
 

Essex Finance Centre 

Working Paper Series 

 

Working Paper No 53: 12-2019 

 

 

 

 

“Testing for Episodic Predictability in Stock Returns” 

 

 

“Matei Demetrescu, Iliyan Georgiev, Paulo M. M. Rodrigues, A.M. 

Robert Taylor” 

 

 

 

 

 

 

 

 

 

Essex Business School, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ 

Web site: http://www.essex.ac.uk/ebs/  

 

http://www.essex.ac.uk/ebs/


Testing for Episodic Predictability in Stock Returns∗

Matei Demetrescua, Iliyan Georgievb, Paulo M. M. Rodriguesc and A. M. Robert Taylord
a Institute for Statistics and Econometrics, Christian-Albrechts-University of Kiel

b Department of Economics, University of Bologna
c Banco de Portugal and NOVA School of Business and Economics

d Essex Business School, University of Essex

December 30, 2019

Abstract

Standard tests based on predictive regressions estimated over the full available sample data have
tended to find little evidence of predictability in stock returns. Recent approaches based on the
analysis of subsamples of the data suggest in fact that predictability where it occurs might exist
only within so-called “pockets of predictability” rather than across the entire sample. However,
these methods are prone to the criticism that the subsample dates are endogenously determined
such that the use of standard critical values appropriate for full sample tests will result in in-
correctly sized tests leading to spurious findings of stock returns predictability. To avoid the
problem of endogenously-determined sample splits, we propose new tests derived from sequences
of predictability statistics systematically calculated over subsamples of the data. Specifically, we
will base tests on the maximum of such statistics from sequences of forward and backward recur-
sive, rolling, and double-recursive predictive subsample regressions. We develop our approach
using the over-identified instrumental variable-based predictability test statistics of Breitung
and Demetrescu (2015). This approach is based on partial-sum asymptotics and so, unlike many
other popular approaches including, for example, those based on Bonferroni corrections, can be
readily adapted to implementation over sequences of subsamples. We show that the limiting null
distributions of our proposed test statistics depend in general on whether the putative predictor
is strongly or weakly persistent and on any heteroskedasticity present (indeed on any time-
variation present in the unconditional variance matrix of the innovations), the latter even if the
subsample statistics are based on heteroskedasticity-robust standard errors. As a consequence,
we develop fixed regressor wild bootstrap implementations of the tests which we demonstrate
to be first-order asymptotically valid. Finite sample behaviour against a variety of temporarily
predictable processes is considered. An empirical application to US stock returns illustrates the
usefulness of the new predictability testing methods we propose.
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1 Introduction

A large body of empirical research has been undertaken investigating whether stock returns can be

predicted. Therein, a wide range of financial and macroeconomic variables have been considered as

putative predictors for returns, including valuation ratios such as the dividend-price ratio, dividend

yield, earnings-price ratio, book-to-market ratio, various interest rates and interest rate spreads,

and macroeconomic variables including inflation and industrial production.

Early empirical studies, including Fama (1981), Keim and Stambaugh (1986), Campbell (1987),

Campbell and Shiller (1988a,b), Fama and French (1988, 1989) and Fama (1990), often found

significant evidence of in-sample predictability of U.S. stock index returns, at least over relatively

long horizons. It has since been argued, however, that these findings could be spurious. Nelson

and Kim (1993) and Stambaugh (1999) show that strongly persistent predictors lead to biased

coefficients in predictive regressions if the innovations driving the predictors are correlated with

returns, as is argued to be the case for many of the variables used as predictors; e.g., the stock price

is a component of both the return and the dividend yield. Goyal and Welch (2003) show that the

persistence of dividend-based valuation ratios increased significantly over the typical sample periods

used in empirical studies, and argue that, as a consequence, out-of-sample predictions using these

variables are no better than from a no-change strategy. Predictability tests which are asymptotically

valid when the predictor is strongly persistent and driven by innovations which are correlated with

returns have been proposed in Cavanagh et al. (1995), Campbell and Yogo (2006), Kostakis et al.

(2015), Breitung and Demetrescu (2015), Elliott et al. (2015) and Jansson and Moreira (2006), inter

alia. When such robust techniques are used the statistical evidence of predictability is considerably

weaker and often disappears completely; see, among others, Ang and Bekaert (2007), Boudoukh et

al. (2007), Welch and Goyal (2008) and Breitung and Demetrescu (2015).

The foregoing approaches are based on a maintained assumption that the coefficients of the

predictive regression model are constant over time. However, there are several reasons to suspect

that if returns are predictable, then it is likely to be a time-varying phenomenon. The business

cycle, time-varying risk aversion, rare disasters, structural breaks, speculative bubbles, investor’s

market sentiment, and regime changes in monetary policy have all be cited as possible reasons; see,

e.g., Pesaran and Timmermann (2002). For example, significant changes in monetary policy and

financial regulations could lead to shifts in the relationship between macroeconomic variables and

the fundamental value of stocks, via the impact of these changes on economic growth and the growth

rates of earnings and dividends. Timmermann (2008) argues that for most time periods returns are

not predictable but that there are ‘pockets in time’ where evidence of local predictability is seen.

In particular, if predictability exists as a result of market inefficiency rather than because of time-

varying risk premia, then rational investors will attempt to exploit its presence to earn abnormal

profits. Assuming a large-enough proportion of investors are rational, this behaviour will eventually

cause the predictive power of the relevant predictor to be eliminated. If a variable begins to have

predictive power for returns then a window of predictability might exist before investors learn

about that relationship, but it will eventually disappear; see, in particular, Paye and Timmermann

(2006), Timmermann (2008) and Farmer et al. (2018). It therefore seems reasonable to consider

the possibility that the predictive relationship might change over time, so that over a long span of

data one may observe some windows of time during which predictability occurs.

A growing body of empirical evidence is supportive of the view that the slope parameter in
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prediction models for returns varies over time. Henkel et al. (2011) find that return predictability

in the stock market appears to be closely linked to economic recessions with dividend yield and

term structure variables displaying predictive power only during recessions. Similarly, Gargano et

al. (2017) find that commodity returns are predictable using macroeconomic information, but again

only during recessions. Lettau and Ludvigsson (2001) find evidence of instability in the predictive

ability of the dividend and earnings yield in the second half of the 1990s. Goyal and Welch (2003)

and Ang and Bekaert (2007) find instability in prediction models for U.S. stock returns based on

the dividend yield in the 1990s. Other studies which report evidence of time-varying behaviour

in stock return predictability include Barberis (2000), Lettau and van Nieuwerburgh (2008), Welch

and Goyal (2008), Pástor and Stambaugh (2009, 2012), Pettenuzzo and Timmermann (2011), Dangl

and Halling (2012), Gonzalo and Pitarakis (2012), Rapach and Wohar (2006) and Giannetti (2007),

inter alia. In the context of predicting the equity premium, Kolev and Karapandza (2017) find that,

for a given set of predictors, alternative data splits often lead to strongly contradictory outcomes

concerning return predictability. Paye and Timmermann (2006) undertake a comprehensive analysis

of prediction model instability for international stock market indices using conventional Bai-Perron

structural break tests and report statistically significant evidence of structural breaks for many of

the countries considered, arguing that the “[e]mpirical evidence of predictability is not uniform over

time and is concentrated in certain periods” (op. cit. p.312). Paye and Timmermann (2006) also

cite a number of applied studies which find significant evidence of in-sample (ex post) predictability

in returns data but yet find very weak evidence of out-of-sample (ex ante) predictability, and argue

that a possible explanation is structural instability in the predictive relations involved.

A limitation of many of the statistical techniques used in previous research on the instability of

return prediction models is that they are not designed for use with highly persistent, endogenous

predictors. Paye and Timmermann (2006) investigate the effects of persistence and endogeneity of

the regressors on the Bai-Perron tests for structural breaks using Monte Carlo simulations. Their

simulations reveal that size distortions, whereby parameter change is falsely signalled when none

is present, can be substantial. They also show that some of the tests lack power in this context

because of the large amount of noise typically present in predictive regression models. Moreover,

because tests from predictive regression models based on the full sample of available data will have

relatively low power to detect short windows of predictability, a number of these studies applied

such tests to separate subsamples of the data (data splits) with the timings of those subsamples

either chosen by the practitioner or performed over a large set of possible subsamples of the data.

In both cases the critical values which would apply to the test run on the full sample cannot validly

be used. In the former case because the subsamples are endogenously determined. For the latter

case the probability of spuriously signalling a predictive relationship when none is present will tend

to one as the number of subsamples considered increases; see Inoue and Rossi (2005) for a detailed

discussion of this problem in relation to the use of t-tests.

With these issues in mind, our goal is to provide size controlled tests designed to detect pre-

dictability regardless of whether it applies across the entire available sample or within pockets of

predictability. Our proposed tests are based on predictability statistics obtained from sequences of

predictive regressions computed over subsamples of the data. In particular we will consider forward

and backward recursive sequences of predictive regressions as well as rolling and double-recursive

sequences. For each of these sequences of statistics the proposed test will be given by the largest
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(in absolute value) outcome. Because the range of subsamples considered in each sequence is set

without reference to the particular data set involved this avoids the problem of endogenously cho-

sen sample splits. Moreover, by considering the maximum of the sequences we avoid the spurious

detection issues discussed in Inoue and Rossi (2005). As we will demonstrate in the Monte Carlo

experiments considered in the paper, each of these sequences has particular patterns of local pre-

dictability that it is well designed to detect. For example, the test based on the (forward) reverse

recursive sequence of statistics is suited to detecting (beginning-of-sample) end-of-sample pockets of

predictability. As such, the reverse recursive based tests could usefully be employed in an on-going

monitoring exercise for the emergence of predictive regimes. Because both the forward and reverse

recursive sequences contain the usual full sample predictability test, they also deliver tests which

have power to detect predictability which holds over the whole sample. For a given window width,

tests based on a rolling sequence of statistics are designed to pick up a window of predictability, of

roughly the same length, within the data. The double-recursive sequence amounts to considering

all possible window width rolling sequences, subject to a minimum width. These then are useful for

picking up multiple predictive regimes of potentially different lengths within the data.

The approach we take has implications for the type of predictability statistics that can be

used, as it will be necessary to characterize the joint behaviour of the full sequence of statistics

in order to conduct inference. Some commonly used testing approaches such as those based on

the Bonferroni inequality (e.g. Campbell and Yogo, 2006) or on bias corrections (e.g. Amihud and

Hurvich, 2004) are difficult to implement for sequences of statistics; the same holds for technically

more involved procedures such as those proposed by Jansson and Moreira (2006) or Elliott et al.

(2015). Rather we will use tests based on instrumental variable [IV] estimation which benefit

from the fact that closed-form expressions for the test statistics exist, which can be characterised

using familiar partial-sum-based asymptotics. Specifically we will adapt the full sample methods

from Kostakis et al. (2015) who propose the use of the so-called extended IV, or IVX, approach,

and Breitung and Demetrescu (2015) who propose the combination of several instruments with

complementary properties. While the marginal null limiting distribution (at least when based on

heteroskedasticity-robust standard errors) of any one of the subsample statistics in the sequences

considered does not depend on either the degree of persistence or endogeneity of the regressors in

the predictive regression, or on any heteroskedasticity present in the shocks, we show this is not the

case for the limiting null distribution of the maximum statistics from these sequences. We therefore

propose fixed regressor wild bootstrap implementations of the maximum tests and demonstrate

that these are first-order asymptotically valid under heteroskedasticity, irrespective of whether the

regressors are strongly or weakly persistent.

The paper is organised as follows. Section 2 introduces the time-varying predictive regression

model we consider together with the assumptions needed for our analysis. Section 3 reviews the

standard full sample IV-based predictability tests, while Section 4 details the subsample implemen-

tations of these statistics across the various sequence types discussed above and discusses relevant

instruments that can validly be used in the context of our proposed approach. Representations for

the limiting distributions of these statistics under both the null and local alternatives are provided

and are shown to depend on any heteroskedasticity present, regardless of whether the putative

predictor follows a strongly persistent process (modeled as near-integrated) or a weakly persistent

process (modeled as a stable autoregression). Moreover, the form of these limiting distributions
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depends on whether the predictor is near-integrated or weakly dependent, even under homoskedas-

ticity. Section 5 discusses fixed regressor wild bootstrap implementations of our proposed tests

and demonstrates the first-order asymptotic validity of these. Section 6 presents the results from a

Monte Carlo analysis into the finite sample behaviour of the tests under both the null hypothesis of

no predictability and alternatives where local predictability occurs within the data. An application

to monthly U.S. stock returns data is presented in section 7. Section 8 concludes. An accompa-

nying on-line supplementary appendix provides detailed proofs of the technical results given in the

paper along with extensions to allow for multiple predictors and a general deterministic component,

additional material relating to our empirical application and additional simulation results.

The notation Dk will be used to denote the space of càdlàg real functions on [0, 1]k equipped

with the Skorokhod topology, and we abbreviate D1 to D. The weak convergence of probability

measures on both function spaces (in particular, on Dk) and on Rk is denoted by⇒. We reserve the

notation P, E etc. for probability, expectation etc. with respect to the distribution of the original

data and use P∗, E∗ etc. for probability, expectation etc. induced by the data and the wild bootstrap

multipliers (denoted {Rt}) conditionally on the data. The notation
w⇒p stands for weak convergence

in probability; specifically, ζ∗T
w⇒p ζ holds for random elements ζ∗T and ζ, not necessarily defined

on the same probability space, if E∗ f(ζ∗T )→E f (ζ) in P-probability for all bounded continuous

real functions f with matching domain. In the special case ζ = 0 ∈ R, we recall that ζT
w⇒p 0

(equivalently, ζT = op∗(1) in P-probability) means that P∗ (|ζT | > ε)→ 0 in P-probability for every

ε > 0. Finally, ζT = Op∗(1) in P-probability signifies that for every ε > 0 there exists a K > 0 such

that P {P∗ (|ζT | > K) < ε} > 1− ε for all T . The op and Op symbols retain their usual meaning.

2 The Episodic Predictive Regression Model

The basic predictive regression model for stock returns, yt, allowing for time-variation in the slope

coefficient on the predictor variable, is taken to be of the form

yt = β0 + β1,txt−1 + ut, t = 1, . . . , T (2.1)

where xt, t = 0, ..., T , is observed and satisfies the data generating process [DGP]

xt = µx + ξt, t = 0, . . . , T (2.2a)

ξt = ρ ξt−1 + vt, t = 1, . . . , T (2.2b)

with ξ0 a mean zero Op(1) variate. The innovations ut are martingale difference [MD] sequences,

while vt is allowed to exhibit weak serial dependence. For expositional simplicity we have only

allowed for a single predictive regressor, xt−1, and an intercept in (2.1). Generalisations to the

case where the predictive regression contains multiple predictors and/or a general deterministic

component of the form considered in section 3.2 of Breitung and Demetrescu (2015) are detailed in

section S.2 of the supplementary appendix.

The DGP in (2.1) generalises the constant parameter predictive regression model by allowing the

slope coefficient on xt−1 to vary over time, thereby allowing for changes over time in the predictive

content of the regressor xt−1. The constant parameter predictive regression model obtains by setting

a constant slope parameter such that β1,t = β1, for all t = 1, . . . , T . Our interest will focus in this
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paper on testing the usual null hypothesis that (yt−β0) is a MD sequence and, hence, that yt is not

predictable by xt−1, which entails that β1,t = β1 = 0, for all t = 1, . . . , T , in (2.1). In contrast to

the extant literature which tests this null hypothesis against the alternative that yt is predictable

by xt−1 with a constant slope parameter holding across the whole sample, that is β1 6= 0, under

the maintained hypothesis that β1,t = β1, for all t = 1, . . . , T , we will test against alternatives such

that β1,t 6= 0 for some t but without imposing constancy on β1,t. Some structure obviously needs to

be placed on the class of alternative hypotheses we may consider and this will be formalised below.

As discussed in the Introduction it is important to allow for the possibility of high persistence in

the predictor variable xt and to allow the shocks driving the predictor, vt in (2.2), to be correlated

with the unpredictable component of stock returns, ut in (2.1). As regards the latter, we will allow

ut and vt to be contemporaneously correlated and heteroskedastic; exact conditions will be detailed

in Assumption 3. For the former, we allow ρ in (2.2) to satisfy the following assumption.

Assumption 1 Exactly one of the two following conditions holds true:

1. Weakly persistent predictors: The autoregressive parameter ρ in (2.2) is fixed and bounded

away from unity, |ρ| < 1.

2. Strongly persistent predictors: The autoregressive parameter ρ in (2.2) is local-to-unity

with ρ := 1− c
T where c is a fixed non-negative constant.

Remark 1. Many predictors are strongly persistent, exhibiting sums of sample autoregressive

coefficients which are close to unity. Near-integrated asymptotics has been found to provide better

approximations for the behaviour of test statistics in such circumstances; see, inter alia, Elliott

and Stock (1994). However, a large part of the literature works with models which take xt to

be generated from a stable autoregressive process; see, for example, Amihud and Hurvich (2004).

Assumption 1 allows for either of these possibilities to hold on xt. ♦

We will develop tests for the null hypothesis that yt is not predictable by xt−1 in any subsample,

which do not require the practitioner to know which of Assumption 1.1 or Assumption 1.2 holds

in (2.2), nor indeed what the precise value of ρ is in either case. Moreover, we aim to develop

tests which possess non-trivial asymptotic local power against DGPs where predictability is present.

Predictive regressions for stock returns typically exhibit small R2 and low signal-to-noise ratios (see,

inter alia, Campbell, 2008, and Phillips, 2015) so departures from the null, should predictability be

present, are small. We will therefore conduct our theoretical analysis of the large sample properties

of the tests we discuss under local alternatives such that the slope parameter β1,t is local-to-zero for

an asymptotically non-vanishing set of the sample observations. The localisation rate (or Pitman

drift) will need to be such that β1,t is specified to lie in a neighbourhood of zero which shrinks

with the sample size, T . The appropriate Pitman drift is dictated by which of Assumption 1.1

and Assumption 1.2 holds in (2.2). Where xt is near-integrated the appropriate rate is T−1, while

for weakly dependent xt−1, the rate is T−1/2. The different localisation rates reflect the fact that

near-integration implies a much stronger signal from the predictor xt−1. Moreover, tests based on

the maxima from sequences of subsample predictability test statistics can only deliver non-trivial

asymptotic local power in cases where an asymptotically non-vanishing fraction of the data is such

that β1,t 6= 0 holds on the DGP. For example, if β1,t 6= 0 at one time point only, then although

this would formally violate the null that yt is not predictable by xt−1, this data point would, as
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T →∞, however be dominated by the remaining T −1 data points where the null hypothesis holds.

Formally, in our framework we specify β1,t to satisfy the following assumption.

Assumption 2 In the context of (2.1) and (2.2), let β1,t := n−1
T b (t/T ) , where b(·) is a piecewise

Lipschitz-continuous real function on [0, 1], with nT =
√
T under Assumption 1.1, and nT = T

under Assumption 1.2.

Using the framework of Assumption 2 we can then equivalently write our null hypothesis that

β1,t = 0, for all t = 1, . . . , T , as

H0 : The function b(τ) is identically zero for all τ ∈ [0, 1]. (2.3)

We can now also formally specify the alternative hypothesis as,

H1,b(·) : The function b(·) is non-zero over at least one non-empty open interval contained in [0, 1].

(2.4)

Remark 2. The alternative hypothesis specified by H1,b(·) is very general but entails that at least

one subset of the sample observations (this need not be a strict subset, so it could contain all of the

sample observations) comprising contiguous observations exists for which β1,t 6= 0, and where the

size of this subset is proportional to the sample size T . Notice that under H1,b(·) the integral of |b(·)|
on [0, 1] is non-zero and it is this property which qualifies H1,b(·) as a genuine (local) alternative.

Moreover, as we will establish later, the form that b(·) takes under H1 determines the local power

offsets obtained in the limiting distributions of the statistics we propose. Notice also that, under

H1,b(·), b(·) may be zero in certain parts of its domain and it may also change magnitude and/or

sign over its domain; the former corresponds to data points where β1,t = 0, while the latter reflects

observations for which β1,t does not have a fixed magnitude and/or sign across the full sample. ♦

We conclude this section by detailing in Assumption 3 the conditions that we will place on the

disturbances ut and vt in (2.1) and (2.2).

Assumption 3 Let(
ut

vt

)
=

(
1 0

0 B (L)

)
H(t/T )

(
at

et

)
, with

(
at

et

)
∼White Noise (0, I2) , (2.5)

where Ik denotes the k × k identity matrix and:

1. ζt := (at, et)
′ is a uniformly L4-bounded martingale difference sequence which is such that

supt E
∣∣E (ζtζ′t − I2|ζt−m, ζt−m−1, . . .

)∣∣→ 0 as m→∞;

2. H(·) :=

(
h11(·) h12(·)
h21(·) h22(·)

)
is a matrix of piecewise Lipschitz-continuous bounded functions

on (−∞, 1], which is of full rank at all but a finite number of points;

3. B (L), where L denotes the usual lag operator, is an invertible lag polynomial with b0 = 1 and

1-summable coefficients,
∑

j≥0 j |bj | <∞, for which ω :=
∑

j≥0 bj > 0.
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Remark 3. The structure in (2.5) imposes that the disturbances ut are uncorrelated with the

increments of xt at all (positive) lags. Where ζt is independent and identically distributed [IID], this

structure would entail that xt−1 is weakly exogenous with respect to ut, and we will continue (with

an abuse of language) to use the same term as a shorthand to describe this structure irrespective

of whether ζt is IID or not. Assumption 3.3 allows the increments to the predictor xt−1 to be

serially correlated. These dynamics are not restricted beyond a 1-summability regularity condition

on the moving average representation, as is typical in this literature; see, for example, Breitung and

Demetrescu (2015) and Kostakis et al. (2015). ♦

Remark 4. Assumption 3 allows for quite general forms of heteroskedasticity in (ũt, ṽt)
′ :=

H(t/T ) (at, et)
′ and hence in ut and vt. In particular, Assumption 3.1 imposes a MD structure

on ζt allowing for conditional heteroskedasticity which is natural for the empirical applications to

financial data we have in mind. Assumption 3.1 also imposes finite fourth moments; while daily

returns often display very fat tails (see, for example, Nicolau and Rodrigues, 2019) such that the

assumption of finite fourth order moments might not be a suitable assumption for daily data,

standard predictive regression models have tended to be run on lower frequency data (monthly,

quarterly or even annual data) where infinite kurtosis does not appear to be a concern. Assumption

3.1 places summability conditions on the cross-product moments of the innovations which limits

the degree of serial dependence allowed in the conditional variances; these conditions are satisfied,

for example, by strictly stationary and ergodic MD sequences with finite variance. Assumption 3.2

allows for unconditional time heteroskedasticity in the innovations through the matrix H(τ). Where

H(τ) is diagonal for all τ ∈ [0, 1] the innovations (ũt, ṽt)
′ can display time-varying variances but

are contemporaneously uncorrelated, so in the case where ζt is IID with independent components,

this would entail that xt is strictly exogenous with respect to ut (again we will use this terminology,

with an abuse of language, whether ζt is IID or not). Importantly, the off-diagonal elements of

H(τ)H(τ)′ (i.e., the covariance matrix of (ũt, ṽt)
′) are not imposed to be zero, thus allowing for

contemporaneous and time-varying correlation among the innovations. The structure placed on

H(τ) by Assumption 3.2 allows for a wide class of models for the behaviour of the variance matrix

of the innovations including single or multiple (co-) variance shifts, variances which follow a broken

trend, and smooth transition variance shifts. As discussed in Breitung and Demetrescu (2015,

p.360), such patterns are plausible with macro and financial data and it is therefore important to

use tests which are robust to such behaviour to avoid the possibility of spurious rejection of the null

because of non-constancy in the variance matrix rather than genuine predictability from xt−1. ♦

Under Assumption 1.1, xt is a particular case of a locally stationary process which admits a

time-varying variance when the series vt displays time-varying volatility. In fact, the variance of

the putative predictor is given as Var
(
xbτT c

)
≈ σ̄2

ξ(ρ)
(
h2

21(τ) + h2
22(τ)

)
, where σ̄2

ξ(ρ) denotes the

sum of the squared coefficients of the lag polynomial (1− ρL)−1B(L) (which is finite in the stable

autoregression case). This form of heteroskedasticity impacts on the inferential procedures based

on subsample sequences of statistics discussed in this paper. Furthermore, time-varying volatility

where present in the regression errors, ut, and in the instrumental variables used in constructing

the statistics can also affect the behaviour the sequences of statistics.

Heteroskedasticity has analogous effects under Assumption 1.2 (near-integration), though the

transmission mechanism is somewhat different. In particular, under Assumption 3 we have that
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1√
T

∑bτT c
t=1 H(t/T )ζt ⇒

∫ τ
0 H(s)dW (s) =: (U(τ), V (τ))′ on D2, where W is a two-dimensional

standard Wiener process (see e.g. the invariance principle from Boswijk et al., 2016), such that

1√
T

bτT c∑
t=1

(
ut

vt

)
⇒

(
1 0

0 ω

)∫ τ

0
H(s)dW (s) =:

(
U(τ)

ωV (τ)

)
(2.6)

on D2. The processes U(τ) and ωV (τ) are individually time-transformed Brownian motions whose

correlation may also vary over time; their covariance at time τ is given by ω
∫ τ

0 H(s)H(s)′ds. Under

Assumption 1.2 xt satisfies the invariance principle, 1√
T
xbτT c ⇒ ωJc,H(τ), where Jc,H(τ) is an

Ornstein-Uhlenbeck-type process driven by V (τ), i.e., Jc,H(τ) :=
∫ τ

0 e
−c(τ−s)dV (s). Notice that

Jc,H(τ) is a heteroskedastic process when H(·) is not constant: the quadratic variation processes of

U (τ) and V (τ), given by [U ] (τ) :=
∫ τ

0

(
h2

11(s) + h2
12(s)

)
ds and [V ] (τ) :=

∫ τ
0

(
h2

21(s) + h2
22(s)

)
ds,

respectively, are nonlinear in general, and their quadratic covariation process is given by [UV ] (τ) :=∫ τ
0 (h11(s)h21(s) + h12(s)h22(s)) ds.

3 Full Sample Predictability Tests

Consider the maintained hypothesis that the slope parameter β1,t in (2.1) is constant, such that

β1,t = β1, for all t = 1, . . . , T . This yields the standard constant parameter predictive regression

yt = β0 + β1xt−1 + ut, t = 1, . . . , T. (3.1)

A number of procedures have been developed for testing H0 : β1 = 0 in (3.1) against the local

alternative Hc : β1 = n−1
T b1, with b1 a non-zero constant. Of these the simplest is the standard

(full sample) ordinary least squares [OLS] t-test for the significance of xt−1 in (3.1). While standard

normal asymptotic theory applies to the t-statistic under Assumption 1.1 provided the errors are

homoskedastic (although this can be weakened by using heteroskedasticity-robust standard errors),

it does not under Assumption 1.2 where the limiting null distribution of the t-statistic is nonstandard

and depends on the local-to-unity parameter c unless xt is strictly exogenous with respect to ut.

Tests robust to c have been developed in Elliott and Stock (1994), who propose a Bayesian

mixture procedure, and Cavanagh et al. (1995) and Campbell and Yogo (2006) who develop tests

based on conservative bounds, and Jansson and Moreira (2006), who conduct inference on the ba-

sis of conditionally sufficient statistics. However, these procedures are all developed for the case

where xt is near-integrated, i.e. such that Assumption 1.2 holds, and for the case of homoskedastic

disturbances. Variable addition [VA] techniques (see Breitung and Demetrescu (2015, p.359) for

a literature review) can be used to develop predictability tests which can be validly used regard-

less of whether xt is local-to-unity or stationary. However, these VA-based tests have only trivial

asymptotic local power against the Pitman rate, T−1, where xt is near-integrated. Breitung and

Demetrescu (2015) show that the finite sample power of the VA-based tests is indeed very low

relative to the tests designed for the use with near-integrated xt when the AR parameter ρ in (2.2)

is close to unity. They also develop modifications of the VA approach but some loss of power still

remains. Gorodnichenko et al. (2012) proposed tests based on quasi-differencing but like the original

VA-based tests these only have power in T−1/2 neighbourhoods of the null.

Breitung and Demetrescu (2015) also examine tests based on the instrumental variables [IV]
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approach. They show that these can be validly implemented in the presence of endogeneity and

uncertain regressor persistence and heteroskedasticity of the form specified in section 2. The basic

idea underlying IV estimation of the predictive regression model is to use instruments such that the

instrument has lower persistence than the regressor xt−1 (so-called type-I instruments), or is such

that the instrument is strictly exogenous with respect to ut (so-called type-II instruments). Formal

conditions which must hold on these instruments are given in Breitung and Demetrescu (2015).

A range of possible type-I instruments is given in Breitung and Demetrescu (2015, p.361).

These comprise: (i) a short memory instrument whereby we generate zt−1 = (1 − ᾱL)−1
+ ∆xt−1

:= ∆xt−1 + ᾱ∆xt−2 + · · ·+ ᾱt−2∆x1 with |ᾱ| < 1; (ii) a mildly integrated instrument, generated as

zt−1 = (1− αTL)−1
+ ∆xt−1, for αT := 1− aT−γ with a > 0, 0 < γ < 1; (iii) a fractionally integrated

instrument, generated as zt−1 = (1 − L)1−d∗xt−1I(t > 0) := ∆1−d∗
+ xt−1 for some d∗ ∈ (0, 1/2); (iv)

a long differences instrument, generated as zt−1 = xt−1 − xt−kT for KT := min{bKT υc, t − 1} for

some 0 < υ < 1 and positive constant K. The use of the mildly integrated instrument in (ii) is

an example of the so-called IVX approach of Phillips and Magdalinos (2009). In each case the

generated instrument is, by design, free of a stochastic trend and hence less persistent than a near-

integrated process, regardless of whether xt−1 is near-integrated or stationary. Being filtered versions

of xt−1, these instruments are driven by the same innovations and it is therefore expected that they

provide valid instruments for xt−1; at the same time, the reduced persistence leads to standard

inference. Breitung and Demetrescu (2015, p.362) also discuss the following type-II instruments:

(i) a generated random walk, zt−1 = (1 − L)−1
+ wt−1 where wt ∼ IID(0, σ2

w) with wt independent

of ut and vt; (ii) deterministic functions of time, such as zt−1 = (t− 1) or zt−1 = sin(π(t− 1)/2T ),

and (iii) Cauchy instruments, zt−1 = sign(xt−1). Each of these is exogenous with respect to ut by

construction. However, they do not exploit any specific information about xt, other than where xt

is near-integrated in which case they will be correlated with xt; see Phillips (1998).

Simulation evidence in Breitung and Demetrescu (2015) shows that tests based on type-II instru-

ments are significantly more powerful than those based on type-I instruments when xt is strongly

persistent. However, these instruments will be weak, in the sense that they will be almost uncor-

related with the regressor, where xt is stationary. In such cases, Breitung and Demetrescu (2015)

show that the resulting IV test for β1 = 0 in (3.1) will have only trivial power. In order to simul-

taneously exploit the settings which result in superior power properties for the IV approach based

on type-I and type-II instruments, Breitung and Demetrescu (2015) recommend the use of a test

which combines two instruments for xt−1, one of each type, which we denote by zI,t−1 and zII,t−1,

collected into the vector zt−1 := (zI,t−1, zII,t−1)′ for t = 1, . . . , T . The general form of the resulting

full sample IV-combination test statistic of Breitung and Demetrescu (2015), implemented with

Eicker-White standard errors to account for heteroskedasticity satisfying Assumption 3, is given by

tβ1
:=

A′TB−1
T CT√

A′TB−1
T DTB−1

T AT

(3.2)

whereAT :=
∑T

t=1 x̂t−1ẑt−1, BT :=
∑T

t=1 ẑt−1ẑ
′
t−1,CT :=

∑T
t=1 ẑt−1ŷt and DT :=

∑T
t=1 ẑt−1ẑ

′
t−1û

2
t ,

with ŷt, x̂t−1 and ẑt−1 denoting demeaned versions of yt, xt−1 and zt−1, respectively, so that, for

wt generically denoting either yt, xt−1 or zt−1, ŵt := wt − 1
T

∑T
s=1ws, and where ût denotes the

regression residuals from estimating (3.1). For the reasons outlined in Remark 4 of Breitung and

Demetrescu (2015), the IV-combination test must be run as two-sided and so we accordingly con-
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sider tests based on the square of tβ1
; that is t2β1

. The limiting null distribution of t2β1
is χ2

1 under

either Assumption 1.1 or 1.2; see Breitung and Demetrescu (2015) for details.

A variety of choices for the residuals ût used in constructing DT is possible. A natural choice

is the IV regression residuals so that ût := yt − β̂
iv

0 − β̂
iv

1 xt−1, where β̂
iv

j denotes the two-stage

least squares [2SLS] estimator of βj , j = 0, 1. However, both Breitung and Demetrescu (2015)

and Kostakis et al. (2015) recommend the use of OLS residuals on the grounds that they represent

the best linear projection of yt on xt−1 regardless of the persistence of the putative predictor, and

that their finite-sample behaviour appears to be more stable than that of IV residuals. Finally, one

could also use residuals computed under the null; i.e., ût := yt − 1
T

∑T
s=1 ys. Under the local alter-

natives considered in Assumption 2, these three possible choices can be shown to be asymptotically

equivalent to one another in so far as the behavior of (the suitably normalised) DT is concerned.

As we will subsequently see, a special case of the large sample results which will be presented

in section 4 is that the full-sample test based on t2β1
has non-trivial asymptotic local power against

H1,b(·) for both weakly and strongly persistent regressors. This property of the full sample IV-

based test statistic obtains through the limiting behaviour of the sample cross-product moment

AT . In particular, its two components are not of the same order of magnitude; therefore, upon

normalisation, one of these terms will converges to zero and so all weight is placed on the other

instrument. Which instrument gets full weight depends on the persistence of xt−1. The type-II

instrument is selected for strongly persistent predictors (i.e., those satisfying Assumption 1.2), while

the type-I instrument is selected for weakly persistent predictors (i.e., those satisfying Assumption

1.1); see the proof of Lemma S.6 in the supplementary appendix for details. As a result, regardless

of the degree of persistence of the regressor, the appropriate instrument is chosen in the limit.

However, as the simulation results in section 6 demonstrate, the finite sample power of the full

sample test can be quite low against such “pocket” alternatives. In the next section we therefore

propose tests based on sequences of subsample implementations of the IV-combination test statistic.

IV-based techniques are particularly useful to consider because the corresponding subsample-specific

statistics may be expressed in terms of partial sums, whose behaviour may in turn be characterised

in a tractable manner. This is not the case, for instance, with the test of Campbell and Yogo

(2006) or those of Elliott and Müller (2006) and Elliott et al. (2015), where the analysis of the joint

behavior of subsample-specific statistics is considerably more involved.

4 Subsample IV-Combination Tests for Predictability

Our aim is to develop predictability tests with good power to detect temporary periods of pre-

dictability irrespective of whether the putative predictor, xt−1 is stable or near-integrated, and

which are robust to the presence of heteroskedasticity in the data. To that end, we will base our

testing approach on the computation of the IV-combination predictability statistics outlined in the

previous section in the context of (3.2) computed not over the full available sample but over various

sequences of subsamples of the data. For each such sequence we consider, our proposed test will

be based on the maximum (in absolute value) statistic within that sequence. By taking the maxi-

mum over these sequences, we therefore base our test on the particular subsample within the given

sequence of subsamples where the predictability statistic gives the strongest signal of predictability.
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4.1 Choice of Instruments

Before laying out our subsample IV-combination testing approach, we first need to state some

regularity conditions which must hold on the type-I and type-II instruments such that we can validly

use a testing strategy based on sequences of subsample IV-combination predictability statistics. We

will then discuss the choice of instruments to use in practice which satisfy these conditions.

Assumption 4 details the conditions which need to hold on the type-I instrument used.

Assumption 4 Let zI,t obey the following conditions:

1. Under either Assumption 1.1 or Assumption 1.2: E
(
ζt|ζt−1, ζt−2, . . . , zI,t−1, zI,t−2, . . .

)
= 0,

there exists δI ≥ 0 such that T−δIzI,t is uniformly L4 -bounded, supτ∈[0,1]

∣∣∣ 1
T 1+δI

∑bτT c
t=1 zI,t−1

∣∣∣ p→

0, and supτ∈[0,1]

∣∣∣ 1
T 1+δI

∑bτT c
t=1 zI,t−1u

2
t

∣∣∣ = Op(1).

2. Under Assumption 1.1, and jointly on D

(a) 1
T 1+δI

∑bτT c
t=1 zI,t−1ξt−1 ⇒ KzIx (τ) , where KzIx (τ) is a Hölder-continuous stochastic pro-

cess of some order α > 0 and nonzero w.p.1;

(b) 1
T 1+2δI

∑bτT c
t=1 z2

I,t−1

p→ Kz2
I

(τ) , where Kz2
I

(τ) is a deterministic Hölder-continuous func-

tion of some order α > 0 and strictly increasing;

(c) 1
T 1/2+δI

∑bτT c
t=1 zI,t−1ut ⇒ GI(τ), where GI(τ) is a continuous process with independent

increments (and therefore, Gaussian), with GI(0) = 0 a.s., zero mean function, strictly

increasing variance function [GI ] (τ) and variance profile defined as ηI(τ) := [GI ](τ)
[GI ](1) ;

(d) 1
T 1+2δI

∑bτT c
t=1 z2

I,t−1u
2
t

p→ [GI ] (τ).

3. Under Assumption 1.2,

(a) supτ∈[0,1]

∣∣∣ 1
T 3/2+δI

∑bτT c
t=1 zI,t−1ξt−1

∣∣∣ p→ 0;

(b) 1
T 1+2δI

∑bτT c
t=1 z2

I,t−1

p→ Kz2
I

(τ) on D, where Kz2
I

(τ) is a deterministic Hölder-continuous

function of some order α > 0 and strictly increasing;

(c) supτ∈[0,1]

∣∣∣ 1
T 1/2+δI

∑bτT c
t=1 zI,t−1ut

∣∣∣ = Op(1);

(d) 1
T 1+2δI

∑T
t=1 z

2
I,t−1u

2
t = Op(1).

Remark 5. The conditions placed on zI,t−1 by Assumption 4 can differ depending on whether

Assumption 1.1 or Assumption 1.2 holds. This distinction is germane in cases where zI,t−1 is con-

structed from xt−1; see the examples listed in section 3. In such cases δI may take different values

for the same instrument, and, similarly, Kz2
I

(τ) may take different shapes under Assumptions 1.1

and 1.2. We do not, however, make this explicit to ease notation. Assumption 4.1 complements the

condition in Assumption 3.1 to ensure that the innovations ut are uncorrelated with the instruments.

Assumption 4.2 is new compared to Breitung and Demetrescu (2015), and is required because we

explicitly consider the behaviour of the IV-combination statistics under DGPs which can allow for

either weak or strong persistence in the (putative) predictors; it requires the instruments to have

stochastic properties similar to those of a stable autoregression driven by heteroskedastic innova-

tions. Assumption 4.3 is the analogue of Assumption 3 of Breitung and Demetrescu (2015) but is
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considerably less restrictive: rather than the weak convergence of suitably normalised cross-product

sample moments required there, we only require uniform boundedness in probability. Assumption

4.3(b) regarding the partial sums of the squared instrument is new, but would appear fairly mild.

Our conditions are weaker than those of Breitung and Demetrescu (2015) as we only consider the

IV-combination statistic with two instruments, one of type-I and the other of type-II. ♦

Remark 6. Although the weak convergence in Assumption 4.2 is joint, we do not specify the

dependence structure between the limiting processes because our asymptotic results will hold irre-

spective of this structure. We note, however, that the variance profile, ηI(·), which turns out to

play an important role in our asymptotics under stability (Assumption 1.1) depends on both the

choice of type-I instrument and the DGP (specifically, on H(·) and the unconditional variance of

ut); see Lemma 1 for an example. Similarly, the limiting processes KzIx(·) and Kz2
I
(·) also depend

on both the DGP and the choice of instrument; again, see Lemma 1 for an example. ♦

Assumption 5 details the corresponding regularity conditions on the type-II instrument.

Assumption 5 The variable zII,t is deterministic and, for some function Z (τ), Hölder-continuous

of order α > 1/2, and some δII ≥ 0, satisfies T−δIIzII,bτT c ⇒ Z (τ) in D where Z(·) is such that,

for all 0 ≤ τ1 < τ2 ≤ 1,
∫ τ2

τ1
Z̃2
τ1,τ2

(s)ds 6= 0 with Z̃τ1,τ2(s) := Z(s)− 1
τ2−τ1

∫ τ2

τ1
Z(s)ds.

Remark 7. Notice that the conditions stated in Assumption 5 do not involve the persistence

of the regressor because the type-II instruments are exogenous. Assumption 5 essentially coin-

cides with Assumption 4 of Breitung and Demetrescu (2015), up to minor differences. While

Assumption 4 of Breitung and Demetrescu (2015) allows for stochastic zII,t, it also requires the

average cross-products of the instrument and the regression error to have a mixed Gaussian lim-

iting distribution, such that it actually affords little additional flexibility in the choice of type-II

instruments relative to Assumption 5. Indeed, under the above assumptions it holds, for exam-

ple, that 1
T 1/2+δII

∑bτT c
t=1 zII,t−1ut ⇒

∫ τ
0 Z(s)dU(s) which is immediately seen to be a Gaussian

process, given that Z is deterministic. However, the quadratic variation process of
∫ τ

0 Z(s)dU(s),∫ τ
0 Z

2(s)
(
h2

11(s) + h2
12(s)

)
ds, is in general nonlinear in τ and depends, analogously to the case of

Assumption 1.1, on both the DGP and the choice of the instrument zII,t−1. Finally, notice that

Z(·) is not permitted to be constant for any of the subsamples over which the test statistics are

computed, as this would entail perfect multicollinearity in those subsamples. ♦

We also require further regularity conditions regarding the interaction of the type-I and type-II

instruments used. These are now collected in Assumption 6.

Assumption 6 For instruments zI,t and zII,t satisfying the conditions of Assumptions 4 and

5, respectively, it is also required that: 1. supτ∈[0,1]

∣∣∣ 1
T 1+δI+δII

∑bτT c
t=1 zI,t−1zII,t−1

∣∣∣ p→ 0; and 2.

supτ∈[0,1]

∣∣∣ 1
T 1+δI+δII

∑bτT c
t=1 zI,t−1zII,t−1u

2
t

∣∣∣ = Op (1).

Remark 8. Breitung and Demetrescu (2015) do not impose such conditions explicitly as they are

implied by the stricter set of assumptions under which they work. For instance, Assumption 6.1

would be implied by the weak convergence of the partial sums of zI,t−1 in Assumption 3 of Breitung

and Demetrescu, but we do not require such weak convergence here because Assumption 4.1 on the
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uniform boundedness of the partial sums of the type-I instrument, supτ∈[0,1]

∣∣∣ 1
T 1+δI

∑bτT c
t=1 zI,t−1

∣∣∣ p→
0, suffices for our purposes (and is, for example, implied by Assumption 3 of Breitung and Deme-

trescu under near-integration). Indeed, Assumption 6.1 only differs through the weights T−δIIzII,t−1,

which are deterministic; Assumption 6.2 can be seen as a randomly weighted version thereof, with

weights T−δIIzII,t−1u
2
t . Notice that Assumption 6.1 entails that the (appropriately scaled) type-I

and type-II instruments are mutually asymptotically orthogonal for all subsamples of the data,

t = bτ1T c+ 1, . . . , bτ2T c, such that 0 ≤ τ1 < τ2 ≤ 1. ♦

In the context of their full-sample predictability tests, Breitung and Demetrescu (2015) consider

the following choice for the type-II instrument, zII,t,

zII,t−1 = sin

(
kπ(t− 1)

2T

)
(4.1)

where k is a positive integer chosen by the practitioner. Breitung and Demetrescu (2015) find that

the best performing IV-combination test obtains for k = 1 in (4.1). For the type-I instrument we use

the IVX approach which has become popular in predictive regressions; see, among others, Gonzalo

and Pitarakis (2012); Phillips and Lee (2013) and Kostakis et al. (2015). This entails setting

zI,t−1 :=
t−1∑
j=0

%j∆xt−1−j with % := 1− a

T γ
(4.2)

for some a > 0 and γ ∈ (0, 1), with the convention that ∆x0 = 0. In Lemma 1 we show that these

two instruments satisfy the set of conditions required by Assumptions 4–6.1

Lemma 1 Let Assumptions 1 and 3 hold with ζt strictly stationary and ergodic such that, for some

ϑ > 0, supt∈Z
∣∣E ((ṽ2

t − E
(
ṽ2
t

))
ṽt−j ṽt−k

)∣∣ ≤ C (jk)−
1/2−ϑ/2. Then, Assumptions 4–6 are satisfied by

zt−1 := (zI,t−1, zII,t−1)′ when zII,t−1 and zI,t−1 are as defined in (4.1), for any positive integer k,

and (4.2), respectively. In particular, we have

1. Under Assumption 1.1, δI = 0, KzIx(τ) = Kz2
I
(τ) = σ̄2

ξ(ρ)[V ](τ) and GI(τ) is a time-

transformed Brownian motion given as T−1/2
∑bτT c

t=1 ξt−1ut ⇒ GI(τ), where this weak con-

vergence result holds jointly on D3 with the weak convergence given in (2.6), and

2. Under Assumption 1.2, δI = γ/2 and Kz2
I
(τ) = ω2

a [V ](τ).

Remark 9. The additional assumptions required to ensure the validity of the IVX instrument

are relatively mild. Strict stationarity and ergodicity restrict the weak stationarity of ζt required

in Assumption 3 such that the asymptotic behaviour of sample averages can be accounted for,

as required for example in Assumption 4.2. The additional condition on the rate of decay of

E
((
ṽ2
t − E

(
ṽ2
t

))
ṽt−j ṽt−k

)
imposes a form of short memory on the conditional variances. This rate

is obviously satisfied when E
((
ṽ2
t − E

(
ṽ2
t

))
ṽt−j ṽt−k

)
= 0, but is much weaker than that condition

and, hence, still allows for asymmetric volatility clustering. ♦
1We will formally establish this result for only these two instruments which will subsequently be used in both our

Monte Carlo study and empirical application. We conjecture, however, that the other examples of type-I and type-II
instruments considered in Breitung and Demetrescu (2015, pp.361-362) will also satisfy Assumptions 4–6.
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Remark 10. Under Assumption 1.1, the processes KzIx(τ) and Kz2
I
(τ) are both proportional to

the quadratic variation of V (τ), the limit process of the suitably normalised partial sums of ξt under

stability. This demonstrates the usefulness of the IVX instrument in that, under stability, zI,t−1 is

approximately equal to the stochastic component ξt−1 of the (putative) predictor, xt−1, such that

IVX effectively delivers the optimal instrument for xt−1 under Assumption 1.1. For a choice of

type-I instrument other than IVX this is, in general, not true and one obtains different processes

KzIx(τ) and Kz2
I
(τ) whose properties depend on the particular choice made; see also Corollary 2

of Breitung and Demetrescu (2015). Our large sample results will, however, be established under

Assumptions 4 and 5 and, as such, will hold irrespective of the particular shape or properties of

KzIx(τ) and Kz2
I
(τ). Furthermore, under Assumption 1.2 the IVX instrument will turn out to be

dominated uniformly over all subsamples by the type-II instrument, such that the precise properties

of Kz2
I

will not be relevant under near-integration.2 ♦

4.2 Subsample-Based Predictability Tests

For type-I and type-II instruments satisfying Assumptions 4-6, we can proceed to develop subsam-

ple implementations of the IV-combination predictability test discussed in section 3. To provide a

unified notation for such subsample statistics it will prove useful to define the subsample-specific

analogues AT (τ1, τ2), BT (τ1, τ2), CT (τ1, τ2) and DT (τ1, τ2) of the full-sample quantities AT ,

BT , CT and DT , respectively, used to construct the standard IV-combination statistic, tβ1
of (3.2).

These are defined analogously to their full-sample counterparts but for a sample consisting of obser-

vations t = bτ1T c + 1, . . . , bτ2T c, so that, for example, AT (τ1, τ2) :=
∑bτ2T c

t=bτ1T c+1 x̃t−1z̃t−1 where

ỹt, x̃t−1 and z̃t−1 are now subsample-specific demeaned versions of yt, xt−1 and zt−1, respectively,

so that, for wt generically denoting either yt, xt−1 or zt−1, w̃t := wt − 1
bτ2T c−bτ1T c

∑bτ2T c
s=bτ1T c+1ws.

The full-sample quantity is recovered on setting τ1 = 0 and τ2 = 1. Precise definitions of these

quantities are provided (in partial sum notation) in section S.3.1 of the supplementary appendix.

If it was known that a pocket of predictability might occur over the particular subsample t =

bτ1T c+ 1, . . . , bτ2T c, then it would be logical to compute the subsample IV-combination statistic3

tβ1
(τ1, τ2) :=

A′T (τ1, τ2) B−1
T (τ1, τ2)CT (τ1, τ2)√

A′T (τ1, τ2) B−1
T (τ1, τ2) DT (τ1, τ2) B−1

T (τ1, τ2)AT (τ1, τ2)
(4.3)

and a test for predictability in this specific subsample could be obtained by comparing (tβ1
(τ1, τ2))2

with the χ2(1) distribution. Indeed, this would be nothing more than the approach of Breitung and

Demetrescu (2015) applied to the particular subsample t = bτ1T c+1, . . . , bτ2T c. Such a test would

be expected to have considerably more power to detect a regime of predictability over the subsample

t = bτ1T c+ 1, . . . , bτ2T c than would the full sample test based on tβ1
of (3.2) because the former

would be calculated only for sample points where a predictive relationship holds.

In practice it is unlikely the practitioner will know which specific subsample(s) of the data might

admit predictive regimes. While some previous applied studies in the literature have considered a

2It should be noted, however, that Kz2
I
(τ) is also proportional to [V ](τ) under near-integration, albeit with a

different constant of proportionality; this is a consequence of the fact that zI,t is mildly integrated in this case.
3 In the context of DT (τ1, τ2) :=

∑T
t=1 z̃t−1z̃

′
t−1ũ

2
t , the residuals, ũ2

t , are now the subsample analogues of the
full sample residuals, û2

t , used in the construction of the full-sample statistic tβ1
in (3.2). The three possible choices

discussed there can also be used here for the subsample t = bτ1T c+1, . . . , bτ2T c. As with the full sample statistic, these
three are asymptotically equivalent in so far as the behaviour of (the suitably normalised) DT (τ1, τ2) is concerned.
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variety of sample splits and also looked at the evolution of predictive regression statistics over a

sequence of subsamples, these studies have tended to signal the presence of a predictive episode

based on comparing each of these subsample statistics with the critical value that would apply

when running a test for predictability on a single known subsample. As discussed in section 1, this

induces either multiple testing and/or endogenously determined breakdate problems and, hence,

does not deliver size-controlled tests; see, inter alia, Inoue and Rossi (2005). In order to control

for these issues, the critical value of the test needs to reflect the searching element involved. This

can be done by basing one’s test on certain functionals of the sequence of subsample predictability

statistics considered. Given we are testing the null of no predictability against the alternative of

predictability in at least one subsample of the data, an approach based on the maximum of the

sequence of subsample predictability statistics considered would seem appropriate. The specific

sequences of statistics that we take the maximum over must also be entirely agnostic of the data to

avoid any endogenous selection bias; we could not, for example, validly choose to take the maximum

statistic from the sequence of subsamples where previous studies had argued predictability holds.

There is an extensive literature on testing for fluctuations in the parameters of linear regression

models; see, inter alia, Kuan and Hornik (1995). Common choices of agnostic sequences of statis-

tics used include forward and reverse recursive sequences, rolling sequences, and double-recursive

sequences. We will adopt these choices here and base our tests on the maximum statistic taken over

each of these sequences of statistics. These can be formally defined as follows:

• The sequence of forward recursive statistics is given by {(tβ1
(0, τ))2}τL≤τ≤1, where the parameter

τL ∈ (0, 1) is chosen by the user. The forward recursive regression approach uses bTτLc start-up

observations, where τL is the warm-in fraction, and then calculates the sequence of subsample

predictive regression statistics (tβ1
(0, τ))2 for t = 1, ..., bτT c, with τ travelling across the interval

[τL, 1]. The statistic formed as the maximum taken across this sequence is then,

T f := max
τL≤τ≤1

(tβ1
(0, τ))2. (4.4)

• The sequence of backward recursive statistics is given by {(tβ1
(τ , 1))2}0≤τ≤τU with τU ∈ (0, 1)

again chosen by the user. In this case one calculates the sequence of subsample predictive regression

statistics (tβ1
(τ , 1))2 for t = bτT c + 1, ..., T , with τ travelling across the interval [0, τU ]. The

maximum statistic from this backward recursive sequence is then,

T b := max
0≤τ≤τU

(tβ1
(τ , 1))2. (4.5)

• The sequence of rolling statistics is given by {(tβ1
(τ , τ + ∆τ))2}0≤τ≤1−∆τ where the user-defined

parameter ∆τ ∈ (0, 1). The rolling regression approach calculates the sequence of subsample statis-

tics tβ1
(τ , τ + ∆τ))2 for t = bτT c + 1, ..., bτT c + bT∆τc, where ∆τ is the window fraction with

bT∆τc the window width, with τ travelling across the interval [0, 1−∆τ ]. The maximum statistic

from this rolling sequence is then,

T r := max
0≤τ≤1−∆τ

(tβ1
(τ , τ + ∆τ))2. (4.6)
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• Finally, the double-recursive sequence of statistics is given by {(tβ1
(τ1, τ2))2}0≤τ1,τ2≤1

τ2−τ1≥∆τ
, where

∆τ ∈ (0, 1) is again a user-defined parameter. The double-recursive approach calculates a double

indexed sequence of subsample statistics (tβ1
(τ1, τ2))2 for t = bτ1T c+1, ..., bτ2T c, for all subsamples

such that 0 ≤ τ1 < τ2 ≤ 1 and where τ2 − τ1 ≥ ∆τ . Notice that this entails that the forward

recursive sequence discussed above is calculated across all possible warm-in fractions such that

τL ≥ ∆τ , which is why this sequence is referred to as double-recursive.4 The maximum statistic

from the double-recursive sequence is then,

T d := max
0≤τ1,τ2≤1
τ2−τ1≥∆τ

(tβ1
(τ1, τ2))2. (4.7)

Remark 11. The full sample IV-combination statistic t2β1
of (3.2) is contained within the forward

recursive sequence of statistics and obtains by setting τ = 1, and similarly is contained within the

backward recursive sequence for τ = 0. It is also contained within the double-recursive sequence for

τ1 = 0 and τ2 = 1. Notice also that if we set ∆τ = 1 in the context of the rolling sequence then

this would collapse to the single full sample statistic, t2β1
. ♦

Tests based on the maximum from each of the foregoing sequences of subsample statistics have

particular patterns of local predictability that they will be well designed to detect. Tests based on the

forward recursive sequence of statistics are designed to detect pockets of predictability which start

at or near the start of the full sample period available to the practitioner. The longer the duration

of such an episode the more powerful these tests will be, other things being equal, because they are

based on a sequence of increasing subsamples all starting from the first data point. By analogy,

tests based on the reverse recursive sequence of subsample statistics are designed to detect end-

of-sample pockets of predictability. As such, reverse recursive based tests could therefore usefully

be employed in an on-going monitoring exercise for the emergence of predictive regimes. Because

both the forward and reverse recursive sequences, and indeed the double-recursive sequence, contain

the usual full sample predictability statistic, regardless of the choice of the trimming parameters,

they also deliver tests which have power to detect predictability which holds over the whole sample,

although in this particular case they would not be expected to be as powerful as the standard full

sample IV-combination test which is clearly designed for that specific alternative hypothesis.

For a given window width, tests based on a rolling sequence of statistics are designed to pick

up a window of predictability, of (roughly) the same length, within the data. As discussed above,

the double-recursive sequence amounts to considering all possible window width rolling sequences,

subject to a minimum window width. These then are useful for picking up multiple predictive

regimes, of potentially different lengths, within the data. However, because the double-recursive

sequence considers such a large number of possible subsamples of the data a test based on the

maximum from this sequence would necessarily be expected to be less powerful than the recursive or

rolling-based tests in scenarios for which the latter are designed. This is because the more statistics

one considers in a sequence over which the maximum is taken the stricter the critical value needs to

be to maintain a correctly sized test. So, for example, in the case where a pocket of predictability

existed in the middle of the sample data of length say m observations, a test based on the maximum

4Notice that this double sequence also obtains by calculating the rolling sequence discussed above for all possible
rolling window widths between ∆τ and 1 inclusive.
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from the rolling sequence using a window width of m observations would be expected to be more

powerful than a test based on the maximum of the double-recursive sequence because the critical

value for the latter would be considerably larger than the former. However, a power advantage over

the double-recursive test would not necessarily be expected to hold for the corresponding rolling

tests where the window width was either smaller than m or greater than m. In the former case

this would be because the maximum subsample length available over which predictability held (m

observations) could never be utilised because the window width is less than m, while in the latter

case all subsamples in the sequence will contain a mix of data points where predictability holds and

where it does not. It is of course very hard to analytically predict what the relative finite sample

power properties of the recursive, rolling and double recursive based tests tests will be in cases like

these and so we will investigate these further using Monte Carlo experimentation in section 6.

Before establishing the asymptotic properties of the maximum subsample statistics, it is worth

briefly commenting on estimation of the location of any predictive windows in cases where our

proposed tests reject. Even for the simplest possible case where H1,b(·) of (2.4) implies predictability

over just a single subsample of the data, say t = bτ1T c+1, ..., bτ2T c, with τ1 < τ2 and where either

τ1 > 0 or τ2 < 1, consistent estimation of τ1 and τ2 is not possible because of the Pitman localisation

to zero placed on β1,t in this interval by Assumption 2. In practice, however, if a given maximum

statistic rejects then a sensible estimate of τ1 and τ2 would be given by the start and end points of

the subsample corresponding to the maximum value from the sequence of statistics from which a

rejection was obtained. If one was looking to date possibly multiple windows of predictability then

one could reapply the procedures outlined above to the data set excluding those sample points for

which a first stage rejection occurred, and do so repeatedly until no rejection was obtained.

4.3 Asymptotic Distributions

In Proposition 1 we now provide representations for the asymptotic distributions of the maximum

subsample statistics defined in section 4.2 under the appropriate local alternative, H1,b(·).

Proposition 1 Consider the model in (2.1) and (2.2) and let Assumptions 2 – 6 hold. Then under

the local alternative H1,b(·) of (2.4):

(i) Under Assumption 1.1, as T →∞, it holds that,

T f ⇒ sup
τ∈[τL,1]

(
GI (τ) +

∫ τ
0 b(s)dKzIx(s)

)2
[GI ] (1) ηI (τ)

T b ⇒ sup
τ∈[0,τU ]

(
GI (1)−GI (τ) +

∫ 1
τ b(s)dKzIx(s)

)2

[GI ] (1) (1− ηI (τ))

T d ⇒ sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

(
GI (τ2)−GI (τ1) +

∫ τ2

τ1
b(s)dKzIx(s)

)2

[GI ] (1) (ηI (τ2)− ηI (τ1))

T r ⇒ sup
0≤τ≤1−∆τ

(
GI (τ + ∆τ)−GI (τ) +

∫ τ+∆τ
τ b(s)dKzIx(s)

)2

[GI ](1) (ηI(τ + ∆τ)− ηI(τ))

where GI(·), [GI ](·), KzIx(·) and ηI(·), are as defined in Assumption 4.2.
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(ii) Under Assumption 1.2, as T →∞, it holds that,

T f ⇒ sup
τL≤τ≤1

(∫ τ
0 Z̃0,τ (s)dU(s) + ω

∫ τ
0 Z̃0,τ (s)b(s)Jc,H(s)ds

)2

∫ τ
0 Z̃

2
0,τ (s)d[U ](s)

T b ⇒ sup
0≤τ≤τU

(∫ 1
τ Z̃τ ,1(s)dU(s) + ω

∫ 1
τ Z̃τ ,1(s)b(s)Jc,H(s)ds

)2

∫ 1
τ Z̃

2
τ ,1(s)d[U ](s)

T d ⇒ sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

(∫ τ2

τ1
Z̃τ1,τ2(s)dU(s) + ω

∫ τ2

τ1
Z̃τ1,τ2(s)b(s)Jc,H(s)ds

)2

∫ τ2

τ1
Z̃2
τ1,τ2

(s)d[U ](s)

T r ⇒ sup
0≤τ≤1−∆τ

(∫ τ+∆τ
τ Z̃τ ,τ+∆τ (s)dU(s) + ω

∫ τ+∆τ
τ Z̃τ ,τ+∆τ (s)b(s)Jc,H(s)ds

)2

∫ τ+∆τ
τ Z̃2

τ ,τ+∆τ (s)d[U ](s)

where Jc,H(·), U(·) and [U ](·) are defined in section 2, and Z̃·,·(·) is defined in Assumption 5.

Remark 12. Expressions for the limiting null distributions of the statistics can be obtained by

omitting those terms involving the function b(·) from the representations given in Proposition 1.

In what follows we will denote the resulting limiting null distributions of the T f , T b, T d and T r

statistics under Assumption 1.1 as T f,I∞ , T b,I∞ , T d,I∞ and T r,I∞ , respectively, and under Assumption 1.2

as T f,II∞ , T b,II∞ , T d,II∞ and T r,II∞ , respectively. For any given s ∈ {f, b, d, r}, the limiting distribution

T s,I∞ , appropriate for the case where the predictor is weakly persistent satisfying Assumption 1.1,

and T s,II∞ , the corresponding limiting null distribution where the predictor is strongly persistent

satisfying Assumption 1.2, have different functional forms. For example, while T s,II∞ , s = f, b, d, r,

all depend on the choice of type-II instrument, T s,I∞ , s = f, b, d, r, do not. The impact of non-

constancy in H(·) on these limiting null distributions also differs between the strongly and weakly

persistent cases; see the discussion in Remarks 15 and 16 below. ♦

Remark 13. All of the statistics in the sequences are exact invariant to both µx and β0 by virtue

of being based on subsample demeaned variables. Moreover, the vector of instruments used is, by

construction, invariant to µx, because zI,t is based on differences of xt for the instruments mentioned

in section 3, and zII,t is a deterministic function of time chosen by the user without reference to µx.

Consequently the limiting representations in Proposition 1 do not depend on either µx or β0. ♦

Remark 14. Under Assumption 1.1, local power depends indirectly on the persistence of the

putative predictor, as measured by ρ and B(L) through KzIx(·); see Lemma 1 for the particular

example of the IVX instrument. Under Assumption 1.2, while the mean-reversion parameter c does

not affect the limiting null behaviour of the maximum statistics, the local power functions depend

explicitly on c through Jc,H(·). In each case, the rule-of-thumb that the stronger the mean reversion,

the lower the local power, seems to hold; see the Monte Carlo results in section 6. ♦

For weakly persistent regressors, a time transformation can shed further light on the influence

of heteroskedasticity. Under Assumption 4.2(c), the process W (·) := GI(η
−1(·))/

√
[GI ](1) is con-

tinuous with stationary independent increments, W (0) = 0 a.s. and Var (W (τ)) = τ , and therefore,

W (·) is a standard Wiener process. It follows that GI(·) =
√

[GI ](1)W (ηI (·)) is a time-transformed

Wiener process. Consequently, taking the limiting functional associated with T f as an example,

18



we have that supτ∈[τL,1]
(GI(τ)+

∫ τ
0 b(s)dKzIx(s))

2

[GI ](1) ηI(τ)

d
= supτ∈[τL,1]

(
W (ηI(τ))+

∫ τ
0 b(s)d

KzIx
(s)√

[GI ](1)

)2

ηI(τ) with simi-

lar distributional identities holding for the remaining statistics. As the maximum of a function is

invariant to monotonic transformations of the argument, we may set r = ηI (τ) and therefore obtain

the following alternative representations of the limiting results in part (i) of Proposition 1.

Corollary 1 Let the conditions of Proposition 1 hold. Then under Assumption 1.1, as T →∞,

T f ⇒ sup
r∈[ηI(τL),1]

(
W (r) +

∫ η−1
I (r)

0 b(s)dK̄zIx(s)

)2

r

T b ⇒ sup
r∈[0,ηI(τU )]

(
W (1)−W (r) +

∫ 1
η−1
I (r) b(s)dK̄zIx(s)

)2

1− r

T d ⇒ sup
0≤r1,r2≤1

η−1
I (r2)−η−1

I (r1)≥∆τ

(
W (r2)−W (r1) +

∫ η−1
I (r2)

η−1
I (r1)

b(s)dK̄zIx(s)

)2

r2 − r1

T r ⇒ sup
0≤r≤ηI(1−∆τ)

(
W
(
ηI
(
η−1
I (r) + ∆τ

))
−W (r) +

∫ η−1
I (r)+∆τ

η−1
I (r)

b(s)dK̄zIx(s)

)2

ηI
(
η−1
I (r) + ∆τ

)
− r

where W (·) := GI(η
−1(·))/

√
[GI ](1) is a standard Wiener process and K̄zIx(·) := KzIx(·)/

√
[GI ](1).

Moreover, the limiting null distributions discussed in Remark 12 are such that,

T f,I∞
d
= sup

r∈[ηI(τL), 1]

(W (r))2

r
, T b,I∞

d
= sup

r∈[0, ηI(τU )]

(W (1)−W (r))2

1− r

T r,I∞
d
= sup

0≤r≤ηI(1−∆τ )

(
W
(
ηI
(
η−1
I (r) + ∆τ

))
−W (r)

)2
ηI
(
η−1
I (r) + ∆τ

)
− r

T d,I∞
d
= sup

0≤r1,r2≤1

η−1
I (r2)−η−1

I (r1)≥∆τ

(W (r2)−W (r1))2

r2 − r1
.

Remark 15. The results in Proposition 1 and Corollary 1 highlight that both the limiting

null distributions and the local power functions of all of the tests depend, in general, on any

unconditional heteroskedasticity present through the resulting non-constancy of H(·). This holds

irrespective of the persistence of the regressor xt; moreover, heteroskedasticity has differing effects

on the limiting distributions depending on the degree of persistence of xt. At least under the

null this may seem surprising, as Eicker-White standard errors are designed to robustify any of

the subsample statistics, 0 ≤ τ1 < τ2 ≤ 1, to heteroskedasticity (conditional or unconditional).

However, this asymptotic invariance only holds marginally for a given statistic in the sequence;

indeed, it can be shown for each of the sequences of statistics, and regardless of which of Assumption

1.1 and Assumption 1.2 holds, any given statistic in the sequence has a marginal χ2
1 limiting null

distribution. The representations in Corollary 1, for example, show that under Assumption 1.1

the suprema are taken over statistics computed for various intervals whose endpoints depend on

the variance profile ηI(·) defined in Assumption 4.2, which depends in turn on both the DGP
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and the choice of type-I instrument. Moreover, under Assumption 1.2, the same phenomenon

explains part (ii) of Proposition 1, with the additional complication that one cannot represent

the subsample statistics more tractably using a time transformation due to the presence of the

subsample-demeaned process Z. Here, too, heteroskedasticity depends on the choice of instrument

(now the type-II instrument) in addition to the DGP. Under local alternatives, heteroskedasticity

additionally enters by means of KzIx(·) and Jc,H(·), under Assumption 1.1 and Assumption 1.2,

respectively. It is important to emphasise that the precise effect of non-constancy of H(·) due to

unconditional heteroskedasticity on the limiting distributions of our maximum statistics depends

on which of Assumptions 1.1 or 1.2 holds. ♦

Remark 16. More generally, the impact of the DGP on the large sample behaviour of the statistics

depends on the choice of instrument and on the persistence of the (putative) predictor. Consider first

the results under Assumption 1.1. Here the limiting null distributions, T s,I∞ , s = f, b, d, r, all depend

on ηI(·) which in turn depends on the unconditional variance of ut. In the case where ηI(s) = s, these

limiting null distributions simplify to the suprema of squared standardised Wiener processes taken

over the range of the subsamples. However, constancy of H(·) is not sufficient to ensure linearity of

ηI(·), because heteroskedasticity can still enter via the instrument zI,t−1. Under the local alternative,

the key quantity controlling power is KzIx(·) which can be deterministic under Assumption 1.1 (see,

for example, Lemma 1 for the case of the IVX instrument), and (upon normalisation) characterises

the strength of the instrument zI,t−1. However, KzIx(·) also characterises the signal; other things

equal, if xt has a large marginal variance relative to ut, then local power will increase. In the case

of Assumption 1.2, local power depends on the process Jc,H(·) in a more intricate way, due to the

fact that Jc,H and
∫
Z̃dU may be dependent. Clearly, local power is influenced by all three factors

c, ω and H(·). The effect of the elements of H(·) is not easy to disentangle, as can be seen from the

expressions given for the quadratic variation processes of U(·) and V (·) at the end of section 2. ♦

In Corollary 2 we detail the limiting distributions of the full sample statistic t2β1
of (3.2) under

the local alternative, H1,b(·) of (2.4).

Corollary 2 Let the conditions of Proposition 1 hold. Then under H1,b(·), as T → ∞ : (i)

Under Assumption 1.1, t2β1
⇒
(
W (1) +

∫ 1
0 b(s)dK̄zIx(s)

)2
; (ii) under Assumption 1.2, t2β1

⇒(∫ 1
0 Z̃

2(s)d[U ](s)
)−1 (∫ 1

0 Z̃(s)dU(s) + ω
∫ 1

0 Z̃(s)b(s)Jc,H(s)ds
)2

, where Z̃(s) := Z(s)−
∫ 1

0 Z(s).

Remark 17. From Corollary 2, under the null hypothesis H0 of (2.3), t2β1
⇒ W (1)2 under

Assumption 1.1, while t2β1
⇒
(∫ 1

0 Z̃
2(s)d[U ](s)

)−1 (∫ 1
0 Z̃(s)dU(s)

)2
under Assumption 1.2 with∫ 1

0 Z̃(s)dU(s) ∼ N
(

0,
∫ 1

0 Z̃
2(s)d[U ](s)

)
. Consequently, t2β1

is seen to possess a standard χ2
1 lim-

iting null distribution regardless of whether xt is stable or near-integrated. Moreover, the results

in Corollary 2 show that the full sample IV-combination test exhibits non-trivial power against

the class of local alternatives we consider in this paper; that is, it has power to detect predic-

tive episodes. However, local power depends indirectly on heteroskedasticity which influences the

stochastic properties of KzIx(·) and Jc,H(·); see Remarks 15 and 16. ♦

Remark 18. Where β1,t = β1 6= 0, for all t = 1, ..., T , the results in Corollary 2 specialise to the

standard local power of the full sample IV-combination test based on t2β1
. For type-II instruments

without demeaning, one recovers the result of Breitung and Demetrescu (2015, Theorem 2.2). ♦
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To summarise, the limiting null distributions of the maximum subsample statistics all depend

both on any heteroskedasticity present and on whether the putative predictor xt is a near-integrated

or weakly dependent process. This poses significant problems for conducting inference not encoun-

tered with tests based on the full sample statistic, t2β1
of (3.2). We next demonstrate that these

issues can be solved using fixed regressor wild bootstrap implementations of the subsample tests.

5 Bootstrap Implementation

As the results in the previous section show, implementing tests based on the T s, s = f, b, d, r,

statistics from section 4.2 will require us to address the fact that their limiting null distributions

depend on any unconditional heteroskedasticity present in ut and vt, and on whether the predictor

xt−1 is weakly dependent or near-integrated. To account for the former we employ a wild bootstrap

resampling scheme applied to the demeaned dependent variable ŷt := yt − 1
T

∑T
t=1 yt, while for the

latter we use the observed outcomes on x := [x0, x1, ..., xT ]′ and z := [z′0, z
′
1, ...,z

′
T ]′ as a fixed

regressor and fixed instrument vector, respectively, when implementing the bootstrap procedure.

We now outline our fixed regressor wild bootstrap approach in Algorithm 1. We will then

demonstrate the asymptotic validity of this approach in Proposition 2.

Algorithm 1

Step 1 Construct the wild bootstrap innovations y∗t := ŷtRt, where ŷt := yt− 1
T

∑T
t=1 yt are

the demeaned sample observations on yt, and Rt, t = 1, ..., T , is an IIDN(0, 1)

sequence independent of the data.5

Step 2 Using the bootstrap sample data
(
y∗t , xt−1, z

′
t−1

)′
, in place of the original sample

data
(
yt, xt−1, z

′
t−1

)′
, construct the bootstrap analogues of the statistics T s, s =

f, b, d, r, from section 4.2. Denote these bootstrap statistics as T s∗, s = f, b, d, r.

Step 3 Define the bootstrap p-values as P s,∗T := 1−Gs,∗T (T s), s = f, b, d, r, with Gs,∗T (·) de-

noting the conditional (on the original data) cumulative distribution function (cdf)

of T s∗, s = f, b, d, r. In practice, the Gs,∗T (·), s = f, b, d, r, will be unknown, but can

be simulated in the usual way by repeating Steps 1 and 2 a large number, say B,

times to obtain empirical analogues of Gs,∗T (·), s = f, b, d, r. The {Rt}Tt=1 variables

used in Step 1 must also be independent across the B bootstrap replications.

Step 4 The wild bootstrap test of the null hypothesis H0 of (2.3) at level α based on T s

rejects if P s,∗T ≤ α, s = f, b, d, r.

Remark 19. The bootstrap statistics T s∗, s = f, b, d, r, are calculated treating both xt−1 and

the vector of instruments, zt−1, as fixed; i.e., they are calculated using the same observed xt−1

and zt−1 as were used in the construction of T s, s = f, b, d, r. This aspect is crucial for delivering

bootstrap tests that are asymptotically valid regardless of whether xt satisfies Assumption 1.1 or 1.2

and without knowledge of which of these holds. In particular, the same instrument (either type-I or

type-II, depending on the true regressor persistence) gets full asymptotic weight in both the original

2SLS and the bootstrap t-ratios (see section S.3 of the Supplement). ♦
5The Gaussianity assumption on Rt is standard in the literature and simplifies the proof of Proposition 2 below.

This can, however, be generalised such that Rt is any IID sequence with E(Rt) = 0, E(R2
t ) = 1 and E(R4

t ) <∞.
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Remark 20. The wild bootstrap generating y∗t in Step 1 of Algorithm 1 replicates the pattern

of unconditional heteroskedasticity present in the original innovations, as conditionally on ŷt, y
∗
t is

independent over time with zero mean and variance ŷ2
t . Moreover, any heteroskedasticity present in

xt−1 and zt−1 is replicated through the fixed regressor/instrument aspect of the bootstrap statistics.

In particular, as ut is a MD sequence, it is anticipated that the bootstrap will replicate the variance

properties of either zI,t−1ut or zII,t−1ut, depending on the degree of persistence exhibited by xt.

Having fixed the regressor and the instruments when bootstrapping, the analogous terms in the

bootstrap test statistics are given by zI,t−1ŷtRt and zII,t−1ŷtRt with variances z2
I,t−1ŷ

2
t and z2

II,t−1ŷ
2
t ,

respectively. Using the result detailed in the last sentence of Remark 19, it is then seen that the

correct variance profile is replicated in the limit. For full details see the proof of Proposition 2. ♦

Remark 21. Step 1 of Algorithm 1 is based on residuals obtained under the null hypothesis. It is

straightforward to show that the large sample properties of corresponding bootstrap tests based on

either the OLS or IVX residuals from estimating the predictive regression over the full sample are

unaltered from those given here. Moreover, albeit more computationally intensive, one could also

use the analogous subsample implementations of any of these three full sample residuals. ♦

In Proposition 2 we now demonstrate the large sample validity of the fixed regressor wild boot-

strap implementation of the tests from section 4.2. In particular, we show that our proposed

bootstrap in Algorithm 1 correctly replicates the first order asymptotic null distributions of the

statistics given in Remark 12 under both the null hypothesis and local alternatives.

Proposition 2 Let the conditions of Proposition 1 hold. Then, as T → ∞, under either the null

hypothesis H0 of (2.3) or the local alternative H1,b(·) of (2.4): (i) under Assumption 1.1, as T →∞,
it holds that T f∗ w⇒p T f,I∞ , T b∗ w⇒p T b,I∞ , T r∗ w⇒p T r,I∞ , and T d∗ w⇒p T d,I∞ ; (ii) under Assumption 1.2

as T →∞, it holds that, T f∗ w⇒p T f,II∞ , T b∗ w⇒p T b,II∞ , T r∗ w⇒p T r,II∞ , and T d∗ w⇒p T d,II∞ .

A consequence of Proposition 2 is that we obtain asymptotically correctly sized tests when using

bootstrap critical values obtained using Algorithm 1. We now formalise this result in Corollary 3.

Corollary 3 As T → ∞, under H0, P∗(T s∗ ≤ T s) ⇒ Unif [0, 1], for each of s = f, b, d, r, where

P∗ denotes probability conditional on the original sample
(
yt, xt−1, z

′
t−1

)′
, t = 1, . . . , T .

Remark 22. Corollary 3 establishes the asymptotic validity of our proposed bootstrap tests. This

result holds without knowledge of whether the (putative) predictor xt satisfies Assumption 1.1 or

1.2, and holds regardless of any heteroskedasticity present in ut and vt satisfying Assumption 3. ♦

Remark 23. Proposition 2 shows that each of the bootstrap statistics T s∗, s = f, b, d, r, attains

the same first order limiting distribution under both the null hypothesis and local alternatives as

that attained under the null hypothesis by the corresponding original (non-bootstrap) statistic T s,
s = f, b, d, r. An immediate consequence of this is that each of the wild bootstrap tests proposed in

Algorithm 1 will admit the same asymptotic local power function as the (infeasible) size-adjusted

test based on the corresponding original statistic T s, s = f, b, d, r. ♦

Remark 24. The full sample IV-combination statistic, t2β1
, of Breitung and Demetrescu uses

Eicker-White standard errors to correct the limiting null distribution of the statistic for non-

constancy in H(·) due to unconditional heteroskedasticity in the innovations. Because it is still
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necessary to implement the subsample maximum tests using a wild bootstrap it would be feasible

to replace the Eicker-White standard errors used in the computation of the subsample
(
tβ1

(τ1, τ2)
)2

statistic in (4.3) and its bootstrap equivalent, computed in Step 2 of Algorithm 1, with conventional

standard errors. While this would alter the limiting representations given for the maximum statis-

tics in Proposition 1 and Corollary 1, it can be shown that the resulting wild bootstrap tests would

still be asymptotically valid with an analogous result to that in Corollary 3 holding. In this case

the wild bootstrap tests would attain the same asymptotic local power functions as (infeasible) size-

corrected implementations of the (non-bootstrap) maximum tests based on conventional standard

errors. These asymptotic local power functions will not in general coincide with those obtained for

the statistics based on Eicker-White standard errors, but they would where H(·) is constant. ♦

Remark 25. The bootstrap validity results given in this section also apply to a fixed regressor

wild bootstrap implementation of the full sample IV-combination test based on t2β1
. In particular,

this will satisfy a result of the form given in Corollary 3 and will have the same asymptotic local

power function as the test based on t2β1
using χ2

1 critical values, discussed in section 4.3. As with

the discussion for the subsample maximum statistics in Remark 24, one could replace Eicker-White

standard errors with conventional standard errors without losing asymptotic validity. ♦

6 Numerical Results

We use Monte Carlo simulation methods to investigate the finite sample performance of the boot-

strap implementations of the subsample-based predictability tests T f , T b, T r and T d proposed in

section 4 for testing the null hypothesis of no predictability in (2.3); i.e., H0 : β1,t = 0, for all

t = 1, . . . , T , against the alternative H1,b(·) of (2.4) that predictability holds across some subset

of the sample data. Data are generated from (2.1)-(2.2). In section 6.1 we explore the empirical

size properties of these tests comparing with the corresponding full sample IV-combination test of

Breitung and Demetrescu (2015), t2β1
of (3.2). In section 6.2 we compare the finite sample local

power properties of these tests against a variety of DGPs displaying temporary predictability.

Following the discussion in section 4.1, we base both the full sample tβ1
IV-combination statistic

in (3.2) and the corresponding subsample tβ1
(τ1, τ2) statistics in (4.3) on the instrument vector

zt−1 := (zI,t−1, zII,t−1)′ with the type-II instrument, zII,t−1, defined as in (4.1) with k = 1, and the

type-I instrument, zI,t−1, given by the IVX choice of Kostakis et al. (2015) defined as in (4.2), with

a = 1 and γ = 0.95.6 Excepting the IVX instrument, zI,t−1, all variables and instruments entering

the estimated predictive regressions are demeaned, as in the main text. As discussed in Kostakis et

al. (2015, p.1514) the IVX instrument, zI,t−1, does not need to be demeaned as the slope estimator

in the predictive regression is invariant to whether zI,t−1 is demeaned or not. In order to correct for

the finite sample effects of estimating the intercept term in (2.1), which are most pronounced for

highly persistent regressors which are strongly correlated with the predictive model’s innovations,

Kostakis et al. (2015, p.1516) recommend the use of a finite-sample correction factor. We also

found that this correction factor led to significant improvements in the finite sample properties of

our proposed tests and hence is implemented in all of the numerical and empirical results we report.

6We also considered tests based on using the fractionally integrated instrument suggested on page 363 of Breitung
and Demetrescu (2015) for zI,t−1. We do not report these results here as the IVX choice performed better in our
results, but they can be obtained from the authors on request.
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All simulations are preformed in MATLAB, versions R2018a and R2018b, using the Mersenne

Twister random number generator. All results pertain to the nominal 5% level; qualitatively similar

results were obtained for other conventional significance levels. All of the subsample tests are

computed according to Algorithm 1 using 399 bootstrap replications; the bootstrap tests are denoted

T s∗, s = f, b, d, r. Following Banerjee et al. (1992), we set τL = 1/4 and τU = 3/4 in the context of

the forward and backward recursive statistics, respectively, and ∆τ = 1/3 for the rolling and double

recursive statistics. The empirical size simulations were based on 5000 Monte Carlo replications

and the local power simulations on 1000 replications, with the exception of the double recursive

tests where 1000 replications were used for size and 500 for power because of the much higher

computing time required. For the full sample t2β1
test, results for versions based on the asymptotic

χ2
1 critical value and on a fixed regressor wild bootstrap are reported, the latter using 399 bootstrap

replications. For all of the bootstrap tests, two versions are reported. The first is based on statistics

using Eicker-White standard errors while for the second, following the discussion in Remark 24,

conventional standard errors are used. These two variants are distinguished apart by the additional

“NW” nomenclature in the subscripts of the latter. Following the discussion in section 3 and

footnote 3, all of the reported statistics use residuals, ût, computed under the null hypothesis.

6.1 Empirical Size

We first investigate the finite sample size properties of our proposed tests. To that end, we consider

the simulation DGP given by (2.1)-(2.2) with β1,t = β1 = 0 for all t = 1, ..., T . Results are reported

for T = 250 and T = 500. In generating the simulation data we set the intercepts β0 and µx in (2.1)

and (2.2), respectively, to zero with no loss of generality. The autoregressive process characterising

the dynamics of the putative predictor, xt, in (2.2) was initialised at ξ0 = 0. Results are reported

for a range of values of the autoregressive parameter ρ in (2.2) that cover both stationary and

persistent predictors; in particular, for ρ := 1− c/T we consider c ∈ {0, 2.5, 5, 10, 20, 0.5T}. Notice

that c = 0.5T corresponds to ρ = 0.5, such that the autoregressive parameter is fixed and stable.

In our simulation DGP the innovation vector (ut, vt)
′ is drawn from an i.i.d. bivariate Gaussian

distribution with mean zero and covariance matrix Σt : =

[
σ2
ut φσutσvt

φσutσvt σ2
vt

]
. Notice, therefore,

that φ corresponds to the correlation between the innovations ut and vt. Results are reported in

Table 1 for the case where φ = 0, and in Table 2 for the case where φ = −0.90.7 We report results

for the case where the innovations are homoskedastic, σ2
ut = σ2

vt = 1 (labelled DGP1 in the Tables

1 and 2), and for the case where there is a contemporaneous one-time break of equal magnitude in

the variances of ut and vt. Following the simulations designs considered in Georgiev et al. (2018a),

two such heteroskedastic cases are considered: (i) an upward change in variance (labelled DGP2

in Tables 1 and 2) such that σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 4I(t > b0.5T c), and (ii) a downward

change (labelled DGP3 in Tables 1 and 2) where σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 1
4I(t > b0.5T c),

where in each case I(·) denotes the indicator function, taking the value one when its argument

is true and zero otherwise. DGP2 and DGP3 allow us to examine the impact of unconditional

heteroscedasticity, both in isolation and in its interaction with φ, on the finite sample size of the

tests. In each of DGP2 and DGP3 a fourfold change in variance is seen which is likely to be of

7In predictive regression models for the equity premium employing valuation ratios as predictors (e.g. the dividend-
price ratio, earnings-price ratio), as we shall do in the empirical application in section 7, the relevant innovation terms
are strongly negatively correlated, hence our choice of φ = −0.90.
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rather larger magnitude than we might expect to see in practice, but serves to illustrate how the

tests behave in the presence of a large change in unconditional volatility. We also considered further

DGPs allowing for stationary GARCH(1,1) with different degrees of persistence coupled with either

Gaussian or t-distributed innovations, thereby allowing for unconditionally heteroskedastic and fat-

tailed innovations. These results were qualitatively similar to those reported here for DGP1 and

can be found in the Supplement.

Consider first the results pertaining to the homoskedastic DGP1. A comparison of the results

in Table 1 for φ = 0 and Table 2 for φ = −0.90 shows that, in the homoskedastic case at least,

the correlation parameter φ has relatively little impact on the size properties of the tests. For the

full sample tests there is relatively little difference between the tests based on the asymptotic χ2
1

critical value and the fixed regressor wild bootstrap. Similarly, as might be expected, there is little to

choose between the versions of the full sample tests with Eicker-White standard errors and those with

conventional standard errors. For the subsample tests, there is a general trend towards undersizing

in the Eicker-White versions in cases where the putative predictor, xt−1, displays persistence at or

close to a unit root process. This is most pronounced in the rolling and double recursive statistics.

However, this undersizing is not seen with the versions of the subsample tests based on conventional

standard errors. It is well known that Eicker-White standard errors can be heavily downward biased

in small samples leading to incorrectly sized tests; see, for example, MacKinnon and White (1985).

We next turn to the results for the two unconditionally heteroskedastic DGPs, DGP2 and DGP3.

Consider first the full sample tests. As expected, the full sample test based on conventional standard

errors and the asymptotic χ2
1 critical value, t2β1,NW

, is unreliable in the presence of heteroskedasticity.

These size distortions are considerably worse for φ = −0.90 than for φ = 0 when c = 0; for the other

values of c considered the differences between φ = 0 and φ = −0.90 are much smaller. The size

distortions observed with t2β1,NW
are significantly ameliorated by the use of Eicker-White standard

errors (t2β1
) in all but the case of DGP2 with c = 0 where no apparent improvements are seen. The

bootstrap implementations of the full sample tests do a much better job at controlling finite sample

size, regardless of whether Eicker-White or conventional standard errors are used, although some

over-sizing is still seen for φ = −0.90 when c = 0. There appears to be no need to use Eicker-White

standard errors with the fixed regressor bootstrap implementation of the full sample test.

Consider next the subsample predictability tests. Undersizing, in many cases substantial, is

again seen with the subsample bootstrap tests based on Eicker-White standard errors. As with the

full sample tests, these effects tend to be larger, other things equal, for φ = −0.90 vis-à-vis φ = 0.

As with the results for DGP1, the subsample bootstrap tests based on conventional standard errors

are much less prone to this undersizing phenomenon, albeit some undersizing is seen in the case of

DGP2 with φ = −0.90 for small values of c, most notably for the rolling and double recursive tests.

Moreover, under DGP3 with φ = −0.90 some oversizing is seen in the persistent xt−1 cases for the

backward recursive, rolling and double recursive tests. For φ = 0 all of the subsample bootstrap tests

implemented with conventional standard errors appear to display good finite sample size control.

6.2 Finite Sample Local Power

We now turn to an investigation into the relative finite sample local power properties of the tests.

We again generate simulation data from DGP (2.1)–(2.2) but now for a variety of local alternatives

satisfying H1,b(·) of (2.4). To keep the set of results to a manageable level we report results only for
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φ = −0.90, for the homoskedastic case, σ2
ut = σ2

vt = 1, for a sample of size T = 250 and for three

values of the persistence parameter, c, associated with xt; specifically, c = {0, 10, 0.5T}. In all of our

experiments the slope parameter β1t in (2.1) is set to be local-to-zero. As specified by Assumption

2, for c = 0 and c = 10, where xt is strongly persistent, we parameterise the slope parameter in

(2.1) as β1t = b1t/T , and here we consider the following values of the Pitman drift parameter,

b1t ∈ {0, 5, ..., 80}. For the case of a weakly dependent predictor, c = 0.5T , we parameterise the

slope parameter as β1t = b1t/
√
T , and here we consider the Pitman drift values b1t ∈ {0, 1, ..., 21}.

We report results for three distinct experimental cases, where episodes of predictability occur

once in the sample either at the beginning, the end or within the sample. To that end, we consider

the following three simulation DGPs, with the range of non-zero values of b1t as outlined above,

Case 1:

 b1t > 0 for t = 1, ..., bT/5c
b1t = 0 for t = bT/5c+ 1, ..., T

Case 2:

 b1t = 0 for t = 1, ..., b4T/5c
b1t > 0 for t = b4T/5c+ 1, ..., T

Case 3:


b1t = 0 for t = 1, ..., bT/5c
b1t > 0 for t = bT/5c+ 1, ..., b3T/5c

b1t = 0 for t = b3T/5c+ 1, ..., T

All other aspects of the simulation design are as described previously.

Figures 1–3 graph the simulated finite sample local power curves for each of Cases 1–3, respec-

tively. Each figure contains power curves for the fixed regressor wild bootstrap implementations of

the full sample t2∗β1,NW
test along with the subsample-based predictability tests T f∗NW , T b∗NW , T r∗NW

and T d∗NW . To aid presentation of the graphs, we have chosen only to report the versions of the

bootstrap tests implemented with conventional standard errors. Results with Eicker-White stan-

dard errors are available on request. In general the latter were less powerful (often considerably so)

than the reported tests based on conventional standard errors.

Consider first the results pertaining to Case 1 in Figure 1. Recall from section 4.2 that the

temporary predictability DGP in Case 1, with a pocket of predictability at the start of the sample,

is one where we expect the forward recursive T f∗NW test to perform best. Figure 1 bears out this

prediction. Regardless of the value of c, T f∗NW is significantly more powerful than the other tests

considered. The double recursive test, T d∗NW , also displays significant power gains over the full sample

t2?β1,NW
test, for all of the values of c considered. The rolling test, T r∗NW , displays a similar power

profile to T d∗NW for c = 0 and c = 0.5T , but is significantly less powerful than T d∗NW for c = 10. The

least powerful tests among those considered is the backward recursive test, as expected, and the full

sample t2?β1,NW
test. To illustrate, the empirical power of t2?β1,NW

at bT = 50 is approximately 50%

for both c = 0 and c = 10 while for T f∗NW it is around 75%. For c = 0.5T and bT = 10 the power of

t2β1,NW
is about 55% while that of T f∗NW is in excess of 95%. In the latter example both the rolling

(T r∗NW ) and double recursive (T d∗NW ) tests have power of approximately 80%.

Consider next the results for Case 2, given in Figure 2, where the pocket of predictability now

occurs at the end of the sample. When xt is weakly persistent the simulation DGP is approximately

time-reversible and, as such, we would anticipate that all but the forward and backward recursive

tests, whose relative behaviour would be expected to switch around, will behave similarly to how

they behaved in Case 1 for the weakly dependent case. This is clearly seen to be the case in Figure

2(c), with the backward recursive test now clearly the most powerful, the forward recursive test
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the least powerful, and the other tests all displaying almost identical power properties in Figures

1(c) and 2(c). These patterns are also seen, albeit not as clearly, in a comparison of Figures 1(b)

and 2(b); the main difference being that the most of the tests (although not the double recursive

test) tend to be slightly more powerful for c = 10 vis-à-vis c = 0.5T . The pattern of a general

increase in power of the tests as c decreases for an end-of-sample pocket of predictability is very

clearly continued in Figure 2(a) for the case where c = 0 and xt follows a pure unit root. Here,

comparing with Figure 1(a), we see that all of the tests display considerably higher local power

against an end-of-sample pocket of predictability than against a pocket of predictability at the

start of the sample, and, comparing with Figures 2(b) and 2(c), that the power of the tests is

considerably higher than for c = 10 and c = 0.5T . A possible explanation for this improvement

in power is the shape of the non-centrality term,
∫ τ2

τ1
Z̃τ1,τ2(s)b(s)Jc,H(s)ds, entering the limiting

distributions of the statistics under local alternatives in the case where xt is strongly persistent.

Clearly, end of sample predictability will be boosted from the larger magnitude of Jc,H(τ) when τ

is close to 1, and this will be most evident when c = 0. Interestingly, the full sample t2?β1,NW
test

displays competitive power in Figure 2(a) although it should be recalled from Table 2 that t2?β1,NW

is significantly over-sized in this case while the subsample tests are not.

Finally, the results in Figure 3 pertain to Case 3, where the simulation DGP admits a window

of predictability of size b2T/5c within the sample. Here the double recursive test, T d∗NW , displays

superior power to the other tests considered for both c = 10 and c = 0.5T (Figures 3(b) and 3(c)

respectively), and is jointly most powerful along with the forward recursive T f∗NW test for c = 0

(Figure 3(a)). Notice also that for a given value of c, T d∗NW displays considerably higher power

under Case 3 than it does under both Cases 1 and 2. This is expected given that a larger window

of predictive data is now present in the sample which the double recursive procedure is best able

to exploit. Indeed, most of the tests considered display improved power performance compared to

Figures 1 and 2. This is particularly evident for the rolling test, T r∗NW , and again is to be expected

given that a greater number of the subsample predictability statistics in the rolling sequence will

contain data from a predictive period relative to the DGPs in Cases 1 and 2. For Case 3, the T b∗NW
test (as expected, given that the window of predictability begins early in the sample) and the full

sample t2β1,NW
test display the lowest power among the tests considered.

7 Empirical Application

The dataset used consists of monthly observations on the equity premium for the S&P Composite

index calculated using CRSP’s month-end values together with 14 different putative predictors,

generically denoted xt, and are taken from the updated monthly data set on Amit Goyal’s website

(www.hec.unil.ch/agoyal/) which is an extended version of the data set used by Welch and Goyal

(2008). The data cover the period 1950:01-2017:12 (T = 817). We define the equity premium as in

Goyal and Welch (2003) as the log return on the value-weighted CRSP stock market index minus

the log return on the risk-free Treasury bill: yt = ept = log(1 +Rm,t)− log(1 +Rf,t) where Rm,t is

the CRSP return and Rf,t is the Treasury bill return. The variables are in log form (as in Goyal and

Welch, 2003) and each of the predictors is lagged one period. A full list of the predictors together

with graphs of the excess returns and the predictors can be found in the supplementary appendix.

Table 3 reports the outcome of the conventional IV-combination test from bivariate predictive

regression models applied to the full sample of data. We report versions of the statistic using
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Eicker-White (t2β1
) and conventional (t2β1,NW

) standard errors. All of the IV-based test statistics

computed in the empirical analysis follow the same specification as was used in the Monte Carlo

experiments; that is, they are based on a combination of the IVX instrument, zI,t−1 (as defined in

(4.2), with a = 1 and γ = 0.95), and the sine instrument, zII,t−1 (as defined in (4.1) with k = 1),

with all of the observed variables and zII,t−1 (but not zI,t−1) entering the estimated predictive

regressions demeaned, and with the finite-sample correction factor of Kostakis et al. (2015,p.1516)

implemented. Fixed regressor wild bootstrap p-values computed according to Algorithm 1 with 999

bootstrap replications are reported in parentheses. For most of the putative predictors considered,

the results in Table 3 yield no statistically significant evidence of predictability. Exceptions are seen

for the treasury bill rate (tblt−1), the long term government bond yield and rate of return series

(ltyt−1 and ltrt−1, respectively), and inflation (inflt−1) all of which are significant at the 5% level.

Rejections of the null of no predictability are also seen at the 10% level for the term spread (tmst−1)

and the equity premium volatility (rvolt−1) series.

To provide an insight into how stable the full sample predictive regressions are, Table 3 also

reports the tests proposed in Georgiev et al. (2018b) for the stability of the slope coefficient in the

bivariate predictive regression of the equity premium on each (lagged) predictor. These tests are

denoted LMx and supFx. The former is designed to test for the stability of the slope coefficient

against a smoothly evolving slope change model and the latter against a one-time change in the slope.

Bootstrap p-values calculated as outlined in Georgiev et al. (2018b) for 999 bootstrap replications

are reported in parentheses. Significant rejections at the 5% level by at least one of these tests

are observed for the predictive regressions involving the dividend price ratio (dpt−1), dividend yield

(dyt−1), earnings price ratio (e/pt−1), book to market ratio (bmt−1), term spread (tmst−1) and

inflt−1. The rejections seen for dpt−1 and e/pt−1 are particularly strong. A rejection at the 10%

level is also seen for the net equity expansion ratio (ntist−1) predictor. Interestingly, for three of the

four series (tblt−1, ltyt−1 and ltrt−1) for which the full sample IV-combination tests are significant at

the 5% level these stability tests provide no evidence of structural instability in the slope coefficient.

To provide some additional insight into any time-varying behaviour present in the slope coeffi-

cients, Figures 4 and 5 plot forward recursive and rolling IV (using the same choice of instruments

as detailed above for the full sample IV-combination tests) slope estimates from the predictive re-

gression of yt on xt−1 and associated approximate 95% marginal confidence bands.8 The warm-in

fraction for the recursive sequence, τL, and the rolling window fraction, ∆τ , were both set at 1/4.

In each case the horizontal axis dates correspond to the end of a given subsample. Commensurate

with the results of the stability tests of Georgiev et al. (2018b), these graphs highlight considerable

time variation in the sequences of subsample slope estimates. A general pattern evident in Figure 4

is a decline over time in the absolute value of the estimated slope coefficient with the recursive slope

estimates generally tending to move closer to zero over time. This pattern can also be seen, albeit

less clearly, in the rolling estimates in Figure 5. This suggests that for some of these variables,

any predictive ability they might have for the equity premium weakens over time. As a further

heuristic device, rather than a formal statistical test, many of the graphs show some periods where

the 95% marginal confidence intervals do not include zero, which is at least suggestive that pockets

8Denoting the IV slope estimate as β̂1, the confidence bands were computed as β̂1 ± 1.96se(β̂1), where se(β̂1) are
the associated IV Eicker-White standard errors. These confidence bands should, however, be treated with caution as
they are not joint 95% confidence bands for the entire sequence of slope estimates, but rather represent the marginal
95% confidence band at each point in the sequences of estimated slope coefficients.
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of predictability may be present in the data. Most of these episodes occur nearer the start of the

data, such as, for example, with dyt−1, but some are much longer lived as with, for example, the

sequences of recursive estimates for tblt−1, ltrt−1, tmst−1 and inflt−1; recall that for tblt−1, ltrt−1

and inflt−1, the full sample IV-combination tests gave significant rejections at the 5% level.

To pursue these findings further using statistically rigorous size-controlled methods, we next ap-

ply our proposed subsample-based predictability statistics. We report versions of the statistics using

Eicker-White (T f , T b, T r and T d) and conventional (T fNW , T bNW , T rNW and T dNW ) standard errors.

Fixed regressor wild bootstrap p-values computed according to Algorithm 1 with 999 bootstrap

replications are again reported in parentheses. In the computation of the forward and backward

recursive statistics we set τL = 1/4 and τU = 3/4, respectively, while we set ∆τ = 1/4 for the

rolling and double recursive statistics. The instruments used are as described above for the full

sample statistics. Focusing on the forward recursive tests we see significant rejections at the 5%

level (or stricter) of the null hypothesis of no predictability for each of dpt−1, dyt−1, e/pt−1, det−1,

tblt−1, ltyt−1, ltrt−1, tmst−1 and inflt−1; indeed, in many cases these rejections are also significant

at the 1% level. While these rejections tally with those delivered by the full sample test for tblt−1,

ltyt−1, ltrt−1 and inflt−1, for the other series, all of which (other than det−1) fail the structural

stability tests of Georgiev et al. (2018b), these are series for which the full sample tests delivered

no significant evidence of predictability. With the exception of dpt−1 and e/pt−1, those series for

which T fNW delivers a rejection at the 5% significance level also show rejections at the 5% level for

at least one of the other subsample maximum tests reported. Additional evidence of temporary

predictability at the 5% level (or stricter) is provided for dfyt−1 by both T rNW and T dNW (notice

that for this series the supFx test is in fact very close to giving a rejection at the 10% level). A

significant rejection at the 10% level is also provided for ntist−1 by the T rNW test.

To gain further insight, Figure 6 graphs the forward recursive sequences of tβ1
(τ1, τ2) subsample

statistics for each case where a rejection at the 5% level is observed for the corresponding maximum

test9. Also reported on these graphs are the 5% and 10% bootstrap critical values for the null

distribution of the maximum statistic in the sequence, together with the 5% and 10% critical values

from the χ2
1 distribution (the marginal critical values which apply for any given subsample).

Consider first the graph in part (a) of Figure 6 for the dividend price ratio, dpt−1. Looking at

the time path of the forward recursive subsample statistic we can see that for much of the first half

of the sequence (up until roughly the early 1980s) the statistic exceeds the χ2
1 5% critical value,

suggesting that running the IV-combination test on any subsample of the data selected up until

this point would have delivered a significant rejection at the (marginal) 5% level. After this sample

endpoint no significant evidence of predictability would have been found. We can also see that a

large number of exceedances of the 10% bootstrap critical value for the maximum are seen in the

early part of the data, with exceedances of the 5% bootstrap critical value also seen, most notably

in the mid 1970s. These results are suggestive that a pocket of predictability for returns existed

for the predictor dpt−1 in the 1970s with peak predictability seen in the middle of that decade, and

that since the 1980s onwards predictability appears to have evaporated. For the dividend yield,

dyt−1, a pocket of predictability appears to be present again from the early 1970s but lasting much

longer, and with apparently stronger magnitude, displaying many more contiguous exceedances of

the bootstrap critical values for the maximum than were seen for dpt−1; indeed, here predictability

9Where both the maximum tests based on Eicker-White and conventional standard errors reject we report the
version with the smallest p-value; cf. Table 3. Corresponding graphs for the rolling sequences are available on request.
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appears to run until the early to mid 1990s. From the mid to late 1990s onwards the evidence for

predictability disappears. Evidence for both the earnings price ratio, e/pt−1, in part (c) and the

dividend pay out ratio, det−1, in part (d) is less strong than for the previous two series (reflected in

the considerably larger p-values for the maximum statistics for those series in Table 3), but again

the period of predictability appears to be concentrated in mid 1970s. For both the treasury bill

rate, tblt−1, in part (e) and the long term bond yield, ltyt−1, in part (f) there appears to be evidence

of predictability across a window from the early 1970s until the mid 1980s, albeit the strength of

predictability appears to waver somewhat over this period, particularly so for ltyt−1. For both of

these series, there is also evidence that predictability is re-emerging from around the period of the

recent financial crisis onwards, most notably so for tblt−1 where a number of exceedances of the

bootstrap critical values occur. In the case of tblt−1 running the IV-combination test on almost

any subsample of the data would yield a rejection at the 5% using the marginal χ2
1 critical value.

This observation is also true for the long term rate, ltrt−1, in part (g) and for inflation, inflt−1, in

part (i). Recall that these are the three series for which the full sample IV-combination tests gave

significant rejections at the 5% level. Finally for the tmst−1 series in part (h) predictability appears

evident and consistently strong up until the mid 1990s after which the magnitude of predictability

starts to tail off and then falls markedly around the time of the financial crisis onwards. In contrast,

the full sample tests reveal no significant evidence (at the 5% level) of predictability from tmst−1.

These examples highlight the advantage of considering the recursive sequence of statistics and

their evolution through time rather than just full sample IV-combination tests, with much stronger

evidence for predictability earlier in the sample than later for a number of the predictors considered.

8 Conclusions

Recent research has suggested that should stock returns be predictable, then this is likely to be a

temporary phenomenon. Our motivation has been to develop tests with good power to detect such

episodes. To avoid the problem of endogenously-determined sample splits, our proposed tests are

derived from sequences of predictability statistics calculated over systematic subsamples of the data.

The tests are based on the maxima of the instrumental variable-based predictability statistics of

Breitung and Demetrescu (2015) taken across sequences of forward and backward recursive, rolling,

and double-recursive predictive regressions. The limiting distributions of these statistics were shown

to depend both on any heteroskedasticity present and on whether the putative predictor follows a

near-integrated or weakly dependent process. To account for these dependencies, fixed regressor wild

bootstrap implementations of the tests were proposed and shown to be first-order asymptotically

valid. Monte Carlo simulation demonstrated that the tests display decent finite sample size control,

and can be considerably more powerful in detecting temporary predictability than full sample tests.

An empirical application to a well-known US monthly stock returns data set highlighted the ability

of the new tests to detect predictability within the data where full sample tests could not.

We conclude with two suggestions for further research. First, we have focussed on tests based

on subsample implementations of the IV-combination statistics of Breitung and Demetrescu (2015)

which use two instruments per predictor. It should be possible to apply the same approach to sub-

sample implementations of statistics which use only one instrument, such as the statistics considered

in section 2.2 of Breitung and Demetrescu (2015) or the IVX statistic of Kostakis et al. (2015). Sec-

ond, our proposed tests are based on an approach which assumes a linear predictive regression
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model with a constant slope parameter within the given subsample window and then bases a test

on the fluctuations seen in the sequence of such statistics over a range of subsamples. As such, this

approach is ambivalent about the true form of any time-variation present in the slope parameter and

so would be expected to have reasonable power against a wide range of patterns of time-variation

in the slope parameter, including those generated by threshold or other non-linear DGPs. LM-type

tests could be developed based on an assumed non-linear model for the time-variation in the slope

and would be expected to be more powerful than the tests developed here where this assumed model

coincided with, or was at least a close approximation to, the true (unknown) DGP, but would likely

have much lower power if the true DGP was not well approximated by the model.
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Pástor, L. and R. F. Stambaugh (2012). Are stocks really less volatile in the long run? Journal of
Finance 67, 431–478.

Paye, B. S. and A. Timmermann (2006). Instability of return prediction models. Journal of Em-
pirical Finance 13, 274–315.

Pesaran, M. H. and A. Timmermann (2002). Market timing and return prediction under model
instability. Journal of Empirical Finance 9, 495–510.

Pettenuzzo, D. and A. Timmermann (2011). Predictability of stock returns and asset allocation
under structural breaks. Journal of Econometrics 164, 60–78.

Phillips, P. C. B. (1998). New tools for understanding spurious regressions. Econometrica 66,
1299–1325.

Phillips, P. C. B. (2015). Pitfalls and possibilities in predictive regression. Journal of Financial
Econometrics 13, 521–555.
(1990).

Phillips, P. C. B. and J. H. Lee (2013). Predictive regression under various degrees of persistence
and robust long-horizon regression. Journal of Econometrics 177, 250–264.

Phillips, P. C. B. and T. Magdalinos (2009). Econometric inference in the vicinity of unity. Working
paper, Singapore Management University.

Rapach, D. E. and M. Wohar (2006). Structural breaks and predictive regression models of aggregate
U.S. stock returns. Journal of Financial Econometrics 4, 238–274.

Stambaugh, R. F. (1999). Predictive regressions. Journal of Financial Economics 54, 375–421.

Timmermann, A. (2008). Elusive return predictability. International Journal of Forecasting 24,
1–18.

Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of equity
premium prediction. Review of Financial Studies 21, 1455–1508.

33



Table 1: Empirical Rejection Frequencies under the Null Hypothesis, H0. Nominal 5% significance
level. DGP1-DGP3 with φ = 0.

c t2∗β1
t2∗β1,NW

t2β1
t2β1,NW

T f∗ T b∗ T f∗NW T b∗NW T r∗ T r∗NW T d∗ T d∗NW
DGP1: T = 250, φ = 0 and σ2

ut = σ2
vt = 1

0.0 0.045 0.046 0.046 0.045 0.037 0.036 0.049 0.051 0.017 0.057 0.015 0.067
2.5 0.047 0.047 0.049 0.045 0.032 0.032 0.048 0.049 0.013 0.053 0.008 0.059
5.0 0.043 0.044 0.043 0.041 0.031 0.032 0.047 0.044 0.009 0.050 0.012 0.062
10.0 0.042 0.043 0.040 0.039 0.033 0.039 0.046 0.048 0.014 0.050 0.015 0.057
20.0 0.049 0.048 0.046 0.044 0.039 0.039 0.044 0.048 0.025 0.050 0.028 0.056
0.5T 0.049 0.047 0.046 0.047 0.058 0.053 0.052 0.047 0.061 0.045 0.070 0.044

DGP2: T = 250, φ = 0 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 4I(t > b0.5T c)
0.0 0.047 0.048 0.032 0.059 0.040 0.044 0.057 0.050 0.024 0.052 0.020 0.048
2.5 0.044 0.047 0.036 0.066 0.033 0.033 0.053 0.048 0.018 0.055 0.009 0.059
5.0 0.043 0.043 0.035 0.068 0.036 0.033 0.056 0.046 0.015 0.054 0.008 0.061
10.0 0.046 0.045 0.037 0.078 0.037 0.038 0.057 0.048 0.018 0.054 0.020 0.055
20.0 0.048 0.047 0.041 0.084 0.044 0.041 0.058 0.049 0.027 0.051 0.028 0.055
0.5T 0.052 0.051 0.047 0.090 0.062 0.058 0.051 0.050 0.066 0.050 0.070 0.057

DGP3: T = 250, φ = 0 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 1
4I(t > b0.5T c)

0.0 0.045 0.047 0.076 0.061 0.036 0.043 0.047 0.057 0.029 0.059 0.037 0.072
2.5 0.045 0.047 0.058 0.072 0.031 0.033 0.046 0.061 0.022 0.058 0.017 0.063
5.0 0.044 0.045 0.045 0.067 0.029 0.036 0.043 0.056 0.016 0.060 0.012 0.062
10.0 0.044 0.045 0.042 0.069 0.033 0.038 0.040 0.051 0.018 0.057 0.020 0.059
20.0 0.045 0.043 0.040 0.071 0.041 0.044 0.046 0.049 0.027 0.053 0.031 0.057
0.5T 0.047 0.045 0.045 0.084 0.056 0.062 0.049 0.053 0.069 0.049 0.063 0.038

DGP1: T = 500, φ = 0 and σ2
ut = σ2

vt = 1

0.0 0.046 0.046 0.043 0.045 0.043 0.039 0.049 0.051 0.017 0.052 0.011 0.050
2.5 0.048 0.049 0.047 0.047 0.042 0.039 0.052 0.052 0.016 0.054 0.014 0.048
5.0 0.047 0.048 0.047 0.046 0.044 0.045 0.053 0.056 0.015 0.054 0.013 0.050
10.0 0.050 0.051 0.049 0.048 0.047 0.042 0.056 0.049 0.027 0.055 0.027 0.056
20.0 0.053 0.052 0.053 0.053 0.051 0.043 0.052 0.052 0.041 0.051 0.043 0.062
0.5T 0.047 0.047 0.044 0.045 0.053 0.053 0.048 0.050 0.065 0.054 0.072 0.058

DGP2: T = 500, φ = 0 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 4I(t > b0.5T c)
0.0 0.052 0.053 0.036 0.061 0.050 0.039 0.063 0.055 0.025 0.061 0.033 0.062
2.5 0.051 0.052 0.036 0.065 0.046 0.040 0.062 0.053 0.023 0.060 0.022 0.060
5.0 0.050 0.050 0.037 0.073 0.046 0.044 0.056 0.052 0.026 0.061 0.026 0.055
10.0 0.050 0.050 0.041 0.083 0.050 0.045 0.055 0.054 0.033 0.058 0.035 0.052
20.0 0.050 0.051 0.045 0.088 0.053 0.050 0.051 0.056 0.046 0.055 0.041 0.047
0.5T 0.052 0.050 0.045 0.092 0.066 0.054 0.053 0.050 0.063 0.056 0.069 0.050

DGP3: T = 500, φ = 0 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 1
4I(t > b0.5T c)

0.0 0.050 0.051 0.085 0.073 0.045 0.042 0.056 0.062 0.029 0.066 0.033 0.062
2.5 0.052 0.053 0.065 0.077 0.043 0.041 0.056 0.060 0.028 0.063 0.020 0.083
5.0 0.053 0.051 0.050 0.075 0.042 0.053 0.051 0.060 0.025 0.065 0.025 0.078
10.0 0.052 0.053 0.049 0.076 0.044 0.049 0.054 0.058 0.030 0.062 0.026 0.075
20.0 0.052 0.051 0.048 0.081 0.047 0.056 0.053 0.058 0.041 0.057 0.041 0.064
0.5T 0.051 0.051 0.048 0.092 0.056 0.061 0.050 0.053 0.066 0.056 0.055 0.050

Notes: A superscript ∗ denotes tests run using the fixed regressor wild bootstrap outlined in Algorithm 1; t2β1
and

t2β1,NW
denote the full sample IV-combination predictability tests of Breitung and Demetrescu (2015) based on the 5%

asymptotic critical value from the χ2
1 distribution and computed with Eicker-White [EW] and conventional standard

errors, respectively, and t2∗β1
and t2∗β1,NW

their bootstrap analogues; T f∗, T b∗ and T f∗NW , T b∗NW , denote the maximum

forward and backward recursive tests computed with EW and conventional standard errors, respectively; T r∗ and

T r∗NW denote the maximum rolling tests computed with EW and conventional standard errors, respectively; T d∗ and

T d∗ols denote the maximum double recursive tests computed with EW and conventional standard errors, respectively.
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Table 2: Empirical Rejection Frequencies under the Null Hypothesis, H0. Nominal 5% significance
level. DGP1-DGP3 with φ = −0.90.

c t2∗β1
t2∗β1,NW

t2β1
t2β1,NW

T f∗ T b∗ T f∗NW T b∗NW T r∗ T r∗NW T d∗ T d∗NW
DGP1: T = 250, φ = −0.90 and σ2

ut = σ2
vt = 1

0.0 0.069 0.073 0.069 0.074 0.037 0.035 0.047 0.055 0.011 0.053 0.018 0.055
2.5 0.055 0.056 0.055 0.057 0.030 0.040 0.037 0.058 0.011 0.052 0.020 0.062
5.0 0.053 0.052 0.051 0.050 0.034 0.045 0.039 0.055 0.012 0.051 0.021 0.064
10.0 0.057 0.055 0.056 0.058 0.038 0.048 0.044 0.059 0.017 0.055 0.029 0.065
20.0 0.060 0.060 0.057 0.056 0.046 0.051 0.050 0.062 0.029 0.061 0.034 0.067
0.5T 0.055 0.053 0.051 0.052 0.059 0.067 0.057 0.060 0.073 0.058 0.067 0.055

DGP2: T = 250, φ = −0.90 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 4I(t > b0.5T c)
0.0 0.057 0.057 0.044 0.071 0.032 0.031 0.026 0.046 0.009 0.030 0.018 0.021
2.5 0.052 0.053 0.044 0.076 0.035 0.032 0.027 0.051 0.011 0.028 0.012 0.031
5.0 0.054 0.053 0.046 0.076 0.037 0.037 0.033 0.054 0.013 0.032 0.014 0.038
10.0 0.054 0.051 0.046 0.077 0.042 0.043 0.037 0.055 0.018 0.039 0.019 0.051
20.0 0.054 0.052 0.049 0.080 0.047 0.046 0.042 0.054 0.032 0.045 0.036 0.055
0.5T 0.058 0.055 0.053 0.097 0.067 0.059 0.054 0.057 0.063 0.056 0.073 0.058

DGP3: T = 250, φ = −0.90 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 1
4I(t > b0.5T c)

0.0 0.072 0.078 0.125 0.118 0.029 0.036 0.049 0.076 0.007 0.072 0.009 0.084
2.5 0.046 0.048 0.059 0.068 0.022 0.046 0.038 0.071 0.008 0.071 0.005 0.077
5.0 0.049 0.048 0.055 0.068 0.027 0.049 0.040 0.064 0.010 0.068 0.006 0.075
10.0 0.058 0.051 0.052 0.073 0.033 0.049 0.041 0.056 0.018 0.061 0.013 0.062
20.0 0.053 0.053 0.049 0.077 0.040 0.052 0.050 0.050 0.028 0.055 0.036 0.061
0.5T 0.053 0.052 0.047 0.091 0.058 0.067 0.056 0.056 0.064 0.056 0.070 0.061

DGP1: T = 500, φ = −0.90 and σ2
ut = σ2

vt = 1

0.0 0.076 0.079 0.077 0.078 0.041 0.054 0.045 0.072 0.015 0.055 0.023 0.060
2.5 0.059 0.060 0.056 0.058 0.034 0.060 0.037 0.075 0.020 0.053 0.016 0.045
5.0 0.061 0.060 0.058 0.061 0.038 0.064 0.041 0.075 0.023 0.057 0.023 0.056
10.0 0.062 0.063 0.061 0.063 0.045 0.065 0.049 0.076 0.034 0.059 0.035 0.053
20.0 0.063 0.062 0.060 0.061 0.050 0.065 0.054 0.072 0.047 0.063 0.046 0.064
0.5T 0.050 0.049 0.049 0.050 0.060 0.058 0.053 0.053 0.070 0.059 0.067 0.058

DGP2: T = 500, φ = −0.90 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 4I(t > b0.5T c)
0.0 0.072 0.067 0.055 0.082 0.041 0.047 0.029 0.066 0.022 0.037 0.021 0.033
2.5 0.060 0.057 0.052 0.079 0.041 0.049 0.030 0.063 0.021 0.036 0.030 0.039
5.0 0.061 0.060 0.052 0.085 0.045 0.057 0.033 0.068 0.024 0.040 0.039 0.043
10.0 0.058 0.058 0.053 0.088 0.049 0.055 0.040 0.064 0.034 0.043 0.049 0.045
20.0 0.061 0.058 0.052 0.095 0.056 0.060 0.044 0.066 0.044 0.045 0.056 0.051
0.5T 0.048 0.048 0.045 0.084 0.063 0.052 0.051 0.050 0.067 0.057 0.073 0.054

DGP3: T = 500, φ = −0.90 and σ2
ut = σ2

vt = 1I(t ≤ b0.5T c) + 1
4I(t > b0.5T c)

0.0 0.082 0.089 0.133 0.129 0.043 0.054 0.060 0.092 0.019 0.092 0.017 0.100
2.5 0.053 0.053 0.066 0.074 0.029 0.071 0.047 0.090 0.022 0.093 0.023 0.081
5.0 0.054 0.054 0.056 0.076 0.033 0.068 0.047 0.077 0.027 0.083 0.026 0.083
10.0 0.060 0.058 0.057 0.086 0.040 0.069 0.048 0.070 0.033 0.076 0.033 0.078
20.0 0.061 0.058 0.055 0.092 0.047 0.063 0.054 0.063 0.044 0.070 0.049 0.074
0.5T 0.053 0.052 0.051 0.096 0.057 0.068 0.053 0.058 0.069 0.054 0.071 0.068

Notes: See notes to Table 1
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Table 3: Application to updated Welch and Goyal (2008) data: bivariate regressions - (1950:01 -
2017:12)

t2β1
t2β1,NW

T f T fNW T b T bNW T r T rNW T d T dNW LMx supFx

dpt−1 0.472 0.457 10.088 11.480 5.608 6.885 6.882 8.280 10.284 12.519 2.229 131.915
(0.481) (0.492) (0.121) (0.006) (0.340) (0.182) (0.729) (0.287) (0.998) (0.194) (0.000) (0.000)

dyt−1 0.581 0.568 15.565 12.616 6.241 7.849 11.143 9.318 10.252 11.891 0.295 11.178
(0.414) (0.408) (0.041) (0.005) (0.252) (0.133) (0.507) (0.182) (0.072) (0.029) (0.028) (0.038)

e/pt−1 0.335 0.451 8.459 9.189 2.163 4.744 8.583 9.419 8.583 11.742 0.209 38.229
(0.510) (0.513) (0.316) (0.043) (0.617) (0.398) (0.360) (0.152) (0.990) (0.231) (0.116) (0.000)

det−1 0.291 0.490 12.553 17.087 0.291 0.490 13.399 20.112 15.145 21.400 0.192 5.031
(0.594) (0.575) (0.029) (0.023) (0.852) (0.851) (0.058) (0.017) (0.099) (0.010) (0.210) (0.355)

rvolt−1 1.809 2.288 3.765 4.432 2.657 3.200 4.230 6.187 4.624 6.692 0.124 6.614
(0.096) (0.114) (0.308) (0.313) (0.182) (0.167) (0.694) (0.698) (0.455) (0.278) (0.525) (0.192)

bmt−1 0.037 0.042 7.150 7.125 5.959 7.321 7.612 8.299 7.612 8.299 0.342 7.555
(0.841) (0.844) (0.222) (0.229) (0.287) (0.154) (0.764) (0.322) (0.989) (0.544) (0.012) (0.148)

ntist−1 0.041 0.059 5.634 5.235 1.648 2.600 9.383 10.543 9.679 10.874 0.375 8.102
(0.830) (0.821) (0.180) (0.312) (0.623) (0.546) (0.074) (0.059) (0.101) (0.114) (0.070) (0.180)

tblt−1 7.001 9.408 11.763 15.989 7.001 9.408 8.203 11.618 11.764 16.588 0.131 12.348
(0.004) (0.004) (0.003) (0.001) (0.096) (0.040) (0.293) (0.035) (0.267) (0.029) (0.174) (0.132)

ltyt−1 4.178 5.524 11.036 13.410 6.529 6.547 8.224 10.070 11.135 14.308 0.103 7.985
(0.029) (0.026) (0.013) (0.009) (0.140) (0.152) (0.446) (0.115) (0.487) (0.044) (0.303) (0.182)

ltrt−1 4.172 5.724 8.479 10.313 4.438 6.021 8.145 9.702 8.902 10.709 0.163 6.407
(0.045) (0.044) (0.034) (0.055) (0.136) (0.167) (0.082) (0.115) (0.061) (0.094) (0.341) (0.325)

tmst−1 2.726 3.075 15.839 17.534 4.769 5.133 12.142 12.611 15.839 17.534 0.350 10.877
(0.084) (0.084) (0.001) (0.001) (0.145) (0.150) (0.061) (0.008) (0.042) (0.003) (0.060) (0.026)

dfyt−1 0.011 0.020 2.777 3.079 0.996 2.872 7.431 19.169 8.805 19.473 0.063 9.773
(0.908) (0.909) (0.617) (0.587) (0.695) (0.546) (0.246) (0.044) (0.216) (0.046) (0.788) (0.106)

dfrt−1 0.768 1.535 4.487 5.475 2.407 5.398 11.218 7.685 11.218 13.141 0.156 6.134
(0.477) (0.434) (0.475) (0.416) (0.336) (0.346) (0.228) (0.521) (0.295) (0.336) (0.537) (0.377)

inflt−1 3.042 4.890 9.083 16.834 3.999 6.138 11.705 11.516 12.195 16.839 0.326 11.517
(0.070) (0.048) (0.276) (0.003) (0.269) (0.155) (0.477) (0.060) (0.722) (0.026) (0.102) (0.032)

Notes: Numbers in parentheses are bootstrap p-values. Bold entries are those which are statistically
significant at the 5% level (or stricter).
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Figure 1: Finite sample local power: Case 1, T = 250.
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Figure 2: Finite sample local power: Case 2, T = 250.
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Figure 4: Forward recursive slope estimates (solid line) and 95% confidence bands (dotted lines).
Sample period 1950:01 - 2017:12. The yt and xt variable labels are as defined in the main text.40
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Figure 6: Plots of forward recursive subsample statistics with marginal and bootstrap 10% and 5%
critical values.
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S.1 Introduction

This supplement has four main sections. Section S.2 details how the methods outlined in the main
paper can be extended to allow for multiple predictors and deterministic components beyond an
intercept/mean. Section S.3 contains the proofs of the main theorems from the paper. Additional
Monte Carlo results relating to GARCH and fat-tailed innovations are reported in Section S.4.
Finally, additional material relating to the empirical example in section 7 of the main paper is
provided in Section S.5.

Equation references (S.n) for n ≥ 1 refer to equations in this supplementary appendix and other
equation references are to the main paper. Additional references are included at the end of the
supplement.

S.2 Extensions: Deterministic Components and Multiple Predic-
tors

In this section we briefly outline how the subsample predictability tests developed in the context
of (2.1) and (2.2) with a single predictive regressor, xt−1, and an intercept can be generalised to
the case where the predictive regression contains multiple predictors and/or a general deterministic
component.

S.2.1 Deterministic Components

To allow for a more flexible deterministic component, we can generalise equations (2.1) and (2.2) to

yt = ψ′yf t + β1,txt−1 + ut (S.1)

and
xt = ψ′xf t + ξt (S.2)

respectively, where f t is a vector whose elements are deterministic satisfying typical conditions. In
particular, f t := L−1

T F (t/T ) for some vector F (·) of (piecewise) smooth deterministic functions and
LT diagonal weighting matrix with diagonal elements lii := T−δl for δl ≥ 0. An obvious example
is the case of constant and trend, which obtains for f t := (1, t)′, where LT := diag{1, T−1} and
F (s) = (1, s)′. Following Breitung and Demetrescu (2015, p. 365), f t can be regarded as collecting
together, or “pooling”, all of the deterministic variables that feature in either (S.1) or (S.2) or both,
so that different deterministic components can feature in (S.1) and (S.2) by setting the appropriate
elements of ψy and/or ψx to zero.

Under this extended deterministic form, the instruments used in calculating the subsample
sequences of statistics must be such that they are not linear combinations of the pooled deterministic
trend function on any of the subsamples considered in a given sequence; that is, we require that the
condition ∣∣∣∣∫ τ2

τ1

(
F (s)
Z(s)

)(
F (s)′, Z(s)

)
ds

∣∣∣∣ 6= 0 (S.3)

holds for all possible τ1 and τ2 considered in the sequence of subsamples; for example, in the case
of the forward recursive sequence it must hold for all τ1, τ2 such that τ1 = 0 and τL ≤ τ2 ≤ 1.

Remark S.1. To gauge the impact of the condition in (S.3) on the validity of our test procedures,
consider again the leading linear trend example, f t := (1, t)′. Here we may not choose as type-II
instrument any linear combination of the intercept and linear trend terms. The choice of type-II
instrument given in (4.1) therefore remains valid in this example. This family of instruments is
motivated by the Karhunen-Loéve decomposition of Wiener and OU processes; see Phillips (1998).
The Karhunen-Loéve representation of a deterministic linear trend is formed from a weighted infinite
series of terms of the form given in (4.1) over k = 1, 2, ...., and therefore the linear trend cannot be
collinear with just one of them. In the unlikely event that sin

(
k πt2T

)
is an element of the deterministic

1



trend vector f t, one could simply pick sin
(
` πt2T

)
, for some ` ≥ 1 such that ` 6= k, as the type-II

instrument. We also note that any failure of condition (S.3) in practice would be immediately
apparent as one would encounter singular matrices in the computation of the test statistics for
those subsamples were the condition failed. ♦

In order to obtain tests which are exact invariant to the vectors of parameters ψy and ψx, the
sequences of subsample statistics from which our maximum statistics are obtained need to be based
on appropriately detrended data. To that end, let y̆t, z̆t−1 and x̆t−1 denote the residuals from the
projection of yt, zt−1 and xt−1, respectively, onto the deterministic component f t for the subsample
t = bτ1T c+ 1, ..., bτ2T c; that is, for wt generically denoting any of yt, zt−1 and xt−1,

w̆t := wt −
bτ2T c∑

s=bτ1T c+1

wsf
′
s

 bτ2T c∑
s=bτ1T c+1

f sf
′
s

−1

f t. (S.4)

In order to obtain exact invariance one then simply replaces ỹt by y̆t, z̃t−1 by z̆t−1 and x̃t−1 by
x̆t−1, respectively, in computing AT (τ1, τ2), BT (τ1, τ2), CT (τ1, τ2) and DT (τ1, τ2) in (4.3). The
limiting distributions for the resulting maximum statistics can be shown to be the same as those
given in part (i) of Proposition 1 for the case where Assumption 1.1 holds. However, the results
under Assumption 1.2 do change relative to those given in Proposition 1. In particular, the results
given in part (ii) of Proposition 1 hold for the extended deterministic form discussed here provided
Z̃τ1,τ2 is replaced by

Z̆τ1,τ2(s) := Z(s)−
∫ τ2

τ1

Z(s)F (s)′
(∫ τ2

τ1

F (r)F (r)′dr

)−1

F (s).

We note in passing that the detrending scheme will affect the local power in the case of near-
integrated regressors, but not when the regressors admit stable autoregressions.10

The bootstrap Algorithms 1 and 2 will need to be modified accordingly. In particular, in Step 1
of Algorithms 1 and 2 the bootstrap sample data, y∗t , should now be constructed from full sample
detrended data; that is, y∗t := ŷft Rt, where

ŷft := yt −
T∑
s=1

ysf
′
s

(
T∑
s=1

f sf
′
s

)−1

f t.

The bootstrapped statistics are then computed analogously to the original statistics, as outlined
above, using the subsample detrended data, y̆∗t (the subsample detrended y∗t , obtained setting
wt = y∗t in the generic detrending formula in (S.4)), z̆t−1 and x̆t−1. The key result given in
Proposition 2, that the fixed regressor wild bootstrap implementation of the subsample predictability
tests are asymptotically valid, continues to hold.

S.2.2 Multiple Predictors

In empirical work one might wish to consider predictive regression models with several (putative)
predictors. This can help avoid the problem of spurious predictive regression effects in the case
where relevant strongly persistent predictors are omitted from the estimated predictive regression;
cf. Georgiev et al. (2018a).

10It should also be noted that some care may be required when generating the type-I instrument, zI,t, from the
regressor xt. Depending on the form of the deterministic component of xt and on the mechanism used to generate
the instrument, zI,t could exhibit some form of deterministic component itself (notice that this does not occur with
the IVX instrument given in (4.2) in the case considered there where xt contains a constant mean because the mean
is purged in the construction of the IVX instrument). It would then be imperative to check that the instrument zI,t
still obeys Assumptions 4-6 in spite of any such induced deterministic component.
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To that end consider replacing (2.1) by its multivariate counterpart

yt = β0 +

k∑
i=1

βi,txi,t−1 + ut, t = 1, . . . , T (S.5)

where the xi,t are generated analogously to the form given in (2.2), or the extended form including
additional deterministic variables given in (S.2). Precisely, denoting the k × 1 vector of predictive
regressors as xt−1 := (x1,t−1, ...., xk,t−1)′, these are assumed to satisfy the DGP

xt = Ψxf t + ξt

where the ith row of Ψx gives the trend coefficients of the ith putative predictor xi,t, and

ξt = Γξt−1 + vt

with vt and ut obeying a multivariate version of Assumption 3. Assume that there exists an ordering
of the elements of xt such that Γ is block-diagonal. The first block relates to any near-integrated
variables in xt−1 and, as in Equation (16) of Breitung and Demetrescu (2015), is specified as
Γ1 = Ir − 1

T C with C a (not necessarily diagonal) r × r matrix, for some 0 ≤ r ≤ k. The second
block relates to any stable regressors in xt−1, and is such that the (k − r)× (k − r) matrix Γ0 has
all of its k − r eigenvalues smaller than unity in absolute value. In this setup, any given element of
xt−1 may be either stable or near-integrated; indeed, we could have only near-integrated regressors
(r = k), or only regressors generated from stable autoregressive processes (r = 0). We will not
require knowledge which of these any given element of xt−1 satisfies because when implementing
2SLS-based inference the same mechanism discussed for the single-regressor case will ensure that
the suitable instrument gets full GMM weight in the limit. This is an important advantage of our
approach, as correctly classifying the individual variables in xt−1 as either stable or near integrated
would be infeasible in practice. For each predictor, xi,t−1, i = 1, ..., k, the associated slope parameter
βi,t needs to satisfy the relevant localisation given in Assumption 2, so that nT =

√
T where xi,t−1

is stable and nT = T where xi,t−1 is near-integrated. Here the piecewise function b(·) in Assumption
2, which defines local power, need not be the same for each of the xi,t−1, i = 1, ..., k.

The extension of the approach proposed in this paper to multiple predictors is, in principle,
straightforward. For all predictor variables xi,t−1, i = 1, ..., k, we use type-I and type-II instruments
as before. As discussed in Breitung and Demetrescu (2015, p. 366), we will require multivariate
versions of Assumptions 4-6 to hold. While using exactly one type-I instrument for each regressor
is not problematic, Breitung and Demetrescu (2015, p. 366) point out that one should not use more
than one type-II instrument for each strongly persistent regressor. We must therefore ensure that
the number k∗ of included type-II instruments does not exceed the number r of strongly persistent
regressors. This is of course trivial if r is known (again, we note that specifying which of the
regressors are strongly persistent is not required). Should r be unknown, it is straightforward but
tedious to show that setting k∗ = 1 is a valid choice irrespective of the true value of r (0 ≤ r ≤ k)
provided each regressor is additionally instrumented by a suitable type-I instrument.

Let the resulting vector of instruments be given as zt−1 which stacks k type-I and k∗ type-II
instruments. For computational reasons (specifically, to avoid perfect multicollinearity), it must
also hold that, for all of the subsamples over which the statistics of interest are computed, the
instruments are linearly independent and are linearly independent of the deterministic component.

For the type-I instruments, an obvious choice is again given by the IVX approach, setting

zi,I,t−1 :=

t−1∑
j=0

%ji∆xi,t−1−j with %i := 1− ai
T γi

, i = 1, ..., k

where ai > 0 and γi ∈ (0, 1), i = 1, ..., k, and with the convention that ∆xi,0 = 0, i = 1, ..., k. For
the type-II instruments we could simply adopt a different spectral frequency for each of the type-II
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instruments; viz.,

zi,II,t−1 = sin

(
ωi(t− 1)

2T

)
, i = 1, ..., k∗

where ωi ∈ (0, π], i = 1, ..., k∗, are fixed and distinct spectral frequencies. Along the lines of the
proof of Lemma 1 it can be shown that these choices of instruments satisfy the required regularity
conditions on the instruments as long as the condition in (S.3) is fulfilled with Z(s) replaced by
Z(s), the vector of limit functions of the k∗ type-II instruments.

Assuming that with a given subsample t = bτ1T c+ 1, . . . , bτ2T c, the slope parameters in (S.5)
are constant, such that βi,t = βi, i = 1, ..., k, then the 2SLS estimator of β := (β1, ..., βk)

′ using the
set of instruments, zt−1, defined above for the subsample t = bτ1T c+ 1, . . . , bτ2T c is given by

β̂1(τ1, τ2) := M−1
T A′T (τ1, τ2) B−1

T (τ1, τ2) CT (τ1, τ2)

where MT := C′T (τ1, τ2) B−1
T (τ1, τ2) CT (τ1, τ2), with AT (τ1, τ2) :=

∑[τ2T ]
t=[τ1T ]+1 z̆t−1x̆

′
t−1, and

where the matrices BT , CT , and DT retain their definitions from the previous subsection but
for the form of zt−1 defined above.

Based on β̂1(τ1, τ2), we can then form IV-combination predictability tests, for the given sub-
sample t = bτ1T c+ 1, . . . , bτ2T c, along the same principles as outlined in section 4.2 for the single
predictor statistic tβ1

(τ1, τ2) in (4.3). To that end, define the q × k full row rank matrix R of con-
stants defining q linearly independent restrictions on β. The 2SLS-based Wald statistic for testing
the null hypothesis that Rβ = 0 holds over the subsample t = bτ1T c + 1, . . . , bτ2T c is then given
by

WR
β1

(τ1, τ2) :=
(
Rβ̂1(τ1, τ2)

)′(
R

̂
Cov

(
β̂1(τ1, τ2)

)
R′
)−1

Rβ̂1(τ1, τ2),

where

̂
Cov

(
β̂1(τ1, τ2)

)
:= M−1

T

(
A′T (τ1, τ2) B−1

T (τ1, τ2) DT (τ1, τ2) B−1
T (τ1, τ2) AT (τ1, τ2)

)
M−1

T .

A test statistic for the significance of any given predictor, xi,t−1, i ∈ {1, ..., k}, obtains by setting
R equal to the 1×k selection (row) vector whose ith element is equal to unity and all other elements
are equal to zero. Test statistics for the joint significance of any subset of q of the predictors can be
formed by merging such selection vectors into a q× k matrix. For q = k, so that R = Ik, we obtain
a test statistic for the joint significance of all of the predictors xi,t−1, i = 1, ..., k. Notice also that
the joint predictability statistic proposed in section 3.3 of Breitung and Demetrescu (2015) in the
context of the full sample obtains for τ1 = 0 and τ2 = 1. It can be shown that WR

β1
(τ1, τ2) has a

χ2
q limiting null distribution.

Along exactly the lines detailed in section 4.2, for a given choice of R, we can form forward and
backward recursive, rolling, and double-recursive sequences of the WR

β1
(τ1, τ2) statistic calculated

over the relevant sequences of subsamples. Tests for the null hypothesis that the subset of the
elements of xt−1 chosen by R has no predictive power anywhere in the available sample against
the alternative that they have joint (local) predictive power within some subset of the sample can
then be based, as with the single regressor case, on the maxima of these sequences of subsample
Wald statistics. The limiting distributions of these maximum statistics are multivariate variants of
Proposition 1 which we do not provide here to save space. Clearly, they are not invariant to time-
varying volatility for the same reasons as were outlined previously in the discussion of Proposition
1. Fixed regressor wild bootstrap versions of these tests can be implemented with an obvious
generalisation of Algorithms 1 and 2. The behaviour of these bootstrapped maximum statistics can
be derived in a similar way to those established in Proposition 2 and we omit the details here; the
important point is that the leading conclusion regarding the asymptotic validity of the bootstrap
given in Corollary 3 also holds for these multivariate tests.
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S.3 Proofs

For the purposes of this supplementary appendix we set µx = 0 and β0 = 0 in (2.1) and (2.2),
respectively, throughout. This is done without loss of generality given that the statistics proposed in
the paper are, by design, exact invariant to both µx and β0. Moreover, we will establish the validity
of the large sample results given in the paper for the case where the residuals used in computing the
statistics are constructed under the null hypothesis; see again the discussion following Equation (3.2)
and in Footnote 3. This simplifies the algebra in the proofs, but can straightforwardly be shown
to be asymptotically equivalent to the two other possible choices (OLS and 2SLS) of residuals
discussed. Throughout this supplementary appendix we will use ‘null hypothesis’ as shorthand for
H0 of (2.3), and ‘local alternative’ as shorthand for H1,b(·) of (2.4).

S.3.1 Notation

With the convention stated above that we set µx = β0 = 0, we may define the following partial
sums:

Sy (τ) :=

bτT c∑
t=1

yt , Sx (τ) :=

bτT c∑
t=1

xt−1 , Sz (τ) :=

bτT c∑
t=1

zt−1

(and analogously SzI (τ) and SzII (τ) for the partial sums involving each of the two instruments zI,t
and zII,t taken alone),

Sxz (τ) :=

bτT c∑
t=1

xt−1zt−1 , Szz (τ) :=

bτT c∑
t=1

zt−1z
′
t−1

(and analogously SxzI (τ), SxzII (τ), Sz2
I

(τ), SzIzII (τ), Sz2
II

(τ)), as well as

Szzy2 (τ) :=

bτT c∑
t=1

zt−1z
′
t−1y

2
t , Szzy (τ) :=

bτT c∑
t=1

zt−1z
′
t−1yt , Szy (τ) :=

bτT c∑
t=1

zt−1yt,

Szy2 (τ) :=

bτT c∑
t=1

zt−1y
2
t , Sy2 (τ) :=

bτT c∑
t=1

y2
t

(and analogously SzIy (τ) etc.). For 0 ≤ τ1 < τ2 ≤ 1, we then have (with the standard convention
that

∑0
t=1 = 0) the following alternative representations for the objects AT (τ1, τ2), BT (τ1, τ2),

CT (τ1, τ2) and DT (τ1, τ2) used in the definition of tβ1
(τ1, τ2) of (4.3):

AT (τ1, τ2) := Sxz (τ2)− Sxz (τ1)− 1

bτ2T c − bτ1T c
(Sx (τ2)− Sx (τ1)) (Sz (τ2)− Sz (τ1)) ,

BT (τ1, τ2) := Szz (τ2)− Szz (τ1)− 1

bτ2T c − bτ1T c
(Sz (τ2)− Sz (τ1)) (Sz (τ2)− Sz (τ1))′ ,

CT (τ1, τ2) := Szy (τ2)− Szy (τ1)− 1

bτ2T c − bτ1T c
(Sz (τ2)− Sz (τ1)) (Sy (τ2)− Sy (τ1))

and

DT (τ1, τ2) := Szzy2 (τ2)− Szzy2 (τ1)− 2

bτ2T c − bτ1T c
(Sy (τ2)− Sy (τ1)) (Szzy (τ2)− Szzy (τ1))

+
1

(bτ2T c − bτ1T c)2 (Sy (τ2)− Sy (τ1))2 (Szz (τ2)− Szz (τ1))

− 1

bτ2T c − bτ1T c
(
Szy2 (τ2)− Szy2 (τ1)

)
(Sz (τ2)− Sz (τ1))′

5



+
2

(bτ2T c − bτ1T c)2 (Sy (τ2)− Sy (τ1)) (Szy (τ2)− Szy (τ1)) (Sz (τ2)− Sz (τ1))′

− 2

(bτ2T c − bτ1T c)3 (Sy (τ2)− Sy (τ1))2 (Sz (τ2)− Sz (τ1)) (Sz (τ2)− Sz (τ1))′

− 1

bτ2T c − bτ1T c
(Sz (τ2)− Sz (τ1))

(
Szy2 (τ2)− Szy2 (τ1)

)′
+

2

(bτ2T c − bτ1T c)2 (Sy (τ2)− Sy (τ1)) (Sz (τ2)− Sz (τ1)) (Szy (τ2)− Szy (τ1))′

+
1

(bτ2T c − bτ1T c)2 (Sz (τ2)− Sz (τ1)) (Sz (τ2)− Sz (τ1))′
(
Sy2 (τ2)− Sy2 (τ1)

)
− 1

(bτ2T c − bτ1T c)3 (Sz (τ2)− Sz (τ1)) (Sz (τ2)− Sz (τ1))′ (Sy (τ2)− Sy (τ1))2 .

Next the bootstrap analogue of the subsample tβ1
(τ1, τ2) statistic in (4.3) can be written as

t∗β1
(τ1, τ2) :=

A′T (τ1, τ2) B−1
T (τ1, τ2)C∗T (τ1, τ2)√

A′T (τ1, τ2) B−1
T (τ1, τ2) D∗T (τ1, τ2) B−1

T (τ1, τ2)AT (τ1, τ2)
.

where C∗T (τ1, τ2) and D∗T (τ1, τ2) denote the bootstrap analogues of CT (τ1, τ2) and DT (τ1, τ2) ,
respectively, which can be written in the same way as was done above for the original tβ1

(τ1, τ2)
statistic by replacing the original yt with the bootstrap regressand y∗t in the definitions of the partial
sum and product moment terms Sy (τ), Sy2 (τ), Szy (τ), Szy2 (τ), Szzy (τ) and Szzy2 (τ) above to
obtain the bootstrap analogues of these quantities, denoted S∗y (τ), S∗y2 (τ), S∗zy (τ), S∗zy2 (τ), S∗zzy (τ)

and S∗zzy2 (τ), respectively.

Finally, we denote by WT the diagonal normalisation matrix diag(T−1/2−δI , T−1/2−δII ) and
adopt the convention that, throughout, for random processes indexed by τ weak convergence is
always understood in the functional sense, with reference to a space equipped with the Skorokhod
topology.

S.3.2 Preparatory Lemmas

Lemma S.1 Let d̃t be mildly integrated in the sense of Phillips and Magdalinos (2009), i.e. d̃t =∑t−1
j=0 %

jψt−j where ψt =
∑

j≥0 b̃j ṽt−j with b̃j a 1-summable sequence of coefficients such that∑
j≥0 b̃j = ω̃ > 0, and ṽt the innovations of the process vt from Assumption 3. Then,

1. 1
T 1/2+γ

∑bτT c
t=1 d̃t ⇒ ω̃

aV (τ) and

2. T−γ/2d̃t is uniformly L4bounded if assuming that

sup
t∈Z

∣∣E ((ṽ2
t − E

(
ṽ2
t

))
ṽt−j ṽt−k

)∣∣ ≤ C (jk)−
1/2−ϑ/2

for some ϑ > 0. �

Lemma S.2 Under Assumptions 1.1 and 2 – 6, we have as T →∞ that, jointly:

1. 1√
T
Sx (τ)⇒ ω

1−ρV (τ);

2. 1√
T
Sy (τ)⇒ U (τ);

3. 1√
T

WTSz (τ)⇒
(

0∫ τ
0 Z(s)ds

)
;
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4.

(
1

T 1+δI
0

0 1
T 1/2+δII

)
Sxz (τ)⇒

(
KzIx (τ)

ω
1−ρ

∫ τ
0 Z(s)dV (s)

)
;

5. WTSzz (τ) WT ⇒
(
Kz2

I
(τ) 0

0
∫ τ

0 Z
2(s)ds

)
with WT defined in section S.3.1;

6. supτ∈[0,1] ‖WTSzzy2 (τ) WT ‖ = Op(1) and, in particular, T−1−2δISz2
Iy

2(τ) ⇒ [GI ] (1) · ηI(τ)

and T−1−2δIISz2
IIy

2(τ)⇒
∫ τ

0 Z
2(s)d[U ](s);

7. WTSzzy (τ) WT ⇒ 0;

8. WTSzy (τ)⇒
(
GI (τ) +

∫ τ
0 b(s)dKzIx(s)∫ τ

0 Z(s)dU(s)

)
;

9. supτ∈[0,1] ‖T−1/2WTSzy2 (τ) ‖ = Op(1) and, in particular, T−1−δIISzIIy2 (τ)⇒
∫ τ

0 Z(s)d[U ](s);

10. 1
T Sy2 (τ)⇒ [U ] (τ).

�

Lemma S.3 Under Assumptions 1.2 and 2 – 6, we have as T →∞ that, jointly:

1. 1
T
√
T
Sx (τ)⇒ ω

∫ τ
0 Jc,H(s)ds;

2. 1√
T
Sy (τ)⇒ U (τ) + ω

∫ τ
0 b(s)Jc,H(s)ds;

3. T−1/2WTSz (τ)⇒
(

0∫ τ
0 Z(s)ds

)
;

4. T−1WTSxz (τ)⇒
(

0
ω
∫ τ

0 Z(s)Jc,H(s)ds

)
;

5. WTSzz (τ) WT ⇒
(
Kz2

I
(τ) 0

0
∫ τ

0 Z
2(s)ds

)
;

6. ‖WTSzzy2 (τ) WT ‖ = Op (1) and, in particular, T−1−2δIISz2
IIy

2 (τ)⇒
∫ τ

0 Z
2(s)d[U ](s);

7. WTSzzy (τ) WT ⇒ 0;

8. ‖WTSzy (τ) ‖ = Op (1) and, in particular, T−1/2−δIISzIIy(τ)⇒
∫ τ

0 Z(s)dU(s)+ω
∫ τ

0 Z(s)b(s)Jc,H(s)ds;

9. supτ∈[0,1] ‖T−1/2WTSzy2 (τ) ‖ = Op(1) and, in particular, T−1−δIISzIIy2 (τ)⇒
∫ τ

0 Z(s)d[U ](s);

10. 1
T Sy2 (τ)⇒ [U ] (τ). �

Lemma S.4 Consider a two-dimensional zero-mean Gaussian process (U∗(τ), G∗I (τ)), τ ∈ [0, 1],
with independent increments, independent components U∗ and G∗I and component variance func-
tions [U∗](τ) :=

∫ τ
0

(
h2

11(s) + h2
12(s)

)
ds = [U ](τ) and [G∗I ](τ) := [GI ](τ). Under Assumption 1.1,

the bootstrap partial sum processes converge jointly as follows, under the null and under local alter-
natives:

1. T−1/2 S∗y (τ)
w⇒p U

∗ (τ);

2. T−1/2−δIS∗zIy(τ)
w⇒p G

∗
I (τ) and T−1/2−δII supτ∈[0,1] |S∗zIIy(τ)| = Op∗(1) in P -probability.

Moreover, it holds that:
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3. supτ∈[0,1] ‖WT (S∗zzy2 (τ)− Szzy2(τ)]WT ‖
w⇒p 0;

4. supτ∈[0,1] ‖WTS∗zzy (τ) WT ‖
w⇒p 0;

5. T−1/2 supτ∈[0,1] ‖WT (S∗zy2 (τ)− Szy2 (τ))‖ w⇒p 0;

6. T−1 supτ∈[0,1] |S∗y2 (τ)− Sy2 (τ) | w⇒p 0.

�

Lemma S.5 Let U∗ be defined as in Lemma S.4. Under Assumptions 1.2 and 2 – 6, under the null
hypothesis as well as under local alternatives, we have as T →∞ that, jointly:

1. T−1/2S∗y (τ)
w⇒p U

∗ (τ);

2. supτ∈[0,1] ‖WTS
∗
zy (τ)‖ = Op∗(1) in P-probability and, in particular, T−1/2−δIIS∗zIIy

w⇒p

∫ τ
0 Z(s)dU∗(s).

Moreover, the convergence statements in parts 3, 4, 5 and 6 of Lemma S.4 hold.
�

Lemma S.6 Under the conditions of Proposition 1, it holds,

(i) under Assumption 1.1 that,

sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

∣∣∣∣t2β1
(τ1, τ2)−

Q2
I (τ1, τ2)

PI (τ1, τ2)

∣∣∣∣ p→ 0

where tβ1
(τ1, τ2) is defined in (4.3),

QI (τ1, τ2) :=
1

T 1/2+δI
SzIy (τ2)− 1

T 1/2+δI
SzIy (τ1)

and

PI (τ1, τ2) :=
1

T 1+2δI
Sz2

Iy
2 (τ2)− 1

T 1+2δI
Sz2

Iy
2 (τ1) ;

(ii) under Assumption 1.2 that

sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

∣∣∣∣t2β1
(τ1, τ2)−

Q2
II (τ1, τ2)

PII (τ1, τ2)

∣∣∣∣ p→ 0

where

QII (τ1, τ2) :=
1

T 1/2+δII
SzIIy (τ2)− 1

T 1/2+δII
SzIIy (τ1)

− 1

τ2 − τ1

(
1

T 1+δII
SzII (τ2)− 1

T 1+δII
SzII (τ1)

)(
1√
T
Sy (τ2)− 1√

T
Sy (τ1)

)
and

PII (τ1, τ2) :=
1

T 1+2δII
Sz2

IIy
2 (τ2)− 1

T 1+2δII
Sz2

IIy
2 (τ1)

− 2

τ2 − τ1

(
1

T 1+δII
SzIIy2 (τ2)− 1

T 1+δII
SzIIy2 (τ1)

)
×

×
(

1

T 1+δII
SzII (τ2)− 1

T 1+δII
SzII (τ1)

)
+

1

(τ2 − τ1)2

(
1

T 1+δII
SzII (τ2)− 1

T 1+δII
SzII (τ1)

)2( 1

T
Sy2 (τ2)− 1

T
Sy2 (τ1)

)
.
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�

Lemma S.7 Under the conditions of Proposition 2 and under local alternatives, it holds,

(i) under Assumption 1.1 that

sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

∣∣∣∣t∗2β1
(τ1, τ2)−

Q∗2I (τ1, τ2)

PI (τ1, τ2)

∣∣∣∣ w⇒p 0,

where Q∗I (τ1, τ2) := S∗zIy (τ2)− S∗zIy (τ1) and PI (τ1, τ2) is defined in Lemma S.6;

(ii) under Assumption 1.2 that

sup
0≤τ1,τ2≤1
τ2−τ1≥∆τ

∣∣∣∣t∗2β1
(τ1, τ2)−

Q∗2II (τ1, τ2)

PII (τ1, τ2)

∣∣∣∣ w⇒p 0,

where

Q∗2II,b (τ1, τ2) : =
1

T 1/2+δII
S∗zIIy (τ2)− 1

T 1/2+δII
S∗zIIy (τ1)

− 1

τ2 − τ1

(
1

T 1+δII
SzII (τ2)− 1

T 1+δII
SzII (τ1)

)(
1√
T
S∗y (τ2)− 1√

T
S∗y (τ1)

)
and PII (τ1, τ2) is defined in Lemma S.6.

�

S.3.3 Proofs

Proof of Lemma S.1

Begin by using the Phillips-Solo decomposition to conclude that ψt = ω̃ṽt + ∆¯̃vt with ¯̃vt a linear
process in ṽt with absolutely summable coefficients, where, recall, (ũt, ṽt)

′ := H(t/T )ζt.
To establish the first result, write then

1

T 1/2+γ

bτT c∑
t=1

d̃t = ω̃
1

T 1/2+γ

bτT c∑
t=1

 t−1∑
j=0

%j ṽt−j

+
1

T 1/2+γ

bτT c∑
t=1

 t−1∑
j=0

%j∆¯̃vt−j

 . (S.6)

To discuss the first term on the r.h.s. of (S.6), let Ṽt =
∑t

j=1 ṽt (with the usual convention that

Ṽ0 = Ṽ−1 = . . . = 0) and note that, upon re-arranging sum elements, we have

bτT c∑
t=1

 t−1∑
j=0

%j ṽt−j

 =

bτT c∑
t=1

 t−1∑
j=0

%j∆Ṽt−j

 =

bτT c∑
t=1

∆

 t−1∑
j=0

%j Ṽt−j

 =

[τT ]−1∑
t=0

%tṼ[τT ]−t

=

bτT c−1∑
t=0

%t

 Ṽ[τT ] −
bτT c−1∑
t=1

%t

 bτT c∑
j=bτT c−t

ṽj

 .

It is easily shown that Var
(∣∣∣∑bτT cj=bτT c−t ṽj

∣∣∣) ≤ Ct, ∀t ∈ {1, . . . , bτT c − 1}. Therefore, E
(∣∣∣∑bτT cj=bτT c−t ṽj

∣∣∣) ≤
C
√
t, and the arguments of Breitung and Demetrescu (2015, proof of Corollary 1.2) may be applied
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to show the second summand to be dominated uniformly in t. We may therefore focus on

1

T 1/2+γ

bτT c−1∑
t=0

%t

 ṼbτT c =
1

a
√
T
ṼbτT c −

1

a
√
T
%bτT cṼbτT c

The first summand on the r.h.s.̈ı¿œleads to the desired weak convergence, but the second must be
shown to vanish uniformly in τ ∈ [0, 1]. While this is trivial at τ > 0, it requires more care at 0,

where we examine lim supτ→0

∣∣∣ 1
a
√
T
%bτT cṼbτT c

∣∣∣ ≤ lim supτ→0

∣∣∣ 1
a
√
T
ṼbτT c

∣∣∣, which, in turn, is easily

shown to vanish as required and we may write

1

T 1/2+γ

bτT c∑
t=1

 t−1∑
j=0

%j ṽt−j

 =
1

a
√
T

bτT c∑
t=1

ṽt + op(1)

with the op term uniform in τ ∈ [0, 1] as required. To show the second term on the r.h.s. of (S.6)
to vanish uniformly in τ , notice that

bτT c∑
t=1

 t−1∑
j=0

%j∆¯̃vt−j

 =

bτT c∑
t=1

¯̃vt − %t−1 ¯̃v0 − (1− %)

t−2∑
j=0

%j v̄t−1−j


where d̄t =

∑t−2
j=0 %

j v̄t−1−j is mildly integrated. Now, supτ

∣∣∣∑bτT ct=1
¯̃vt

∣∣∣ = Op

(√
T
)

, ¯̃v0
∑bτT c

t=1 %t−1 =

Op (T γ) and, like above, it can be shown that 1
T 1/2+γ

∑bτT c
t=1 d̄t = C 1√

T

∑bτT c
t=1 ṽt + op(1) such that

(1− %)
∑bτT c

t=1

∑t−2
j=0 %

j v̄t−1−j = Op

(√
T
)

uniformly as required.

To show the second result, notice that ¯̃vt in the the Phillips-Solo decomposition of ψt is uniformly
L4-bounded, just like ṽt. Examining

d̃t = ω̃

t−1∑
j=0

%j ṽt−j +

t−1∑
j=0

%j∆¯̃vt,

it is easily seen that
∑t−1

j=0 %
j∆¯̃vt is uniformly L4-bounded, so it suffices to show that the first

summand on the r.h.s. is uniformly L4-bounded upon division by T γ/2. Write to this end

E

 t−1∑
j=0

%j ṽt−j

4 =

t−3∑
j=0

t−3∑
k=0

t−3∑
l=0

t−3∑
m=0

%j%k%l%m E (ṽt−1−j ṽt−1−kṽt−1−lṽt−1−m)

which, upon exploiting the MD property of ṽt, gives

E

 t−1∑
j=0

%j ṽt−j

4 =

t−3∑
j=0

%4j E
(
ṽ4
t−1−j

)
+ 3

t−3∑
j=0

t−3∑
k=0

j 6=k

%3j%k E(ṽ3
t−j ṽt−k)

+3

t−3∑
j=0

t−3∑
k=0

j 6=k

%2j%2k E
(
ṽ2
t−1−j ṽ

2
t−1−k

)
+ 6

t−3∑
j=0

t−3∑
k=0

t−3∑
l=0

j 6=k 6=l

%2j%k%l E
(
ṽ2
t−1−j ṽt−1−kṽt−1−l

)
.

The Hı̈¿œlder inequality leads to
∣∣∣E(ṽ3

t−j ṽt−k)
∣∣∣ ≤ E

(∣∣∣ṽ3
t−j ṽt−k

∣∣∣) ≤ ∥∥∥ṽ3
t−j

∥∥∥
4/3
‖ṽt−k‖4 where the
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latter L norms are uniformly bounded, so∣∣∣∣∣∣∣∣
t−3∑
j=0

t−3∑
k=0

j 6=k

%3j%k E(ṽ3
t−j ṽt−k)

∣∣∣∣∣∣∣∣ ≤ C
t−3∑
j=0

t−3∑
k=0

j 6=k

%3j%k ≤ C

 t−3∑
j=0

%3j

( t−3∑
k=0

%k

)
≤ CT 2γ ,

and, analogously, 3
∑t−3

j=0

∑t−3
k=0

j 6=k
%2j%2k E

(
ṽ2
t−1−j ṽ

2
t−1−k

)
= O

(
T 2γ

)
. Furthermore, since E (ṽt−1−kṽt−1−l) =

0 and E
(
ṽ2
t−1−j ṽt−1−kṽt−1−l

)
= 0 for j 6= k 6= l whenever j ≥ l or j ≥ k,∣∣E (ṽ2

t−1−j ṽt−1−kṽt−1−l
)∣∣ ≤ Var

(
ṽ2
t−1−j

)
|E (ṽt−1−kṽt−1−l)|

+
∣∣E ((ṽ2

t−1−j −Var
(
ṽ2
t−1−j

))
ṽt−1−kṽt−1−l

)∣∣
≤ C√

(k − j)1+ϑ (l − j)1+ϑ

for all t, and thus, with the variance of ṽt uniformly bounded under our assumptions,∣∣∣∣∣∣∣∣
t−3∑
j=0

t−3∑
k=0

t−3∑
l=0

j 6=k 6=l

%2j%k%l E
(
ṽ2
t−1−j ṽt−1−kṽt−1−l

)∣∣∣∣∣∣∣∣ ≤
≤ C

t−3∑
j=0

%4j
t−3∑

k=j+1

t−3∑
l=j+1

k 6=l

%k−j%l−j√
(k − j)1+ϑ (l − j)1+ϑ

≤ C
t−3∑
j=0

%4j
t−3∑

k=j+1

t−3∑
l=j+1

k 6=l

%k−j%l−j√
(k − j)1+ϑ (l − j)1+ϑ

≤ C
t−3∑
j=0

%4j
t−3∑

k=j+1

t−3∑
l=j+1

%k−j%l−j√
(k − j)1+ϑ (l − j)1+ϑ

≤ C
t−3∑
j=0

%4j


√√√√t−j−3∑

k=1

%2k

√√√√t−j−3∑
k=1

1

k1+ϑ

2

≤ C

T−1∑
j=0

%4j

(T−1∑
k=0

%2k

)(
T−1∑
k=1

1

k1+ϑ

)
.

Summing up, we have for all t = 2, . . . , T that E

((∑t−1
j=0 %

j ṽt−j

)4
)
≤ CT 2γ as required. �

Proof of Lemma 1

Proof of part 1 We work under Assumption 1.1 such that ξt is a stable autoregression, and begin
by showing that Assumption 4.1 is fulfilled. Notice that

zI,t−1 = ξt−1 − %t−2ξ0 + (%− 1)

t−3∑
j=0

%jξt−2−j ,

where

(%− 1)

t−3∑
j=0

%jξt−2−j = − a

T γ

t−3∑
j=0

%jξt−2−j = − a

T γ
dt−2

with dt−2 zero-mean mildly integrated.
Then, E

(
ζt|ζt−1, ζt−2, . . . , zI,t−1, zI,t−2, . . .

)
= 0 obviously holds; ξt−1 and %t−2ξ0 are uniformly

L4-bounded, and so is 1
T γ/2

dt−2 (see Lemma S.1), such that T−δIzI,t−1, with δI = 0, is itself
uniformly L4-bounded due to Minkowski’s norm inequality.
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Furthermore,

sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T

bτT c∑
t=1

zI,t−1

∣∣∣∣∣∣ ≤ sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T

bτT c∑
t=1

ξt−1

∣∣∣∣∣∣+ sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T

bτT c∑
t=1

%t−2ξ0

∣∣∣∣∣∣+ sup
τ∈[0,1]

∣∣∣∣∣∣ a

T 1+γ

bτT c∑
t=1

dt−2

∣∣∣∣∣∣ p→ 0

since
∑bτT c

t=1 %t−2 = O(T γ) = o(T ) and a
T 1/2+γ

∑bτT c
t=1 dt−2 ⇒ ω

1−ρV (τ), see Lemma S.1.
Similarly,

sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T

bτT c∑
t=1

zI,t−1u
2
t

∣∣∣∣∣∣ ≤ 1

T
sup
τ∈[0,1]

bτT c∑
t=1

(∣∣ξt−1u
2
t

∣∣+ |ξ0| %t−2u2
t +

∣∣∣∣ 1

T γ
dt−2u

2
t

∣∣∣∣)

≤ 1

T

T∑
t=1

(∣∣ξt−1u
2
t

∣∣+ |ξ0| %t−2u2
t +

∣∣∣∣ 1

T γ
dt−2u

2
t

∣∣∣∣) .
But all summands on the r.h.s. are easily shown to have bounded expectation, and Markov’s

inequality then indicates that supτ∈[0,1]

∣∣∣ 1
T

∑bτT c
t=1 zI,t−1u

2
t

∣∣∣ = Op(1) as required.

Moving on to assumption 4.2 (a), write

1

T

bτT c∑
t=1

zI,t−1ξt−1 =
1

T

bτT c∑
t=1

ξ2
t−1 −

ξ0

T

bτT c∑
t=1

%t−2ξt−1 −
1

T 1+γ

bτT c∑
t=1

dt−2ξt−1

where it is easily shown using standard arguments that 1
T

∑bτT c
t=1 ξ2

t−1 ⇒ σ̄2
ξ(ρ)[V ](τ) with σ̄2

ξ(ρ) the

sum of the squared coefficients of (1− ρL)−1B(L).
Moreover,

sup
τ∈[0,1]

∣∣∣∣∣∣
bτT c∑
t=1

%t−2ξt−1

∣∣∣∣∣∣ ≤
T∑
t=1

%t−2
∣∣ξt−1

∣∣
where the expectation of the r.h.s. is bounded by C

∑T
t=1 %

t−2 since ξt−1 is uniformly L4-bounded,

so supτ∈[0,1]

∣∣∣ 1
T

∑bτT c
t=1 %t−2ξt−1

∣∣∣ = Op

(
1
T

∑T
t=1 %

t−2
)

= Op
(
T γ−1

)
= op(1) as required, and the term

1
T 1+γ

∑bτT c
t=1 dt−2ξt−1 is shown to vanish analogously given that T−γ/2dt−2 is uniformly L4-bounded.

The term 1
T

∑bτT c
t=1 z2

I,t−1 in (b) can be shown to have the same limit behaviour using similar
derivations.

For (c), consider

1√
T

bτT c∑
t=1

zI,t−1ut =
1√
T

bτT c∑
t=1

ξt−1ut −
ξ0√
T

bτT c∑
t=1

%t−2ut −
1

T 1/2+γ

bτT c∑
t=1

dt−2ut.

The second and third term on the r.h.s. are easily shown to vanish using Doob’s martingale inequal-
ity. To discuss the convergence of the first, note that (ut, vt, ξtut)

′ form an MD array. Since we are
dealing with partial sums of positive semi-definite matrices, uniform convergence of

1

T

bτT c∑
t=1

 u2
t vtut ξt−1u

2
t

vtut v2
t ξt−1vtut

ξt−1u
2
t ξt−1vtut ξ2

t−1u
2
t


can be established, and a MD invariance principle (e.g. Boswijk et al., 2016, Lemma 1) leads as
required to

1√
T

bτT c∑
t=1

 ut
vt

ξt−1ut

⇒
 U(τ)

V (τ)
GI(τ)

 .
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Assumption 4.2 part (d) is established along the lines of the proof of (b) by first showing that

1

T

bτT c∑
t=1

z2
I,t−1u

2
t =

1

T

bτT c∑
t=1

ξ2
t−1u

2
t + op (1)

where the op term is uniform in τ . This is straightforward and, hence, we omit the details. Here,
1
T

∑bτT c
t=1 ξ2

t−1u
2
t clearly converges uniformly to the quadratic variation of GI from (c).

To complete the proof of part 1 of this lemma, notice that Assumption 4.3 refers to the near-
integrated case, while Assumption 5 is obviously fulfilled with δII = 0 and Z(τ) = sin(k π2 τ) irre-
spective of which assumption, 1.1 or 1.2, holds true. Finally, Assumption 6 follows along the lines of
the derivations above; the key observation is that the type-II instrument only adds a deterministic

weight component to 1
T 1+δI

∑bτT c
t=1 zI,t−1 and 1

T 1+δI

∑bτT c
t=1 zI,t−1u

2
t and the order of magnitude of the

maxima do not change.

Proof of part 2 We now work under Assumption 1.2, and use the Phillips-Solo decomposition
to write vt = ωṽt + ∆v̄t where v̄t is a linear process with absolutely summable coefficients driven by
ṽt. It holds that

zI,t−1 =

t−2∑
j=0

%j∆ξt−1−j =

t−2∑
j=0

%j
(
vt−1−j −

c

T
ξt−2−j

)
= ωz̃t−1 +

t−2∑
j=0

%j
(

∆v̄t−1−j −
c

T
ξt−2−j

)
with z̃t−1 =

∑t−2
j=0 %

j ṽt−j and z̃0 = z̃−1 = . . . = 0.
We now deal with assumption 4.1. With δI = γ/2, we have

sup
τ∈[0,1]

∣∣∣∣∣∣
bτT c∑
t=1

zI,t−1

∣∣∣∣∣∣ ≤ ω sup
τ∈[0,1]

∣∣∣∣∣∣
bτT c∑
t=1

z̃t−1

∣∣∣∣∣∣+ sup
τ∈[0,1]

∣∣∣∣∣∣
bτT c∑
t=1

t−2∑
j=0

%j∆v̄t−1−j

∣∣∣∣∣∣+
c

T
sup
τ∈[0,1]

∣∣∣∣∣∣
bτT c∑
t=1

t−2∑
j=0

%jξt−2−j

∣∣∣∣∣∣ ,
where 1

T 1/2+γ

∑bτT c
t=1 z̃t−1 ⇒ CV (τ) (see Lemma S.1), and supτ∈[0,1]

∣∣∣∑bτT ct=1

∑t−2
j=0 %

j∆v̄t−1−j

∣∣∣ =

Op

(
max

{√
T , T γ

})
like in the proof of Lemma S.1; moreover, c

T supτ∈[0,1]

∣∣∣∑bτT ct=1

∑t−2
j=0 %

jξt−2−j

∣∣∣
is easily shown to be of order Op

(
T 1/2+γ

)
itself, such that

1

T 1+γ/2
sup
τ∈[0,1]

∣∣∣∣∣∣
bτT c∑
t=1

zI,t−1

∣∣∣∣∣∣ = Op

(
T γ/2−1/2

)
= op(1)

as required. Using similar arguments, it follows that supτ∈[0,1]

∣∣∣ 1
T

∑bτT c
t=1 zI,t−1u

2
t

∣∣∣ = Op(1), while

E
(
ζt|ζt−1, ζt−2, . . . , zI,t−1, zI,t−2, . . .

)
= 0 holds as in the proof of part 1.

Assumption 4.2 refers to the stable autoregression case, so we move on to dealing with assump-
tion 4.3. We have for (a) that

bτT c∑
t=1

zI,t−1ξt−1 = ω

bτT c∑
t=1

z̃t−1ξt−1 +

bτT c∑
t=1

ξt−1

t−2∑
j=0

%j∆v̄t−1−j −
c

T

bτT c∑
t=1

ξt−1

t−2∑
j=0

%jξt−2−j

where, since sup1≤t≤T |ξt| = Op

(√
T
)

, it can be shown as above that
∑bτT c

t=1 ξt−1

∑t−2
j=0 %

j∆v̄t−1−j =

Op
(
max

{
T, T 1/2+γ

})
and c

T

∑bτT c
t=1 ξt−1

∑t−2
j=0 %

jξt−2−j = Op
(
T 1+γ

)
uniformly, such that they van-
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ish upon division by T 3/2+γ/2. Furthermore, with S̃t−1 =
∑t−1

j=1 z̃j (and S0 = 0),

bτT c∑
t=1

z̃t−1ξt−1 =

bτT c∑
t=2

(
S̃t−1 − S̃t−2

)
ξt−1 = S̃[τT ]−1ξt−1 −

bτT c−1∑
t=2

S̃t−1∆ξt.

But we know from the proof of Lemma S.1 that 1
T 1/2+γ S̃[τT ] ⇒ CV (τ) and it immediately follows

that
∑bτT c

t=1 z̃t−1ξt−1 = Op
(
T 1+γ

)
uniformly, as required.

In establishing (b), it is not difficult to show that, given the Phillips-Solo decomposition of vt,

1

T 1+γ

bτT c∑
t=1

z2
I,t−1 =

ω2

T 1+γ

bτT c∑
t=1

z̃2
t−1 + op(1)

uniformly in τ . The leading term may be written with z̃0 = 0 as

ω2

T 1+γ

bτT c∑
t=1

z̃2
t−1 =

ω2

T 1+γ

bτT c∑
t=2

t−2∑
j=0

%2j ṽ2
t−1−j +

2ω2

T 1+γ

bτT c∑
t=3

t−3∑
j=0

t−2∑
k=j+1

%j%kṽt−1−j ṽt−1−k, (S.7)

and, after, re-arranging the summands of the first term on the r.h.s. we have

ω2

T 1+γ

bτT c∑
t=2

t−2∑
j=0

%2j ṽ2
t−1−j =

1

1− %
ω2

T 1+γ

bτT c∑
t=2

ṽ2
t−1 +

1

1− %
ω2

T 1+γ

bτT c∑
t=2

ṽ2
t−1%

2t−2

where T−1
∑bτT c

t=2 ṽ2
t−1

p→
∫ τ

0

(
h2

21(s) + h2
22(s)

)
ds and

0 ≤ 1

T

bτT c∑
t=2

ṽ2
t−1%

2t−2 ≤ 1

T

T∑
t=2

ṽ2
t−1%

2t−2 = op(1)

since E
(

1
T

∑T
t=2 ṽ

2
t−1%

2t−2
)
≤ supt=1,...,T E

(
ṽ2
t−1

)
1
T

∑T
t=2 %

2t−2 = O
(
T γ−1

)
, so the first term on

the r.h.s. of (S.7) delivers the desired limit (point wise in τ). The second term on the r.h.s. of (S.7)
may be expressed as

2ω2

T 1+γ

bτT c∑
t=3

t−3∑
j=0

ṽt−1−j%
2j
t−j−2∑
k=1

%kṽt−j−1−k =
2ω2

T 1+γ

bτT c∑
t=3

ṽt−1

[τT ]−1∑
s=t−1

%2(s−t+1)
t−2∑
k=1

%kṽt−1−k

after re-arranging terms. Notice that qt := ṽt−1
∑[τT ]−1

s=t−1 %
2(s−t+1)

∑t−2
k=1 %

kṽt−1−k has the MD prop-

erty, where, after some algebra as in the proof of Lemma S.1, T−γ/2
∑t−2

k=1 %
kṽt−1−k is seen to be

uniformly L4-bounded. Then, T−3γ/2
∑[τT ]−1

s=t−1 %
2(s−t+1)

∑t−2
k=1 %

kṽt−1−k is uniformly L4-bounded due

to the Minkowski’s norm inequality, so T−3γ/2qt is uniformly L2 bounded. Therefore, the variance
of the sum of the qt is of order O

(
T 1+3γ

)
due to the MD property, and the entire term is then

Op
(
T γ/2−1/2

)
, also pointwise in τ .

Uniform convergence of ω2

T 1+γ

∑bτT c
t=1 z̃2

t−1 follows from the fact that both the partial sums and
the limit are nondecreasing functions of τ .

For (c), we may similarly show that

sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T 1/2+γ/2

bτT c∑
t=1

zI,t−1ut

∣∣∣∣∣∣ = sup
τ∈[0,1]

∣∣∣∣∣∣ ω

T 1/2+γ/2

bτT c∑
t=1

z̃t−1ut

∣∣∣∣∣∣+Op(1),
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where the z̃t−1ut have the MD property; since E

(
1

T 1+γ

(∑T
t=1 z̃t−1ut

)2
)

= 1
T 1+γ

∑T
t=1 E

(
z̃2
t−1u

2
t

)
≤

1
T

∑T
t=1

√∥∥∥ 1
T γ/2

z̃t−1

∥∥∥4

4

∥∥u2
t

∥∥4

4
is bounded, we may apply Doob’s martingale inequality to conclude

that supτ∈[0,1]

∣∣∣ 1
T 1/2+γ/2

∑bτT c
t=1 zI,t−1ut

∣∣∣ = Op(1).

In dealing with (d), it can be shown that

1

T 1+γ

bτT c∑
t=1

z2
I,t−1u

2
t =

ω2

T 1+γ

T∑
t=1

z̃2
t−1u

2
t +Op(1)

where 1
T 1+γ

∑T
t=1 z̃

2
t−1u

2
t = Op(1) due to the Markov inequality.

Assumption 5 obviously holds, and Assumption 6 can again be reduced to the behaviour of
1

T 1+δI

∑bτT c
t=1 zI,t−1 and 1

T 1+δI

∑bτT c
t=1 zI,t−1u

2
t like in the proof of part 1, and so we omit the details.

�

Proof of Lemma S.2

1. Under Assumption 1.1, we have that xt =
∑t−1

j=0 ρ
jvt−j + ρtx0. Using the Phillips-Solo de-

composition and the 1-summability of the coefficients of B (L) (and thus of (1− ρL)−1B (L)
when |ρ| < 1), it follows that

1√
T

bτT c∑
t=1

xt−1 =
1

1− ρ
1√
T

bτT c∑
t=1

vt−1 +
1√
T
v̄bτT c −

1√
T
v̄0 + op(1)

uniformly in τ ∈ [0, 1], where v̄t is a linear process driven by vt with absolutely summable
coefficients. Then, the uniform L4-boundedness of ζt and the boundedness of the function

H(·) imply uniform L4-boundedness of v̄t such that maxτ∈[0,1]

∣∣v̄bτT c∣∣ = op

(√
T
)

and the

result then follows from (2.6).

2. Notice that

1√
T
Sy (τ) =

1√
T

bτT c∑
t=1

ut +
1√
T

 1√
T

bτT c∑
t=1

b

(
t

T

)
xt−1


where we recall that 1√

T

∑bτT c
t=1 ut ⇒ U (τ). Because of the piecewise Lipschitz continuity of

b(·) and the well-known Hölder continuity of any order α ∈ (0, 1/2) of Gaussian processes with
independent increments, and thus of V (·), the Stjeltjes integral ω

1−ρ
∫ τ

0 b(s)dV (s) exists (path-

wise) and, with item 1 of this Lemma, it follows that 1√
T

∑bτT c
t=1 b

(
t
T

)
xt−1 ⇒ ω

1−ρ
∫ τ

0 b(s)dV (s)

as required for the result.

3. Follows directly from Assumptions 4 and 5 and the CMT.

4. Follows directly from Assumptions 4 and 5 and item 1 of this Lemma.

5. Follows directly from Assumptions 4-6 and the CMT.

6. We have elementwise

1

T 1+2δI

bτT c∑
t=1

z2
I,t−1y

2
t =

1

T 1+2δI

bτT c∑
t=1

z2
I,t−1u

2
t +

2√
T

 1

T 1+2δI

bτT c∑
t=1

z2
I,t−1utb

(
t

T

)
xt−1


+

1

T

 1

T 1+2δI

bτT c∑
t=1

z2
I,t−1b

2

(
t

T

)
x2
t−1

 . (S.8)
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The first summand on the r.h.s. gives the desired limit directly from Assumption 4. For the
second summand, an application of Markov’s inequality shows it to be op (1) uniformly in τ ,
as

max
τ∈[0,1]

∣∣∣∣∣∣ 1

T 1+2δI

[τT ]∑
t=1

z2
I,t−1utb

(
t

T

)
xt−1

∣∣∣∣∣∣ ≤ max
τ∈[0,1]

|b(τ)| max
τ∈[0,1]

1

T 1+2δI

[τT ]∑
t=1

∣∣z2
I,t−1utxt−1

∣∣
≤ C

1

T 1+2δI

T∑
t=1

∣∣z2
I,t−1utxt−1

∣∣
which is independent of τ and has expectation bounded by C 1

T

∑T
t=1

4

√
E

(
z4
I,t−1

T 4δI

)
E
(
u4
t

)
E
(
x4
t−1

)
=

O (1), given the uniform L4-boundedness of T−δIzI,t−1, of ut and, under Assumption 1.1, of
xt. For the third summand, write

max
τ∈[0,1]

∣∣∣∣∣∣ 1

T 1+2δI

bτT c∑
t=1

z2
I,t−1b

2

(
t

T

)
x2
t−1

∣∣∣∣∣∣ ≤ max
τ∈[0,1]

b2(τ)
1

T 1+2δI

bτT c∑
t=1

z2
I,t−1x

2
t−1 ≤ C

1

T 1+2δI

T∑
t=1

z2
I,t−1x

2
t−1,

where again the uniform upper bound is Op (1) since E
(
z2
I,t−1x

2
t−1

)
≤
√

E
(
z4
I,t−1

)
E
(
x4
t−1

)
is uniformly bounded. Next,

1

T 1+2δII

bτT c∑
t=1

z2
II,t−1y

2
t =

1

T 1+2δII

bτT c∑
t=1

z2
II,t−1u

2
t +

2

T 3/2+2δII

bτT c∑
t=1

z2
II,t−1utb

(
t

T

)
xt−1

+
1

T

 1

T 1+2δII

bτT c∑
t=1

z2
II,t−1b

2

(
t

T

)
x2
t−1

 .

The first summand delivers the desired limit since,

1

T 1+2δII

bτT c∑
t=1

z2
II,t−1u

2
t =

1

T 1+2δII

bτT c∑
t=1

z2
II,t−1 E

(
u2
t

)
+

1

T 1+2δII

bτT c∑
t=1

z2
II,t−1

(
u2
t − E

(
u2
t

))
where supτ∈[0,1]

∣∣∣ 1
T 1+2δII

∑bτT c
t=1 z2

II,t−1

(
u2
t − E

(
u2
t

))∣∣∣ vanishes, since the assumption that we

have supt E
∣∣E (ζtζ′t − I2|ζt−m, ζt−m−1, . . .

)∣∣→ 0 as m→∞ allows us to use the arguments of
Hansen (1992, Theorem 3.3); the second and the third summands are dealt with analogously
to those in (S.8) and we omit the details here. Finally, the result that

max
τ∈[0,1]

∣∣∣∣∣∣ 1

T 1+δI+δII

bτT c∑
t=1

zI,t−1zII,t−1y
2
t

∣∣∣∣∣∣ = Op(1)

follows directly from the positive definiteness of WTSzzy2WT given the previous conclusions
regarding its diagonal elements.

7. We have elementwise

1

T 1+2δI

bτT c∑
t=1

z2
I,t−1yt =

1√
T

 1

T 1/2+2δI

bτT c∑
t=1

z2
I,t−1ut

+
1

T 3/2+2δI

bτT c∑
t=1

z2
I,t−1b

(
t

T

)
xt−1.

We note that T−2δIz2
I,t−1ut is a uniformly L2-bounded MD sequence; therefore, by means of
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Doob’s martingale inequality, T−1/2−2δI
∑bτT c

t=1 z2
I,t−1ut is shown to be uniformly bounded in

probability, and the first summand on the r.h.s. is op (1). For the second summand, write for
any τ ∈ [0, 1]∣∣∣∣∣∣ 1

T 3/2+2δI

bτT c∑
t=1

z2
I,t−1b

(
t

T

)
xt−1

∣∣∣∣∣∣ ≤ max
τ∈[0,1]

|b (τ)| max
t=1,...,T

|xt−1|√
T

1

T 1+2δI

T∑
t=1

z2
I,t−1

where 1
T 1+2δI

∑T
t=1 z

2
I,t−1 ⇒ Kz2

I
(1) due to Assumption 4 and the fact that maxt=1,...,T |xt−1| =

op

(√
T
)

with xt−1 being uniformly L4-bounded. Then,

1

T 1+2δII

bτT c∑
t=1

z2
II,t−1yt =

1√
T

1

T 1/2+2δII

bτT c∑
t=1

z2
II,t−1ut +

1

T

1

T 1/2+2δII

bτT c∑
t=1

z2
II,t−1b

(
t

T

)
xt−1,

where we have 1
T 1/2+2δII

∑bτT c
t=1 z2

II,t−1ut ⇒
∫ τ

0 Z
2(s)dU(s) and 1

T 1/2+2δII

∑bτT c
t=1 z2

II,t−1b
(
t
T

)
xt−1 ⇒

ω
1−ρ

∫ τ
0 Z

2(s)b(s)dV (s). Finally,

1

T 1+δI+δII

bτT c∑
t=1

zI,t−1zII,t−1yt =
1√
T

1

T 1/2+δI+δII

bτT c∑
t=1

zI,t−1zII,t−1ut

+
1

T

1

T 1/2+δI+δII

bτT c∑
t=1

zI,t−1zII,t−1b

(
t

T

)
xt−1

where the weak convergence of 1
T 1/2+δI

∑bτT c
t=1 zI,t−1ut and the continuity requirements from

Assumptions 4 and 5 lead to

1

T 1/2+δI+δII

bτT c∑
t=1

zII,t−1 (zI,t−1ut)⇒
∫ τ

0
Z(s)dGI (s)

and, correspondingly, to

1

T 1/2+δI+δII

bτT c∑
t=1

zII,t−1b

(
t

T

)
(zI,t−1xt−1)⇒

∫ τ

0
Z(s)b(s)dKzIx (s)

as required.

8. We have elementwise that

1

T 1/2+δI

bτT c∑
t=1

zI,t−1yt =
1

T 1/2+δI

bτT c∑
t=1

zI,t−1ut +
1

T 1+δI

bτT c∑
t=1

zI,t−1b

(
t

T

)
xt−1

where the behaviour of the first summand on the r.h.s. follows directly from Assumption 4
and, for the second,

1

T 1+δI

bτT c∑
t=1

b

(
t

T

)
(zI,t−1xt−1)⇒

∫ τ

0
b(s)dKzIx(s)

as in the proof of item 7. Then,

1

T 1/2+δII

bτT c∑
t=1

zII,t−1yt =
1

T 1/2+δII

bτT c∑
t=1

zII,t−1ut +
1√
T

 1

T 1/2+δII

bτT c∑
t=1

zII,t−1b

(
t

T

)
xt−1


17



where 1
T 1/2+δII

∑bτT c
t=1 zII,t−1ut ⇒

∫ τ
0 Z(s)dU(s) and

1

T 1/2+δII

bτT c∑
t=1

zII,t−1b

(
t

T

)
xt−1 ⇒

ω

1− ρ

∫ τ

0
Z(s)b(s)dV (s).

9. We have elementwise

1

T 1+δI

bτT c∑
t=1

zI,t−1y
2
t =

1

T 1+δI

bτT c∑
t=1

zI,t−1u
2
t +

2

T 3/2+δI

bτT c∑
t=1

zI,t−1utb

(
t

T

)
xt−1

+
1

T 2+δI

bτT c∑
t=1

zI,t−1b
2

(
t

T

)
x2
t−1.

The first summand is uniformly bounded in probability, see Assumption 4, while the second
and third summands vanish analogously to the proof of item 6. Then,

1

T 1+δII

bτT c∑
t=1

zII,t−1y
2
t =

1

T 1+δII

bτT c∑
t=1

zII,t−1u
2
t +

2

T 3/2+δII

bτT c∑
t=1

zII,t−1utb

(
t

T

)
xt−1

+
1

T 2+δII

bτT c∑
t=1

zII,t−1b
2

(
t

T

)
x2
t−1.

The first summand delivers the desired limit like in the proof of item 6, while the second and
the third can be shown to vanish uniformly in τ as follows. First, since utxt−1 is a uniformly L2-

bounded MD sequence, so is T−δIIzII,t−1b
(
t
T

)
xt−1ut, such that 1

T 1/2+δII

∑bτT c
t=1 zII,t−1utb

(
t
T

)
xt−1

is uniformly Op(1) by Doob’s martingale inequality and we therefore have that

max
τ∈[0,1]

∣∣∣∣∣∣ 2

T 3/2+δII

bτT c∑
t=1

zII,t−1utb

(
t

T

)
xt−1

∣∣∣∣∣∣ = Op
(
T−1

)
and, second,

1

T 1+δII

bτT c∑
t=1

zII,t−1b
2

(
t

T

)
x2
t−1 ≤ max

τ∈[0,1]
b2(τ) max

τ∈[0,1]

zII,bτT c−1

T δII
1

T

bτT c∑
t=1

x2
t−1 ≤ C

1

T

T∑
t=1

x2
t−1 = Op (1)

uniformly in τ , as required.

10. Write

1

T
Sy2 (τ) =

1

T

bτT c∑
t=1

u2
t +

2

T

 1

T 1/2

bτT c∑
t=1

b

(
t

T

)
xt−1ut

+
1

T

 1

T

bτT c∑
t=1

b2
(
t

T

)
x2
t−1

 .

Using standard methods, the first summand on the r.h.s. delivers the desired limit,

sup
τ∈[0,1]

∣∣∣∣∣∣ 1

T

bτT c∑
t=1

u2
t − [U ] (τ)

∣∣∣∣∣∣ p→ 0,

while, for the second summand, 1
T 1/2

∑bτT c
t=1 b

(
t
T

)
xt−1ut is uniformly Op(1) by Doob’s mar-
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tingale inequality, since b
(
t
T

)
xt−1ut is a uniformly L2-bounded MD sequence, and thus

max
τ∈[0,1]

∣∣∣∣∣∣ 2

T

 1

T 1/2

bτT c∑
t=1

b

(
t

T

)
xt−1ut

∣∣∣∣∣∣ = Op
(
T−1

)
.

The third summand is easily analyzed, with

1

T

∣∣∣∣∣∣ 1

T

bτT c∑
t=1

b2
(
t

T

)
x2
t−1

∣∣∣∣∣∣ ≤ max
τ∈[0,1]

b2(τ)
1

T 2

bτT c∑
t=1

x2
t−1 ≤ C

1

T 2

T∑
t=1

x2
t−1 = Op

(
1

T

)

uniformly in τ as required. �

Proof of Lemma S.3

1. Follows directly from 1√
T
xbτT c ⇒ ωJc,H (τ) using the CMT.

2. Write 1√
T
Sy (τ) = 1√

T

∑bτT c
t=1 ut + 1

T
√
T

∑bτT c
t=1 b

(
t
T

)
xt−1 where, recall, 1√

T
xbτT c ⇒ ωJc,H (τ)

such that 1
T
√
T

∑bτT c
t=1 b

(
t
T

)
xt−1 ⇒ ω

∫ τ
0 b(s)Jc,H (s) ds as required.

3. Follows directly from Assumptions 4 and 5 and the CMT.

4. Follows directly from Assumptions 4 and 5 and the CMT.

5. Follows directly from Assumptions 4-6 and the CMT.

6. Note that, under Assumption 1.2, maxt=1,...,T |xt−1| = Op

(√
T
)

while β1,t = O
(

1
T

)
, so it is

not difficult to show that the local alternative does not influence the limit and, hence, we omit
the details here. The result then follows along the lines of the proof of Lemma S.2 item 6 and
we omit the details.

7. The proof of this result is straightforward but tedious and, hence, is omitted in the interests
of brevity.

8. We have elementwise that

1

T 1/2+δI

bτT c∑
t=1

zI,t−1yt =
1

T 1/2+δI

bτT c∑
t=1

zI,t−1ut +
1

T 3/2+δI

bτT c∑
t=1

zI,t−1b

(
t

T

)
xt−1

where the behaviour of the first summand on the r.h.s. follows directly from Assumption 4
and, for the second, the Cauchy-Schwarz inequality implies that∣∣∣∣∣∣ 1

T 3/2+δI

bτT c∑
t=1

zI,t−1b

(
t

T

)
xt−1

∣∣∣∣∣∣ ≤
√√√√ 1

T 1+2δI

bτT c∑
t=1

z2
I,t−1

1

T 2

bτT c∑
t=1

b2
(
t

T

)
x2
t−1

where the r.h.s. is easily seen to be uniformly bounded in probability as required. Then,

1

T 1/2+δII

bτT c∑
t=1

zII,t−1yt =
1

T 1/2+δII

bτT c∑
t=1

zII,t−1ut +
1

T 3/2+δII

bτT c∑
t=1

zII,t−1b

(
t

T

)
xt−1

where 1
T 1/2+δII

∑bτT c
t=1 zII,t−1ut ⇒

∫ τ
0 Z(s)dU(s) and

1

T 3/2+δII

bτT c∑
t=1

zII,t−1b

(
t

T

)
xt−1 ⇒ ω

∫ τ

0
Z(s)b(s)Jc,H(s)ds.
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9. The proof of this result is straightforward and so again is omitted in the interests of brevity.

10. Analogous to the proof of Lemma S.2 item 10 and, hence, omitted here.

�

Proof of Lemma S.4

Consider a special probability space where the original data samples indexed by T are redefined as a
triangular array (with a slight abuse, we maintain the original notation) such that the convergence
results in Lemma S.2 hold a.s.; this is standard in proofs of bootstrap convergence and is possible
due to Corollary 5.12 of Kallenberg (1997). Let the special probability space be extended by a
product construction in order to support an IID standard normal sequence {Rt} independent of the
redefined data. We show that on this probability space the convergence relations asserted in Lemma
S.4 hold weakly a.s. (θ∗T

w⇒a.s. θ defined as E∗ f(θ∗T )→E f (θ) P-a.s. for all bounded continuous
real functions f with matching domain, where θ∗T , θ are random elements defined on the special
probability space). Then on general probability spaces these relations hold weakly in probability
(since the limit measures concerned, or equivalently, the E f (θ) concerned, are non-random). For
the purposes of unified exposition, ‘Op∗(1) in P-probability’ statements are also established on
the special probability space, and transfer to general probability spaces automatically, depending
exclusively on the distributions involved.

1 & 2. Let MT := diag(T−1/2, T−1/2−δI , T−1/2−δII ) and S∗·y(τ) :=
∑bτT c

t=1 (1, z′t−1)′ytRt. It holds that

(S∗y (τ) ,S∗zy (τ)′)′ − S∗·y(τ) = T−1Sy(1)
∑bτT c

t=1 (1, z′t−1)′Rt, where (i) T−1Sy(1) → 0 P-a.s. by
Lemma S.2(2) recast on the special probability space, and (ii), conditionally on the data,∑bτT c

t=1 (1, z′t−1)′Rt is a zero-mean process with independent increments and

MT Var∗

{
T∑
t=2

(1, z′t−1)′Rt

}
MT = MT

(
T Sz(1)′

Sz(1) Szz(1)

)
MT

is P-a.s. convergent to a P-a.s. finite limit, by Lemma S.2(3,5) recast on the special probability
space. Therefore, by Kolmogorov’s inequality applied conditionally,

sup
τ∈[0,1]

∥∥MT (S∗y (τ) ,S∗zy (τ)′)′ −MTS
∗
·y(τ)

∥∥ w⇒a.s. 0,

or equivalently, MT (S∗y (τ) ,S∗zy (τ)′)′ = MTS
∗
·y(τ) + op∗(1) P-a.s. uniformly over τ . On

the other hand, MTS
∗
·y(τ) conditionally on the data is a zero-mean Gaussian process with

independent increments and MTS
∗
·y(0) = 0. For such processes weak convergence a.s. follows

from the a.s. convergence of the conditional variance function uniformly over τ ; cf. the proof
of Lemma A.5 in Cavaliere et al. (2010). The process MTS

∗
·y(τ) conditionally on the data has

variance function

τ 7→MT

(
Sy2(τ) S′zy2(τ)

Szy2(τ) Szzy2(τ)

)
MT =

(
T−1Sy2(τ) T−1/2S′zy2(τ)WT

T−1/2WTSzy2(τ) WTSzzy2(τ)WT

)
. (S.9)

By Lemma S.2(6,9,10) recast on the special probability space and applied to the respec-

tive blocks of the variance function in (S.9), it follows that T−1/2
∑bτT c

t=1 (1, T−δIzI,t−1)′ytRt

and T−1/2−δII
∑bτT c

t=1 zII,t−1ytRt, which are components of MTS
∗
·y(τ), each converge

w⇒a.s. to
Gaussian processes starting at 0, with independent increments and variance functions given
by diag([U ](τ), [GI ](τ)) and

∫ τ
0 Z

2(s)d[U ](s), respectively. Note that there is no claim about

the two
w⇒a.s. convergence facts being joint. Indeed, we only need to establish the precise limit

of T−1/2(S∗y (τ) , T−δIS∗zIy (τ))′ = T−1/2
∑bτT c

t=1 (1, T−δIzI,t−1)′ytRt + op∗(1) P-a.s., whereas for
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T−1/2−δII
∑bτT c

t=1 zII,t−1ytRt it suffices to note that it is Op∗(1) P-a.s. as a result of its
w⇒a.s.

convergence.

3. We decompose ∆(τ) := S∗zzy2 (τ)− Szzy2(τ) into

∆(τ) = ∆(1)(τ)− 2
{
T−1Sy(1)

}
∆(2)(τ) +

{
T−1Sy(1)

}2
∆(3) (τ)

with ∆(1)(τ) :=
∑bτT c

t=1 zt−1z
′
t−1y

2
t (R

2
t − 1), ∆(2) (τ) :=

∑bτT c
t=1 zt−1z

′
t−1ytR

2
t and ∆(3) (τ) :=∑bτT c

t=1 zt−1z
′
t−1R

2
t . The term ∆(1)(τ) is, conditionally on the data, a zero-mean process with

independent increments and

Var∗{vec(∆(1)(1))} = 2
T∑
t=1

vec(zt−1z
′
t−1){vec(zt−1z

′
t−1)}′y4

t ,

where the factor 2 arises because Var(R2
t − 1) = 2, such that

‖Var∗{vec(WT∆(1)(1)WT )}‖ ≤ 2

T∑
t=1

‖WTzt−1‖4y4
t

≤ 4T−2
T∑
t=1

(|T−δIzI,t−1|4 + |T−δIIzII,t−1|4)y4
t

≤ 4
∑

r∈{I,II}

T−1−2δrSz2
ry

2(1) max
τ∈(0,1]

|T−1−2δr∆Sz2
ry

2(τ)| → 0

P-a.s. because each of T−1−2δrSz2
ry

2(τ), r ∈ {I, II}, converges P-a.s. to a pathwise continuous
limit process, by Lemma S.2(6) recast on the special probability space. A conditional appli-
cation of Kolmogorov’s inequality shows that supτ∈[0,1] ‖WT∆(1)(τ)WT ‖

w
=⇒a.s. 0. The term

∆(2)(τ) equals Szzy(τ) +
∑bτT c

t=1 zt−1z
′
t−1yt(R

2
t − 1), with supτ∈[0,1] ‖WTSzzy(τ)WT ‖ → 0

P-a.s. by Lemma S.2(7) recast on the special probability space and

sup
τ∈[0,1]

∥∥∥∥∥∥WT

bτT c∑
t=1

zt−1z
′
t−1yt(R

2
t − 1)WT

∥∥∥∥∥∥ w
=⇒a.s. 0

similarly to supτ∈[0,1] ‖WT∆(1)(τ)WT ‖, so also supτ∈[0,1] ‖WT∆(2)(τ)WT ‖
w

=⇒a.s. 0. Finally,

it holds that supτ∈[0,1] ‖T−1WT∆(3)(τ)WT ‖ ≤ maxt=1,...,T (T−1R2
t ) supτ∈[0,1] ‖WTSzz(τ)WT ‖

w
=⇒p 0 by the distributional assumption on Rt and Lemma S.2(5) recast on the special prob-
ability space. As T−1/2Sy(1) converges P-a.s. to a P-a.s. finite r.v. on the special probability
space, item 3 follows.

4, 5 & 6 These results follow similarly and, hence, we omit the details here.

�

Proof of Lemma S.5

Similarly to the proof of Lemma S.4, consider a special probability space where the convergence
results established in Lemma S.3 hold P-a.s. and on whose extension an IID standard Gaussian
sequence {Rt} independent of the redefined data is available. We show that on this extended special
probability space the convergence relations asserted in Lemma S.5 hold P∗-weakly P-a.s.
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1 & 2. By the same argument as in the proof of Lemma S.4, it holds that

sup
τ∈[0,1]

‖MT (S∗y (τ) ,S∗zy (τ)′)′ −MTS
∗
·y(τ)‖ w⇒a.s. 0.

The component T−1/2
∑bτT c

t=1 (1, T−δIIzII,t−1)′ytRt of MTS
∗
·y(τ) is, conditionally on the data, a

zero-mean Gaussian process starting at 0, with independent increments and variance function(
T−1Sy2 T−1−δIISzIIy2

T−1−δIISzIIy2 T−1−2δIISz2
IIy

2

)
→
∫ τ

0

(
1 Z (s)

Z (s) Z2 (s)

)
d[U ](s) =: C (τ) P -a.s.,

the convergence by Lemma S.3(6,9,10) recast on the special probability space. This proves

that the process T−1/2
∑bτT c

t=1 (1, T−δIIzII,t−1)′ytRt converges
w

=⇒a.s. to a zero-mean Gaus-
sian process starting at 0, with independent increments and variance function C (τ), and
as required, the same convergence holds for the process T−1/2(S∗y (τ) , T−δIIS∗zIIy (τ))′ =

T−1/2
∑bτT c

t=1 (1, T−δIIzII,t−1)′ytRt + op∗(1) P-a.s. The component
∑bτT c

t=1 T−1/2−δIzI,t−1ytRt
of MTS

∗
·y(τ) is, conditionally on the data, a process with zero-mean independent increments

and

Var∗

(
T∑
t=1

T−1/2−δIzI,t−1ytRt

)
= T−1−2δISz2

Iy
2(1) = Op (1)

by Lemma S.3(6), such that by Kolmogorov’s inequality applied conditionally on the data it

follows that supτ∈[0,1]

∣∣∣∑bτT ct=1 T−1/2−δIzI,t−1ytRt

∣∣∣ = Op∗(1) in P-probability.

3, 4, 5 & 6. Identical to Lemma S.4.

�

Before progressing to the proof of Lemma S.6 we require some additional definitions and notation.

Let T∆ := [0, 1]2 ∩ {(τ1, τ2) ∈ R2 : τ2 − τ1 ≥ ∆τ} for some ∆τ ∈ (0, 1). Let D(T∆) be the

set of real functions on T∆ which are continuous from the ’right’ (i.e., f(τ
(n)
1 , τ

(n)
2 ) → f (τ1, τ2)

when τ
(n)
i ↓ τ i, i = 1, 2, for (τ

(n)
1 , τ

(n)
2 ), (τ1, τ2) ∈ T∆ and f ∈ D(T∆)) and have limits from within

each of the four right angles [A1 × A2] ∩ T∆, Ai ∈ {[0, τ i), [τ i, 1]}, i = 1, 2, when the angles are
non-empty. For clarity, note that all bivariate cdf’s with domain restricted to T∆ belong to D(T∆).
It is well-known (e.g., Bickel and Wichura, 1971, p. 1662) that D (T∆) can be quipped with a
Skorokhod-like metric which makes it a separable and complete metric space such that stochastic
process with values in D(T∆) are measurable w.r.t. the resulting Borel σ-algebra. Moreover, the
resulting topology relativised to C(T∆) ⊂ D (T∆) , the subspace of continuous real functions on T∆,
coincides with the uniform topology. As we will only be interested in convergence to limits in C(T∆),
in what follows convergence and continuity issues involving elements of D(T∆) are always discussed
w.r.t. the uniform metric on D(T∆). It is then straightforward to see that the function from D2 to
D(T∆) which associates to every (f1, f2) ∈ D2 the element (τ1, τ2) 7→ f2 (τ2)− f1 (τ1) of D (T∆) is
continuous on the subspace of continuous functions C2 of D2. Moreover, linearly combining functions
in D (T∆), multiplication of functions in D (T∆) and division of functions in D(T∆) (for denominators
bounded away from zero) are continuous transformations of the product subspace C(T∆)×C(T∆) of
D (T∆)×D (T∆). Finally, the functional from D (T∆) to R defined by f 7→ supT∆

|f | is continuous
on C(T∆); it arises in the discussion of the statistic T d. Although the statistics T s, s ∈ {f, b, r},
can be most naturally discussed by considering maxima of single-parameter processes, to unify the
exposition we note that the functionals supAs |f |, s ∈ {f, b, r}, are also continuous on C(T∆), where
Af := {0} × [τL, 1], Ab := [0, τU ]× {1} and Ar := {(τ , τ + ∆τ ) : τ ∈ [0, 1−∆τ ]} with τL ≥ ∆τ and
1− τU ≥ ∆τ .
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Proof of Lemma S.6

Proof of (i). Using WT = diag(T−1/2−δI , T−1/2−δII ), the expression for t2β1
(τ1, τ2) in (4.3) can be

equivalently written as(
1√
T

(WTAT (τ1, τ2))′ (WTBT (τ1, τ2) WT )−1 WTCT (τ1, τ2)
)2

(
1√
T

WTAT (τ1, τ2)
)′

(WTBT (τ1, τ2)WT )−1 WTDT (τ1, τ2)WT (WTBT (τ1, τ2)WT )−1 1√
T

WTAT (τ1, τ2)
.

Consider first

1√
T

WTAT (τ1, τ2) =
1√
T

WTSxz (τ2)− 1√
T

WTSxz (τ1)

−
√
T

bτ2T c − bτ1T c

(
1√
T
Sx (τ2)− 1√

T
Sx (τ1)

)(
1√
T

WTSz (τ2)− 1√
T

WTSz (τ1)

)
.

Recalling the discussion of the space D(T∆), by Lemma S.2 and the CMT we obtain that

1√
T

WTAT (τ1, τ2)⇒
(
KzIx (τ2)−KzIx (τ1)

0

)
on D(T∆)2. Next,

WTBT (τ1, τ2) WT = WTSzz (τ2) WT −WTSzz (τ1) WT

− T

bτ2T c − bτ1T c
1

T
(WTSz (τ2)−WTSz (τ1)) (WTSz (τ2)−WTSz (τ1))′

such that, using Lemma S.2 and the CMT again, we have

(WTBT (τ1, τ2) WT )−1 ⇒

 Kz2
I

(τ2)−Kz2
I

(τ1) 0

0
∫ τ2

τ1
Z2(s)ds− 1

τ2−τ1

(∫ τ2

τ1
Z(s)ds

)2

−1

on D(T∆)4, since Kz2
I

(τ2) − Kz2
I

(τ1) > 0 ∀τ2 > τ1. Notice furthermore, using continuity of the
limiting processes involved, that

1√
T

(WTAT (τ1, τ2))′ (WTBT (τ1, τ2) WT )−1 ⇒

(
KzIx (τ2)−KzIx (τ1)

Kz2
I

(τ2)−Kz2
I

(τ1)
; 0

)
(S.10)

such that, in the limit, only the first element of WTCT (τ1, τ2) and the first diagonal element of
WTDT (τ1, τ2) WT play a role (the other elements are all bounded in probability uniformly on T∆

and so vanish upon multiplication by the zero limit on the right hand side of S.10). For the first of
these asymptotically relevant terms, write

WTCT (τ1, τ2) = WTSzy (τ2)−WTSzy (τ1)

− T

bτ2T c − bτ1T c

(
1√
T

WTSz (τ2)− 1√
T

WTSz (τ1)

)(
1√
T
Sy (τ2)− 1√

T
Sy (τ1)

)
=

(
1

T 1/2+δI
(SzIy (τ2)− SzIy (τ2))

1
T 1/2+δII

(SzIIy (τ2)− SzIIy (τ2))

)

−

(
0

1
τ2−τ1

1
T 1+δII

(SzII (τ2)− SzII (τ2)) 1√
T

(Sy (τ2)− Sy (τ1))

)
+ op (1)
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with the op(1) remainder term applying uniformly on T∆. For the second, a tedious but straight-
forward application of Lemma S.2 yields that

DT (τ1, τ2) = RT + Szzy2 (τ2)− Szzy2 (τ1)

− 1

bτ2T c − bτ1T c
(
Szy2 (τ2)− Szy2 (τ1)

)
(Sz (τ2)− Sz (τ1))′

− 1

bτ2T c − bτ1T c
(Sz (τ2)− Sz (τ1))

(
Szy2 (τ2)− Szy2 (τ1)

)′
+

1

(bτ2T c − bτ1T c)2 (Sz (τ2)− Sz (τ1)) (Sz (τ2)− Sz (τ1))′
(
Sy2 (τ2)− Sy2 (τ1)

)
where RT is uniformly dominated by the other terms on T∆ due to Lemma S.2, such that

WTDT (τ1, τ2) WT = WTSzzy2 (τ2) WT −WTSzzy2 (τ1) WT

−2
1

τ2 − τ1

(
0 R1T (τ1, τ2)

R1T (τ1, τ2) 1
T 1+δII

(SzII (τ2)− SzII (τ1)) 1
T 1+δII

(
SzIIy2 (τ2)− SzIIy2 (τ1)

) )
+

1

(τ2 − τ1)2

(
0 0

0 1
T 2+2δII

(SzII (τ2)− SzII (τ1))2 1
T

(
Sy2 (τ2)− Sy2 (τ1)

) )+ op (1)

with both R1T (τ1, τ2) = R2T (τ1, τ2) = Op(1) and the op(1) remainder term applying uniformly on
T∆. After some further algebra we then obtain that

t2β1
(τ1, τ2) =

Q2
I (τ1, τ2)

PI (τ1, τ2)
+ op (1)

with the op(1) remainder term applying uniformly on T∆, as required.

Proof of (ii). Consider now the equivalent expression(
1
T (WTAT (τ1, τ2))′ (WTBT (τ1, τ2) WT )−1 WTCT (τ1, τ2)

)2

(
1
T WTAT (τ1, τ2)

)′
(WTBT (τ1, τ2) WT )−1 WTDT (τ1, τ2) WT (WTBT (τ1, τ2) WT )−1 1

T WTAT (τ1, τ2)
.

Let us first examine AT (τ1, τ2), for which we have using Lemma S.3 and the CMT,

1

T
WTAT (τ1, τ2) =

1

T
WTSxz (τ2)− 1

T
WTSxz (τ1)

− T

bτ2T c − bτ1T c

(
1

T
√
T
Sx (τ2)− 1

T
√
T
Sx (τ1)

)(
1√
T

WTSz (τ2)− 1√
T

WTSz (τ1)

)
⇒

(
0

ω
∫ τ2

τ1
Z (s) Jc,H (s) ds− ω

τ2−τ1

∫ τ2

τ1
Jc,H(s)ds

∫ τ2

τ1
Z(s)ds

)
on D(T∆). Then, the weak limit of (WTBT (τ1, τ2) WT )−1 has the same expression as given in
item (i) (recall that the actual shape of Kz2

I
may be different under the two cases spelled out in

Assumption 1), such that

1

T
(WTAT (τ1, τ2))′ (WTBT (τ1, τ2) WT )−1 ⇒

0,
ω
∫ τ2

τ1
Z (s) Jc,H (s) ds− ω

τ2−τ1

∫ τ2

τ1
Jc,H(s)ds

∫ τ2

τ1
Z(s)ds∫ τ2

τ1
Z2(s)ds− 1

τ2−τ1

(∫ τ2

τ1
Z(s)ds

)2


on D(T∆)2 and, in the limit, it is now only the second element of WTCT (τ1, τ2) and the second
diagonal element of WTDT (τ1, τ2) WT that play a role compared to item (i) of this lemma. The
result follows with a tedious, yet straightforward application of Lemma S.3 and the CMT. �
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Proof of Lemma S.7

On the (extended) special probability spaces where Lemmas S.4 and S.5 were established to hold
weakly a.s., the proof is analogous to that of Lemma S.6. First, WTC

∗
T (τ1, τ2) can be expanded

similarly to WTCT (τ1, τ2) into

WT

(
S∗zIy (τ2)− S∗zIy (τ2)

S∗zIIy (τ2)− S∗zIIy (τ2)− 1
T (τ2−τ1) (SzII (τ2)− SzII (τ2))

(
S∗y (τ2)− S∗y (τ1)

) )+ op∗ (1)

P-a.s. and uniformly on T∆, by using Lemmas S.2(3), S.3(3), S.4(1,2) and S.5(1,2) recast on the
special probability space. Here we have also used the fact that fT → f a.s. for measurable Rm×k-
valued transformations fT of the (redefined) data and g∗T

w⇒a.s. g for Rk×n random matrices defined

on the special probability space imply that fT g
∗
T

w⇒a.s. fg. Second, Lemmas S.4 and S.5 can be
used to see that supT∆

‖WT {D∗T (τ1, τ2)−DT (τ1, τ2)}WT ‖ = o∗p(1) P-a.s. in both the stationary
and the (near-)unit root case, such that the effect of replacing D∗T (τ1, τ2) by DT (τ1, τ2) in the
expression (

A′T (τ1, τ2) B−1
T (τ1, τ2)C∗T (τ1, τ2)

)2
A′T (τ1, τ2) B−1

T (τ1, τ2) D∗T (τ1, τ2) BT (τ1, τ2)AT (τ1, τ2)

is o∗p(1) P-a.s., uniformly on T∆. The rest of the proof replicates the proof of Lemma S.6.
On general probability spaces the o∗p(1) in P-probability approximations of Lemma S.7 remain

valid because weak convergence in probability to zero is equivalent to the o∗p(1) in P-probability
property. �

Proof of Proposition 1

Proof of (i). We prove the result for T d, the other cases being similar. From Lemma S.6, we have
that, with a uniform remainder term on T∆,

t2β1
(τ1, τ2) =

T−1−2δI{SzIy (τ2)− SzIy (τ1)}2

T−1−2δI{Sz2
Iy

2 (τ2)− Sz2
Iy

2 (τ1)}
+ op(1)⇒

(
GI (τ2)−GI (τ1) +

∫ τ2

τ1
b(s)dKzIx(s)

)2

[GI ] (1) (ηI (τ2)− ηI (τ1))

on D(T∆), the convergence by Lemma S.2(6,8) for T−1−2δISz2
Iy

2(τ) and T−1/2−δISzIy(τ), and the

CMT (regarding the continuity of the involved transformations of T−1−2δISz2
Iy

2(τ) and T−1/2−δISzIy(τ),

see the introductory discussion of D (T∆) and C (T∆)). Since the limit process of t2β1
(τ1, τ2) is a

random element of C(T∆) and the functional f 7→ supT∆
|f | is continuous on C(T∆), by the CMT

we obtain that

T d ⇒ sup
(τ1,τ2)∈T∆

(
GI (τ2)−GI (τ1) +

∫ τ2

τ1
b(s)dKzIx(s)

)2

[GI ] (1) (ηI (τ2)− ηI (τ1))

as required.
Proof of (ii). The proof is entirely analogous under Assumption 1.2; applying Lemma S.6 item
(ii) where

QII (τ1, τ2) ⇒
∫ τ2

τ1

Z(s)dU(s) + ω

∫ τ2

τ1

Z(s)b(s)Jc,H(s)ds

− 1

τ2 − τ1

∫ τ2

τ1

Z(s)ds

(
U (τ2)− U (τ2) + ω

∫ τ2

τ1

b(s)Jc,H(s)ds

)
and

PII (τ1, τ2) ⇒
∫ τ2

τ1

Z2(s)d[U ](s)
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− 2

τ2 − τ1

(∫ τ2

τ1

Z(s)d[U ](s)

)(∫ τ2

τ1

Z(s)ds

)
+

1

(τ2 − τ1)2

(∫ τ2

τ1

Z(s)ds

)2

([U ](τ2)− [U ](τ1))

give the desired result after defining Z̃τ1,τ2(s) := Z(s)− 1
τ2−τ1

∫ τ2

τ1
Z(s). �

Proof of Proposition 2

On the special probability spaces where the convergence results in Lemmas S.4 and S.5 were estab-
lished to hold weakly a.s., an argument similar to that for Proposition 1 establishes the weak a.s.
convergence of the distributions of the bootstrap statistics, under the null and under local alterna-
tives, to the limiting null distributions of the original statistics. On general probability spaces this
convergence remains valid weakly in probability.

For instance, on the special probability space from the proof of Lemma S.4 it holds, by the proof
of Lemma S.7 that, with a uniform remainder term on T∆ P-a.s.,

t∗2β1
(τ1, τ2) =

T−1−2δI{S∗zIy (τ2)− S∗zIy (τ1)}2

T−1−2δI{Sz2
Iy

2 (τ2)− Sz2
Iy

2 (τ1)}
+ op∗(1)

w⇒a.s.
(G∗I (τ2)−G∗I (τ1))2

[GI ] (1) (ηI (τ2)− ηI (τ1))
(S.11)

on D (T∆), the convergence by Lemmas S.2(6) for T−1−2δISz2
Iy

2(τ) (in a.s. sense), Lemma S.4(2)

for T−1/2−δIS∗zIy(τ) (in
w⇒a.s.sense), and the CMT applied conditionally on the (redefined) data.

As the limit process of t∗2β1
(τ1, τ2) takes values in C (T∆) a.s. and the functional f 7→ supT∆

|f | is

continuous on C(T∆), by applying the CMT again it follows that

T d∗ w⇒a.s. sup
(τ1,τ2)∈T∆

(G∗I (τ2)−G∗I (τ1))2

[GI ] (1) (ηI (τ2)− ηI (τ1))

d
= sup

0≤r1,r2≤1

η−1
I (r2)−η−1

I (r1)≥∆τ

(W (r2)−W (r1))2

r2 − r1
≡ T d,I∞ ,

the latter being the limiting null distribution of the original statistic T d under stable predictors.
On a general probability space, therefore, T d∗ w⇒p T d,I∞ . Convergence of the remaining bootstrap
distributions is established similarly.

Returning to the pair T d, T d∗ under the conditions of Proposition 1(i), the weak convergence(
P
(
T d ≤ ·

)
P∗
(
T d∗ ≤ ·

) ) =⇒ P(T d,I∞ ≤ ·)
(

1
1

)
on D(R)2 and the continuity of the cdf F (·) = P(T d,I∞ ≤ ·) lead, by means of a standard argument,

to P∗
(
T d∗ ≤ T d

)
=⇒ F (T d,I∞ )

d
= U [0, 1]. The proof of bootstrap validity in the near-unit root case

and for the remaining test statistics is analogous. �
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S.4 Additional Monte Carlo Results

To illustrate the impact of conditional heteroskedasticity and heavy tails on our proposed tests we
now consider an additional DGP (DGP4), in which the innovation vector (ut, vt)

′ is generated to
exhibit time-varying conditional second-order moments according to the design(

ut
vt

)
=

[
σ1t 0
0 σ2t

]
ηt; E (ηt) = 0, E

(
ηtη

′
t

)
=: Ωφ =

[
1 φ
φ 1

]
where ηt := (η1t, η2t)

′ is an i.i.d. vector drawn from either a multivariate Gaussian distribution or
a (fat-tailed) multivariate Student-t distribution with 5 degrees of freedom. The covariance matrix
Ωφ depends on the contemporaneous correlation coefficient φ which, as in section 6 of the main
paper, was set to φ = −0.90. The conditional variances σ2

it, i = 1, 2, are driven by (normalised)
stationary GARCH(1,1) processes characterised by:

σ2
it = (1− θ1 − θ2) + θ1e

2
i,t−1 + θ2σ

2
i,t−1, i = 1, 2

with θ1, θ2 ≥ 0 and θ1 + θ2 < 1, e1,t−1 = ut−1, e2,t−1 = vt−1 and E
(
e2
it

)
= 1. For simplicity, we

impose the same GARCH dynamics on the two series, focusing on GARCH parameter configurations
that allow for varying degrees of persistence in the conditional variances as measured by θ1 + θ2,
namely, (θ1, θ2) ∈ {(0.15, 0.5), (0.1, 0.85)}.

For each of the parameter configurations, the two sample lengths (T = 250 and T = 500), and
the two conditional distributions (multivariate Gaussian distribution and multivariate Student-t
distribution with 5 degrees of freedom), we compute the test statistics and determine empirical
rejection frequencies at the 5% nominal (asymptotic) level, using the same number of Monte Carlo
and bootstrap replications as were used for the simulation results relating to empirical size reported
in section 6.1 of the main paper. The results from these experiments are reported in Tables S.1 and
S.2.
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Table S.1: Empirical Rejection Frequencies under the Null Hypothesis, H0. 5% Nominal Significance
Level. DGP4 with φ = −0.90 and Gaussian Innovations.

c t2∗β1
t2∗β1,NW

t2β1
t2β1,NW

T f∗ T b∗ T f∗NW T b∗NW T r∗ T r∗NW T d∗ T d∗NW
θ1 = 0.15, θ2 = 0.5 and T = 250

0 0.069 0.073 0.071 0.070 0.033 0.033 0.046 0.057 0.011 0.058 0.009 0.067
2.5 0.057 0.059 0.058 0.059 0.028 0.044 0.040 0.065 0.012 0.053 0.008 0.048
5.0 0.057 0.060 0.057 0.059 0.030 0.048 0.039 0.062 0.011 0.053 0.011 0.051
10.0 0.062 0.062 0.060 0.061 0.040 0.049 0.046 0.059 0.016 0.053 0.020 0.062
20.0 0.058 0.057 0.056 0.058 0.046 0.054 0.049 0.063 0.031 0.056 0.030 0.061
0.5T 0.054 0.052 0.051 0.057 0.062 0.062 0.055 0.056 0.071 0.058 0.069 0.060

θ1 = 0.15, θ2 = 0.5 and T = 500
0 0.069 0.071 0.068 0.071 0.040 0.051 0.048 0.070 0.016 0.063 0.014 0.055

2.5 0.051 0.054 0.054 0.054 0.029 0.053 0.035 0.070 0.020 0.059 0.023 0.058
5.0 0.058 0.060 0.056 0.058 0.031 0.059 0.036 0.072 0.022 0.056 0.027 0.057
10.0 0.059 0.061 0.058 0.059 0.036 0.063 0.043 0.066 0.034 0.057 0.036 0.055
20.0 0.057 0.059 0.057 0.058 0.040 0.059 0.045 0.061 0.043 0.055 0.048 0.061
0.5T 0.053 0.051 0.050 0.054 0.056 0.057 0.052 0.054 0.062 0.056 0.055 0.047

θ1 = 0.1, θ2 = 0.85 and T = 250
0 0.073 0.076 0.073 0.077 0.035 0.034 0.043 0.056 0.010 0.061 0.012 0.070

2.5 0.056 0.058 0.057 0.062 0.028 0.039 0.035 0.060 0.012 0.054 0.010 0.051
5.0 0.058 0.058 0.055 0.063 0.031 0.047 0.038 0.062 0.014 0.054 0.011 0.051
10.0 0.057 0.057 0.056 0.065 0.038 0.046 0.042 0.062 0.018 0.051 0.022 0.057
20.0 0.057 0.055 0.053 0.064 0.047 0.053 0.048 0.060 0.029 0.055 0.036 0.061
0.5T 0.057 0.055 0.052 0.066 0.062 0.060 0.054 0.053 0.069 0.059 0.071 0.060

θ1 = 0.1, θ2 = 0.85 and T = 500
0 0.072 0.073 0.070 0.070 0.036 0.049 0.043 0.071 0.014 0.057 0.035 0.063

2.5 0.054 0.053 0.053 0.058 0.028 0.052 0.032 0.070 0.016 0.059 0.021 0.054
5 0.055 0.055 0.055 0.061 0.031 0.061 0.037 0.070 0.024 0.056 0.026 0.052
10 0.055 0.056 0.052 0.062 0.036 0.063 0.040 0.066 0.034 0.059 0.037 0.054
20 0.055 0.054 0.052 0.063 0.039 0.061 0.042 0.061 0.042 0.055 0.055 0.051

0.5T 0.053 0.051 0.051 0.073 0.055 0.054 0.051 0.049 0.066 0.052 0.066 0.056

Notes: A superscript ∗ denotes tests run using the fixed regressor wild bootstrap outlined in Algorithm

1; t2β1
and t2β1,NW

denote the full sample IV-combination predictability tests of Breitung and Demetrescu

(2015) based on the 5% asymptotic critical value from the χ2
1 distribution and computed with Eicker-White

[EW] and conventional standard errors, respectively, and t2∗β1
and t2∗β1,NW

their bootstrap analogues; T f∗,

T b∗ and T f∗NW , T b∗NW , denote the maximum forward and backward recursive tests computed with EW and

conventional standard errors, respectively; T r∗ and T r∗NW denote the maximum rolling tests computed with

EW and conventional standard errors, respectively; T d∗ and T d∗ols denote the maximum double recursive tests

computed with EW and conventional standard errors, respectively.
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Table S.2: Empirical Rejection Frequencies under the Null Hypothesis, H0. 5% Nominal Significance
Level. DGP4 with φ = −0.90 and Student-t (with 5 degrees of freedom) Distributed Innovations.

c t2∗β1
t2∗β1,NW

t2β1
t2β1,NW

T f∗ T b∗ T f∗NW T b∗NW T r∗ T r∗NW T d∗ T d∗NW
θ1 = 0.15, θ2 = 0.5 and T = 250

0 0.071 0.074 0.071 0.072 0.029 0.035 0.042 0.060 0.009 0.056 0.008 0.066
2.5 0.049 0.051 0.050 0.052 0.026 0.043 0.036 0.061 0.009 0.051 0.011 0.063
5.0 0.050 0.052 0.052 0.055 0.026 0.043 0.032 0.061 0.013 0.051 0.011 0.060
10.0 0.053 0.053 0.053 0.056 0.032 0.048 0.040 0.060 0.019 0.054 0.025 0.067
20.0 0.052 0.051 0.049 0.056 0.040 0.049 0.043 0.057 0.031 0.057 0.041 0.072
0.5T 0.053 0.052 0.050 0.061 0.062 0.060 0.055 0.054 0.063 0.053 0.072 0.055

θ1 = 0.15, θ2 = 0.5 and T = 500
0 0.068 0.072 0.067 0.070 0.036 0.048 0.045 0.0696 0.015 0.053 0.015 0.062

2.5 0.051 0.050 0.052 0.054 0.031 0.055 0.039 0.068 0.017 0.053 0.022 0.055
5.0 0.054 0.053 0.053 0.056 0.034 0.055 0.042 0.067 0.024 0.058 0.026 0.066
10.0 0.054 0.055 0.055 0.058 0.039 0.056 0.045 0.064 0.033 0.059 0.037 0.070
20.0 0.056 0.056 0.055 0.059 0.046 0.055 0.050 0.064 0.043 0.059 0.046 0.065
0.5T 0.050 0.049 0.049 0.064 0.060 0.056 0.057 0.049 0.066 0.057 0.076 0.067

θ1 = 0.10, θ2 = 0.85 and T = 250
0 0.069 0.073 0.074 0.079 0.033 0.036 0.045 0.060 0.010 0.058 0.010 0.062

2.5 0.054 0.055 0.055 0.066 0.026 0.043 0.036 0.060 0.009 0.049 0.010 0.050
5.0 0.053 0.054 0.054 0.068 0.027 0.046 0.035 0.061 0.014 0.052 0.014 0.057
10.0 0.054 0.054 0.053 0.067 0.035 0.051 0.041 0.061 0.021 0.052 0.026 0.071
20.0 0.054 0.053 0.051 0.073 0.040 0.051 0.044 0.059 0.031 0.054 0.047 0.072
0.5T 0.057 0.053 0.052 0.082 0.063 0.061 0.055 0.057 0.061 0.050 0.073 0.051

θ1 = 0.10, θ2 = 0.85 and T = 500
0 0.068 0.071 0.072 0.078 0.034 0.045 0.045 0.066 0.013 0.058 0.013 0.048

2.5 0.050 0.051 0.052 0.063 0.031 0.054 0.036 0.066 0.015 0.051 0.020 0.058
5.0 0.055 0.052 0.053 0.069 0.032 0.055 0.039 0.064 0.023 0.053 0.023 0.060
10.0 0.053 0.053 0.052 0.070 0.041 0.058 0.046 0.063 0.036 0.057 0.037 0.066
20.0 0.056 0.053 0.051 0.079 0.048 0.058 0.050 0.059 0.048 0.057 0.039 0.054
0.5T 0.051 0.049 0.048 0.098 0.058 0.059 0.057 0.053 0.066 0.062 0.076 0.055

Notes: See notes to Table S.1
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S.5 Additional Material for Section 7

Table S.3: List of predictors used

1. the log dividend price ratio (dpt).
2. the log dividend yield (dyt).
3. the log earnings price ratio (e/pt).
4. the log dividend payout ratio (det).
5. the equity risk premium volatility, rvolt.
6. the book to market ratio (bmt).
7. the net equity expansion (ntist).
8. the treasury bill rate (tblt).
9. the long-term government bond yield (ltyt).
10. the long-term government bond rate of return (ltrt).
11. the term spread (tmst).
12. the default yield spread (dfyt).
13. the default return spread (dfrt).
14. inflation (inflt).

Notes: Detailed description of the variables used can be found on Amit Goyal’s web page (see
http://www.hec.unil.ch/agoyal/docs/AllTables.pdf). The equity risk premium volatility (rvolt) is
computed as in Neely et al. (2014).

30



1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
-0.3

-0.2

-0.1

0

0.1

0.2

(a) ept

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
-5

-4.5

-4

-3.5

-3

-2.5

(b) dpt

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
-5

-4.5

-4

-3.5

-3

-2.5

(c) dyt

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

(d) e/pt

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
-1.5

-1

-0.5

0

0.5

1

1.5

(e) det

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
0.05

0.1

0.15

0.2

0.25

0.3

0.35

(f) rvolt

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(g) bmt

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(h) ntist

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
0

5

10

15

20

(i) tblt

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
0

5

10

15

(j) ltyt

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
-15

-10

-5

0

5

10

15

20

(k) ltrt

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
-4

-2

0

2

4

6

(l) tmst

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
0

0.5

1

1.5

2

2.5

3

3.5

(m) dfyt

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
-10

-5

0

5

10

(n) dfrt

1950:01 1965:01 1980:01 1995:01 2007:01 2017:12
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(o) inflt

Figure S.1: Graphs of excess returns and predictors
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