ; that is, t0 ¼ 2 sinðp=mÞ, t1 ¼ 0, t2 ¼ 4 sinðp=mÞ.
Since D0 0 the equations (8), (9) have no common roots, and so one of them must
have a repeated root. The repeated root is t ¼ �B=2A ¼ t0. By replacing r by ðn� rÞ
(if necessary) we may assume that (8) has the repeated root t0. This occurs if and only
if B2 ¼ 4AðC �DÞ, or equivalently

cosððb1 � b2Þp=mÞ ¼ �cosðrp=nÞ: ð11Þ

Since t1, t2 cannot be repeated roots, one of the roots of (9) must be t1, so that we
have C ¼ �D, or equivalently

cosððb1 þ b2Þp=nÞ ¼ cosðrp=nÞ: ð12Þ
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The simultaneous equations (11), (12) hold if and only if cosðb1p=mÞ cosðb2p=mÞ ¼ 0,
i.e. if and only if at least one of b1=m, b2=m is equal to 1=2.

Let fb1=m; b2=mg ¼ f1=2; y=mg, where 1c ycm� 1. Then (12) is equivalent
to cosðrp=nÞ ¼ �sinðyp=mÞ. When n ¼ 3 we have y=m ¼ 1=6 or 5=6, if n ¼ 4 we
have y=m ¼ 1=4 or 3=4, if n ¼ 6 we have y=m ¼ 1=3 or 2=3, and the proof is com-
plete. r

Theorem 8 is a special case of the proof of [8, Theorem 7] taken together with an
observation of Hennig [14]: see [6, p. 117]. Note that in each case G maps onto
hx; y j x2 ¼ ym=2 ¼ 1i and so contains a non-abelian free subgroup (since md 6).

We now consider the exceptional cases.

Theorem 9. Suppose G is exceptional and that nd 3, kd 2. Then G is pseudo-

elementary if and only if G is one of the following groups:

� G1 ¼ hx; y j x2 ¼ y3 ¼ ðxyxy2Þ3 ¼ 1i;

� G2 ¼ hx; y j x2 ¼ y3 ¼ ðxyxyxy2Þ3 ¼ 1i;

� G3 ¼ hx; y j x2 ¼ y3 ¼ ðxyxyxyxy2Þ3 ¼ 1i;

� G4 ¼ hx; y j x2 ¼ y4 ¼ ðxyxy2Þ4 ¼ 1i;

� G5 ¼ hx; y j x2 ¼ y4 ¼ ðxyxy2xy2xy2Þ4 ¼ 1i;

� G6 ¼ hx; y j x3 ¼ y3 ¼ ðxyxy2Þ3 ¼ 1i;

� G7 ¼ hx; y j x4 ¼ y4 ¼ ðxy2x2y2Þ4 ¼ 1i.

Proof. If G is pseudo-finite then by [12, Proposition 5], G is one of the groups G1, G2.
Assume then that G is not pseudo-finite.

For each pair ðl;mÞ, [12, Table 3] lists the possible values of l that correspond to
essential representations to A4, S4, or A5. In addition to these, we must consider
the values of l in Cases 2 and 3 of Theorem 1. (Note that l ¼ 0 may fall both into
Case 1 and Case 2.) For each pair ðl;mÞ we therefore know the total number of
roots N of (2) that correspond to essential representations to elementary subgroups
of PSLð2;CÞ. (Namely, N ¼ 11 if ðl;mÞ ¼ ð2; 3Þ, N ¼ 7 if ðl;mÞ ¼ ð2; 5Þ, N ¼ 6 if
ðl;mÞ ¼ ð3; 3Þ or ð3; 5Þ, N ¼ 5 if ðl;mÞ ¼ ð2; 4Þ, N ¼ 4 if ðl;mÞ ¼ ð3; 4Þ or ð5; 5Þ, and
N ¼ 3 if ðl;mÞ ¼ ð4; 4Þ.) Inequality (6) then provides an upper bound K on k and
an upper bound on fðnÞ. We obtain that ðl;m : fðnÞ;KÞ is equal to ð2; 3 : 2; 10Þ,
ð2; 3 : 4; 3Þ, ð2; 3 : 6; 2Þ, ð2; 4 : 2; 4Þ, ð2; 5 : 4; 2Þ, ð2; 5 : 2; 6Þ, ð3; 3 : 2; 5Þ, ð3; 4 : 2; 3Þ,
ð3; 5 : 2; 5Þ, ð4; 4 : 2; 2Þ, or ð5; 5 : 2; 3Þ.

Since G is not pseudo-finite the roots corresponding to Case 2 of Theorem 1 must
occur, and thus G admits an essential representation to a cyclic group. We can there-
fore eliminate cases where no such representation is possible. By [12, Proposition 2] if
any of the following hold then G does not admit an essential cyclic representation:

� l, m are odd and n is even;

� pF l, pFm, pjn, where pd 3 is prime;
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� p2 F l, p2 Fm, p2jn, where pd 3 is prime;

� l ¼ 2, m is odd, and n, k are of the same parity.

These eliminations reduce us to the cases when ðl;m; n;KÞ is equal to ð2; 4; 4; 4Þ,
ð2; 5; 5; 2Þ, ð2; 5; 10; 2Þ, ð3; 3; 3; 5Þ, ð3; 4; 3; 3Þ, ð3; 4; 4; 3Þ, ð3; 4; 6; 3Þ, ð3; 5; 3; 5Þ,
ð4; 4; 4; 2Þ, or ð2; 3; 3; 10Þ where k is even, or ð2; 3; 6; 10Þ where k is odd. In these cases
an exhaustive computer search (using Maple) for words wðx; yÞ such that the roots of
(2) all correspond to essential representations to elementary subgroups of PSLð2;CÞ
was run. This revealed that G is pseudo-elementary (but not pseudo-finite) precisely
in the cases G3; . . . ;G7. r

In the case ðl;m; nÞ0 ð2; 3; 3Þ, Theorem 9 is a special case of the proof of [8, The-
orem 7]. (See also the proofs of [9, Theorem 3] or [13, Theorem 7.3.2.3] together with
the remarks of [6, p. 117].) In [8, Theorem 7] it is further shown that G4, G5, G6, G7 all
contain non-abelian free subgroups. In the case ðl;m; nÞ ¼ ð2; 3; 3Þ, Theorem 9 was
given in [8, p. 107] (see also [9, Theorem 4]) or [13, Theorem 7.3.2.4], where it was
further shown that G1 is infinite and virtually abelian, G2 is finite of order 1440, and
G3 is infinite and soluble.

From now on we assume that n ¼ 2.

6 The non-exceptional cases with nF 2, kF 2

Consider first the case l ¼ 2.

Theorem 10. Suppose that l ¼ n ¼ 2, md 6 and that k ¼ 2. Then G is pseudo-

elementary if and only if m is even and b2 ¼ m=2 � b1, 3m=2 � b1, or b1 Gm=2.

Proof. Suppose that G is pseudo-elementary. Setting t ¼ l� 2 cosðp=l þ p=mÞ, equa-
tion (2) becomes

At2 þ Btþ C ¼ 0 ð13Þ

where A, B, C are given by (10). The possible roots of (13) are t0 ¼ 2 sinðp=mÞ,
t1 ¼ 0, t2 ¼ 4 sinðp=mÞ.

Now C ¼ 0 if and only if b2 ¼ m=2 � b1 or b2 ¼ 3m=2 � b1 (where m is even). In
this case (13) has roots t1, t2, and so G is pseudo-elementary. Suppose then that
C0 0. The sum of the roots of (13) is �B=A ¼ 4 sinðp=mÞ, and since t1 is not a root
the only root is t0. The product of the roots is C=A so that

4 sin2ðp=mÞ ¼ �2 cosððb1 þ b2Þp=mÞ sin2ðp=mÞ
sinðb1p=mÞ sinðb2p=mÞ ;

which holds if and only if b2 ¼ b1 Gm=2 (where m is even). r
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By [16, Propositions 8, 9], the group G contains a non-abelian free subgroup un-

less G ¼ hx; y j x2 ¼ y6 ¼ ðxyxy2Þ2 ¼ 1i or G ¼ hx; y j x2 ¼ y6 ¼ ðxyxy4Þ2 ¼ 1i, in
which case G is infinite and soluble.

Consider now the cases where ld 3. Suppose that G is pseudo-elementary. Setting
t ¼ l� 2 cosðp=l þ p=mÞ, equation (2) becomes (13) where A, B, C are given by (10).
Since l;md 3, Case 3 of Theorem 1 cannot occur, and so the possible roots of (13)
are t1 ¼ 0, t2 ¼ 4 sinðp=lÞ sinðp=mÞ. By replacing wðx; yÞ with the equivalent word
wðx; y�1Þ (if necessary) we may assume that t1 occurs as a root. This occurs if and
only if C ¼ 0, i.e. if and only if

cos
ða1 þ a2Þp

l
þ ðb1 þ b2Þp

m

� �
¼ 0: ð14Þ

The second root of (13) is therefore t ¼ �B=A, i.e.

t ¼ 4 sinðp=lÞ sinðp=mÞ � sinðp=lÞ sinðp=mÞ sinðða1 þ a2Þp=lÞ sinððb1 þ b2Þp=mÞ
sinða1p=lÞ sinðb1p=mÞ sinða2p=lÞ sinðb2p=mÞ :

ð15Þ

Proposition 11. The roots of ð13Þ are t1, t2 if and only if ða2; b2Þ is equal to

ðl � a1;m=2 � b1Þ, ðl � a1; 3m=2 � b1Þ (where m is even) or ðl=2 � a1;m� b1Þ,
ð3l=2 � a1;m� b1Þ (where l is even).

Proof. By the above, t1 is a root if and only if (14) holds, and (because of (15)) t2 is
the other root if and only if sinðða1 þ a2Þp=lÞ sinððb1 þ b2Þp=mÞ ¼ 0; that is, if and
only if a1 þ a2 ¼ l or b1 þ b2 ¼ m. If a1 þ a2 ¼ l then (14) is satisfied if and only if m
is even and b1 þ b2 equals m=2 or 3m=2. If b1 þ b2 ¼ m then (14) is satisfied if and
only if l is even and a1 þ a2 ¼ l=2 or 3l=2. r

Hence G is pseudo-elementary in these cases.
Note that in each case G maps homomorphically onto hx; y j xa1 ¼ ym ¼ 1i and

onto hx; y j xl ¼ yb1 ¼ 1i, and so contains a non-abelian free subgroup unless
a1 ¼ b1 ¼ 1. In this case, by [1, Theorem B], G contains a non-abelian free subgroup
unless l ¼ 3, m ¼ 6; but then G maps onto hx; y j x3 ¼ y2 ¼ 1i, and so contains a
non-abelian free subgroup.

Suppose then the roots of (13) are t1, t1. This occurs if and only if (14) and (16)
(below) both hold:

sin
ða1 þ a2Þp

l

� �
sin

ðb1 þ b2Þp
m

� �
¼ 4 sin

a1p

l

� �
sin

b1p

m

� �
sin

a2p

l

� �
sin

b2p

m

� �
:

ð16Þ

There appear to be very many solutions to these equations. Let us assume that the
denominators l, m are in their lowest form; that is, ða1; a2; lÞ ¼ ðb1; b2;mÞ ¼ 1. It is
easy to verify that
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AðsÞ: l ¼ m ¼ 8s;

ffa1; a2g; fb1; b2gg ¼ ffp; pþ l=2g; fl=4 � p; 3l=4 � pgg; ðp; lÞ ¼ 1;

BðsÞ: l ¼ 4sþ 2; m ¼ 2l;

ðfa1; a2g; fb1; b2gÞ ¼ ðfp; l=2 þ pg; fl=2 � 2p; 3l=2 � 2pgÞ; ðp; l=2Þ ¼ 1;

define solutions for all sd 1. A computer search (using Maple) shows that each sol-
ution with 2c lcmc 80 either takes the form A(s) or B(s), or takes one of the
following forms:

E1: l ¼ 10; m ¼ 15;

ðfa1; a2g; fb1; b2gÞ; ðfl � a1; l � a2g; fm� b1;m� b2gÞ ¼ ðf1; 8g; f2; 7gÞ

or ðf3; 4g; f1; 11gÞ;

E2: l ¼ 12; m ¼ 12;

ffa1; a2g; fb1; b2gg; ffl � a1; l � a2g; fm� b1;m� b2gg ¼ ff1; 10g; f2; 5gg;

E3: l ¼ 14; m ¼ 14;

ffa1; a2g; fb1; b2gg; ffl � a1; l � a2g; fm� b1;m� b2gg ¼ ff1; 9g; f3; 8gg;

ff1; 12g; f3; 5gg; or ff1; 11g; f4; 5gg;

E4: l ¼ 15; m ¼ 30;

ðfa1; a2g; fb1; b2gÞ; ðfl � a1; l � a2g; fm� b1;m� b2gÞ ¼ ðf1; 7g; f3; 26gÞ;

ðf1; 13g; f8; 9gÞ; ðf2; 11g; f3; 16gÞ; or ðf4; 7g; f2; 21gÞ;

E5: l ¼ 20; m ¼ 80;

ðfa1; a2g; fb1; b2gÞ; ðfl � a1; l � a2g; fm� b1;m� b2gÞ ¼ ðf5; 6g; f5; 71gÞ;

E6: l ¼ 39; m ¼ 78;

ðfa1; a2g; fb1; b2gÞ; ðfl � a1; l � a2g; fm� b1;m� b2gÞ ¼ ðf10; 10g; f3; 74gÞ;

E7: l ¼ 40; m ¼ 75;

ðfa1; a2g; fb1; b2gÞ; ðfl � a1; l � a2g; fm� b1;m� b2gÞ ¼ ðf3; 33g; f17; 28gÞ;

E8: l ¼ 55; m ¼ 66;

ðfa1; a2g; fb1; b2gÞ; ðfl � a1; l � a2g; fm� b1;m� b2gÞ ¼ ðf2; 28g; f11; 52gÞ;

E9: l ¼ 75; m ¼ 80;

ðfa1; a2g; fb1; b2gÞ; ðfl � a1; l � a2g; fm� b1;m� b2gÞ ¼ ðf2; 43g; f29; 43gÞ:

We have not been able to classify all solutions.
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