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Abstract

Maclachlan and Martin have proved that only finitely many arithmetic Kleinian groups
can be generated by 2 elliptic elements, and have classified these groups in the non-
cocompact case.

Here we investigate the cocompact case, restricting to a class of generalised trian-
gle groups considered by Jones and Reid which arise as the fundamental groups of
hyperbolic 3-dimensional orbifolds. We obtain 21 arithmetic groups and provide a
description of the corresponding orbifolds.

MSC: 30F40; 57TM25; 20H10; 57TM07

1 Introduction
A generalised triangle group is a group with a presentation
GT(l,m,mw)={(ab|d=b"=w"=1),

where [, m,n > 2 and w is a cyclically reduced word in the free product on {a,b}. We
call two words w,w' € { a,b | at =b™ =1 ) equivalent if one can be transformed to
the other by a sequence of the following moves:

1. cyclic permutation,
2. inversion,
3. automorphism of Z; or Z,,,

4. interchanging the two free factors (if [ = m).
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If w and w’ are equivalent we shall write w ~ w'. We shall call two generalised triangle
group presentations GT' (I, m,n;w) and GT(I',m/,n’;w') equivalent if | =1', m = m’,
n=n',and w ~ w'.

In [15] Maclachlan and Martin initiated a programme to investigate the 2-generator
arithmetic Kleinian groups. There are precisely four such groups generated by a pair
of parabolic elements [5], precisely 12 when one of the generators is elliptic and the
other parabolic [3], and only finitely many generated by 2 elliptic (i.e. finite order)
elements [15]. A consequence of this last result is that only finitely many generalised
triangle groups can have faithful representations as arithmetic Kleinian groups.

The non-cocompact arithmetic Kleinian groups generated by 2 elliptic elements
were classified in [14], where it was shown that there are 21 non-conjugate groups,
15 of which are generalised triangle groups. Moreover the generalised triangle groups
arise as the fundamental groups of 3-dimensional orbifolds whose singular sets in S?
all admit a simple, uniform description.

In this paper we address the question as to which generalised triangle groups admit
faithful representations as cocompact arithmetic Kleinian groups. The first problem
encountered when tackling this question is in determining which generalised triangle
groups have faithful representations as Kleinian groups (i.e. as discrete subgroups of
PSL(2,C)). We simplify this issue by restricting to a class of generalised triangle
groups considered by Jones and Reid [13].

They show that any group GT'(I, m,n; W(r, s, a,b)) where r < s are positive coprime

integers and
s—1

W(T, s, a, b) _ H a(,l)[(2i+1)r/s]b(,l)[(2i+2)r/s]’
i=0

arises as the fundamental group of a 3-dimensional orbifold () whose singular set in S®
is a graph (with 3 edges and 2 vertices) formed by adding an extra edge to a 2-bridge
knot or link L, and labelling the edges [, m, n to denote cone angles of 27 /1, 27 /m, 27 /n
respectively. Moreover they show that the fundamental group of every such orbifold is
of the form GT'(I,m,n; W (r, s,a, b)) for some pair (r,s). We write Q = Q, (I, m,n).

By showing that () satisfies the hypotheses of Thurston’s orbifold conjecture [12, 21],
Jones and Reid show that (subject to this conjecture) ) has a geometric struc-
ture, unless L is a link of two unknotted, unlinked components. Further, by re-
ferring to Dunbar’s classification of non-hyperbolic orbifolds [4], they show that in
most cases () is hyperbolic. Indeed this is true for all cases we shall consider. Thus
G =GT(l,m,n;W(r,s,a,b)) admits a faithful representation as a Kleinian group.

In [22] it was shown that if G = GT(I, m,n; W (r,s,a,b)) admits a faithful repre-
sentation as a Kleinian group then the representation is cocompact if and only if

c1(G) > 0 and ¢(G) > 0,

where
(@) = 1/l+1/m+1/n—1 ifsisodd
alt) = 2/l+1/n—1 if s is even
6(G) = 1/l+1/m+1/n—1 ifsisodd
2TV 2/m+1/n—1 if s is even



Table 1
Arithmetic Kleinian GT'(I,m,n; W (r, s,a,b))

(Il,m,n) | (r,s) | m,y(2) vy Covolume
(3,3,2) | (1,3) | 22 +422+62+2 —1.7718 + 1.11514 | 0.2646
(2,3,4) | (1,3) | 22 +522+72+1 —2.4196 + 0.6063i | 0.1323
(2,3,2) | (1,6) | 2°+422+42+2 —0.5804 + 0.6063i | 0.1323
(3,3,2) | (1,4) | 2% +222+42+2 —0.6806 + 1.6332i | 0.6616
(2,3,2) | (1,8) | 22 +3224+2+1 —0.1154 + 0.5897i | 0.3308
(2,3,2) | (3,8) | 2®+622+10z+2 —2.8846 + 0.5897i | 0.3308
(3,3,2) | (1,5) | 2*+223+222+62+1 0.1993 + 1.5895i | ?
(2,3,4) | (2,5) | 2*+82% +2122+182+1 —3.1385 + 0.4851i | ?
(2,3,2) | (1,10) | 22+ 423 +322+1 0.1385 + 0.4851i | ?
(3,3,2) | (2,5) | 2°+82%4+242% + 3022 + 142 + 2 —2.8061 + 1.1564i | ?
(2,3,4) | (1,5) | 2>+ 72* +182% + 2222+ 132+ 1 —0.8970 + 0.9590i | ?
(2,3,2) | (3,10) | 2° +82% 4+ 242% 4+ 3222 + 162 + 2 —2.1030 + 0.9590i | ?
(3,3,2) | (1,6) | 2°+22% +422+82+2 0.8424 + 1.3553i | ?
(2,3,2) | (1,12) | 2° 4+ 62 + 1023 + 222 — 22 + 2 0.2984 + 0.3768i | ?
(2,3,2) | (5,12) | 2° +92* +282% + 3422 + 132 + 1 —3.2984 + 0.3768i | ?
(3,3,2) | (3,7) | 2%+ 102° 4+ 382% +662° + 5122 + 142 + 1 | —3.1969 + 0.9018i | ?
(2,3,4) | (2,7) | 25 +102° + 402" + 802 + 792° + 30z + 1 | —1.9247 + 1.0617i | ?
(2,3,2) | (3,14) | 2%+ 82° + 2524 +402% + 3422 + 122+ 1 | —1.0753 + 1.0617i | ?
(3,3,2) | (2,11) | 2° +22* +22° + 822 + 102 + 2 0.6809 + 1.7333i | ?
(2,3,4) | (1,11) | 25+ 52 +622+ 2 +1 0.2799 + 0.4869i | ?
(2,3,2) | (9,22) | 2° +102* 4 3627 + 5422 + 282 + 2 —3.2799 + 0.4869i | ?

If s is odd then there are infinitely many triples (I, m,n) for which these conditions
are satisfied. If we restrict to cases where s is even then (I, m,n) = (2,3,2) or (3,3,2),
and the problem is more manageable.

Whilst we do not have the machinery to investigate the problem for all groups G' =
GT(l,m,n; W(r,s,a,b)) with these triples, we can certainly make some progress when
s is small. Our methods will necessarily include some groups GT' (I, m,n; W(r, s, a, b))
where s is odd, but since these groups are integral to our calculations we shall include
them in our results. Our main result is the following

Theorem 1.1 Suppose T' = GT(l,m,n; W (r,s,a,b)) where ged(r,s) = 1 admits a
faithful discrete representation in PSL(2,C), and assume one of the following holds:

1. (I,m,n) = (3,3,2), s < 15,
2. (I,m,n) =(2,3,2), s <30 and is even,
3. (I,m,n) =(2,3,4), s < 15.

Then (up to equivalence) T admits a faithful representation as an arithmetic Kleinian
group if and only if (I, m,n), (r,s) are contained in Table 1.

An approzimation to the parameter v = tr[p(a), p(b)] — 2, its minimum polynomial
over Q and the covolume (where available) are as given in Table 1. The corresponding
orbifold Q,s(l,m,n) is as given in figure 1.
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Figure 1: Table of orbifolds.



2 Arithmetic Kleinian groups

A Kleinian group T' is a discrete subgroup of PSL(2,C), the group of all orienta-
tion preserving isometries of H*. The quotient H?/T" is a hyperbolic orbifold, or a
hyperbolic manifold if I' is torsion free. For isometries f, g the complex numbers

B(f) = (te(f))* — 4, Blg) = (tr(9))* — 4, ([, 9) = tr[f. g] - 2 (1)
where [f,g] = fgf 'g~! are called the parameters of { f, g ) and we write
par (L) = (v(f, 9), B(f). B(9))- (2)

These parameters are independent of the choice of matrix representatives of f, ¢ in
SL(2,C) and they determine I' uniquely up to conjugacy whenever v(f,g) # 0 [7]. If
f, g are elliptic elements of orders [, m repectively then 3(f) = —4sin?(n/l), B(g) =
—4sin®(7/m). Thus if G = { f,g ) then

par(G) = (y, —4sin®(7/l), —4sin®(7/m)).

For fixed [, m the space of all such discrete groups is determined by the single parameter
v(f,g). Note that when [ = 2 the subgroup ( g, fgf ) is of index 2 in { f,¢ ) and has
parameters

(v(f, 9)(v(f, 9) — B(9)), B(g), B(g))-

Conversely, each group generated by a pair of elements g1, go of the same order can be
extended by elements of order 2 which conjugate g, to g3 [8].

We now give a definition of arithmetic Kleinian groups in terms of quaternion
algebras; for further details on this see [2]. Let k be a number field with one complex
place, A be a quaternion algebra over k ramified at all real places, and let p be an
embedding of A into M(2,C), the 2 x 2 matrix algebra over C. If O is an order
in A, and O' denotes the elements of norm 1 in O then p(O') is a discrete group
of finite covolume in SL(2,C). The set of arithmetic Kleinian groups consists of all
subgroups of PSL(2,C) which are commensurable with some such 7p(O"'), where
m:SL(2,C) — PSL(2,C) is the natural map.

If ' is a finite covolume Kleinian group then we can determine whether or not I' is
arithmetic by the following method [16]. Let I'® = {¢? | g € T'} and define the field
kT by

KD = Q(r(1®)), (3)
where tr(I') = {£tr(g) | g € '}, and define the quaternion algebra AT" over kI" by
AT = {Y aivila; € kT, € TO}. (4)

The field £I" and the quaternion algebra AI' are invariants of the commensurability
class of the group I [18, 17]. In the cases where I' is generated by two elements
A=m7(A),B=mn(B) (not of order 2) with o = trA, 3 = trB, A = tr(AB) then

kT = Q(a2752;045)\)7 (5)



and Al is given by the Hilbert symbol

AT — <042(042 —4),a2[%(a* + 32+ N\ — afA — 4))

T (6)

see [16, 19]. Among the finite covolume Kleinian groups we can identify which are
arithmetic by the following theorem.

Theorem 2.1 (Maclachlan and Reid [16]). Let T' be a finite covolume Kleinian group.
Then 1" is arithmetic if and only if

1. kI has ezxactly one complex place, and
2. tr(T'®)) consists of algebraic integers, and

3. the quaternion algebra AT is ramified at all real places.

3 The case GT(3,3,2;W(r,s,a,b))
We shall see in Section 4 that the groups

Ly =GT(2,3,2;W(r,2s,z,y)) where ged(r,2s) =1,
Ly =GT(2,3,4;,W(r,s,z,y)) where s is odd and ged(r,s) =1

are Zg-extensions of GT'(3,3,2; W(r, s, zyx,y)) or GT(3,3,2; W(2r, s,xyx,y) respec-
tively. Since arithmeticity and discreteness are preserved by taking Zo-extensions, in
classifying the arithmetic groups G = GT(3, 3, 2; W (r, s,a, b)) with s up to some given
value, we are doing the same for the groups L; and L.

Let p : G — PSL(2,C) be a representation satisfying trp(a) = trp(b) = 1, then
trp(w) is a polynomial with integer coefficients in A = trp(ab) [1]. We call this the
trace polynomial and write trp(w) = 7, ().

We will re-express theorem 2.1 for the groups GT'(3,3,2; W(r, s,a,b)) in terms of
irreducible factors of 7,,. For this we will need some preliminary results.

Proposition 3.1 For every root u of my(z), there is an embedding o : Q(\) — C
given by o(X) = u. Conversely if o : Q(\) — C is an embedding then o(\) is a root of
my(z).

Lemma 3.2 (Gehring et al. [6]). Let v be a real place corresponding to a real embed-
dingo : k — R and let A = (’%). Then A is ramified at the real place v if and only

if o(p) and o(q) are both negative.

Theorem 3.3 Let G = GT(3,3,2; W (r,s,a,b)) and suppose p: G — PSL(2,C) is a
faithful discrete representation of G as a Kleinian group with trp(a) = trp(b) = 1. Let
A = trp(ab), and let my(2) be the minimum polynomial of A over Q. Then I' = p(G)
is an arithmetic Kleinian group if and only if

1. my(2) has one pair of complex conjugate roots, and

2. the real roots of my(z) lie in the interval (—1,2).



Proof. By (5) and (6) the invariant trace field and quaternion algebras are given by

= A&_A)A - 2)

Since I is of finite covolume it is an arithmetic Kleinian group if and only if conditions
(1)-(3) of Theorem 2.1 are true.

Condition (2) holds because I'® C T, and tr(T) consists of algebraic integers by [1].
By Proposition 3.1, condition (1) of Theorem 2.1 is equivalent to condition (1) above.
By Lemma 3.2, condition (3) of Theorem 2.1 holds if and only if for every real place
corresponding to a real embedding o : k — R,

kT = Q()), AT = (

o(=3) <0, c(\> = A—2) <0.

The first part is clearly true, and by Proposition 3.1 the second part is equivalent to
saying that for every real root x of my(2),

2—r—2<0

and this is the same as our condition (2) above. ]

Under the hypothesis that G admits a faithful representation as a Kleinian group,
we will use Theorem 3.3 to classify (up to equivalence of G) the pairs (r, s) with s < 15
for which G admits a faithful discrete representation as an arithmetic Kleinian group.

If p is any faithful representation of G, then trp(ab) is a root of the trace polynomial
Tw [1]. Thus if there is to be a faithful representation of G as an arithmetic Kleinian
group then for some root A of 7, the minimum polynomial m,(z) of A over Q must
satisfy conditions (1) and (2) of Theorem 3.3. Now the minimum polynomial of any
root of 7, is an irreducible factor of 7, so this is equivalent to saying that for some
irreducible factor m(z) of 7,(z), conditions (1) and (2) must hold.

Using a Maple program (available from the author’s homepage) to check these
conditions for the irreducible factors of trace polynomials of groups G = GT(3,3,2;
W (r,s,a,b)) where s < 15 we rule out all but the following 7 pairs (r, s):

(1,3), (1,4), (1,5), (2,5), (1,6), (3,7), (2,11).

We must now determine whether the groups GT'(3, 3, 2; W (r, s, a, b)) with the above
pairs (7, s) do in fact have faithful representations as arithmetic Kleinian groups. We
note the following

Proposition 3.4 Let G = GT(3,3,2; W (r,s,a,b)) and suppose p : G — PSL(2,C)
is a faithful discrete representation with trp(a) = trp(b) = 1, trp(ab) = A. If the real
roots of my(z) lie in the interval (—1,2) then \ ¢ R.

Proof. Suppose for contradiction that A € R. By [11, Appendix 3] the axes p(a), p(b)
intersect if and only if the matrix

2 trp(a)  trp(b)
T=1 trp(a) 2 trp(ab)
trp(b) trp(ab) 2

Il
)
>N
N >



is positive definite. The eigenvalues of T" are given by

A4+4+V/XN2+8
2

9 ),

and since A\ € (—1,2), these are all positive. Thus p(a), p(b) intersect at a point
P € H? (say) and the set

{g€p(G)| PNgP #0} = p(G)

which is infinite, so p(G) does not act properly discontinuously. But by [20, Exercise
3.5.10], p(G) acts properly discontinuously on H? and we have a contradiction. O

If (r,s) = (1,3), (1,4), (1,5), (2,5), (1,6), or (3,7) then the Maple program shows
that the trace polynomial factors as

where p(z) =1, 2, or (z — 1), and ¢(2) is irreducible over Q with one pair of complex
roots, and with all real roots in the interval (—1,2).

If p: G — PSL(2,C) is a faithful discrete representation with trp(a) = trp(b) =1
then by Proposition 3.4 trp(ab) ¢ R and so is one of the two complex (conjugate) roots
of ¢(z), and hence p(G) is an arithmetic Kleinian group.

In the case GT(3,3,2; W (2,11, a, b)) then the Maple program shows that the trace
polynomial 7,,(z) = trp(w) factors as

where
p(z) = 2" —42° — 2% + 42+ 2

is irreducible with two complex roots,
A A = —1.2798796 4 0.48691554,

and
q(z) =25 —22° — 22" + 422 + 22 — 22+ 1

is irreducible with 4 complex roots,

gL = —1.0709625 £ 0.25054544,
o, Tz = 0.3770064 % 0.3894352i.

The following proposition shows that if I' = p(G) is a faithful representation of G
in PSL(2,C) then trp(ab) = A. Since p(z) has only one pair of complex roots, and
all real roots of p(z) lie in the interval (—1,2) we can deduce that T is an arithmetic
Kleinian group.



Proposition 3.5 Let G = GT(3,3,2; W(2,11,a,b)) and suppose p: G — PSL(2,C)
is a faithful representation with trp(a) = trp(b) = 1. If trp(ab) = py or us then p(G)
18 not discrete.

Proof. We will refer to results of Gehring et al. [6], obtained using the disc cover-
ing method of Gehring and Martin [8, 9], concerning the discreteness of 2-generator
subgroups of PSL(2,C). More precisely, the result we will use states that if ¢ is an
element of order 3, and ( f, g ) is a discrete 2-generator subgroup of PSL(2,C) and if
~v(f, g) lies within a certain subset of C, then 7(f, g) must take one of only a handful
of exceptional values.

Suppose p(a) = A, p(b) = B, then I' = p(G) has parameters

(’7("47 B): _3: _3)
where, by the Fricke identity,

(A, B) = (trA)?+ (trB)? + (trAB)? — (trA)(trB) (trAB) — 4
= (trAB)? — (trAB) — 2.

Thus
v(A, B) = 0.1551500 + 0.7871949i if trAB = pq, i1

and

v(A, B) = —2.3865324 4 0.09579617  if trAB = s, i3.

Then by [6] if trAB = ps, fig, ' is not discrete.

To deal with the case when trAB = p; or its conjugate, we must consider Zo-
extensions of I'. Suppose A is a Zs-extension of I' by the order 2 element X. Then A
has parameters

(v(X,Y), B(X), B(Y)) = (v(X,Y), -4, =3)
where (X, Y) satisfies

’Y(Xa Y)2 - 5(Y)’Y(X’ Y) - ’7(147 B) =0

(see [15]), i.e.
—34./9+4v(A, B
= 0.0709625 +£ 0.2505454: or — 3.0709625 F 0.2505454:.
By [6] A cannot be discrete, and hence nor can T. O

Hence in each case G has a faithful discrete representation in PSL(2,C) satisfying
the conditions of Theorem 3.3, and we have proved:

Lemma 3.6 Suppose G = GT(3,3,2; W (r,s,a,b)) where ged(r,s) =1, s < 15 ad-
mits a faithful discrete representation in PSL(2,C). Then (up to equivalence) G has
a faithful representation as an arithmetic Kleinian group if and only if

(r,s) =(1,3), (1,4), (1,5), (2,5), (1,6), (3,7) or (2,11). (7)



An interesting problem would be to classify all groups GT(3, 3, 2; W (r, s, a, b)) which
have faithful representations as arithmetic Kleinian groups. The trace polynomial is,
on the whole, very hard to predict, so it is difficult to make progress in the general
case. However, if we restrict the problem to pairs (r,s) = (1, s) then

W(l,s,a,b) ~ (ab)*?(a='p~")*/? if s is even,
W(1,s,a,b) ~ (ab)*?ab™ (a™'b71)*/?  if s is odd.

The regularity of these words suggests that the trace polynomial may be of a pre-
dictable nature. Calculations using a Maple program (available from the author’s
homepage) indicate that this is the case, and we make the following conjecture which
we have verified for s < 70.

Conjecture 3.7 Let G = GT(3,3,2;W(1,s,a,b)), then the trace polynomial 7,(z) is
as follows:

Suppose s is even

1. If s/2 =0 mod 6 then 7,(2) = q(z) where q(z) is irreducible with s/2 complex
ro0ots.

2. If s/2 = 1,5 mod 6 then 7,(2) = 2(z — 1)q(2) where q(2) is irreducible with
s/2 — 1 complex roots.

3. If s/2 =2,4 mod 6 then 7,(2) = (2 — 1)q(z) where q(z) is irreducible with s/2
complex roots.

4. If s/2 = 3 mod 6 then 7,(z) = 2q(z) where q(2) is irreducible with s/2 — 1
complex roots.

Suppose s is odd

1. If (s—=1)/2=0,2 mod 3 then 7,(z) = (2 — 1)q(2) where q(z) is irreducible with
(5 + (=1)+D/2) 12 complex roots.

2. If (s —1)/2 = 1 mod 3 then 7,(2) = q(z) where q(2) is irreducible with (s +
(=1)+D72) 12 complex roots.

From this it would follow that GT'(3,3,2; W (1,s,a,b)) is an arithmetic Kleinian
group if and only if 3 < s < 6.

Note that we could obtain the same result by proving only that 7,(z) = p(z)q(2)
where p(z) =1,2,(2 — 1) or z(z — 1) and that ¢(z) is irreducible. For then, by [15] if
G is an arithmetic Kleinian group then deg(q) < 44, and by our previous calculations
we must have that 3 < s <6.

4 Z,-extensions

In this section we obtain the remaining groups in Table 1. We first show that if
ged(r, s) = 1 then the group GT'(2,3,2; W (r,2s,z,y)) is a Zy-extension of GT'(3, 3, 2;

10



W (r,s,zyzx,y)). To see this, consider the orbifold corresponding to the first group,
Q = QT,25(27 3: 2)

As described in [13], @) can be realised as a genus-two handlebody (with fundamental
group generated by z and y) with singular 2-handles (singularities of order 2,32,
respectively) attached along closed curves in the boundary, representing z,y, and
W(r,2s,z,y).

The 2-fold branched covering @ of ), whose fundamental group is the index 2
subgroup of H generated by 22, zyx, y, corresponds to a genus-three handlebody with
singular 2-handles (singularities of orders 3, 3,2 respectively) attached to the lifts of

a = zyr,b =1y and W (r,2s,z,y), and a non-singular 2-handle attached to the lift of
2

x2.
A routine calculation shows W (r, 2s,z,y) = W (r, s, zyx,y) so the group m"*(Q) =

GT(3,3,2;W(r,s,a,b)) is an index 2 subgroup of GT(2,3,2;W(r,2s,x,y)), as re-
quired. Applying a similar argument to the group GT(2,3,4; W (r, s, z,y)) and noting
that W(r, s, z,y)? = W(2r, s, zyx,y) shows that the group GT'(3,3,2; W (2r, s,a, b)) is
an index 2 subgroup of GT(2,3,4; W (r, s, z,y)).

Thus GT(2,3,2; W(r,2s,z,y)) where ged(r,s) = 1 and s < 15 is an arithmetic
Kleinian group if and only if GT'(3,3,2; W (r, s,a, b)) is equivalent to one of the groups
in Lemma 3.6. Similarly GT'(2,3,4; W (r, s, x,y)) where ged(r, s) = 1 and s < 15 is odd
is an arithmetic Kleinian group if and only if GT'(3,3,2; W (2r, s, a, b)) is equivalent to
a group in Lemma 3.6.

For each of the pairs (r,s) at (7) it is easy to show that W(r, s,a,b) ~
W(s — r,s,a,b). Using the equivalent presentations GT'(3,3,2; W(r,s,a,b)) and
GT(3,3,2;W(s —r,s,a,b)) of G in turn, we can obtain the two Zs-extensions of G
and thus complete Table 1.

5 ~-values and covolumes
Using (1) and the fact that for matrices A, B € SL(2,C)
tr[A, B] = (trA)* + (trB)? + (trAB)? — (trA)(trB)(trAB) — 2,

the minimum polynomial m.,(z) over Q of the parameter v = vy(a,b) of any of our
groups GT'(I,m,n; W (r,s,a,b)) in Table 1 (and hence an approximation to ) can be
calculated directly from the minimum polynomial m,(z) of \.

Jones and Reid have developed a computer program to study explicitly how the
geometry and topology of certain arithmetic Kleinian groups varies as the number the-
oretic data is changed. Amongst other things, this program calculates the covolumes
of these groups.

In [6] arithmetic Kleinian groups G, ;, generated by a pair of elements of orders 2
and n where 3 < n < 7 are considered. By applying the program of Jones and Reid to
these groups their covolumes were obtained. Since the parameters of a Kleinian group
determine the group up to conjugacy, comparing the minimum polynomial m.(z) of
our arithmetic Kleinian groups GT'(2, 3, ¢; W(«, 3, a, b)) with the groups G ; allows us
to make the following identifications:

GT(2a 37 27 W(L 6a a, b)) = G3,57
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and
GT(2, 3, 2, W(]_, 8, a, b)) = G3714.

Thus we can provide the covolumes of these groups, of their index 2 subgroups, and
of the second Zs-extension of these subgroups.

6 The orbifolds

It remains to prove that the orbifolds in figure 1 have the required fundamental groups.
Using the Wirtinger algorithm, the fundamental groups of the orbifolds Q1 25(1, m,n)
and QQ25(1, m,n) were calculated in [13, 10] respectively. The remaining fundamental
groups can be calculated in a similar manner. We leave the detailed calculations as
an exercise.

We will now show how we arrived at these orbifolds and describe the symmetries
some of them exhibit. In finding the orbifolds corresponding to the arithmetic Kleinian
groups GT'(3,3,2; W (r,s,a,b)) obtained in Section 3, we need to consider the pairs
(r,s) at (7).

The orbifolds @ s(I,m,n) were obtained in [14] and the orbifold Qq5(l,m,n) was
obtained in [10]. To find the orbifolds Qs37(l,m,n), Q2.11(l,m,n) we start with the
2-bridge knots Bi, Bi! and then experiment with the positioning of the unknotting
tunnels so as to produce graphs Gr which, when labelled [, m, n to indicate branching
indices, describe orbifolds with the required fundamental groups.

We can obtain the orbifolds corresponding to the Zs-extensions of the groups
GT(3,3,2;W(r,s,a,b)) by considering the symmetries of the orbifolds @, s(3, 3,2) we
have just described. The singular sets of each of the orbifolds @, (3, 3,2) can each
be redrawn so as to admit two distinct automorphisms X, Y (say) which interchange
the edges labelled 3, and which can be realised as rotations by an angle 7 about some
axes T, Y.

The quotient orbifolds @, 4(3,3,2)/( X ) and Q,4(3,3,2)/( Y ) correspond to
the Zs-extensions of GT'(3,3,2; W (r,s,a,b)). We illustrate this with the orbifold
(1.4(3,3,2), which we redraw as

Let X,Y be rotations by 7 about axes x,y respectively where the direction of z is
from the top to the bottom of the page, and y is perpendicular to the page.

12



Then

Q1,4(3: 37 2)/< X > =

where the open ends are joined at infinity, and this can easily be deformed to Q1 5(2, 3, 2).
The second quotient

Q1,4(3a 3, 2)/< X > = /
2

can be deformed to @35(2,3,2). Thus Q14(3,3,2) double covers Q15(2,3,2) and
()35(2,3,2). In the same way we can show that for the remaining pairs (r,s) the
orbifold @, (3,3, 2) double covers Q and Q" where

Q = QS*P725(27 35 2)7
o Qs4r25(2,3,2) if s is even
T Qpes(2,3,4)  if sis odd

and p=rifris even and p = s — r if r is odd.
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