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Abstract

This work aims at corroborating the importance and efficacy of mutual learning in motor

imagery (MI) brain–computer interface (BCI) by leveraging the insights obtained through our

participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the

popular trend of focusing mostly on the machine learning aspects of MI BCI training, a com-

prehensive mutual learning methodology that reinstates the three learning pillars (at the

machine, subject, and application level) as equally significant could lead to a BCI–user sym-

biotic system able to succeed in real-world scenarios such as the Cybathlon event. Two

severely impaired participants with chronic spinal cord injury (SCI), were trained following

our mutual learning approach to control their avatar in a virtual BCI race game. The competi-

tion outcomes substantiate the effectiveness of this type of training. Most importantly, the

present study is one among very few to provide multifaceted evidence on the efficacy of sub-

ject learning during BCI training. Learning correlates could be derived at all levels of the

interface—application, BCI output, and electroencephalography (EEG) neuroimaging—with

two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and

even adverse conditions.

Author summary

Noninvasive brain–computer interface (BCI) based on imagined movements can restore

functions lost to disability by enabling spontaneous, direct brain control of external

devices without risks associated with surgical implantation of neural interfaces. We

hypothesized that, contrary to the popular trend of focusing on the machine learning

aspects of BCI training, a comprehensive mutual learning methodology could strongly

promote users’ acquisition of BCI skills and lead to a system able to succeed in real-world

scenarios such as the Cybathlon event, the first international competition for disabled

pilots in control of assistive technology. Two severely impaired participants with chronic

spinal cord injury (SCI) were trained following our mutual learning approach to control
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their avatar in a virtual BCI race game. The evolution of the training process, including

competition outcomes (gold medal, tournament record), substantiates the effectiveness of

this type of training. Most importantly, the present study provides multifaceted evidence

on the efficacy of subject learning during BCI training. Learning correlates could be derived

at all levels of the interface—application, BCI output, and electroencephalography—with

two end-users, longitudinal evaluation, and, importantly, under real-world and even

adverse conditions.

Introduction

Since the first demonstration of the profound clinical potential of brain–computer interfaces

(BCIs) [1], the vast majority of studies have pertained to methodological and technical chal-

lenges involving experimentation with able-bodied individuals. While these works can be

largely credited with the field’s nowadays widely acknowledged versatility and technological

maturity, they carry limited evidence regarding its translational impact. Restricting the scope

to the case of BCI for communication and control, the number of published works involving

end-users in the last 20 years remains to date a modest double-digit figure [2]. As a result, the

general concerns about the non-universal usability, robustness, and, especially, the role of

training raised by able-bodied user studies [3–7] are even more pressing with regard to end-

user populations.

In this study, we investigated the hypothesis that mutual learning is a critical factor for the

success of motor imagery (MI) BCI in translational applications. Contrary to a popular trend

of focusing almost exclusively on the machine learning aspects of MI training, our hypothesis

propounds that a holistic mutual learning training approach grounded symmetrically on all

three learning pillars (at the machine, subject, and application level) would be the optimal

training apparatus for preparing two end-user participants for the Cybathlon BCI race, the

first international BCI competition [8].

Historically, the BCI field has evolved from systems employing simple decoders and relying

on the users’ ability to learn to modulate their brain activity (conventionally requiring long

training periods) [1,9,10] towards systems deploying elaborate signal processing and pattern

recognition algorithms to minimize the user’s training time and to increase information

transfer rates [11]. The early approaches exploited classical neurofeedback theories (a form of

operant conditioning), tailoring the interface to the needs of assistive scenarios. However, fol-

lowing the artificial intelligence (AI) revolution, it is the latter trend that has greatly dominated

the field in the last 15 years. This is substantiated by the fact that more than half of published

BCI works research signal-processing and machine-learning methods [12]. Beyond riding the

wave of the multidisciplinary progress in AI and data analysis, treating BCI as a primarily neu-

ral decoding problem has its roots in two reasons. On the one hand, the emergence of inter-

faces based on evoked responses (P300, steady-state visually evoked potentials [SSVEP]) as the

most efficient BCI solution for communication [13–16] has promoted the use of machine

learning because the margin for humans to learn to regulate evoked potentials is considered to

be narrow. On the other hand, the machine learning trend has also prevailed in sensorimotor

rhythm (SMR)-based BCIs and invasive BCIs that decode different movement parameters.

This is grounded in the possibility to tap directly on natural sensorimotor circuits [17]—i.e.,

to exploit the preexisting correlates of imagined and real movements. However, although

machine learning has been critical for major achievements in BCI, “zero-training” and univer-

sal BCI remains elusive.

BCI mutual learning with two tetraplegic users
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On the contrary, co-adaptive (a term we use interchangeably to mutual learning) interfaces,

in which the capacities of both learning agents—the brain and the machine—are accommo-

dated and coordinated, has been very early proposed as a remedy [18] and more recently

increasingly adopted and modeled as a training strategy [19–21]. Under this view, successful

BCI requires that the user and the embedded decoder engage in a mutual learning process, in

which users must learn to generate distinct brain patterns for different mental tasks, while

machine learning techniques ought to discover, interpret, and allow a model’s adaptation to

the potentially changing individual brain patterns associated to these tasks [22].

Co-adaptation has been studied in depth in the context of invasive and semi-invasive

brain–machine interfaces with human and nonhuman primates [19,23,24]. Although it has

also been researched in noninvasive SMR-based BCI [21], this body of literature is still char-

acterized by a strong focus on the machine learning side and, in particular, the challenges

related to online decoder parameter estimation [25–29]. Evidence that co-adaptive MI BCIs

might also be able to promote and increase the ability of the users to voluntary modulate their

brain signals (subject learning) is, in fact, scarce, most often indirect and rather inconclusive.

Indeed, mutual learning has been claimed mostly on the grounds of adequate and improved

BCI classification accuracy [25,27,30–35] or application performances [36,37]. However, those

are indirect measures of improved brain signal modulation. Direct evidence of learned SMR

modulation at the BCI feature level is, in fact, rare or incomplete, derived in able-bodied popu-

lations and not longitudinal [10,23,26,28,38–41]. Notwithstanding a few exceptions of longitu-

dinal and translational studies in which thorough neuroimaging evidence is also provided

[9,42], the extent and impact of subject learning effects in noninvasive MI BCI training remain

rather disputable.

The third level that we believe promotes acquisition of BCI skills is at the application side,

an aspect that is not usually studied in BCI. As for any human–computer interface, we conjec-

ture that the design of the interaction can have a strong impact on how suitable the system is

for its user and on how the latter learns to purposefully modulate his/her brain rhythms. To

our best knowledge, this is the first time that the influence of the application design on subject

learning is quantified in BCI.

According to our hypothesis, endowing our two end-user participants with mutual learning

would facilitate the emergence of SMR modulations—supported and complemented (but not

overshadowed) by both the use of machine-learning techniques and the refinement of the

interaction with the application—that participants can largely sustain even in adverse condi-

tions like the public Cybathlon BCI race. Cybathlon has been the first international para-

Olympics for disabled individuals in control of bionic assistive technology (AT) [43], featuring

12 end-users in the BCI race with a level of impairment in the American Spinal Injury Associa-

tion (ASIA) scale of at least C. Two male individuals (P1 and P2), tetraplegic (ASIA A) and

wheelchair-bound as a result of accident-inflicted spinal cord injury (SCI) have been trained

to operate our MI BCI for the Cybathlon BCI race as “pilots” of our “Brain Tweakers” team.

Coherently to our hypothesis, training followed a mutual learning approach. The BCI race

consisted of four brain-controlled avatars competing in a virtual race game called “Brain Run-

ners,” where up to three mental commands (or intentional idling) should be issued on corre-

sponding color-coded track segments (“pads”) to accelerate one’s avatar (Fig 1A and S1

Movie). In the absence of BCI input, avatars would walk at medium pace towards the finish

line. Timely, correct commands would speed them up and erroneous ones slow them down

[8,44].

Our results showcase strong and continuous learning effects at all targeted levels—machine,

subject, and application—with both end-users over a longitudinal study lasting several

months. This study provides direct evidence on the existence, extent, and impact of subject

BCI mutual learning with two tetraplegic users
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learning in translational, noninvasive MI BCI. Importantly, these learning effects were

achieved under uncontrolled circumstances at the pilot’s homes with minimal expert person-

nel intervention, while the learned outcome was replicated at a demanding international com-

petition—the first of its kind—under adverse circumstances, where our pilots were able to

excel. Although the competition demands have imposed the nature of this study as observa-

tional and uncontrolled, we believe our work still pinpoints key ingredients of a successful

mutual-learning scheme and contributes to the consolidation of the notion that BCI is a “skill

to be learned” [45,46] in the field of electroencephalography (EEG)- and SMR-based inter-

faces, in which we believe it has been largely neglected.

Results

Cybathlon BCI race outcomes

The BCI race discipline of the Cybathlon has provided an ideal opportunity and a unique

testbed for the present study on mutual learning. Eleven international BCI teams participated

at the event. Each pilot had to mentally control his own avatar in a virtual race game by

forwarding three different commands (Fig 1A). The race completion time was the criterion for

Fig 1. Cybathlon BCI race track and race completion time. (A) Standard race track of Cybathlon’s Brain Runners

game graphical user interface (BrainRunners, developed for the BCI Race of the Cybathlon 2016 in cooperation of

ETH Zurich and Zurich University of the Arts (ZHdK), Switzerland). Pilots need to deliver the proper command in

each color pad (cyan, magenta, yellow) in order to accelerate their own avatar. (B) Average and standard deviation of

race completion time (s) for pilots P1 and P2 in the first (red) and last (blue) four training sessions, including the

competition day. Statistically significant differences are shown with two-sided Wilcoxon ranksum tests, (���): p< .001.

(C) Race completion times (s) achieved by pilots P1 and P2 throughout training. The corresponding linear fits and

Pearson correlation coefficients (significance extracted with Student t test distribution) demonstrate training effects.

Dashed horizontal lines illustrate the minimum and maximum race completion bounds of Cybathlon’s BCI race-

standard track (perfect control and continuously flawed commands, respectively). Vertical lines indicate the date of

each racing session. Marker colors show the control paradigm employed (see Materials and methods). Record

performances are highlighted with red squares. The competition performances are highlighted with triangles, green for

the qualifier and blue for the final. Fig 1 data is located at https://doi.org/10.5281/zenodo.1205681, https://doi.org/10.

5281/zenodo.1205687. BCI, brain–computer interface; ZHdK, Zurich University of the Arts.

https://doi.org/10.1371/journal.pbio.2003787.g001
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winning the game. The competition consisted of two phases: Qualifiers and Finals. The four

pilots who marked the best completion times in the ensemble of Qualifiers advanced to Final

A, the second-best group of four pilots proceeded to Final B and the remaining competitors

were eliminated for the rest of the tournament. The first three pilots in Final A received the

gold, silver, and bronze medals, respectively. The official results of the Cybathlon BCI disci-

pline are reported in Table 1. In order to appreciate the race completion time of the BCI pilots,

perfect control would make the avatar finish in 54 s, continuous wrong commands would

result in 240 s, and a system not delivering any command would yield 162 s.

P1 qualified with 90.1 s, a performance that set the competition record, almost 32 s ahead of

the second-best time belonging to our second pilot, P2 (122.5 s). In the final, the third-best

competition time (125.3 s) was made by P2 to win the gold medal. The closest times belonging

to the pilots of other competing teams throughout the tournament were 132, 135, 136, and 146

s. P1 experienced a momentary loss of BCI control and had to compromise with the fourth

place in the final (189.8 s).

Primary outcome

The Cybathlon racing application naturally determined the race completion time as the pri-

mary outcome of our study. Fig 1B shows that our training procedure reduced the race com-

pletion time of P1 from 139.2 ± 16.1 s (N = 18, first four racing sessions) to 116.5 ± 23.2 s

Table 1. Cybathlon BCI race results. The table presents the race completion times of all competing pilots in the Qual-

ifiers and in Final A and B races of the Cybathlon BCI race, and the pilots’ final rankings.

Team (pilot) Completion Time (s) Rank

Qualifier

Brain Tweakers (P1) 90 1

Brain Tweakers (P2) 123 2

BrainGain 135 3

BrainStormers 146 4

Athena-Minerva 148 5

OpenBMI 149 6

Neurobotics 161 7

NeuroCONCISE 165 8

Mahidol BCI 167 9

Ebrainers 186 10

MIRAGE91 196 11

ENS Lyon N/A Raced out of competition—Pilot ineligible

Final A

Brain Tweakers (P2) 125 1

BrainGain 156 2

BrainStormers 161 3

Brain Tweakers (P1) 190 4

Final B

Neurobotics 132 5

NeuroCONCISE 136 6

Athena-Minerva 146 7

OpenBMI 149 8

Abbreviation: BCI, brain–computer interface.

https://doi.org/10.1371/journal.pbio.2003787.t001

BCI mutual learning with two tetraplegic users

PLOS Biology | https://doi.org/10.1371/journal.pbio.2003787 May 10, 2018 5 / 28

https://doi.org/10.1371/journal.pbio.2003787.t001
https://doi.org/10.1371/journal.pbio.2003787


(N = 34, last four racing sessions, including the competition day) and similarly for P2 from

145.9 ± 26.1 s (N = 22) to 117.9 ± 12.5 s (N = 21). Both these improvements are statistically

significant (p< .001, two-sided Wilcoxon ranksum tests). The race completion times of our

pilots throughout training (Fig 1C) averaged 126.9 ± 21.3 (N = 182) s for P1 and 130.3 ± 22.9

(N = 57) s for P2, with all-time records of 83.3 and 86.3 s, respectively. Significant negative

Pearson correlations between race time and (chronological) race index establish the existence

of a significant training effect on race time (Fig 1C, P1: r = −0.34, p< .001, N = 182; P2: r =

−0.47, p< .001, N = 57). P1 achieved slightly better average and record performances, while

P2 exhibited superior stability, having race time standard deviation of 12.9 s in the last 5 ses-

sions (N = 28), as opposed to 20.6 s for P1 (N = 50).

BCI performances

We employ “pad crossing time” as the optimal index to evaluate BCI performance, since it

assesses BCI command delivery accuracy and speed in a single metric, while also better reflect-

ing the task at hand [47]. The more widely used metric of BCI command accuracy is also pro-

vided below. Fig 2 illustrates that the high-yielding application performances come as a result

of our pilots’ ability to adequately master all four individual subtasks required by the applica-

tion: the intentional control (IC) ability to deliver the correct command on the action pads

(spin, jump, slide) and the intentional non-control (INC) ability to “rest/idle” on the white

pads [48–50]. The illustrated median pad crossing time performances (for P1/P2) across all

races (training and competition) were 4.9/4.4 s (N = 853/205) for spin, 4.1/4.9 s (N = 766/198)

for jump, and 6.2/7.2 s (N = 463/196) for slide, which compare favorably to the lower bound (2

s) while lying far away from this metric’s imposed upper bounds (11 s if no mental command

is forwarded, 19 s for continuously erroneous command delivery) for all active command

types. Remarkably, a similar argument can be made for the INC ability. The median crossing

Fig 2. Pad crossing time throughout training. Boxplots of pad crossing time (s, time spent on each pad) for pilots P1 and P2, for all types of pads (cyan for spin,

magenta for jump, yellow for slide, black for idling) and for all races (training and competition). The box edges signify the 75th (top) and 25th (bottom) percentiles and

the colored horizontal line the median of the corresponding distribution. The whiskers extend to the largest and smallest nonoutlier values. Outliers are marked with

black crosses. Dotted horizontal lines illustrate the minimum (accurate and precise BCI input), maximum (continuously erroneous BCI input), and no-delivery

(unresponsive BCI, avatar goes at “base” speed) crossing times for the different pad types. The dashed line corresponds to the no-delivery time in the spin, jump, and

yellow pads. Fig 2 data is located at https://doi.org/10.5281/zenodo.1205693. BCI, brain–computer interface.

https://doi.org/10.1371/journal.pbio.2003787.g002
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time of white pads was 10.7 s and 8.4 s for P1 (N = 510) and P2 (N = 151), respectively—far

below the worst-case scenario of 19 s and closer to the optimum of 5.5 s. It is also worth noting

that the average pad crossing time correlates with the primary outcome of race completion

time (P1: r = 0.79, p< .001, N = 162; P2: r = 0.92, p< .001, N = 45), showing that improve-

ments in BCI performances have driven the application performance enhancement. Further-

more, average pad crossing time improves with training, as shown by its correlation with the

run index (P1: r = −0.40, p< .001, N = 162; P2: r = −0.43, p = .003, N = 45).

Fig 3A verifies increasing trends of command accuracy for both pilots and all command

types. This can be quantified by significant positive correlations of the overall accuracy to the

(chronological) race index (P1: r = 0.70, p< .001, N = 162 races; P2: r = 0.66, p< .001, N = 45

races). Fig 3B showcases that the average total accuracy of P1 improved significantly from

53.8% (N = 18) to 93.8% (N = 41) and that of P2 from 81.9% (N = 24) to 96.8% (N = 21) (P1

and P2: p< .001 with two-sided Wilcoxon ranksum tests). Both pilots exhibited significant

command accuracy increase in all individual tasks (the only exception being the spin

Fig 3. BCI command accuracy. For the sake of clarity, accuracy in the figure is reported per session instead of per race. (A) Average within-session BCI command

accuracy (in percent) for pilots P1 and P2. Spin command accuracy shown in cyan, jump in magenta, and slide in yellow. The dashed black line shows the overall

accuracy (average of individual command accuracies) in a session. The Pearson correlation between the overall command accuracy and the chronological race index is

also reported (significance tested with Student t test distribution). (B) Average and standard deviation of BCI command accuracy (in percent) for pilots P1 and P2 for all

command types (cyan for spin, magenta for jump, yellow for slide) and overall (black) in the first and last four training sessions, including the competition day.

Statistically significant differences are shown with two-sided Wilcoxon ranksum tests, (�): p< .05, (���): p< .001. Fig 3 data is located at https://doi.org/10.5281/zenodo.

1205695, https://doi.org/10.5281/zenodo.1205699. BCI, brain–computer interface.

https://doi.org/10.1371/journal.pbio.2003787.g003
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command for P2, with stable accuracy). In the same sessions, the percentage of pads crossed

without a false positive increased from 19.2% to 29.1% for P1 and slightly deteriorated for P2

(from 34.3% to 31.0%). Like the pad crossing time, command accuracy correlates with the race

completion time (P1: r = −0.62, p< .001, N = 162 races; P2: r = −0.57, p< .001, N = 45 races).

Neurophysiological evidence of subject learning

Our training approach targeted sessions twice a week and initially involved “offline,” open-

loop BCI training, in which our pilots performed a number of MI tasks without observing

real-time feedback so as to identify the optimal tasks and calibrate the BCI. This was followed

by “online,” closed-loop BCI feedback training allowing the users to gradually optimize the

modulation of their brain rhythms [51]. Finally, race training allowed our end-users to famil-

iarize with the actual BCI application demands while further improving their BCI skills. BCI

recalibration was performed only twice per pilot (P1: 30/06/2016 and 14/09/2016; P2: 11/08/

2016 and 08/09/2016). Table 2 presents the selected spatiospectral features (bands and Lapla-

cian channels).

Table 2. Features selected for mutual learning. The table presents all the spatio-spectral features selected for the BCI classifiers trained throughout our pilots’ mutual

learning process. Each feature refers to a specific frequency band (2 Hz resolution) and EEG channel location according to the international 10–20 system.

P1 P2

Date Feature Date Feature

Location Band (Hz) Location Band (Hz)

30/06/2016

C1 22

11/08/2011

C1 26

C1 24 C1 28

Cz 12 C1 30

Cz 20 Cz 30

Cz 22 C2 26

Cz 24 C2 28

C2 18 C2 30

C2 20 CPz 26

CP3 20 CPz 28

CP3 22

08/09/2016

C1 32

CP3 24 Cz 28

CPz 18 Cz 30

CPz 20 Cz 32

14/09/2016

FC4 28 CP3 30

FC4 32 CP3 32

Cz 10 CPz 24

Cz 12 CPz 26

Cz 20

Cz 22

Cz 24

C4 26

C4 28

C4 30

CP3 22

CP3 24

Abbreviation: EEG, electroencephalography.

https://doi.org/10.1371/journal.pbio.2003787.t002
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Fig 4A demonstrates that our incremental mutual learning procedure has been very effec-

tive in bringing up an emerging SMR pattern (high β-band, 22–32 Hz) for both pilots, coher-

ent with both hands MI (lateral, electrodes FC3, C3, CP3, FC4, C4, CP4 of the 10–20 EEG

system) and both feet MI (medial, electrodes FCz, Cz, CPz) locations of the sensorimotor cor-

tex (see also S1 Fig for discriminancy maps in higher-frequency resolution). Fig 4B further

substantiates a significant enhancement trend of these patterns’ discriminancy over runs (P1,

N = 214: r = 0.47, p< .001 for medial and r = 0.44, p< .001 for lateral locations; P2, N = 79:

r = 0.47, p< .001 for medial and r = 0.64, p< .001 for lateral locations), accounting for consid-

erable, statistically significant increase for both pilots and locations between the first and last

four sessions (Fig 4C).

The overall discriminancy of our pilots’ SMRs (average of medial and lateral locations for

P1, lateral for P2) correlates well with the total command accuracy (P1: r = 0.56, p< .001,

N = 162; P2: r = 0.37, p = .013, N = 45), the average pad crossing time (P1: r = −0.42, p< .001,

N = 162; P2: r = −0.45, p = .002, N = 45), and the race completion time (P1: r = −0.39, p< .001,

N = 162; P2: r = −0.29, p = .0056, N = 45). Hence, increased SMR modulation (discriminancy)

seems to be crucial for enhanced BCI and, through the latter, also application performances.

Fig 5 sheds light on the neurophysiological basis of P1’s poor performance in the final. It

can be seen that P1’s inability in this particular race to deliver any command associated to the

Fig 4. BCI feature discriminancy. (A) Topographic maps of discriminancy per training month on the 16 EEG channel locations over the sensorimotor cortex

monitored. Bright color indicates high discriminancy between Both Hands and Both Feet MI tasks employed by both pilots (P1 top, P2 bottom). The discriminancy of

each channel is quantified as the Fisher score of the EEG signal’s power spectral density distributions for these two mental classes in the high β-band (22–32 Hz) within

each run. Each map illustrates local Fisher scores (with interchannel interpolation) averaged over all runs within the supertitled month. (B) Average medial (blue,

channels: FCz, Cz, CPz) and lateral (red, channels: FC3, C3, CP3, FC4, C4, CP4) discriminancy for all performed offline, online, and racing runs of pilots P1 and P2. The

corresponding linear fits and Pearson correlation coefficients (significance tested with Student t test distribution) are reported to indicate training effects. Vertical

dashed lines indicate the training session during which each run took place. (C) Average and standard deviations of medial region (blue) and lateral region (red)

discriminancy within the first and last four runs of training for pilots P1 and P2. Statistically significant differences are shown with two-sided Wilcoxon ranksum tests,

(��): p< .01, (���): p< .001. Fig 4 data is located at https://doi.org/10.5281/zenodo.1205702, https://doi.org/10.5281/zenodo.1205704, https://doi.org/10.5281/zenodo.

1205708. BCI, brain–computer interface; EEG, electroencephalography; MI, motor imagery.

https://doi.org/10.1371/journal.pbio.2003787.g004
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Both Hands MI task (spin, slide) has been accompanied by the disappearance of this task’s

identified EEG correlates, namely the β-band SMR discriminancy in locations contralateral to

the dominant right hand, selected for the classifier used in the competition (CP3, Table 2). On

the contrary, pilot P2 largely maintained the same brain pattern in both competition races,

even increasing the strength of medial modulation in the final (channels Cz and CPz, both

channels were selected for the classifier used in the competition).

Effects of the application in BCI control and learning

The BCI’s configuration (choice of appropriate values of some hyperparameters, such as the

decision threshold) and the application control paradigm have substantially benefited from

our pilot’s input, following a user-centered approach in BCI design. In particular, end-user

feedback has largely shaped our BCI’s control paradigm (see Materials and methods). As

shown in Fig 1C, early attempts with a 3-class BCI (paradigm 1) severely compromised the

total command accuracy (Fig 3A), which is reflected in the high race completion times during

this period. Supporting only two commands (paradigm 2) was clearly suboptimal, since the

application demands could not be fully met with a binary input. Thus, while the two separable

MI tasks (kinesthetic both hands and feet MI for both our pilots) were directly mapped to the

spin and jump avatar actions, two different solutions were evaluated for the slide command.

Paradigm 3 would make the avatar slide after a configurable inactivity period. Paradigm 4

Fig 5. BCI feature discriminancy for pilots P1 and P2 in the Cybathlon. Topographic maps of discriminancy per

Cybathlon race on the 16 EEG channel locations over the sensorimotor cortex monitored. Bright color indicates high

discriminancy between Both Hands and Both Feet MI tasks employed by both pilots. The discriminancy of each

channel is quantified as the Fisher score of the EEG signal’s power spectral density distributions for these two mental

classes in the high β band (22–32 Hz), on this channel. Each map illustrates local Fisher scores (with interchannel

interpolation) in the supertitled race. Selected channels are indicated by red color. Fig 5 data is located at https://doi.

org/10.5281/zenodo.1205711. BCI, brain–computer interface; EEG, electroencephalography; MI, motor imagery.

https://doi.org/10.1371/journal.pbio.2003787.g005
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would trigger sliding when two commands of different type were forwarded within a configur-

able timeout [44].

The latter protocol has been shown to be significantly superior for P1 (who executed

enough races with each control paradigm) in terms of the median time spent on yellow pads

(Fig 6A) that reduced significantly (p< .001, two-sided Wilcoxon ranksum test) from 12.4 s

(N = 83) with paradigm 3 to only 5.1 s (N = 363) with paradigm 4. Simultaneously, the slide

command accuracy increased significantly (Fig 6B, p = .0019, two-sided Wilcoxon ranksum

test) from 67.2% ± 37.8% (N = 26) to 91.2% ± 17.0% (N = 94). This naturally led to important

reduction of the race completion time with paradigm 4 (Fig 6C, 121.2 ± 20.1 s, N = 114 against

129.5 ± 12.4 s, N = 26, p = .0039, two-sided Wilcoxon ranksum test), which was finally selected

for the competition. While, as shown below, this improvement must be confounded with sub-

ject learning effects, an immediate effect of the control paradigm on performance can also be

established by comparing the last 10 races with paradigm 3 against the 10 first ones with para-

digm 4 (130.1 ± 17.2 s to 112.4 ± 15.1 s, p = .0312 with two-sided Wilcoxon ranksum test).

Fig 6. Effects of the control paradigm. (A) Boxplots of pad crossing time (s) for pilot P1 and all pad types (spin, jump, slide) and control paradigms 1 (yellow), 3

(green), and 4 (cyan). The box edges signify the 75th (top) and 25th (bottom) percentiles and the colored horizontal line the median of the corresponding distribution.

The whiskers extend to the largest and smallest nonoutlier values. Outliers are marked with black crosses. (B) Average and standard deviation of BCI command

accuracy (in percent) for pilot P1 and all command types (spin, jump, slide) and control paradigms 1 (yellow), 3 (green), and 4 (cyan). (C) Average and standard

deviation of race completion time (s) for pilot P1 and control paradigms 1 (yellow), 3 (green), and 4 (cyan). (D) Average and standard deviation of overall feature

discriminancy (medial and lateral locations) in the first and last 10 runs for pilot P1 and control paradigm 1 (yellow), 3 (green), and 4 (cyan). Statistically significant

differences are shown with two-sided Wilcoxon ranksum tests (for the sake of clarity, only with respect to paradigm 4). (�): p< .05, (��): p< .01, (���): p< .001. Fig 6

data is located at https://doi.org/10.5281/zenodo.1205810, https://doi.org/10.5281/zenodo.1205818, https://doi.org/10.5281/zenodo.1205822, https://doi.org/10.5281/

zenodo.1205828. BCI, brain–computer interface.

https://doi.org/10.1371/journal.pbio.2003787.g006
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Importantly, during these races, P1 alternated between paradigms 3 and 4 (Fig 1A), and for

this reason, we cannot expect strong subject learning effects.

The subject and machine learning processes have been always thought to affect each other

[18,20,52]. Interestingly, we can show that the involvement of the application in the learning

process also creates bidirectional interactions. Specifically, Fig 6D shows the feature discrimi-

nancy of the first and last 10 runs of the training periods with the three control paradigms.

Interestingly, the discriminancy significantly increased only in the case of control paradigm 4

(0.27 ± 0.07 to 0.34 ± 0.05, p = .045, two-sided Wilcoxon ranksum test), while no difference (or

even a reduction) is reported for the other two paradigms. Results suggest that the refinement

of the control paradigm might have had a critical role in facilitating subject learning.

Discussion

This study investigates the hypothesis that mutual learning is a critical underlying factor for

the success of MI BCI in translational applications. We deemed the Cybathlon to be a unique

opportunity to probe this hypothesis, considering the unprecedented participation of 12 end-

users in a competitive scenario and the possibility of longitudinal usage of a real BCI applica-

tion, as well as the harsh training at the users’ homes and the adverse operation conditions

imposed by the competition.

This manuscript employs the term “mutual learning” in a wide sense. We consider all train-

ing paradigms involving closed-loop BCI control and BCI algorithms in need of parameter

estimation to be candidate mutual learning schemes. Effectively, we only exclude open-loop

and pure neurofeedback approaches (where there is no BCI decoder). On the contrary, we

take into account both “conventional” MI training protocols [51], which alternate the

machine- and subject-learning procedures, and “co-adaptive” protocols, in which online feed-

back training takes place simultaneously with online decoder adaptation [21].

The main contribution of this work is the provision of quantitative evidence regarding the pos-

sible extent of operant subject learning in longitudinal MI training, how it can drive both BCI and

task performance, and how it can be facilitated by the refinement of the application control para-

digm. The significance of our results is that by showcasing the importance of supporting all three

mutual learning pillars—subject, machine, and application—we encourage a much-needed shift

of focus of the employed training paradigms towards the parallel promotion of operant condition-

ing effects and the consideration of application designs, to complement the progress in machine

learning [12] and fuel the design of next-generation translational BCI training [47,53].

In order to mitigate to some extent the absence of control in our study, a short question-

naire concerning information on the user training aspects of our competitors (see Materials

and methods) was addressed to all 10 competing teams and replied to by 6 of them (S1 Table).

In support of our hypothesis, it seems that none of these teams invested considerably in the

facilitation of subject learning and were mainly concentrated on the machine learning side.

In fact, a recent study analyzing the results of the Cybathlon BCI race states that it was not

possible to identify any factor (hardware, signal processing, machine learning, and pilot’s con-

ditions) explaining the performance [8]. So we believe that it is our truly mutual learning pro-

tocol that accounts for the results of the competition.

Subject learning in MI BCIs

It is critical to comment on the reasons why we perceive the indications provided so far in

the BCI literature regarding subject learning to be insufficient. To begin with, subject learn-

ing in online MI BCI is most often hypothesized to occur “by default” in analogy to neurofeed-

back training [1,46,54,55]. However, this extrapolation is by no means straightforward, as
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neurofeedback typically exerts lesser demands, requiring control over predefined brain signals

by direct observation [56], while SMR BCIs are complex pattern-recognition systems feeding

back transformations of multivariate brain activity [46]. In fact, as mentioned previously and

further developed below, evidence of subject learning in BCI is scarce. It is important to note

that we wish not to challenge the theory that BCI and neurofeedback learning share the same

underlying plasticity mechanisms [46] but, on the contrary, substantiate it by providing solid

experimental evidence.

Another similar, overstated extrapolation regards evidence from invasive and semi-invasive

BCI, where learning and co-adaptation have been well documented [19,23,24,57–59]. Again,

given the significant differences in terms of signal-to-noise ratio (SNR) and other basic charac-

teristics of (semi-)invasive and noninvasive signals, these studies cannot be said to certainly

generalize to noninvasive MI BCI.

Interestingly, users have reported reaching a state of proficiency through learning where

BCI control becomes “automatic,” as they no longer need to engage explicitly in MI [23,40–

42,50,60,61]. This was also reported by our pilot P2 [44]. However, such claims are rather qual-

itative and do not constitute hard evidence for the existence of subject learning. We argue that

this effect must still be accompanied by increasing and consolidated separability of the brain

patterns in order to drive BCI performance upwards.

It is mainly the lack of quantitative evidence of subject learning in EEG SMR BCI that is

problematic. Firstly, works where users acquired BCI control (able-bodied [3,25] and end-

users [40,41,51,62,63]) do not report any learning metric over time. Secondly, other training

studies claim learnability in BCIs only on the grounds of improved online classification accu-

racy [9,27,30,31,33,35,51] or application performances [36,37]. However, accuracy and appli-

cation-specific performance metrics do not imply improvements of brain signal modulation.

Better performance could be due to decoder recalibration [29], re-parameterizations of the

BCI, and the application and adoption of better mental strategies [9,64,65], among other fac-

tors. Hence, we consider that deriving some index of neuroimaging-based separability at the

feature level in order to quantify the user’s BCI aptitude (and its evolution over time) is a sine

qua non prerequisite for corroborating the existence of subject learning [46].

Evolution of SMR modulation has been reported, but these studies suffer from certain

shortcomings. Some works find no evident learning effects at the neural correlate level [25,34].

Other studies have reported emergence of such SMR modulations [26,28,38,39], but given the

short number of experimental sessions they carried out, the observed neurophysiological pat-

terns might only be indicative of transitory effects rather than consolidated subject learning.

Our previous work has even reported a short-term decrease in feature discriminancy during

adaptive spelling [29].

The most complete evidence of subject learning with obvious translational implications is

offered in [9], [10], and [42]. These works report on longitudinal training and involve end-

users. Furthermore, [10] and [42] substantiate learning effects with event-related desynchroni-

zation/synchronization (ERD/ERS) maps and SMR topographies, respectively, over 3–4 time

points throughout the training period. Nevertheless, these works do not explicitly relate

induced brain rhythm changes to BCI performance or show that SMR improvements were

consistent and continuous.

Evidence of mutual learning during training for the Cybathlon

The present manuscript provides results that address such limitations in the literature on

mutual learning with respect to its subject learning component while also offering novel

insights on a possible role of the application on subject learning.
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From the machine learning perspective, our results clearly show a positive correlation of

the BCI performances (BCI decoding accuracy and pad crossing time) to chronological runs

for both users (Fig 3A). This positively influences the application outcomes with a decrease of

the race time over the whole training period, as BCI performances correlate significantly with

race time improvement (Fig 1C). As already mentioned, BCI was recalibrated only twice for

each user (Table 2), but possible new classifiers were trained after every session with the new

recorded data and the simulated performances were evaluated. In such an iterative process,

most of the classifiers were discarded during the training period due to similar performances.

One might argue that such an infrequent BCI recalibration contradicts the mutual learning

hypothesis. However, this approach is substantiated by the fact that BCI decoding achieved

high-level accuracy (Fig 3A) for both users after the initial recalibrations. Thus, we had

assumed that the machine learning model was sufficiently optimized.

We have selected feature discriminability as the index to assess the effects of subject learn-

ing at the neurophysiological level because it directly measures users’ ability to modulate dif-

ferent SMRs. In this respect, subject learning is substantiated by the gradual increase of feature

discriminability (Fig 4). The reported correlations between discriminancy, BCI performances,

and race time establish the impact of subject learning within the mutual learning scheme.

Several indications assert that the learning effects observed here correspond to instrumental

learning, as traditionally hypothesized [46]. First, SMR discriminancy increase is shown to be

gradual and smooth for both users (Fig 4), as expected for neurofeedback operant condition-

ing. No apparent “breakthroughs” are evident, which could support the only likely alternative

hypothesis, that of the employment of better mental strategies sparking immediate, rather than

gradual, improvements [9,64].

At the level of mechanisms, our feedback training design has respected the neuropsycholog-

ical basis of operant conditioning, namely immediacy and contingency of the visual feedback

to the targeted brain rhythms. Indeed, during races, BCI commands always coincide with the

presence of SMR, which has to be sufficiently large for the BCI to reach the decision threshold.

Thus, although the BCI did not deliver a command to the avatar every time the pilot generated

an SMR, the opposite holds: whenever the BCI delivered it, the pilot was eliciting an SMR.

Another clear manifestation of the instrumental nature of subject learning is the fact that, as

shown in Table 2, the brain features that responded to training were among those selected for

classification and feedback provision.

According to our hypothesis, the third pillar of mutual learning, the application design, can

play a critical role. In this regard, our results show that the subject learning has substantially

benefited from the refinement of the control paradigm according to P1’s suggestions. This

new control paradigm seems to have directly influenced his ability to learn how to modulate

his brain patterns (Fig 6D). In fact, the user not only exhibited a general improvement of the

features’ separability from the initial design to the final one (from control paradigm 1 to 4, Fig

6D) but also a significant positive trend only in the case of the last control paradigm. In the

other cases, discriminancy remains stable (or even decreases) over time.

It is interesting to note that, while one might have expected a stabilization of feature discri-

minancy once BCI command accuracy saturated to high levels (Fig 3A), it continues to

increase for both pilots even after the last recalibration (Fig 4B). This might be explained by

the fact that the Cybathlon application imposed high demands not only on command accuracy

but also on delivery speed, which had further margins of improvement (Fig 2A). Our results

are in line with the emerging belief about the need for more stimulating BCI training contexts

[47,53,66].
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Limitations

The present study suffers certain limitations, the main one being that it was conceived as an

uncontrolled, observational study. Nevertheless, we can rely on our competitors as a fair control

group because they have essentially adopted a training methodology mainly based on machine

learning, as per the results of the questionnaire (S1 Table), while we followed a more holistic

mutual learning methodology. Indeed, their approach involved frequent classifier recalibration

and feature re-selection, as well as training protocols that were relatively short and/or not partic-

ularly intense. Of note, the differences in machine-learning methods of all participating teams

were too subtle to explain the competition outcomes according to the organizers [8].

A second important limitation regards the fact that we report on only two individuals. Still,

the fact that both participants exhibited the same training effects and comparable perfor-

mances makes us confident that our conclusions should generalize, at least to populations with

similar clinical profiles.

Due to the logistical constraints of the Cybathlon, the available neuroimaging data was lim-

ited to 16 EEG channels. Thus, we have not been able to investigate more deeply the brain plas-

ticity effects induced by subject learning. However, it must be noted that the extracted SMR

discriminancy index would be the primary descriptor of learning anyway, since the latter can

only be an instance of neurofeedback operant conditioning if learned brain activity modula-

tion happens with respect to the same neural activity that is fed back to the user (in our case,

SMRs on selected channels and bands).

Unsatisfactory robustness of our BCI, especially for P1, is another important shortcoming.

Lack of robustness is a well-known issue of all BCI paradigms and has been associated to the

nonstationarity of brain signals [18,25,27]. As shown, although P1 showcased better average

performance, he also exhibited higher variability than P2. This effect, also reflected in our

pilot’s competition outcomes in which P1 set the record time but was unable to replicate it a

few hours later, suggests that stability (robustness) is at least as crucial as performance (effec-

tiveness) for optimal BCI control. We have shown that loss of control for P1 in the final was

the result of the disappearance of the SMR modulations normally induced by his Both Hands

MI (Fig 5). Various psychological factors (such as motivation, attention, and stress) have been

implicated in these negative effects [2,47,53,66–68], which unfortunately are quite frequent in

MI BCI operation. On the other side, P2 seemed to have gained stability along his training. We

speculate that, although not the only factor, longitudinal mutual learning could help increase

robustness.

Mutual learning: Lessons and recommendations

We believe that the present study pinpoints critical elements of a successful mutual learning

methodology, in spite of the aforementioned limitations and although such recommendations

are to some extent speculative. We denote that our training apparatus, which certainly falls

under the category of “conventional” MI BCI training protocols relying on visual feedback

training on top of initial machine calibration with spontaneous SMRs, has been very similar to

the one we have applied in our previous work [51]. There, a considerable number of end-users

failed to acquire BCI control, especially those without distinct spontaneous SMRs at training

onset. We postulate it is mostly the small, but potentially crucial, differences between that and

the present study that might explain the different outcomes.

First and foremost, our previous study imposed up to 10 training sessions with low intensity

(maximum twice but mostly once per week or even every other week) before a performance

criterion could be reached and allow a user to proceed with application control. Our Cybath-

lon data, especially those of P1 (Fig 4A), show that this amount of training would be
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insufficient to develop their full BCI potential, even despite increased training intensity. The

experiences shared by our Cybathlon competitors point towards the same direction.

Second, training with the BCI application rather than towards it—like in [51] and most

other studies—had a profound impact, as shown in Fig 6, for both application performances

and subject learning. This might be related to a need for getting accustomed to the actual appli-

cation demands [47] but probably also to increased user motivation [68] provided both by the

gaming application and the goal of participating in an international competition [8]. Based on

this experience, we believe that novel motivational paradigms should consider incorporating

the element of “competition” (for instance, training with multiplayer games). Related to this,

another contributing factor to successful SMR enhancement might have been that we have

implemented an “incremental learning” approach as advocated in [53] and shown in [69],

where open-loop, closed-loop, and application training (tasks of increasing difficulty) followed

each other throughout training. S2 Fig illustrates how the SMR brain patterns of both partici-

pants for these different stages resemble each other but are enhanced in magnitude of discrimi-

nancy, suggesting that they both gradually adapted to the increasing task demands.

Last but not least, we postulate that, despite current opinion considering this potentially

detrimental to BCI accuracy, infrequent recalibration of the BCI has also been beneficial to the

subject learning side (Fig 4) while still adequately accommodating the machine learning side

of our mutual learning scheme (Fig 2 and Fig 3). Frequent or continuous recalibration, espe-

cially in case it is accompanied by re-selecting the classifier’s features, creates a situation in

which the subject’s learning could be hindered by the demand to adapt to a continuously

changing decoder [29,70]. Since the plasticity/stability dilemma with respect to MI BCI co-

adaptation has not been adequately studied so far [21,52], we believe that a parsimonious

approach eventually trading off decoding accuracy in the short term in order to better fulfill

the subject learning objective in the long term, as done here, is preferable. Comparison with

our competitors’ known strategies are in agreement with this assessment. Such fine-tuning of

the machine- and subject-learning demands warrant further research and might unlock the

full potential of MI BCI co-adaptation.

In conclusion, the Cybathlon 2016 provided the ideal framework to implement and evaluate

the effects of longitudinal mutual learning, which allowed us to showcase continuous and

consolidated learning not only on the machine side (which is regularly well documented) but

also—and most importantly—on the user side, as well as an effect of application training on

subject learning. Furthermore, the Cybathlon motivated the recruitment of two end-user par-

ticipants and the involvement of a real BCI application operated in real-world circumstances,

which advocates translational implications of our findings. Importantly, all learning indices

(the subject’s and the machine’s), as well as application performances, can be shown to corre-

late with the amount of training and with one another, which establishes that the individual

subject and machine learning improvements are not irrelevant but actually drive the enhance-

ment of BCI-actuated application control.

Materials and methods

Ethics statement

This study has been approved by the Cantonal Committee of Vaud (VD, Switzerland) for eth-

ics in human research (CER-VD) under protocol number PB_2017–00295 (20/15 CCVEM).

Study design

The objective of this study was to train two end-users with severe motor impairments follow-

ing a mutual learning approach so as to control the Brain Runners BCI application and
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participate in the Cybathlon BCI race. In pursuit of this goal, the Brain Tweakers have applied

the ensemble of BCI machine-learning and signal-processing methods, control paradigms,

and mutual learning protocols developed in our lab. The competition and logistical constraints

have imposed the nature of this study as an uncontrolled (observational) and longitudinal

two-case study.

Our inclusion criteria necessarily coincided with those of the Cybathlon BCI race: mini-

mum age of 18, sufficient cognitive and communication abilities to understand the discipline’s

rules, and tetraplegia or tetraparesia as a result of SCI, amyotrophic lateral sclerosis (ALS), or

another lesion, quantified with a score of “C” or above on the ASIA impairment scale. The

exclusion criteria consisted of cardiac pacemakers, cyber-sickness, and epilepsy. All EEG and

race time data collected have been included into our statistical analysis, and no outliers have

been defined.

The race completion time is naturally the study’s primary outcome. Each individual train-

ing run or race is an evaluation end point. We additionally define a number of essential sec-

ondary outcomes evaluating our mutual learning protocol’s machine learning effects (i.e., the

time spent on each pad type and the BCI command delivery accuracy) and subject learning

effects (SMR brain pattern discriminancy).

Pilots

Both our pilots—48-year-old P1, injured in December 1989, and 30-year-old P2, injured in

May 2003—have sustained complete lesions at level C5–C6 and have scored “A” (Complete

injury—No motor or sensory function is preserved in the sacral segments S4 or S5) in the

ASIA impairment scale. Both end-users were under medication for the treatment of spasms

and other symptoms related to their medical condition. Residual motor abilities included, for

both pilots, unaffected bilateral control of shoulder and elbow movements and compromised

control of wrist movements, while neither of the two maintained control over the fingers. Cer-

tified confirmation by their medical doctor of safety to participate in the Cybathlon event was

requested and signed for both pilots, and insurance against accidents and injuries was taken,

as per Cybathlon’s regulations. A safety and eligibility check was also conducted by the orga-

nizers the day before the competition.

Both participants maintain no control of the lower limbs and only limited control of the

upper limbs. They are both able to stabilize their neck and head, but only P2 can also stabilize his

trunk. Neither of our pilots carries pacemakers or other implants, suffers epilepsy or cyber-sick-

ness, or needs respiratory assistance. They both use other advanced AT in their daily lives, like

driving aids and speech-to-text software. P1 had several years prior participated in the MI BCI

studies reported in [35,51,71], while P2 was BCI naive at the onset of his Cybathlon training.

Informed consents have been signed in accordance with the Declaration of Helsinki, and their

participation in the training sessions as well as in the competition has been approved by the Swiss

committees for ethics in human research (protocol number PB_2017–00295, 20/15 CCVEM of

the Cantonal Committee of Vaud, Switzerland for ethics in human research, CER-VD).

Cybathlon BCI race

The Cybathlon competition comprised six different disciplines, each concerning a different

type of AT (functional electrical stimulation, powered arm and leg prostheses, exoskeletons,

wheelchairs, and BCI) [43]. The BCI race [8] consisted of (up to) four brain-controlled avatars,

each actuated by a disabled pilot by means of mental commands, so as to reach the finishing

line of a virtual race game called “Brain Runners” ahead of its opponents. Avatars would by

default proceed at slow speed towards the finish line. The BCI pilot should be able to forward
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three mental commands to his/her avatar (spin, jump over prickles, slide under electrical rays),

each of which would accelerate it only when issued while the avatar was traversing the corre-

sponding color-coded track segment called “pad” (spin on cyan, jump on magenta, and slide

on yellow pads). The acceleration effect would last until the avatar reached the beginning of

the next pad or upon reception of a following erroneous command overriding the user’s cor-

rect command (whichever happened first). In addition to these three “action” pads, a fourth

type (white pads) required “idling” to avoid any command delivery. A misplaced command,

including false positives on the white pads, would slow down the pilot’s progress towards the

finish line of the track for 4 s (this timer would reset if another erroneous command or false

positive was received in the meantime), until the beginning of the next pad or a following

correct command overriding the erroneous one (whichever happened first). Besides the accel-

erating/slowing down behavior of the avatar, a thunder of the corresponding color briefly

appearing over the avatar’s head would inform the pilot of the command currently sent. Sup-

port of at least one mental command was required to participate in the competition.

The standard track was composed of 16 pads (four of each type) randomly arranged so that

the order of pads was not known to the competitors beforehand and was different for every

race. The starting and finishing lines were situated on two additional white pads, so that the

total distance to be covered by the pilots’ avatars was 500 virtual meters. The lower bound of

race completion time on this track (i.e., the one achieved with an ideal input) is 54 s. The corre-

sponding upper bound (continuous erroneous delivery) is 327 s, although only times below

240 s were considered valid in the actual competition. Since the avatars would proceed by

default forward at a low “baseline” speed, the race completion time in case of no input whatso-

ever would be 162 s. The equivalent minimum, no-response, and maximum crossing times for

the action pads were 2 s, 11 s, and 19 s, respectively. Hence, 11–19 s is the time frame within

which a user is required to forward a correct command, with delivery speed being equally

important to command accuracy. The minimum and maximum crossing times for the white

pads were 5.5 s and 19 s, respectively. The corresponding times for the starting white pad were

5 s and 13 s, while for the ending white pad 3 s and 10 s.

The exclusion criteria for the technology provider dictated the use of noninvasive inter-

faces, while visual, tactile, or any kind of BCI feedback other than the one provided directly by

the Brain Runners graphical user interface was prohibited, effectively excluding synchronous,

stimuli-driven BCI paradigms like P300 and SSVEP. Besides the Brain Tweakers, another 10

international franchises participated in the tournament. From the 13 originally declared

teams, two teams withdrew and one participated “out of competition” due to pilot ineligibility.

The BCI race tournament format involved, initially, four qualification races (morning). The

pilots marking the best four race completion times would qualify to Final A (afternoon) and

compete for one of the 3 medals (gold, silver, and bronze), while the second-best four times

would compete for places 5–8 in Final B. The event took place in a crowded, sold-out arena in

front of a loud audience of roughly 4,600 spectators. A mock-up “rehearsal” event was held on

July 14th, 2015, to ensure the best possible preparation for both the teams and the organizers.

Training modalities, periods, and locations

Our mutual (subject and machine) learning approach involved three different training modali-

ties aiming to establish, on the one hand, the end-users’ best possible control over spontaneous

modulation of their SMRs by means of MI tasks and, on the other hand, their fast and accurate

recognition on the part of the trained MI BCI algorithm. MI is defined as the mental rehearsal

of a movement without overt motor output [72]. For MI tasks related to completely paralyzed

limbs (legs for both P1 and P2), our pilots were instructed to attempt the corresponding
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movement, otherwise imagination suppressing any overt motor act was requested. During the

competition, judges controlled for violations of the latter prerequisite.

Initially, open-loop, “offline” training (MI without real-time feedback) was applied, in

order to exploit and calibrate the BCI on spontaneous SMR modulations the users could

already elicit for the tested MI tasks. In this phase, we have mainly explored the existence of

distinct brain patterns corresponding to right hand, left hand, both hands, both feet MI, and

rest. Subsequently, offline runs were limited to both hands and both feet MI, which both our

pilots were found to optimally modulate, so as to collect “clean” data for updating the BCI

algorithm’s parameters. P1 has also unsuccessfully tried imagination of tongue movement, as

well as “word” and “mathematical association” mental tasks.

Closed-loop, “online” sessions followed, where the pilots proceeded with real-time BCI

control of a conventional, continuous visual feedback cursor targeting the enhancement of the

patterns’ discriminancy in an operant conditioning fashion (feedback training), while the BCI

parameters were later recalibrated to better reflect the evolving brain patterns with the derived

EEG data. Online runs were mainly conducted using the discriminant (coincidentally, for

both our pilots) both hands and both feet MI tasks (2-class). P1 attempted to operate a 3-class

online modality (left hand, right hand, feet MI) for a few sessions. More details on the visual

interface of these two modalities and exactly how the BCI feedback cursor is driven by the BCI

algorithm, can be found in section “BCI implementation” in Appendix A of [51], as well as in

S1 Movie.

The third and latest stage was dominated by actual racing with the training version of the

Brain Runners game delivered to the contestants so that our pilots could get accustomed to the

real application’s demands, in which one had to rely solely on the discrete feedback embedded

into the cluttered graphics of the game itself. Offline, online, and racing runs were often inter-

leaved (S2 Table) in order to make these transitions smoother. For the first racing runs only,

we allowed our pilots to also observe the visual BCI feedback. During race training, our pilots

would generally compete against the “bot” avatar option provided by the game. The “skill

level” of this bot competitor was gradually increased to increasingly challenge our pilots. The

racing track was randomized for each race, simulating the actual Cybathlon conditions.

Prior to and including the competition day, P1 received 35 training sessions within the

period April–October 2016, while P2 underwent 16 sessions from July–October 2016, both in

an individualized and flexible schedule (approximately twice a week), which was intensified as

the competition day was approaching. P1 executed in total 40 offline, 12 online, and 182 race

runs, while P2 did 15, 19, and 57 runs, respectively (S2 Table). All training sessions took place

at the pilots’ homes under the supervision of one or two BCI engineers, except for two distinct

sessions accommodated in the laboratory, where our two pilots competed against each other

in the presence of a crowd of spectators, so as to simulate and get used to the special conditions

they would cope with on the competition day.

BCI implementation

The Brain Tweakers participation in the Cybathlon BCI race relied on the EEG-based MI BCI

design previously developed in CNBI, which had already been shown to allow end-users to

successfully operate a number of BCI prototypes [51]. For both user training and competitive

racing, EEG was acquired with a lightweight, 16-channel g.USBamp amplifier (g.Tec medical

engineering, Schiedelberg, Austria). The experimental setup during training additionally con-

sisted of one laptop running the BCI algorithms and another one running the Brain Runners

game. In the actual competition, the latter was substituted by the competition’s dedicated

monitor displaying the race from each pilot’s individual viewpoint.
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The EEG signal was recorded at 512 Hz sampling rate, band-pass filtered within 0.1 and

100 Hz, and notch-filtered at 50 Hz. The monitored EEG channels were selected so as to ade-

quately cover the sensorimotor cortex (S3A Fig). The signal was spatially filtered with a Lapla-

cian derivation, and the power spectral density (Welch periodogram) of each channel was

computed with 2 Hz resolution in 1 s-long windows sliding every 62.5 ms. Feature selection

was performed by ranking the candidate spatiospectral features according to discriminant

power, calculated through canonical variate analysis, eventually manually selecting the most

discriminant and neurophysiologically relevant ones. A Gaussian classifier outputting a pro-

bability distribution over two MI tasks was used to classify the consecutive feature vectors in

real time. The Gaussian classifier was trained with a gradient-descent supervised learning

approach using the labeled MI datasets resulting from the aforementioned training protocols.

The samples with “uncertain” probability distributions (where the maximum probability does

not exceed a certain threshold) were rejected, while the remaining ones were fed to an evi-

dence accumulation module smoothing the classifier output by means of a leaky integrator

(exponential smoothing). A final decision is emitted by the BCI system once the pilot is able to

push the integrated probabilities of some mental class to reach a configurable decision thresh-

old by consistently performing the corresponding MI task, thus forwarding the associated

command to his/her Brain Runners avatar. Upon delivery of a BCI command, the integrated

probabilities are reset to the uniform distribution so as to start an unbiased new trial. A refrac-

tory period of 1 s was set in between consecutive commands. An artifact rejection scheme

would block the BCI output once ocular and facial muscle artifacts were detected. A more

detailed description of all the above methods is provided in Appendix A of [51] and the refer-

ences therein.

Artifact rejection scheme

Under the Cybathlon BCI race regulations, all teams should embed an artifact removal or

rejection framework into their BCI system, ensuring that the pilot’s avatar is actuated by

means of brain signals only, without interference from other signals originating from muscle

activity or at the level of the peripheral nervous system (PNS). Thus, the Brain Tweakers arti-

fact control scheme targeted the detection of electrooculogram (EOG) and facial electromyo-

gram (EMG) signals, upon which the BCI output was blocked for a configurable interval

preventing any outgoing command towards the pilot’s BrainRunners avatar. Respecting the

need for a minimally obtrusive setup, only four electrode/sensor pairs are employed to extract

two bipolar EOG channels, by means of a second synced g.USBamp device. One sensor is

placed on either eye canthus, a third one on the pilot’s nasion bone, while the last sensor acts

as the reference and is placed on the pilot’s forehead (S3B Fig). In sync with the EEG acquisi-

tion, EOG signals are acquired at 512 Hz in frames of 62.5 ms. Artifact detection is performed

separately on each consecutive frame, resulting in very fluid and responsive detection of arti-

fact onset and offset. For each frame, the original channels EOGi, i 2 [1, 4] are combined to

form a horizontal (EOGh = EOG1 − EOG3) and a vertical (EOGv = EOG2 − (EOG1 + EOG3)/

2) channel, specializing in capturing horizontal and vertical eye movements, respectively. The

average of all channels was also extracted and monitored, as it is particularly sensitive to eye

blinks and intense facial muscle flexions. All channels were band-pass filtered between 1 and

10 Hz with a second-order Butterworth filter and rectified. Finally, the processed channel

frames are compared against a common configurable threshold. The individual frame decision

was 1 when any of the processed samples within the current frame exceeds the threshold and 0

otherwise. The final artifact detection module would communicate an artifact onset event to

the game controller upon a frame decision transition from 0 to 1, signaling the blocking of the
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BCI output. An artifact offset event lifting the BCI command blocking was issued after a con-

figurable timeout since the latest artifact onset detection.

Since a distinct feature of this study is BCI operation in real-world conditions, where arbi-

trary artifact contamination is common, we opted for transparency to always report imaging

(in particular, discriminancy) results directly on raw data. S4 Fig illustrates that three lateral

channels of P2 (of which the only selected channel is CP3) exhibit an unidentified high-fre-

quency component late in training. This effect only concerns two of the features selected for

P2’s BCI control (CP3/30 Hz and CP3/32 Hz) and approximately one-fourth of the executed

runs. Applying the artifact removal algorithm FORCe [73] effectively eliminates this compo-

nent (S1 Fig). Importantly, S5 Fig shows that the discriminancy of these two selected features

constitutes a genuine EEG MI correlate, as it is present at different sessions of this pilot’s train-

ing in the absence of the potentially artifactual component. Of note, all effects shown in the

manuscript regarding discriminancy (including correlations with the amount of training, race

completion time, pad crossing time, and BCI accuracy) still hold for both pilots after FORCe

artifact removal, as shown in S6 Fig for pilot P2.

Game control paradigm

The game control paradigm defines the way the pilot’s motor imaginations translate into ava-

tar actions through the emitted BCI commands. Several control paradigms have been designed

and tested throughout the training period in close cooperation between the Brain Tweakers

researchers and pilots. Initially, we explored the straightforward option of a 3-class BCI (para-

digm 1) employing right hand, left hand, and both feet MI. Thereby, each BCI command was

directly mapped to a certain avatar action (right hand MI to spin, both feet MI to jump, and

left hand MI to slide). A 2-class BCI (paradigm 2) preserving the previous mapping but leaving

the slide command unsupported was also tested. Given the unsatisfactory outcome of these

two approaches, another two paradigms were designed, both investigating well-known

human–computer interaction principles for supporting all three avatar commands given only

a binary input. Specifically, the two separable MI tasks (both hands and feet MI for both our

pilots) were again directly mapped to the spin and jump avatar actions. Additionally, paradigm

3 would make the avatar slide after a configurable period of INC. Paradigm 4, on the other

hand, would trigger sliding when two consecutive commands of different types (i.e., a spin/

jump or jump/spin pair) were forwarded within a configurable interval. Paradigm 4 was

adopted for the competition.

In all four tested control paradigms, “idling” is achieved through the “resting” mental task,

where the pilot is deliberately not engaging in any MI task (INC). Since the BCI classifier is

continuously (every 62.5 ms, i.e., at 16 Hz) outputting a probability distribution over the MI

mental classes (not including the resting state), INC is achieved through a statistical approach

in which, thanks to the evidence accumulation module and the BCI’s optimized parametriza-

tion (decision and sample rejection thresholds, smoothing parameter), a BCI command is only

forwarded when the user is consistently performing the associated MI. Otherwise, the inte-

grated probabilities will tend to fluctuate below the decision thresholds, avoiding any com-

mand forwarding [51].

Evaluation metrics and data

The race completion and the pad crossing times are measured in seconds (s). BCI performance

is quantified through BCI command accuracy, which is the percentage of pads in a race in

which the correct command has been delivered within the given time frame (i.e., while the

pilot’s avatar is on the particular pad). Pad crossing times (“time on pad” metric) are reported
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to simultaneously evaluate BCI command accuracy and delivery speed. The total BCI com-

mand accuracy in a race is computed as the average per command accuracies (class-specific

true positive rates). For the white pads, an equivalent accuracy metric (true negative rate) is

calculated as the percentage of white pads in the race that the pilot managed to cross without

delivering any command. Finally, discriminancy of a given spatiospectral EEG feature (corre-

sponding to a certain EEG channel and a frequency band) for two mental classes is quantified

through Fisher score as FS ¼ jm1 � m2 jffiffiffiffiffiffiffiffiffiffi
s12þs22
p , where μ1,μ2 are the means and s1,s2 are the standard

deviations of this feature’s sample values for mental class 1 (Both Hands) and 2 (Both Feet),

respectively. Discriminancy over two large and physiologically relevant to MI topographic (lat-

eral: FC3, FC4, C3, C4, CP3, CP4 and medial: FCz, Cz, CPz) and spectral (μ: 8–14 Hz and β:

22-32Hz) regions is computed as the average Fisher score of all features corresponding to the

channels and frequency bands of the regions in question. S2 Table presents the list of sessions

executed and the type of data acquired in each.

Statistical analysis

Point estimates are reported using averages or medians and dispersions as standard deviation

or 25th and 75th percentiles, when the underlying distribution is normal or skewed, respec-

tively. Training effects are shown by reporting Pearson correlation coefficients and their signif-

icance at the 95% confidence interval through Student t test distribution. The same type of

correlation is employed to study the relationship of the application, machine, and subject

learning evaluation metrics. Additionally, the first and last four sessions are compared and

tested for significant differences at the 95% confidence interval using unpaired, two-sided Wil-

coxon nonparametric rank-sum tests.

Questionnaire on user training

A short questionnaire requesting information on essential details of the user and system train-

ing methodology adopted has been addressed to all competing teams in an attempt to identify

critical elements of successful training strategies. The questionnaire consisted of the following

5 questions:

1. What was the total duration of your pilot’s training (in weeks or months)?

2. What was the intensity of your user training approach (sessions per week, on average)?

3. What was the total number of training sessions until the Cybathlon BCI race event?

4. How often was the BCI decoder/classifier retrained?

5. Did BCI recalibration involve only classifier parameter update or also feature re-selection?

Teams BrainGain [74], Athena-Minerva [75,76], NeuroCONCISE [77,78], OpenBMI,

Mahidol BCI, and MIRAGE91 [37] have provided the requested info.

Supporting information

S1 Fig. BCI feature discriminancy maps per run (N) averaged for each training month.

Bright color indicates high discriminancy between Both Hands and Both Feet MI tasks

employed by both pilots (P1 top, P2 bottom). The discriminancy of each feature (channel-fre-

quency pair) is quantified as the Fisher score of the EEG signal’s power spectral density distri-

butions for these two mental classes. Raw data have been cleaned with the artifact removal

algorithm FORCe [73]. S1 Fig data is located at https://doi.org/10.5281/zenodo.1205852. BCI,
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brain–computer interface; EEG, electroencephalography; MI, motor imagery.

(TIF)

S2 Fig. BCI feature discriminancy per training modality. Topographic maps of discrimi-

nancy per training modality on the 16 EEG channel locations over the sensorimotor cortex

monitored. Bright color indicates high discriminancy between Both Hands and Both Feet MI

tasks employed by both pilots (P1 top, P2 bottom). The discriminancy of each channel is quan-

tified as the Fisher score of the EEG signal’s power spectral density distributions for these two

mental classes in the high β band (22–32 Hz) on this channel. Each map illustrates local Fisher

scores (with interchannel interpolation) averaged over all runs of the supertitled modality. S2

Fig data is located at https://doi.org/10.5281/zenodo.1205860. BCI, brain–computer interface;

EEG, electroencephalography; MI, motor imagery.

(TIF)

S3 Fig. Electrode configurations. (A) EEG channel configuration over 16 locations of the sen-

sorimotor cortex according to the international 10–20 system. (B) EOG electrode configura-

tion on the pilot’s right and left canthi, nasion, and forehead for the detection of ocular and

facial muscle artifacts. EEG, electroencephalography; EOG, electrooculogram.

(TIF)

S4 Fig. BCI feature discriminancy maps per run (N) averaged for each training month.

Bright color indicates high discriminancy between Both Hands and Both Feet motor imagery

tasks employed by both pilots (P1 top, P2 bottom). The discriminancy of each feature (chan-

nel–frequency pair) is quantified as the Fisher score of the EEG signal’s power spectral density

distributions for these two mental classes. Discriminancy is computed on raw data without

artifact removal. S4 Fig data is located at https://doi.org/10.5281/zenodo.1213033. BCI, brain–

computer interface; EEG, electroencephalography.

(PNG)

S5 Fig. BCI feature discriminancy maps for three typical BCI sessions of pilot P2 in August,

September, and October after artifact removal with FORCe. Bright color indicates high dis-

criminancy between Both Hands and Both Feet motor imagery tasks employed by pilot P2. The

discriminancy of each feature (channel–frequency pair) is quantified as the Fisher score of the

EEG signal’s power spectral density distributions for these two mental classes. These three maps

show that features CP3/30 Hz and CP3/32 Hz selected for control correspond to real EEG MI

correlates, as they remain discriminant in the absence of the potentially artifactual high-fre-

quency component. S5 Fig data is located at https://doi.org/10.5281/zenodo.1213164. BCI,

brain–computer interface; EEG, electroencephalography; MI, motor imagery.

(PNG)

S6 Fig. BCI feature discriminancy for pilot P2 after artifact removal with FORCe. (A)

Topographic maps of discriminancy per training month on the 16 EEG channel locations over

the sensorimotor cortex monitored. Bright color indicates high discriminancy between Both

Hands and Both Feet MI tasks employed by pilot P2. The discriminancy of each channel is

quantified as the Fisher score of the EEG signal’s power spectral density distributions for these

two mental classes in the high β-band (22–32 Hz) within each run. Each map illustrates local

Fisher scores (with interchannel interpolation) averaged over all runs within the supertitled

month. (B) Average medial (blue, channels: FCz, Cz, CPz) and lateral (red, channels: FC3, C3,

CP3, FC4, C4, CP4) discriminancy for all performed offline, online, and racing runs of pilot

P2. The corresponding linear fits and Pearson correlation coefficients (significance tested with

Student t test distribution) are reported to indicate training effects. Vertical dashed lines
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indicate the training session where each run took place. (C) Average and standard deviations

of medial region (blue) and lateral region (red) discriminancy within the first and last four

runs of training for pilot P2. Statistically significant differences are shown with two-sided Wil-

coxon ranksum tests, (���): p< .001. S6 Fig data is located at https://doi.org/10.5281/zenodo.

1213100, https://doi.org/10.5281/zenodo.1213106, https://doi.org/10.5281/zenodo.1213108.

BCI, brain–computer interface; EEG, electroencephalography; MI, motor imagery.

(PNG)

S1 Table. User-training methodology details of the Cybathlon BCI race competitors. BCI,

brain–computer interface.

(DOCX)

S2 Table. Training session information. The table presents the date of all executed training

sessions for both pilots and the number and type of runs performed in each session and

reported here. Asterisks indicate one or more runs have been lost due to technical failure or

bad maintenance.

(DOCX)

S1 Movie. Typical race training session of pilot P1.

(MP4)
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Supervision: José del R. Millán.

Validation: Serafeim Perdikis, Luca Tonin, Sareh Saeedi, Christoph Schneider.

Visualization: Serafeim Perdikis, Luca Tonin.

BCI mutual learning with two tetraplegic users

PLOS Biology | https://doi.org/10.1371/journal.pbio.2003787 May 10, 2018 24 / 28

https://doi.org/10.5281/zenodo.1213100
https://doi.org/10.5281/zenodo.1213100
https://doi.org/10.5281/zenodo.1213106
https://doi.org/10.5281/zenodo.1213108
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2003787.s007
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2003787.s008
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2003787.s009
https://doi.org/10.1371/journal.pbio.2003787


Writing – original draft: Serafeim Perdikis, Luca Tonin, José del R. Millán.
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der, José del R. Millán.

References
1. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, et al. A spelling device
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