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Abstract

A generalized triangle group is a group that can be presented in the form G =
〈 x, y | xp = yq = w(x, y)r = 1 〉 where p, q, r ≥ 2 and w(x, y) is a cyclically re-
duced word of length at least 2 in the free product Zp∗Zq = 〈 x, y | xp = yq = 1 〉.
Rosenberger has conjectured that every generalized triangle group G satisfies
the Tits alternative. It is known that the conjecture holds except possibly
when the triple (p, q, r) is one of (3, 3, 2), (3, 4, 2), (3, 5, 2), or (2,m, 2) where
m = 3, 4, 5, 6, 10, 12, 15, 20, 30, 60. In this paper we show that the Tits alterna-
tive holds in the cases (p, q, r) = (2,m, 2) where m = 6, 10, 12, 15, 20, 30, 60.

1 Introduction

A generalized triangle group is a group that can be presented in the form

G = 〈 x, y | xp = yq = w(x, y)r = 1 〉

where p, q, r ≥ 2 and w(x, y) is a cyclically reduced word of length at least 2 in the
free product Zp ∗ Zq = 〈 x, y | xp = yq = 1 〉 that is not a proper power. It was
conjectured by Rosenberger [15] that every generalized triangle group G satisfies the
Tits alternative. That is, G either contains a non-abelian free subgroup or has a
soluble subgroup of finite index.

It is now known that the Tits alternative holds for a generalized triangle group G
except possibly when the triple (p, q, r) is one of (3, 3, 2), (3, 4, 2), (3, 5, 2), or (2,m, 2)
wherem ≥ 3. (See [9] for a survey of these results.) In recent work Benyash-Krivets [3,
4] considers the case (2,m, 2). He has shown that if m ≥ 7, m 6= 10, 12, 15, 20, 30, 60
then the Tits alternative holds for G. In this paper we augment that result to prove
the following:

Main Theorem. Let G = 〈 x, y | x2 = ym = w(x, y)2 = 1 〉 where w(x, y) =
xyα1 . . . xyαk , 1 ≤ αi < m, m ≥ 6. Then the Tits alternative holds for G.

If k = 1 then the Tits alternative holds for G by [8]. If m = 6 and k = 2 or 3 then the
Tits alternative holds for G by [15, 14] respectively. The Main Theorem then follows
from Theorems 1, 2 and 3:
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Theorem 1 Let G be as defined in the Main Theorem. If m = 6 and k > 3, then G

contains a non-abelian free subgroup.

Theorem 2 Let G be as defined in the Main Theorem. If m = 5p where p 6= 5 is
prime and k > 1, then G contains a non-abelian free subgroup.

Theorem 3 Let G be as defined in the Main Theorem. If k > 1 and m = 12, 20, 30,
or 60 then G contains a non-abelian free subgroup.

Theorem 1 has independently been obtained by Barkovich and Benyash-Krivets [1,
5], and for this reason we do not give a complete proof. However, we require Theo-
rem 1 in an essential way in the proofs of the other results, so in order to make our
paper self-contained we have included a sketch proof in an Appendix.

2 Preliminaries

We first recall some definitions and well-known facts concerning generalized triangle
groups; further details are available in (for example) [9]. Let G be as defined in the
Main Theorem, but with m ≥ 3. A homomorphism ρ : G → H (for some group H)
is said to be essential if ρ(x), ρ(y), ρ(w) are of orders 2,m, 2 respectively. By [2] G
admits an essential representation into PSL(2,C).

A projective matrix A ∈ PSL(2,C) is of order n if and only if tr(A) = 2 cos(qπ/n)
for some (q, n) = 1. Note that in PSL(2,C) traces are only defined up to sign. A
subgroup of PSL(2,C) is said to be elementary if it has a soluble subgroup of finite
index, and is said to be non-elementary otherwise.

Let ρ : 〈 x, y | x2 = ym = 1 〉 → PSL(2,C) be given by x 7→ X, y 7→ Y where X,Y
have orders 2,m, respectively. Then w(x, y) 7→ w(X,Y ). By Horowitz [12] trw(X,Y )
is a polynomial with rational coefficients in trX, trY, λ := trXY , of degree k in λ.
Since X,Y have orders 2,m, respectively, we may assume (by composing ρ with an
automorphism of 〈 x, y | x2 = ym = 1 〉 if necessary), that trX = 0, trY = 2 cos(π/m).
Moreover (again by [12]) X and Y can be any elements of PSL(2,C) with these
traces. Suppressing trX, trY in the notation we define the trace polynomial of G to
be τ(λ) := trw(X,Y ).

The representation ρ induces an essential representation G → PSL(2,C) if and
only if trρ(w) = 0; that is, if and only if λ is a root of τ . Note that τ(λ) = ±τ(−λ)
so the roots λ,−λ occur with equal multiplicity.

By [12] the leading coefficient of τ is given by

c =
1

(sin(π/m))k

k∏
i=1

sin
(παi
m

)
.

(This expression can also be obtained from Lemma 12 in the Appendix, where we
obtain a formula for each of the coefficients of τ .) For each 1 ≤ j ≤ m/2 we shall
let tj = sin(jπ/m) and let kj denote the number of times αi = j or αi = (m − j) in
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the word w(x, y) (so that k = k1 + . . . + kbm/2c). The above formula then becomes

c = (tk11 . . . t
kbm/2c
bm/2c )/(sin(π/m)k).

Now if X,Y generate a non-elementary subgroup of PSL(2,C) then ρ(G) (and
hence G) contains a non-abelian free subgroup. Thus in proving that G contains a
non-abelian free subgroup we may assume thatX,Y generate an elementary subgroup
of PSL(2,C). By Corollary 2.4 of [15] there are then three possibilities: (i) X,Y
generate a finite subgroup of PSL(2,C); (ii) tr[X,Y ] = 2; or (iii) trXY = 0.

The finite subgroups of PSL(2,C) are the alternating groups A4 and A5, the
symmetric group S4, cyclic and dihedral groups (see for example [7]). Manipulation
using trace identities shows that (ii) is equivalent to trXY = ± sin(π/m). These
values occur as roots of τ if and only if G admits an essential cyclic representation.
Such a representation can be realized as x 7→ A, y 7→ B where

A =

(
eiπ/2 0

0 e−iπ/2

)
, B =

(
eiπ/m 0

0 e−iπ/m

)
.

In case (iii) X and Y generate the finite dihedral group D2m. We summarize the
above as

Lemma 4 Let G be as defined in the Main Theorem, with m ≥ 3. Suppose G →
PSL(2,C) is an essential representation given by x 7→ X, y 7→ Y , where trX =
0, trY = 2 cos(π/m). If G does not contain a non-abelian free subgroup then one of
the following occurs:

1. X,Y generate A4, S4, or A5;

2. trXY = ±2 sin(π/m);

3. trXY = 0 and 〈X,Y 〉 ∼= D2m.

Case (2) occurs if and only if G admits an essential cyclic representation.

Remark 5 If X,Y generate A4 then m = 3 and XY has order 3, so trXY = ±1.
If X,Y generate S4 then either (a) m = 3 and XY has order 4, so trXY = ±

√
2;

or (b) m = 4 and XY has order 3, so trXY = ±1. If X,Y generate A5 then
either (a) m = 3 and XY has order 5; or (b) m = 5 and XY has order 3, so
trXY = ±1; or (c) m = 5 and XY has order 5, in which case XY is conjugate to Y 2

so trXY = ±trY 2 = ±((trY )2 − 2).

3 The case m = 4

Lemma 6 Let G = 〈 x, y | x2 = y4 = (xyα1 . . . xyαk)2 = 1 〉 and let k2 denote the
number of values of i for which αi = 2. Then G contains a non-abelian free subgroup
unless one of the following holds:

1. k is odd and one of the following holds:
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(a)
∑k

i=1 αi = 0 mod 4;

(b)
∑k

i=1 αi = 2 mod 4 and k2 = 1;

(c)
∑k

i=1 αi = 1, 3 mod 4 and k2 = 0;

2. k is even and one of the following holds:

(a)
∑k

i=1 αi = 2 mod 4;

(b)
∑k

i=1 αi = 0 mod 4 and either

(i). k2 = 0 and k = 2 mod 4; or

(ii). k2 = 2;

(c)
∑k

i=1 αi = 1, 3 mod 4 and k2 = 1.

Proof
By Lemma 4 and Remark 5 we may assume that the roots of the trace polynomial τ
are among ±

√
2, 0,±1. Thus

τ(λ) = cλs(λ2 − 1)t(λ2 − 2)u

where s+ 2t+ 2u = k and

c =
1

(sin(π/4))k
(sin(π/4))k1(sin(2π/4))k2 =

√
2
k2
,

where k1, k2 denote the number of times αi takes the values ±1, 2 respectively. (Note
that k and s are of the same parity.)

Let

A =

(
i 0
1 −i

)
, B =

(
(1 + i)/

√
2 z

0 (1− i)/
√

2

)
be elements of PSL(2,C) so that trA = 0, trB =

√
2, trAB = z −

√
2. Consider the

representation ρ : 〈 x, y | x2 = y4 = 1 〉 → PSL(2,C) given by x 7→ A, y 7→ B then

trρ(xyα1 . . . xyαk) = τ(z −
√

2)

= ±(
√

2)k2(z −
√

2)s(z2 − 2
√

2z + 1)t(z − 2
√

2)uzu

whose constant term is 0 if u > 0, and ±(
√

2)k2+s if u = 0. Now the constant term
in tr(ABα1 . . . ABαk) is given by 2 cos((2k +

∑k
i=1 αi)π/4) ∈ {±2,±

√
2}. If u > 0 we

have that 2k +
∑k

i=1 αi = 2 mod 4, and one of the conclusions 1(a) or 2(a) holds.
Thus we may assume u = 0, and therefore k2 + s = 1 or 2.

Suppose k is odd. Then s is odd. Since 2k +
∑k

i=1 αi 6= 2 mod 4 we have∑k
i=1 αi = 1, 2, or 3 mod 4. If

∑k
i=1 αi = 2 mod 4 then k2 is odd so k2 = 1, s = 1

and we are in case 1(b). If
∑k

i=1 αi = 1, 3 mod 4 then k2 is even so k2 = 0, s = 1 and
we are in case 1(c).

Suppose k is even. Then s is even. Since 2k +
∑k

i=1 αi 6= 2 mod 4 we have∑k
i=1 αi = 0, 1, or 3 mod 4. If

∑k
i=1 αi = 1 or 3 mod 4 then k2 is odd so k2 = 1, s = 0
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and we are in case 2(c). If
∑k

i=1 αi = 0 mod 4 then k2 is even so either k2 = 0, s = 2
or k2 = 2, s = 0. In the latter option we are in case 2(b)(ii). In the former 0 is a
root of τ(λ) so G admits an essential dihedral representation. Thus

∑k
i=1(−1)iαi = 2

mod 4. Combining this with
∑k

i=1 αi = 0 mod 4 and the fact that each αi is odd, we
obtain k = 2 mod 4 and we are in case 2(b)(i). �

4 The cases m = 10, 15

In this section we consider the following situation. Let G be as defined in the Main
Theorem where m = 5p for some prime p. We first consider the case where k is even.

Lemma 7 Let G be as defined in the Main Theorem, where m = 5p for some prime
p and where k is even. Then G contains a non-abelian free subgroup.

Proof
If p = 2 then G contains a non-abelian free subgroup by [16, Theorem A]. Suppose
then that p is odd.

Consider a homomorphism θ : G → Z10p
∼= Z2 × Z5p such that θ(x), θ(y) have

orders 2, 5p respectively. Then, up to an automorphism of Z10p we may assume that
θ(x) = 5p, θ(y) = 2. Then θ(w) = 5pk + 2

∑k
i=1 αi, which is not of order 2, since k

is even and p is odd. Hence we must have θ(w) = 0, so θ is not essential.
In a similar way, consider a homomorphism θ : G→ 〈 a, b | a2 = b5p = (ab)2 = 1 〉 ∼=

D10p such that θ(x), θ(y) have orders 2, 5p respectively. Then, up to an automorphism
of D10p we may assume that θ(x) = a, θ(y) = b. Then θ(w) = b

∑k
i=1(−1)iαi , which is

not of order 2, since p is odd. Hence we must have θ(w) = 1, so θ is not essential.
Thus G admits no essential cyclic or dihedral representation, so (since we also

have m > 5) Lemma 4 implies that G contains a non-abelian free subgroup. �

By Lemma 7 we may restrict attention to the case where k is odd. We do so
throughout the remainder of this section without further comment.

Now G maps homomorphically onto the group

G = 〈 x, y | x2 = y5 = w(x, y)2 = 1 〉 (1)

where w ∈ 〈 x, y | x2 = y5 = 1 〉 is given by w = xyβ1 . . . xyβk where βi = αi mod 5
(1 ≤ i ≤ k). Now w 6= yβ for any β, since k is odd. If w = x then G ∼= Z2 ∗Z5 and so
G, and hence G, contains a non-abelian free subgroup. If w is a proper power then
G, and hence G, contains a non-abelian free subgroup by [2].

Thus we will assume that w can be freely reduced to a word of the form w =
xyγ1 . . . xyγ` that is not a proper power, where 1 ≤ γi ≤ 4 (1 ≤ i ≤ `), ` ≥ 1. Hence
the corresponding presentation (1) is a presentation of G as a generalized triangle
group. We let τ(λ), σ(µ) denote the trace polynomials of G and G respectively.

Lemma 8 If 1 is a repeated root of σ(µ) then G contains a non-abelian free subgroup.
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Proof
Let q : G→ G denote the canonical epimorphism. By hypothesis, there is an essential
representation ρ : G → PSL2(C[µ]/(µ − 1)2). Indeed, we can construct ρ explicitly
via:

ρ(x) =

(
0 −1
1 0

)
, ρ(y) =

(
eiπ/5 µ

0 e−iπ/5

)
.

Composing this with the canonical epimorphism

ψ : PSL2(C[µ]/(µ− 1)2) → PSL2(C[µ]/(µ− 1)) ∼= PSL2(C)

gives an essential representation ρ̃ = ψ ◦ ρ : G → PSL2(C) with image A5, corre-
sponding to the root 1 of the trace polynomial.

Let K denote the kernel of ρ̃, V the kernel of ψ, and K the kernel of the composite
map ρ̃◦ q : G→ PSL2(C). Then V is a complex vector space, since its elements have
the form ±(I + (µ− 1)A) for various 2× 2 matrices A, with multiplication

[±(I + (µ− 1)A)][±(I + (µ− 1)B)] = ±(I + (µ− 1)(A+B)).

Our strategy is to apply the techniques of [13] to K to obtain the existence
of a non-abelian free subgroup. To this end we will first analyse the structure of
V ⊃ ρ(K) = ρ(q(K)) to obtain a large free abelian quotient K/N of K with suitable
properties. We will then exhibit K as the fundamental group of a certain CW-
complex X, and show that the second homology group of the covering complex of X
corresponding to N has a free Z(K/N)-submodule of large rank.

Now K is generated by conjugates of (xy)3. Consider four such conjugates: c1 =
(xy)3, c2 = x(xy)3x, c3 = yxy3(xy)3y2xy4, and c4 = yxy4(xy)3yxy4. A calculation
shows that ρ(ci) = ±(I + (µ− 1)Mi) where

M1 =

(
−1 z1
−z1 1

)
, M2=

(
1 z1

−z1 −1

)
, M3 =

(
z2 −z3
−z3 −z2

)
, M4=

(
z2 z3

z3 −z2

)
,

where

z1 =
−(1 +

√
5)

2
+ i

√
10− 2

√
5

2
,

z2 =
3 +

√
5

2
+ i

√
10− 2

√
5

2
,

z3 = −1 + i
(3 +

√
5)
√

10− 2
√

5
4

.

By considering (for example) the upper right hand entries, it is easy to verify that
M1,M2,M3,M4 are linearly independent over Q. The group A5 acts on V via conju-
gation and since ρ̃(x) is of order 2, the action of ρ̃(x) on V is diagonalizable. Moreover,
the only possible eigenvalues are ±1. Thus V splits as a Q-direct sum V+⊕V−, where
ρ̃(x) acts as the identity on V+ and as the antipodal map v 7→ −v on V−. The
canonical projection V → V− with kernel V+ is ρ̃(x)-equivariant.
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For j = 3, 4, the off-diagonal entries of Mj are equal. It follows easily that ρ(xcj)
has trace 0, so is of order 2, and hence ρ(xcjx) = ρ(c−1

j ). Note also that xc1x = c2
and xc2x = c1. Thus ρ(c1c−1

2 ), ρ(c3), ρ(c4) ∈ V− and ρ(c1c2) ∈ V+. Let N be the
pre-image of V+ in K. Then N is normal in K and is invariant under conjugation by
x. It follows that K/N is free abelian of rank at least 3 and that ρ̃(x) acts on K/N

as the antipodal map.
Note that K is the fundamental group of a 2-dimensional CW-complex X arising

from the given presentation of G. This complex X has 60 cells of dimension 0, 120
cells of dimension 1, and 60(1

2+ 1
5+ 1

2) = 72 cells of dimension 2. Here, 60/5 = 12 of the
2-cells (call them α1, . . . , α12, say) arise from the relator y5p, 60/2 = 30 (α13, . . . , α42,
say) arise from the relator x2, and 60/2 = 30 (α43, . . . , α72, say) arise from the relator
w(x, y)2. Moreover, α1, . . . , α12 are attached by maps which are pth powers. Let X̂
be the regular covering complex of X corresponding to the normal subgroup N of K
and let α̂i denote a lift of the 2-cell αi. Then each of α̂1, . . . , α̂12 is a 2-cell attached
by a map which is a pth power.

Let GFp denote the field with p elements. Now H2(X̂,GFp) is a subgroup of the
2-chain group C2(X̂,GFp) and since K/N freely permutes the cells of X̂, C2(X̂,GFp)
is a free GFp(K/N)-module on the basis α̂1, . . . , α̂72. Let Q be the free GFp(K/N)-
submodule of C2(X̂,GFp) of rank 12 generated by α̂1, . . . , α̂12. Since these 2-cells
are attached by maps which are pth powers, their boundaries in the 1-chain group
C1(X̂,GFp) are zero. Thus Q is a subgroup of H2(X̂,GFp).

Suppose Q 6= H2(X̂,GFp), and let β̂ ∈ H2(X̂,GFp)\Q. Then β̂ =
∑72

i=1 µiα̂i
where µi ∈ GFp(K/N) (1 ≤ i ≤ 72) and µq 6= 0 for some q > 12. Let L be
the submodule of H2(X̂,GFp) generated by α̂1, . . . , α̂12, β̂. Let πq : C2(X̂,GFp) →
GFp(K/N) denote the projection map on the basis element α̂q and suppose
λ, λ1, . . . , λ12 ∈ GFp(K/N) satisfy

v := λβ̂ + λ1α̂1 + . . .+ λ12α̂12 = 0

in C2(X̂,GFp). Then 0 = πq(v) = λµq, and since GFp(K/N) is an integral domain we
have that λ = 0 so λ1α̂1 + . . .+λ12α̂12 = 0 in Q. But α̂1, . . . , α̂12 form a GFp(K/N)-
basis for Q so λ1 = · · · = λ12 = 0 and hence L is free on {α̂1, . . . , α̂12, β̂}. Thus
H2(X̂,GFp) contains a free GFp(K/N)-submodule of rank 13 = 1 + χ(X) so by [13,
Proposition 2.1 and Theorem 2.2], K = π1(X) contains a non-abelian free subgroup.

Suppose then that H2(X̂,GFp) = Q. We argue as in the proof of [13, Corol-
lary 3.2]. The element c1c2 ∈ N is mapped to the element ±(I + (µ− 1)(M1 +M2))
of infinite order in V+ so Nab has torsion-free rank at least 1. Thus H1(X̂,GFp) ∼=
Nab/pNab 6= 0. We also have that H2(X̂,GFp) is a free GFp(K/N)-module and K/N
is a free abelian group of rank at least 3, so by [13, Theorem D] there is a subgroup
J/N of K/N such that (K/N)/(J/N) ∼= K/J ∼= Z2 and H1(X̂,GFp) contains a non-
zero free GFp(J/N)-submodule. Moreover, J/N is infinite so this module is of infinite
GFp-dimension.

Thus, by definition, the Bieri-Strebel invariant ([6]) Σ of the GFp(K/N)-module
H1(X̂,GFp) is a proper subset of the sphere Sd−1 (where d is the rank of the free
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abelian group K/N). But Σ = −Σ, since ρ̃(x) acts as the antipodal map on K/N .
Hence Σ∪−Σ 6= Sd−1, and so N has a non-abelian free subgroup by [6, Theorem 4.1].
�

Lemma 9 If G has an essential cyclic representation then G contains a non-abelian
free subgroup.

Proof
Let q : G→ G denote the canonical epimorphism. Since G admits an essential cyclic
representation, ±2 sin(π/5) are roots of its trace polynomial, so there also exists an
essential representation ρ : G→ PSL(2,C) given by x 7→ X, y 7→ Y , where

X =

(
i 1
0 −i

)
, Y =

(
eiπ/5 0

0 e−iπ/5

)
.

Let ψ : ρ(G) → PSL(2,C) be given by

X 7→

(
i 0
0 −i

)
, Y 7→ Y

then ρ̃ := ψ ◦ ρ : G → PSL(2,C) is an essential representation with image Z10. Let
K,K,N denote the kernels of the maps ρ̃ ◦ q, ρ̃, ρ, respectively. Then K is generated
by ct := ytxy−tx (t = 1, 2, 3, 4). Now for each t

ρ(ct) =

(
1 i(e2πti/5 + 1)
0 1

)

so ρ(c1), ρ(c2), ρ(c3), ρ(c4) are linearly independent over Q and hence ρ(K) ∼= Z4.
Thus G/K ∼= Z10 and K/N ∼= Z4, so if N denotes the preimage of N in G then
N /K /G and G/K ∼= Z10, K/N ∼= Z4. Moreover, xctx = c−1

t for each t so ρ̃(x) acts
as the antipodal map on K/N .

Now K is the fundamental group of a 2-dimensional CW-complex with 10 0-cells,
20 1-cells and 12 2-cells, 2 of which correspond to the relator y5p, and so are attached
by pth powers. The argument given in the proof of Lemma 8 then shows that K has
a non-abelian free subgroup. �

For the following lemma, recall that 2` is the (free product) length of w(x, y) and
that σ(µ) denotes the trace polynomial of G.

Lemma 10 Suppose that ` is odd and that G admits no essential cyclic representa-
tion. If 0 is a repeated root of σ(µ) then G (and hence G) contains a non-abelian free
subgroup.

Proof
Let η = 2 cos(π/5) = (1 +

√
5)/2 and note that η4 − 3η2 + 1 = 0. By Lemma 4 and
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Remark 5 we may assume that the roots of σ are among ±(η2 − 2) = ±η±1, ±1,
±2 sin(π/5) = ±

√
4− η2, 0. The leading coefficient of σ(µ) is given by c = ηk2 . Thus

σ(µ) takes the form

σ(µ) = ηk2µs(µ2 − 1)t(µ2 − η−2)u(µ2 − (4− η2))v

where s+ 2t+ 2u+ 2v = `. Let A,B ∈ PSL(2,C) be defined as follows:

A =

(
i 0
1 −i

)
, B =

(
eiπ/5 z

0 e−iπ/5

)
.

Then trA = 0, trB = η, trAB = z −
√

4− η2.
Consider the representation ρ : 〈 x, y | x2 = y5 = 1 〉 → PSL(2,C) given by

x 7→ A, y 7→ B, then

trρ(xyγ1 . . . xyγ`) = σ(z −
√

4− η2)

= ηk2(z −
√

4− η2)s(z2 − 2z
√

4− η2 + η−2)t

· (z2 − 2z
√

4− η2 + 1)u(z − 2
√

4− η2)vzv

whose constant term is 0 if v > 0 and is ηk2−2t(
√

4− η2)s if v = 0. Now the con-
stant term in tr(ABγ1 . . . ABγ`) is 2 cos((5`+ 2

∑`
i=1 γi)π/10). Since ` is odd and G

admits no essential cyclic representation, this constant term is either ±2 cos(π/10) =
±η
√

4− η2 or ±2 cos(3π/10) = ±
√

4− η2. Thus we can conclude that v = 0, that

ηk2−2t(
√

4− η2)s = η
√

4− η2 or
√

4− η2,

and therefore that s = 1 and t = k2/2 or t = (k2 − 1)/2. Hence 0 is not a repeated
root of σ(µ), contrary to hypothesis. �

For the proof of Theorem 2 we shall require the following proposition.

Proposition 11 Let p 6= q be prime numbers, and let 1 ≤ t ≤ pq − 1. Then

∏
ψ∈Aut(Zpq)

2 sin
(
ψ(t)π
pq

)
=


qp−1 if p|t
pq−1 if q|t
1 otherwise

Proof
By identity 1.392(1) of [11] we have that for all real numbers x and n ≥ 2

sin(x)
∏

1≤r<n
2 sin(x+ rπ/n) = sin(nx).

Differentiating and substituting x = 0 we obtain∏
1≤r<n

2 sin
(rπ
n

)
= n. (2)

9



We now claim that the identity∏
1≤r<n
(r,n)=1

2 sin
(rπ
n

)
=

{
u if n is a power of a prime u
1 otherwise

(3)

holds for all n ≥ 2. This clearly holds when n = 2. Let N ≥ 3 and suppose inductively
that it holds for all n < N . Now∏

1≤r<N
2 sin

(rπ
N

)
=

∏
1≤r<N
(r,N)=1

2 sin
(rπ
N

)
·
∏
d|N
d>1

∏
1≤r<N
(r,N)=d

2 sin
(rπ
N

)
. (4)

Now ∏
d|N
d>1

∏
1≤r<N
(r,N)=d

2 sin
(rπ
N

)
=
∏
d|N
d>1

∏
1≤s<N/d
(s,N/d)=1

2 sin
(
sπ

N/d

)
. (5)

Applying the inductive hypothesis, the right hand side of (5) is equal to the product
of all primes u such that N/d is a power of u, where d > 1 ranges over all divisors of
N . Thus∏

d|N
d>1

∏
1≤r<N
(r,N)=d

2 sin
(rπ
N

)
=

{
uα−1 if N = uα, where α ≥ 1 and u is prime
N otherwise

Substituting this into (4) and applying (2) to the left hand side we get that the
identity (3) holds for n = N and hence for all n ≥ 2. Finally,∏
ψ∈Aut(Zpq)

2 sin
(
ψ(t)π
pq

)
=

∏
1≤α<pq
(α,pq)=1

2 sin
(
αtπ

pq

)

=



∏
1≤α<pq
(α,pq)=1

2 sin(απ/q) = (
∏

1≤α<q
(α,q)=1

2 sin(απ/q))p−1 if p|t∏
1≤α<pq
(α,pq)=1

2 sin(απ/p) = (
∏

1≤α<p
(α,p)=1

2 sin(απ/p))q−1 if q|t∏
1≤α<pq
(α,pq)=1

2 sin(απ/pq) otherwise

and an application of (3) completes the proof. �

Proof of Theorem 2
We will consider the homomorphic image G of G defined by the presentation (1).
As explained at the start of this section we will assume that w(x, y) is not a proper
power and can be freely reduced to the form w(x, y) = xyγ1 . . . xyγ` where 1 ≤ γi ≤ 4
(1 ≤ i ≤ `− 1), ` ≥ 1.

By [13, Theorem E] we may assume that G admits no essential cyclic representa-
tion, and since m > 5 Lemma 4 implies that the trace polynomial for G has the form
τ(λ) = cλk, where

c =
1

(sin(π/5p))k

k∏
i=1

sin
(
παi
5p

)
.
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Let X,Y ∈ PSL(2,C) be elements of orders 2, 5p that generate a cyclic subgroup of
PSL(2,C). We may assume that

X =

(
eiπ/2 0

0 e−iπ/2

)
, Y =

(
eiπ/5p 0

0 e−iπ/5p

)

so that trXY = 2 sin(π/5p). Let ρ : 〈 x, y | x2 = y5p = 1 〉 → PSL(2,C) be given by
x 7→ X, y 7→ Y . Then trρ(w) = tr(XkY a) = ±2 sin(aπ/5p), where a =

∑k
i=1 αi. On

the other hand trρ(w) = τ(2 sin(π/5p)) =
∏k
i=1 2 sin(αiπ/5p). Thus

2 sin(aπ/5p) = ±
k∏
i=1

2 sin(αiπ/5p)

and hence

∏
ψ∈Aut(Z5p)

2 sin(ψ(a)π/5p) = ±
k∏
i=1

∏
ψ∈Aut(Z5p)

2 sin(ψ(αi)π/5p). (6)

Suppose 5|αi for some 1 ≤ i ≤ k. Then by Proposition 11 p4 divides the right hand
side of (6). If 5|a then G admits an essential cyclic representation and so G (and
hence G) contains a non-abelian free subgroup, by Lemma 9. Thus we may assume
5 6 |a. Proposition 11 then implies that the left hand side of (6) is either equal to 1 or
5p−1 and we have a contradiction. Thus 5 6 |αi for any 1 ≤ i ≤ k so the (free product)
length of w(x, y) is equal to the (free product) length of w(x, y). Hence ` = k, and
thus the trace polynomial σ(µ) of G is of degree k ≥ 3.

As explained in the proof of Lemma 10 we may assume that σ(µ) is of the form
σ(µ) = c′µs(µ2 − 1)t(µ2 − η−2)u where η = 2 cos(π/5) and s is odd. By Lemma 10
we may assume s = 1, and by Lemma 8 we may assume t ≤ 1. The automor-
phism θ of Z5 generated by the map 1 7→ 2 yields the alternative presentation
G = 〈 x, y | x2 = y5 = (xyθ(β1) . . . xyθ(βk))2 = 1 〉. The potential roots ±1 and ±η−1

for σ correspond to essential representations G → A5 that map xy to elements of
order 3 or 5 respectively (cf. Remark 5). The automorphism θ has the effect of in-
terchanging these two possibilities. Thus the trace polynomial corresponding to this
new presentation has the form σ′(µ) = c′′µs(µ2 − η−2)t(µ2 − 1)u, for some c′′. By
another application of Lemma 8 we may assume u ≤ 1. Since k = s+ 2t+ 2u > 1 we
are reduced to the cases k = 3, 5.

If k = 3 then G contains a non-abelian free subgroup by [14, Theorem 1]. If
k = 5 then s = t = 1 so σ(µ) = c′µ(µ2 − 1)(µ2 − η−2). A computer search reveals
that the only words w(x, y) (up to cyclic permutation, inversion, and automorphisms
of 〈 y | y5 = 1 〉) with trace polynomial of that form are xyxy3xy2xy4xyt with t ∈
{1, 2}. In each case, a GAP [10] calculation shows that G has a subgroup of index 11
admitting the free group of rank 2 as a homomorphic image, and hence G contains a
non-abelian free subgroup. �
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5 The cases m = 12, 20, 30, 60

Proof of Theorem 3
We shall consider alternative presentations for G:

G = 〈 x, y | x2 = ym = (xyψ(α1) . . . xyψ(αk))2 = 1 〉

where ψ is an automorphism of Zm. By [14, Theorem 5] we may assume that k is odd.
By [13, Theorem E] we may assume that G admits no essential cyclic representation.
Since m > 5, Lemma 4 implies that the trace polynomial for G takes the form
τ(λ) = cλk where c = (tk11 . . . t

km/2
m/2 )/(sin(π/m))k. Let X,Y ∈ PSL(2,C) have orders

2 and m respectively that generate a cyclic group of order m. We may assume
tr(XY ) = 2 sin(π/m). Fix ρ to be the representation ρ : 〈 x, y | x2 = ym = 1 〉 →
PSL(2,C) given by x 7→ X, y 7→ Y . Then

trρ(xyψ(α1) . . . xyψ(αk)) = ±2 cos(qπ/m) for some 1 ≤ q < m/2. (7)

(Note that if q = m/2 then ρ induces an essential cyclic representation of G, contrary
to our earlier assumption.) In particular,

−1 ≤
∏
ψ∈A

trρ(xyψ(α1) . . . xyψ(αk))
2

≤ 1 (8)

for any group A of automorphisms of Zm.
Now

trρ(xyψ(α1) . . . xyψ(αk)) = τ(2 sin(π/m))

= 2k
k∏
i=1

sin
(
πψ(αi)
m

)
so

trρ(xyψ(α1) . . . xyψ(αk))
2

= 2k−1 · tkψ(1)

1 · · · tkψ(m/2)

m/2 . (9)

We now consider each value of m separately.

The case m = 12.
Let ψ be the automorphism of Z12 generated by the map 1 7→ 5 and let A = 〈ψ〉.
Then using (8) and (9) we obtain

22(k−1)(t1t5)k1+k5 · (t2)2k2 · (t3)2k3 · (t4)2k4 · (t6)2k6 ≤ 1

which (using (3)) simplifies to

2k3+2k6−2 · 3k4 ≤ 1.
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We shall consider the following homomorphic images of G:

H = 〈 x, y | x2 = y6 = (xyβ1 . . . xyβk)2 = 1 〉,
L = 〈 x, y | x2 = y4 = (xyγ1 . . . xyγk)2 = 1 〉,

where βi = αi mod 6 and γi = αi mod 4 for each 1 ≤ i ≤ k. Suppose k6 = 0.
Then each βi is non-zero. If k > 3 then by Theorem 1 H, and hence G, contains a
non-abelian free subgroup. If k = 3 then by [14, Theorem 1] G contains a non-abelian
free subgroup. Thus we may assume k6 ≥ 1 and hence k6 = 1, k3 = k4 = 0. Moreover
we may assume

trρ(xyα1 . . . xyαk) = ±2 (10)

for otherwise one of ρ(xyα1 . . . xyαk) or ρ(xyψ(α1) . . . xyψ(αk)) provides a contradiction
to (7). Using (9) equation (10) simplifies to

2 = 2k1+k2+k5+1 · tk11 t
k2
2 t

k5
5 t

1
6

= 2

(√
6−

√
2

2

)k1−k5
so k1 = k5. Since the image of ρ is isomorphic to Z12 and by equation (10) ρ(w) is
the zero of this group we have that 6k +

∑k
i=1 αi = 0 mod 12, and k is odd so

k∑
i=1

αi = 6 mod 12, (11)

which implies
∑k

i=1 γi = 2 mod 4. By Lemma 6 L (and hence G) contains a non-
abelian free subgroup unless precisely one γi = 2. This implies that k2 + k6 = 1, but
k6 = 1 so k2 = 0.

Let w(x, y) = xyβ1 . . . xyβk . Using the relations x2 = 1, y6 = 1 of H we can cycli-
cally reduce w(x, y) to x (in which case H ∼= Z2 ∗Z6, so G contains a non-abelian free
subgroup) or to the form w(x, y) = xyδ1 . . . xyδ` where ` is odd and 1 ≤ δi ≤ 5 for each
1 ≤ i ≤ `. If ` > 3 then by Theorem 1 H, and hence G, contains a non-abelian free
subgroup. Thus we may assume ` = 1 or 3. The words w,w then take the following
forms:

` = 1: w = xyξ1xyξ2u(x, y)xy6v(x, y) w = xyξ1+ξ2 ,
` = 3: w = xyξ1xyξ2xyξ3xyξ4u(x, y)xy6v(x, y) w = xyξ1+ξ4xyξ2xyξ3 ,

where ξ1, ξ2, ξ3, ξ4 ∈ {1, 5} and

u(x, y) = xya1 . . . xyan ,

v(x, y) = xybn . . . xyb1 ,

with ai + bi = 0 mod 6 for each 1 ≤ i ≤ n.
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In the case ` = 1 equation (11) implies
∑k

i=1 αi = 0 mod 6 so

ξ1 + ξ2 + (a1 + · · ·+ an) + 6 + (bn + · · ·+ b1) = 0 mod 6

which implies ξ1 + ξ2 = 0 mod 6 contradicting our assumption that the exponents of
y in w are non-zero. In the case ` = 3, since ξ1 + ξ2 + ξ3 + ξ4 is even, Theorem 1
of [14] implies that H, and hence G, contains a non-abelian free subgroup.

The case m = 20.
We shall consider the following homomorphic image of G:

H = 〈 x, y | x2 = y10 = (xyβ1 . . . xyβk)2 = 1 〉

where βi = αi mod 10 for each 1 ≤ i ≤ k .
Let ψ be the automorphism of Z20 generated by the map 1 7→ 3 and let A = 〈ψ〉.

Then using (8) and (9) we obtain

24(k−1)(t1t3t7t9)k1+k3+k7+k9(t2t6)2(k2+k6)(t4t8)2(k4+k8)t4k55 t4k1010 ≤ 1

which (using (3)) simplifies to

22k5+4k10−4 · 5k4+k8 ≤ 1.

If k10 = 0 then each βi is non-zero so H contains a non-abelian free subgroup by
Theorem 2. Thus we may assume that k10 ≥ 1 and hence k10 = 1, k5 = k4 = k8 = 0.
Moreover we may assume

trρ(xyα1 . . . xyαk) = ±2 (12)

for otherwise for some φ ∈ A the element ρ(xyφ(α1) . . . xyφ(αk)) provides a contra-
diction to (7). The image of ρ is isomorphic to Z20 and by equation (12) ρ(w) is
the zero of this group so we have that

∑k
i=1 αi = 10 mod 20 (since k is odd). Thus∑k

i=1 βi = 0 mod 10 so H admits an essential cyclic representation, and the result
follows from [13, Theorem E].

The case m = 30.
We shall consider the following homomorphic images of G:

H = 〈 x, y | x2 = y10 = (xyβ1 . . . xyβk)2 = 1 〉,
L = 〈 x, y | x2 = y15 = (xyγ1 . . . xyγk)2 = 1 〉,

where βi = αi mod 10, γi = αi mod 15 for each 1 ≤ i ≤ k.
Let ψ be the automorphism of Z30 generated by the map 1 7→ 7 and let A = 〈ψ〉.

Then using (8) and (9) we obtain

24(k−1)(t1t7t11t13)k1+k7+k11+k13(t2t14t8t4)k2+k14+k8+k4

·(t3t9)2(k3+k9)(t5)4k5(t6t12)2(k6+k12)t4k1010 t4k1515

≤ 1
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which (using (3)) simplifies to

24k15−4 · 5k6+k12 · 9k10 ≤ 1.

If k15 = 0 then each γi is non-zero which implies that L, and hence G, contains a
non-abelian free subgroup by Theorem 2. If k15 > 0 then k10 = 0, so H, and hence
G, contains a non-abelian free subgroup by Theorem 2.

The case m = 60.
We shall consider the following homomorphic images of G:

H = 〈 x, y | x2 = y20 = (xyβ1 . . . xyβk)2 = 1 〉,
L = 〈 x, y | x2 = y30 = (xyγ1 . . . xyγk)2 = 1 〉,

where βi = αi mod 20, γi = αi mod 30 for each 1 ≤ i ≤ k.
Consider the group A ∼= Z4×Z2 of automorphisms of Z60 generated by ψ : 1 7→ 7

and φ : 1 7→ 29. Using (8) and (9) we obtain

1 ≥ 28(k−1)

·(t1t7t11t13t17t19t23t29)k1+k7+k11+k13+k17+k19+k23+k29

·(t2t14t22t26)2(k2+k14+k22+k26) · (t3t21t27t9)2(k3+k21+k27+k9)

·(t4t28t16t8)2(k4+k28+k16+k8) · (t5t25)4(k5+k25) · (t6t18)4(k6+k18) · (t12t24)4(k12+k24)

·(t10)8k10 · (t15)8k15 · (t20)8k20 · (t30)8k30

which (using (3)) simplifies to

1 ≥ 24k15+8k30−8 · 52(k12+k24) · 34k20

In particular one of k20, k30 is zero so either all βi’s are non-zero or all γi’s are non-
zero. Hence, by the above, one of H or L (and hence G) contains a non-abelian free
subgroup. �

A Appendix: The case m = 6

This appendix gives a sketch proof of Theorem 1. We begin by giving a complete
calculation of all the coefficients of the trace polynomial.

Let A(k) denote the set of subsets S ⊂ {1, . . . , k} such that s1 − s2 6= 1 (mod k)
for s1, s2 ∈ S. The maximum cardinality of S ∈ A(k) is the integer part bk/2c of
k/2. For 0 ≤ j ≤ bk/2c, let A(k, j) denote the set of sets S ∈ A(k) of cardinality j.

Lemma 12 Let X,Y ∈ SL(2,C) be matrices with tr(X) = 0, tr(Y ) = 2 cos(π/m),
tr(XY ) = λ, for some integer m ≥ 2. Let W = XY α1 . . . XY αk , where 1 ≤ αi < m

for each 1 ≤ i ≤ k. Then the trace of W is given by the polynomial

tr(W ) = c

bk/2c∑
j=0

(−1)jBjλk−2j ,
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where

c =
k∏
j=1

sin(αjπ/m)
sin(π/m)

,

Bj =
∑

{t1,...,tj}∈A(k,j)

(
j∏
s=1

b(ts)

)
,

b(j) =
sin2(π/m)eiπ(αj+1−αj)/m

sin(αjπ/m) sin(αj+1π/m)
.

Proof
By [12] the trace of W (X,Y ) is determined by the traces of X, Y and XY , so it is
sufficient to work with fixed matrices with the given traces. We define

X =

(
0 −1
1 0

)
, Y =

(
eiπ/m λ

0 e−iπ/m

)
,

Then, for 1 ≤ α ≤ m− 1,

XY α =

(
0 −e−iαπ/m

eiαπ/m p(α)λ

)

with p(α) = sin(απ/m)/sin(π/m). Now each entry in W (X,Y ) is a sum of terms,
each of which is a product of an entry from each of XY αj (1 ≤ j ≤ k). The leading
monomial of tr(W (X,Y )) necessarily consists of the product of the lower right entries
of the XY αj , so is cλk =

∏k
j=1 p(αj)λ

k, as claimed. Each term contributing to the
λk−2j monomial can be obtained from c by replacing each of j (non-overlapping)
pairs of (cyclically) consecutive lower right entries by the upper right entry of the
first member of the pair, followed by the lower left entry of the second member. Such
a term is thus equal to cb(s1) · · · b(sj) for some {s1, . . . , sj} ∈ A(k, j), and the result
follows. �

Sketch proof of Theorem 1
Let

G = 〈 x, y | x2 = y6 = w(x, y)2 = 1 〉,
G = 〈 x, y | x2 = y3 = w(x, y)2 = 1 〉,

where w(x, y) = xyα1 . . . xyαk , w(x, y) = xyβ1 . . . xyβk where for 1 ≤ i ≤ k, βi =
αi mod 3, and k > 3. Let τ(λ), σ(µ) denote the trace polynomials of G,G respectively.
By Lemma 4 if G contains no non-abelian free subgroup then the roots of τ are among
0, corresponding to an essential representation onto the dihedral group D12, or ±1,
which occur if and only if G admits an essential cyclic representation.

Suppose first that G admits an essential cyclic representation, with kernel K.
Then ±1 are roots of τ(λ). By [13, Theorem 4.8] if 1 or −1 is a repeated root of
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τ(λ) then G has a non-abelian free subgroup. Thus we may assume that τ(λ) =
cλk−2(λ2 − 1) and in particular that G has an essential representation ρ onto D12.
Now K has a deficiency 0 presentation, its abelianization K/K ′ is free abelian of rank
3, and conjugation by x induces the antipodal automorphism on K/K ′. Moreover,
a calculation shows that ρ(K ′) is a non-trivial abelian subgroup of D12, so K ′/K ′′

is non-trivial. By [13, Corollary 3.2], K ′ (and hence G) contains a non-abelian free
subgroup.

Hence we may assume that G has no essential cyclic representations, and thus
τ(λ) = cλk. Then as in the proof of Theorem 3 equations (8), (9) yield (k2, k3) =
(0, 0), (1, 0), (0, 1) and thus c = 1,

√
3, 2, respectively. When k is even the existence of

an essential dihedral representation implies that the alternating sum
∑k

i=1(−1)iαi is
congruent to 3 modulo 6 and thus k2 = 1, c =

√
3.

We proceed by calculating the coefficients in τ(λ), σ(µ) and split the proof into
three cases, depending on the value of c. Consider first the form of σ(µ) in the cases
c = 1,

√
3. By Lemma 4 and Remark 5 we may assume that the roots of σ are among

±1,±
√

2, (±1 ±
√

5)/2,±
√

3, 0. If ±1 or ±
√

3 occurs as a root of σ then G admits
an essential representation to A4 or Z6. In either case

∑k
i=1 βi = 0 mod 3, and we

can define a representation ρ : G → Z6 by ρ(x) = 3 mod 6 and ρ(y) = 1 mod 6. By
assumption, ρ is not essential, so ρ(w) = 0 mod 6 and c = τ(1) = ±2, a contradiction.
Since σ has rational coefficients we thus have

σ(µ) = µr(µ2 − 2)s(µ4 − 3µ2 + 1)t (13)

where r, s, t ≥ 0 satisfy r + 2s + 4t = k. Since σ(
√

3) ∈ {±1,±
√

3,±2} we have
r = 0, 1. If k is even then r = 0, and (since

∑k
i=1(−1)iαi is congruent to 0 modulo

3) we also have σ(0) = ±2 so s = 1.

Case 1: c = 1.
In this case k is odd and αi ∈ {1, 5} for each 1 ≤ i ≤ k. By Lemma 12, the coefficient
−B1 of λk−2 in τ(λ) is given by B1 =

∑k
i=1 b(i), where for each 1 ≤ i ≤ k

b(i) :=


1 if αi = αi+1
−1+

√
−3

2 if αi = 1, αi+1 = 5
−1−

√
−3

2 if αi = 5, αi+1 = 1

(where αk+1 is defined equal to α1). A similar analysis for σ(µ) shows that the
coefficient −B′

1 of µk−2 is given by B′
1 =

∑k
i=1 b

′(i) where

b′(i) :=


1 if βi = βi+1
1+

√
−3

2 if βi = 1, βi+1 = 2
1−

√
−3

2 if βi = 2, βi+1 = 1

Since the coefficient of λk−2 in τ(λ) is zero, we have that k is a multiple of 3 – say
k = 3` where ` > 1 – and each possible value of b(i) occurs precisely ` times. It
follows that B′

1 = 2`. On the other hand we can compute the coefficient of µk−2
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in σ(µ) = µ(µ2 − 2)s(µ4 − 3µ2 + 1)t as −2s − 3t. We thus obtain the simultaneous
diophantine equations

1 + 2s+ 4t = 3`, 2s+ 3t = 2`, s, t,≥ 0, ` > 1

with the unique solution s = 0, t = 2, ` = 3, and so k = 9.
Now consider the coefficient B2 of λ5 in τ(λ) and the coefficient B′

2 of µ5 in σ(µ).
Using Lemma 12 we can deduce

2B2 = B2
1 −

9∑
i=1

b(i)2 − 2
9∑
i=1

b(i)b(i+ 1)

where b(10) is defined equal to b(1). Since B1 = B2 = 0 and the b(i)’s are equally
distributed amongst the three possible values it follows that

∑9
i=1 b(i)b(i+ 1) = 0.

A similar analysis shows that
∑9

i=1 b
′(i)2 = 0,

∑9
i=1 b

′(i)b′(i+ 1) = 6, from which
we can deduce B′

2 = 12. But the coefficient of µ5 in σ(µ) = µ(µ4 − 3µ2 + 1)2 is 11.
This contradiction completes Case 1.

Case 2: c =
√

3.
Then αi ∈ {1, 5} for all but one value of i, for which αi ∈ {2, 4}. Without loss of
generality we may assume that αk = 2 and αi ∈ {1, 5} for 1 ≤ i < k. As in Case 1,
consideration of the coefficient of λk−2 in τ(λ) and of µk−2 in σ(µ) yield diophantine
equations in s, t, k. We find that the only solutions with k > 3 are (i) s = 2, t = 0,
k = 5; (ii) s = 0, t = 2, k = 9; (iii) s = 1, t = 2, k = 11; (iv) s = 0, t = 4, k = 17;
(v) s = 0, t = 2, k = 8. We can rule out solution (v) since k is even and s 6= 1.

For the remaining solutions, consideration of the coefficient of λk−4 in τ(λ) and
the coefficient of µk−4 in σ(µ) yield additional diophantine equations which reduce
us to solution (i). A computer search reveals that the only word w(x, y) (up to cyclic
permutation, inversion, and automorphisms of 〈 y | y6 = 1 〉) such that τ(λ), σ(µ) are
of the required form is w(x, y) = xy5xyxyxy5xy2. A calculation in GAP [10] shows
that in this case G has a subgroup of index 6 admitting a free homomorphic image
of rank 2.

Case 3: c = 2.
In this case k is odd, the αi are all odd, and αi = 3 for precisely one value of i.
Without loss of generality we may assume that αk = 3 and αi ∈ {1, 5} for 1 ≤ i < k.
Again, the coefficient −B1 of λk−2 is given by B1 =

∑k
i=1 b(i) where b(i) is as in

Case 1 for i < k − 1,

b(k − 1) :=

{
1+

√
−3

4 if αk−1 = 1
1−

√
−3

4 if αk−1 = 5

and

b(k) :=

{
1−

√
−3

4 if α1 = 1
1+

√
−3

4 if α1 = 5
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Note that b(1), . . . , b(k − 2) are algebraic integers. From the equation B1 = 0 it
follows that b(k − 1) + b(k) is also an algebraic integer, and this can only happen if
α1 +αk−1 = 6. Assume inductively that αt+αk−t = 6 (and hence b(k− t) = b(t− 1),
where b(0) is defined equal to b(k)) for 1 ≤ t < u, for some u ≤ (k− 1)/2. Then from
the equation Bu = 0 it turns out that b(k− u) + b(u− 1) is an algebraic integer, and
this can only happen if αu + αk−u = 6.

Thus αt+αk−t = 6 for all 1 ≤ t ≤ (k−1)/2, so the third relator of G has the form
(U(x, y)xU(x, y)−1y3)2 for some word U . In passing to G, we kill y3, so the relator
collapses to x2, and G ∼= Z2 ∗Z3. Hence G, and so also G, contains a non-abelian free
subgroup, as claimed. �
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