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Learn-Select-Track: An Approach to Multi-Object Tracking

Onalenna J. Makhuraa,1,∗, John C. Woodsa

aComputer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom

Abstract

Object tracking algorithms rely on user input to learn the object of interest. In multi-object tracking, this can be a
challenge when the user has to provide a lot of locations to track. This paper presents a new approach that reduces the
need for user input in multi-tracking. The approach uses density based clustering to analyse the colours in one frame
and find the best separation of colours. The colours selected from the detection are learned and used in subsequent
frames to track the colours through the video. With this training approach, the user interaction is limited to selecting
the colours rather than selecting the multiple location to be tracked. The training algorithm also provides online
training even when training on thousands of features.
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1. Introduction

Object tracking is an important and active research
field. The research focus has evolved over the years from
short term (frame by frame) [1, 2] to long term [3, 4] to
multi object tracking(MOT) [5, 6, 7]. This surge in re-
search interest has also seen an increase in datasets ded-
icated to object tracking such as MOT16 [8] and bench-
marks such as BMTT 2016 [9].

Tracking algorithms built around single object tracking
such as Kernelized Correlation Filter [2] and online boost-
ing [1] rely on the user input as a region of interest(ROI)
around the object. Unique features are learned from that
ROI and used to track the occurrence of the object in sub-
sequent video frames. The obvious downside to applying
this training to multiple objects is that the user has to pro-
vide more ROIs which can become a big challenge when
the objects number in the dozens and downright imprac-
tical when they reach hundreds. The advantage of these
algorithms, however, is that the object to be tracked can
be learned on the fly making them more adaptive to new
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objects.
The other approach is to train the objects to be tracked

offline. The features learned can then be applied online to
track the objects. Haar-like cascades [10] are one such al-
gorithm that have gained widespread use. Deep learning
approaches [6, 11, 12] have also gained traction for multi-
object tracking. While these approaches often achieve
state of the art performances with accurate object detec-
tion and tracking, the need for offline training is still a ma-
jor problem. The objects to be tracked have to be known
beforehand, which usually requires a lot of data on the ob-
jects. The offline nature of these approaches is often due
to the time it takes to train and the computational power
requirements.

In this paper, we introduce a different approach to
tracking multiple objects. We have called the approach
Learn-Select-Track. The algorithm is designed to have
online training where user interaction is independent of
the number of objects to be tracked while having the abil-
ity to track hundreds of objects at the same time. The
training stage is made up of the learning and selection.
For this paper, we use colours as features to be tracked in
the videos. While colour is not the most distinctive feature
to use, in this paper, we use it to obtain multiple locations
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for tracking. In essence, our approach works with any
feature that uses distance measure for matching.

In the learning stage, the algorithm analyses the colours
in the video frame to find the best colour separation as
clusters. In the selection stage, the user is given the de-
tected colours to choose the ones they are interested in.
The user interaction is therefore dependent on the number
of colours detected in the video rather than the number of
objects to be tracked.

We separate the colours in the frame by employing a
density based clustering algorithm. Due to computational
intensity of the algorithm, it is impractical to use every
pixel in the frame. We therefore use a local feature detec-
tion algorithm to detect the find points on the image and
use the colours at those locations as input to the cluster-
ing algorithm. The tracking stage combines the colours
selected from the previous frame with the colours in the
current frame. The clustering algorithm is used again to
find the clusters in the new combined data and the pre-
vious selection is used to find the similar colours in the
current frame.

The rest of the paper is structured as follows; Section
2 discusses the research publications related to this pa-
per, specifically, the recent research into deep learning for
multi object tracking, the local feature algorithms and the
density clustering algorithms. In section 3, we discuss the
training and tracking approach in this paper. Section 4
discusses the results from our tests. Finally we give con-
clusions and possible future improvements.

2. Related Work

Wu et al.[7] leveraged the power of discriminate corre-
lation filters (DCF) [13] and the Markov decision process
(MDP) to develop an MOT. The use of DCF provides re-
silience to occlusion and scale variation in addition to im-
proved accuracy in single object tracking. They use MDP
to integrate two DCF based trackers into the multi-object
tracker and address the update problem of the appearance
model.

Lan et al.[14] propose an MOT approach that exploits
interactions between tracklets. They introduce close and
distant tracklet interaction. Close interaction imposes
physical constraint on the temporally overlapping track-
lets and distant handles appearance and motion consis-
tency between two temporally separate tracklets. While

both Lan et al. and Wu et al. as well as scores of other
publication in this field do obtain good performances on
dozens of objects, they do not address the issue of initial-
isation of targets or propose a ways of simplifying that
process when the number of objects to be tracked reach
hundreds.

Other researcher have attempted to address the MOT
problem of initialisation in a variety of ways. In [15],
Türetken et al. proposed a way of tracking elliptical cell
populations in videos by using image segmentation and
elliptical fitting to find cell candidates. They create a hi-
erarchy of these candidates and use network flow integer
programming to select the most temporally consistent cell
candidates. While this approach promises good results for
cells, it does not generalise well to arbitrary shapes espe-
cially when dealing with live objects which can change
shapes in videos.

Object trajectories have been used to successfully track
multiple objects. Wang et al.[16] applied generalised
minimum cost flows(MCF) algorithm to jointly optimised
consecutive batches to generate a set of conflicting tra-
jectories. They then apply MCF again to obtain optimal
matching between trajectories from consecutive batches.
Maksai et al.[17] used a non-Markovian approach to im-
pose global smoothness constraints on the trajectory seg-
ments. The main weakness of trajectory based methods is
the loss of visual features of the objects such as colours
and texture. This loss of information means that differ-
entiating objects from their motion can be a challenge.
Another challenge is that they can only perform well in
motionless cameras as any motion from the camera will
make all the objects including the background to generate
trajectories.

This problem is nullified when using offline based
learning approaches such as Haar-like features[18] and
deep learning techniques. Recent publications such as
Zhang et al. [6], Wancun et al.[19] and Chen et al. [11]
have demonstrated how convolutional neural networks
can provide state of the art performances in multi-object
tracking. Deep learning platforms such as YOLO [12],
Caffe [20] provide a way of simplifying the training pro-
cess. However, they introduce a problem of limiting the
number of objects to be tracked to only those that have
been trained on. Any new objects require collecting a lot
of data on the new object including a lot of time to train
on the new model.
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In this paper, we introduce density based clustering as
a way of learning the new object but also to provide a way
of bypassing the need for the user to provide a lot of data
regarding the object to be learned. Density Based Cluster-
ing for Applications with Noise (DBSCAN)[21] is a clus-
tering algorithm that was designed for finding clusters in
spatial databases. The algorithm works by detecting clus-
ters when there are at least a certain number of points,
minPts, within a certain distance ε, of a certain point, p.
The algorithm therefore requires minPts and ε as inputs.
As such, to use this algorithm properly, one needs to have
an insight into the dataset.

Hierarchical DBSCAN (HDBSCAN) was developed
by Campello et al. [22] to get get around the need for
ε. It achieves this by finding all possible DBSCAN so-
lutions for different values of ε and uses the concept of
cluster stability to choose the final clusters. This leads to
clusters that have different values of ε that relies on the
points distribution within it. Since it only requires minPts
as a parameter, the algorithm is perfect for exploratory
data analysis where the densities of the clusters cannot be
determined beforehand.

Frame colours are the feature being tracked in this pa-
per. However, the HDBSCAN computational require-
ments restrict the size of the dataset. The smallest video
frame size in the dataset used in this paper is 640x360,
which would results in 230400 data points. The memory
and CPU times for distance calculations would be huge.
In order to avoid using every pixel we use Speeded-Up
Robust Features(SURF) [23] to find significant points in
the frame.

SURF descriptors describe the distribution of intensity
content within the neighbourhood of the interest point.
Each descriptor is extracted by overlaying a 4x4 grid over
the interest point as shown in Figure 1. For each square, a
Haar wavelet response is calculated in the horizontal (dy)
and the vertical (dx). Their absolute values (|dy| and |dy|)
are also calculated to get the information about the po-
larity of the intensity changes. This leads to each square
having a vector v = (

∑
dx,
∑

dy,
∑ |dx|,∑ |dy|). With 16

squares, this leads to a keypoint descriptor vector with 64
dimensions. For this paper, we are using the RGB values
at the location where the descriptors were found.

Figure 1: Oriented quadratic grid with 4x4 square sub-regions is laid
over the interest point and the

∑
dx,
∑

dy,
∑ |dx |,∑ |dy |

3. Learn-Select-Track

This section discusses the design of the Learn-Select-
Track algorithm. We first discuss the validity calculation
used to determine if a minPts value produced good clus-
tering results. Then we discuss the training process the al-
gorithm goes through to find best colour separation for the
first frame. The colours selected on this frame, along with
the minPts are then used to track and update the colour
model by the tracking algorithm. Since SURF features
are created from the surrounding area, we use a Gaussian
smoothing algorithm with a 5x5 kernel to get an average
at the feature location.

3.1. Validity Calculations

In one of our previous paper [24], we demonstrated that
given a set of local features from a video frame, density
based clustering can find clusters that represent very sim-
ilar features. We applied HDBSCAN to SURF keypoint
descriptors to detect which of them were similar. The pa-
per proved that the detection works well even without a
specified measure of similarity.

The detected clusters were then analysed statistically
for skewness and kurtosis values. These values were cal-
culated for core distances and intra-cluster distances. Us-
ing the distances, a percentage based measure of similar-
ity was calculated for each cluster within the results of a
particular value of minPts.

For this paper, there was a need to find out whether a
chosen value of minPts produced acceptable results. To
find out how good the results are, we use Algorithm 1.
With this algorithm, we were able to test the validity of
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the clustering results to decide whether to use them or try
another value of minPts.

Algorithm 1: Calculating validity for overall clus-
tering results for a particular minPts value.

Data: skew c - Skewness value from core
distances

Data: kurtosis c - Kurtosis value from core
distances

Data: skew d - Skewness value from intra cluster
distances

Data: kurtosis d - Kurtosis value from intra
cluster distances

Result: validity = 0
if skew d > 0 & kurtosis d > 0 then

validity← validity + 2
else if skew d < 0 & kurtosis d > 0 then

validity← validity + 1
else

validity← validity − 1
end

if skew c > 0 & kurtosis c > 0 then
validity← validity + 2

else if skew c < 0 & kurtosis c > 0 then
validity← validity + 1

else
validity← validity − 1

end

3.2. Training

In their paper, [22] explained that in the dendogram,
the most prominent clusters survive the longest. Detect-
ing these clusters in colour space gives the best separa-
tion of colours in the frame. While their analysis was
about using the same value of minPts, we find this holds
even when varying it. Colour model training aims to de-
tect these clusters by varying the HDBSCAN parameter
minPts for the dataset made up of the colours at the lo-
cations of the local features from 3 to 30 inclusively. We
then use the results to detect the best choice of minPts.

In order to speed up the cluster detection for varying

values of minPts, our HDBSCAN implementation1 reuses
the calculated distances from the first value to get new
core distances which we then use to create a new mini-
mum spanning tree to extract prominent clusters from.

The training begins by extracting a new colour space
dataset, C, from the local feature data set, D, and the
frame, F. For consistency with OpenCV, the implementa-
tion keeps this dataset in a Mat data structure. The result-
ing dataset is an n x 3 matrix where each row contains the
BGR values of the pixel. Given the dataset, incrementally
varying minPts results in three observations of interest to
the training algorithm:

• Observation 1: Given two values of minPts,
minPts1 and minPtsi−1, where minPtsi−1 = minPtsi−
1, the cluster sets resulting from them are such that
some of the clusters from minPtsi−1 merge to form a
cluster that appears in the results for minPtsi or be-
come noise.

• Observation 2: Given two values of minPts,
minPts1 and minPtsi−1, where minPtsi−1 = minPtsi−
1, if one of the clusters has the same number of
points as minPtsi−1, and it is distinct from other clus-
ters, its points will be labelled as noise for minPtsi.

• Observation 3: Changing the value of minPts does
not affect the resulting clusters, but rather results in
smaller cluster sizes as some of the outlier points be-
come noise.

• Observation 4: Changing the value of minPts does
not affect the resulting clusters in any way.

Ideally, the colour model training algorithm should de-
tect a sequence of minPts values where Observation 4 oc-
curs. However, in practice, this scenario is unlikely as
clusters are not perfectly defined within the dataset. In-
stead, the algorithm looks for Observation 3. Within a
specified range on minPts values, there is always a chance
that there will be more than one sequence where Observa-
tion 3 occurs. The algorithm gets around this by detecting
the longest sequence. The lowest minPts value in that se-
quence is then treated as the optimum value for colour
separation.

1https://github.com/ojmakhura/hdbscan.git
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It is worth noting that ideally, the lowest possible value
of minPts = 3 could be used to avoid repetitive cluster de-
tection. While the similarity of the points within the clus-
ters would be high, there is a high likelihood that there
will be a high number of clusters. This provides practi-
cality problems as asking the user to choose between a lot
of colour clusters becomes tedious and error prone.

Detecting the clusters that appear for consecutive val-
ues of minPts can be achieved in two ways. The first ap-
proach requires direct comparison of the clusters. Given
two sets of clusters for two values of minPts, Cl =

{cl
1, ..., c

l
n} and Cl−i = {cl−i

1 , ..., cl−i
m }, where l is minPts, n

and m are the number of clusters and i is an arbitrary value
such that l−i ≥ 3, the points of each cluster in Cl−1 have to
be compared to each point in each cluster in Cl. This ap-
proach develops a O(n2), where n is the number of points
in the dataset.

The approach used in this paper stems from Observa-
tion 3. Starting at the first value where this observation
appears, the number of cluster does not change. Since
most data structures that can be used for managing clus-
ters and their points such as hash tables, maps and dictio-
naries already keep a record of their size, the complexity
of this approach is O(1). Worst case scenario, the num-
ber of clusters have to be counted each time which results
in a O(m) complexity, where m is the number of clusters.
Experimentally, it has been found that m << n.

Another experimental observation involves the appli-
cation of the learnt colour model to subsequent frames.
The results show that if the object and some of the back-
ground colours are different shades of the same colour,
subsequent frames can end up with background and object
colour clusters merging. While cluster-wise there is noth-
ing wrong with the clusters merging if they have some
similarity, the tracker can lose the colour model.

Assuming i = 1, when the scenario in Observation 1
occurs, the cluster that results from clusters in Cl−1 merg-
ing has more points than the sum of the merging clusters.
This is because in order to merge the clusters, some of the
points that were noise in Cl−1 are brought in to form part
of the new cluster in Cl. The inclusion of these points into
the new cluster reduces the similarity of points in the new
cluster.

3.3. Track and Update

The track and update algorithm requires the learnt
colour model S i−1 and the minPts, sl, at which the model
was learnt. In addition, it requires the colour datasets Di−1
and Di. A new dataset D = Di−1 ∪ Di such that it has
length r = p + q where p and q are lengths of di−1 and Di

respectively. With this arrangement, the first p points of
D belong to Di−1.

HDBSCAN is then applied to D with minPts = 2 ∗ sl

and the data labels, L are extracted for D. L is then split
into two such that L = Li−1 ∪ Li, where Li−1 has p labels
for the dataset Di−1 and Li has q labels for dataset Di. We
then need to find the new labels for the selected points in
S i−1. It is worth noting that if any of the points now has
a noise label, the point is ignored. Using the new S i−1
labels, we then find all the points in Di that have the same
labels using Li. The new selected model S i will then be
used as input to the track and update for the frame Fi+1.

With this approach using two frames, the method in
this paper is therefore only concerned with frame-by-
frame tracking. We also used HDBSCAN on D with
minPts = 2 ∗ sl so that we can get clusters that span Li−1
and Li. If we only used minPts = sl, the resulting clusters
could be such that each of Li−1 and Li have their own in-
dependent clusters which would make updating the colour
model impossible.

In theory, if we wanted to increase temporal aware-
ness of the track and update algorithm to y frames, the
colour model S i−1 would not need to change, but the
combined dataset would have to change such that D =

Di−y−1 ∪ Di−y−2 ∪ ... ∪ Di.

3.4. Testing Approach

The common datasets available were unsuitable for
testing in this paper for three reason. The first reason is
that they are predominantly about people and general ur-
ban settings. Since people have different skin colours and
wear different coloured clothes, the datasets are not suit-
able for testing the approach in this paper. The second
reason is that their benchmarks often require the localisa-
tion of the objects during tracking. However, the approach
described in this paper uses colour from pixels which do
not provide any information on the size or shape of the
objects. The final reason is the lack of videos with really
high number of objects.
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To test our approach, we used an object counting
dataset VOC-182. While it was designed for object count-
ing, the videos contain a variety of scenes with birds (voc-
18-bd-{1-22}) and blood cells (voc-18-bl-{1-4}) which
provide a good platform to test our approach. The dataset
is also not annotated and does not have predefined bench-
marks for common object tracking evaluation.

In order to use the dataset we devised simple bench-
marks for testing the effectiveness of our approach. The
training algorithm was assessed on the number of clusters
the selected minPts produced. Ideally, the number of clus-
ters considered to be acceptable was set to be between 2
and 10 not counting the noise cluster. The track and up-
date algorithm was assessed on the number of frames it
took before the colour model was lost. For both the train-
ing and tracking algorithms, the times were also recorded.
For training, we measured the time it took for the algo-
rithm to analyse the colours and select the best minPts for
detecting colour separation. For tracking, we measured
the time it took for the algorithm to combine the colours
in the current and previous frame, detect clusters and se-
lect the colour model for the current frame. As simple as
these metrics are, they provide a very powerful measure
of checking whether the train-select model of training and
the track and update approaches work.

4. Results and Discussions

The algorithms developed in the previous section were
tested separately. The training algorithm was developed
to select the best colour separation in the video frame
by finding the best value of minPts. The algorithm then
requires the user to choose from the colours detect by
HDBSCAN for the selected value of minpts. The selected
minPts, the number of clusters and the number of clusters
chosen were recorded in Table 1.

The tracking algorithm was used to test the minPts se-
lection from the training algorithm. We looked at how
long it took in terms of the video frames before the tracker
lost the colour model. The effects of user choice of
colours on the tracking algorithm were also tested. We
also tested the times it took to learn the colour model as

2https://github.com/ojmakhura/voc-18.git

well as how long it took to track the features from frame
to frame.

4.1. Colour Model Training
When evaluating the training results, we first looked at

the change in the number of clusters as minPts is varied
from 3 to 30. The important output from this part of the
algorithm is the optimum minPts value and the selected
colour model which are both used for tracking the colours
from one frame to the next. The quality of the choice for
these two is evaluated by looking at the tracking results.

The overall trend from the videos we tested the training
algorithm on show an exponential decay in the number of
clusters for increasing value of minPts. In most cases the
higher values of minPts results in the same clusters being
detected with slight variations in the number of points in
each of clusters as well as the number of clusters found.

Figure 2: The training frame from voc-18-bd-1 video.

Figure 3: The training results for voc-18-bd-1 video. The numbers on
top of the plot points shows the validity of the results at that minPts
value.

In Figure 3, the trend can be clearly seen as the num-
ber of clusters falls from 263 with minPts = 3 to 2 be-
tween minPts = {10, ..., 30}. The dominance of these two
clusters signifies that the video frame has two dominant
colours which can be seen in Figure 2 showing flamin-
goes sitting on water and Figure 4 which shows how the
colours of the frame were clustered.
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Table 1: The training results with VOC-18 dataset. The number of points
column shows the number of colour points detected in the first frame and
duration column shows the amount of time it took to analyse the colours
by the training algorithm.

Video Points min-
-Pts

Clus-
-ters Time

voc-18-bd-1 3375 6 7 17.43
voc-18-bd-2 265 7 3 0.3196
voc-18-bd-3 415 4 11 0.355
voc-18-bd-4 198 6 5 0.2354
voc-18-bd-5 141 6 3 0.2049
voc-18-bd-6 246 6 4 0.2161
voc-18-bd-7 201 8 2 0.1312
voc-18-bd-8 379 3 24 0.2773
voc-18-bd-9 156 7 2 0.0972
voc-18-bd-10 222 7 5 0.1869
voc-18-bd-11 219 15 4 0.1571
voc-18-bd-12 329 5 11 0.2711
voc-18-bd-13 1934 10 3 6.1631
voc-18-bd-14 193 6 4 0.1605
voc-18-bd-15 185 6 2 0.1395
voc-18-bd-16 308 3 17 0.3915
voc-18-bd-17 300 4 3 0.3416
voc-18-bd-18 157 6 3 0.0673
voc-18-bd-19 304 3 24 0.1575
voc-18-bd-20 1826 3 151 4.6714
voc-18-bd-21 853 6 4 1.0212
voc-18-bd-22 129 14 2 0.0621
voc-18-bl-1 6631 13 2 37.4817
voc-18-bl-2 6010 24 5 31.601
voc-18-bl-3 3256 15 4 10.1651
voc-18-bl-4 1639 8 3 3.8409

Figure 4: A scatter plot of voc-18-bd-1 colours and the results of the
clusters of the selected value of minPts = 6.

While only 2 clusters were detected for the majority
of the minPts values, there was intertwining between the
minPts sequences that produced 2 and 3 clusters. As per
the design of the algorithm both sequences were rejected.
The final selected value resulted in 7 clusters which (Fig-
ure 4) is still low enough for the choice of colours to be
simple.

The strictness of the algorithm over the continuity of
clusters between varying values of minPts can cause the
selection of a value that has a high number of clusters.
In the test video voc-18-bd-20 (Figure 5), the number of
clusters being discovered was irregular. This resulted in
minPts = 3 selection, which had 151 clusters (See Fig-
ures 6 and 7). This presents a challenge for the part of
the training algorithm that requires a person to select the
colours of interest.

Figure 5: The training frame from voc-18-bd-20 video.

However, the validity of the results showed that all the
values of minPts produced results with validities greater
than 0. In fact, for minPts = 30, the two clusters pro-
duced, {2, 3}, had core distance confidences of 73% and
61%, and intra-cluster distance confidences of 70% and
71% respectively. The 3D scatter graph of the colours in
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Figure 6: The training results for voc-18-bd-20 video. For this video,
the minPts selected was 3 which had 151 clusters.

Figure 7: 3D scatter graph of voc-18-bd-20 video’s first frame.

the frame shows the grouping.
The effect of using validity to control the quality of

minPts can be seen in video voc-18-bd-3. In the video,
there are birds flying over water with the sun causing a
glare over the frame such that there is a gradual change
in the pixel values (See Figures 8 and 9). Furthermore,
some of the birds’ colours are affected by the glare mak-
ing it difficult for clear separation of colours.

Figure 8: The training frame from voc-18-bd-3 video.

The 3D scatter (Figure 10) shows that a good argument
can be made for 2 groups of colours in the frame. How-
ever, the glare caused too much variance in the colours
affected. This did not only affect the validity values
(minPts = {12, ..., 30}), but also affected the smooth sep-
aration of the colours (minPts = {6, ..., 12}). In this case,

Figure 9: The training results for voc-18-bd-3 video. For this video, the
minPts selected was 4 which had 11 clusters.

Figure 10: 3D scatter plot of the first frame of voc-18-bd-3 video.

cluster 4 was the one chosen to represent the colours of
the objects of interest.

The overall results shown in Table 1 show that for most
of the videos, the training algorithm managed to select
values of minPts with the number of clusters less than 10.
We found that this number of clusters is manageable for
selection of object colours. In three of the videos (voc-
18-bd-9, voc-18-bd-20, voc-18-bl-1), the provided clus-
ters did not offer a good selection of colours as such there
were no colours learnt. In voc-18-bd-9 (Figure 11) and
voc-18-bl-1 the detected clusters did not offer a choice of
clear objects of interest colours. In voc-18-bl-1, the num-
ber of clusters for the chosen minPts was just too many
for an attempt at choosing the colours.

4.2. Frame by Frame Colour Tracking

The tracking results are shown in Table 2. The table
does not have results for videos voc-18-bd-9, voc-18-bd-
20 and voc-18-bl-1 because the training algorithm did not
successfully learn the colour model. The “Tracker Lost
at” column shows the first frame at which the tracker
loses the selected colour model. In analysing the result
from the tracker, we considered two scenarios; instant
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Figure 11: Options for colour selection voc-18-bd-9 selection video.
With selected minPts = 7, the colour points that are actually on the
birds have been labelled as the noise.

failure (colour model lost in less than 10 frames), and suc-
cessful tracking.

In the 23 videos where the colour model was success-
fully learned, 7 of them fell in the instant failure group.
In those videos, the results in the frame when the colour
model was lost showed either a significant decrease in the
number of clusters detected or a significant increase in the
number of points in the selected colour model (See Table
3).

In terms of the number of clusters, the effect is that the
points that were rejected in the previous frame end up be-
ing labelled with the colour model points which causes the
tracker to loose the model. This also leads to an increase
in the number of points. In cases where the number of
clusters did not change, there was a significant change to
the structure of the clusters. But since we were not do-
ing deep cluster analysis the tracking algorithm did not
recognise the loss of the model.

In videos such as voc-18-bd-13 (Figure 12) where there
is a distinct difference of colours between the difference
in colours of interest and the background, our algorithm
successfully tracked the chosen colours from beginning to
end of the video. This was observed in 10 of the videos.
The rest of the videos showed varying degrees of success-

Figure 12: The tracker results for voc-18-bd-13 video showing the first
and the last frame.

ful tracking.
The effect of user selection of the colours during the

algorithm training can be seen in voc-18-bl-2 video. Fig-
ures 13 and 14 depict clusters 5 and 6 that the training
algorithm offered as some of the possible choices for the
colour model. Cluster 5 points (Figure 13) are on the
darker side of the blood cells while cluster 6 points (Fig-
ure 14) are in the middle of the cells. However, the middle
of the cells have colours similar to the background. Se-
lecting cluster 6 as part of the tracked colours resulted in
the introduction of noise in the 34th frame. If cluster 5 is
the only one selected, the tracking algorithm successfully
tracked the colours in all the frames.

Figure 13: voc-18-bl-2 video cluster 5. The points are on the edge of the
cells where the colours are more distinct.

The background/foreground similarity problem ob-
served in voc-18-bd-3 video during training was also en-
countered during tracking. Selecting all clusters that are
on the birds results in the tracking algorithm losing the
colour model by frame 14. However, if only the clusters
on the dark parts of some of the birds are selected, the
tracking algorithm did not loose the colour model until
the end of the video.
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Table 2: The results of tracking the colours based on the selected
colours.

Video Length Tracker
Lost at:

voc-18-bd-1 77 67
voc-18-bd-2 71 71
voc-18-bd-3 103 103
voc-18-bd-4 65 41
voc-18-bd-5 56 56
voc-18-bd-6 37 10
voc-18-bd-7 87 2
voc-18-bd-8 85 2
voc-18-bd-10 143 101
voc-18-bd-11 121 121
voc-18-bd-12 155 2
voc-18-bd-13 73 73
voc-18-bd-14 105 105
voc-18-bd-15 99 22
voc-18-bd-16 110 5
voc-18-bd-17 115 115
voc-18-bd-18 75 3
voc-18-bd-19 85 53
voc-18-bd-21 117 117
voc-18-bd-22 93 38
voc-18-bl-2 94 94
voc-18-bl-3 80 6
voc-18-bl-4 49 49

Table 3: The table showing the videos where the tracker lost the model
instantly.

Video Clusters
(I-1)

Clusters
(I)

Poi-
nts
(I-1)

Poi-
nts
(I)

voc-18-bd-6 7 4 10 67
voc-18-bd-7 3 3 9 67
voc-18-bd-8 25 4 36 190
voc-18-bd-12 12 3 29 215
voc-18-bd-16 7 2 16 30
voc-18-bd-18 3 3 24 42
voc-18-bl-3 5 2 1291 2318

Figure 14: voc-18-bl-2 video cluster 6. The points are in the middle of
the blood cells which is a lot similar in colour to the background.

4.3. Training and Tracking Times

In this section, we discuss the training and tracking du-
rations from our approach. The data shown in the figures
and the tables is for all the videos even for those where the
training or tracking failed. The argument for this is that
since the algorithm processes all the points in both failure
and success, the information on the time it takes is still
worth investigating for this paper. Our implementation
takes advantage of the computational resources available
by using OpenMP[25] to parallelise some parts and im-
prove speed. We tested the our approach on a Dell XPS
laptop with a 7th generation i7 and 16GB RAM.

The bulk of HDBSCAN’s complexity is dominated by
the distance calculation.The distance matrix is symmet-
ric with 0 on the principal diagonal such that such that
di, j = d j,i and di, j = 0 if i = j. This property of
the distance matrix allows for significant reduction in the
memory requirements by only storing the top half of the
matrix. If the length of the dataset is denoted by nx ,
then the new distance matrix as a vector will have length
nd = nx(nx − 1)/2. Our implementation takes advantage
of this property to speed up distance calculations and re-
duce required memory. However, the overall complexity
of the algorithm is still O(n2). The colour model train-
ing times can be seen in Table 1 while the complexity has
been highlighted in Figure 15.

Table 2 shows the average number of point per frame
for each of the videos in the dataset and the average time
it took for each frame. The data in the table has also
been arranged in ascending order of the average number
of points. It is worth noting that the number of points per
frame may vary widely as they rely on the number of ob-
jects in the video. It is also worth noting that for tracking,
we use points from two frames which means per frame,

10



Figure 15: The graph of number of points vs time for learning the object
colour model on the first frame.

the algorithm is processing around twice the number of
points. The tracking algorithm still relies on HDBSCAN
which mean it is also a O(n2) as can be seen in Figure 16.

Figure 16: The graph of average number of point per frame vs the track-
ing duration.

5. Conclusion

In this paper we have presented an approach for track-
ing colours of interest in multiple locations in videos
without the need for the user to directly input the lo-
cations. The approach was tested on videos with dif-
ferent properties such as cluttered scenes, distinct back-
ground/foreground and similar background/foreground.
We tested the approach on 26 videos with varying degrees
of success. While the paper uses colours for tracking, this
approach can work with other features that are matched
using euclidean distance.

Table 4: The average number of points being tracked per frame and the
average time taken to process each frame arranged in ascending order.

Video
Average
Points
Per Video

Average
Duration
Per Frame
(s)

voc 18 bd 2 47 0.06234171
voc 18 bd 22 106 0.03249336
voc 18 bd 18 144 0.00843991
voc 18 bd 14 152 0.03234725
voc 18 bd 9 172 0.01150438
voc 18 bd 5 193 0.05855851
voc 18 bd 15 199 0.05959434
voc 18 bd 7 218 0.03284515
voc 18 bd 19 256 0.03664438
voc 18 bd 17 270 0.03493461
voc 18 bd 4 271 0.06568578
voc 18 bd 16 290 0.05997002
voc 18 bd 6 293 0.15951065
voc 18 bd 10 315 0.06294197
voc 18 bd 11 359 0.07135481
voc 18 bd 12 401 0.18854269
voc 18 bd 8 426 0.09738525
voc 18 bd 3 509 0.10776893
voc 18 bd 21 951 0.15017254
voc 18 bl 4 1659 0.91024479
voc 18 bl 3 1912 1.03131769
voc 18 bd 13 1918 1.47564444
voc 18 bl 20 1950 0.83814666
voc 18 bd 1 3271 3.08022
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Out of the 26 videos, the training algorithm was able to
select minPts values where the number of clusters was 10
or less in 20 of the videos. In the 6 video where this obser-
vation did not hold, the results showed a fluctuating num-
ber of clusters and validity values for all values of minPts.
Future improvement on the training algorithm could in-
clude an in-depth analysis of the clusters for varying val-
ues of minPts to detect the points that cause the validity
of the results to reduce. The points can then be manually
removed from the results in order to obtain more stable
clusters.

The most important feature of the training algorithm
and this paper is the online training capability that reduces
the user input. It also overcomes the weaknesses of deep
learning techniques by reducing the amount of work, time
and computational requirements. While deep leaning ap-
proaches rely on user labelled data and supervised offline
training, our approach reduces the user interaction to se-
lection of detected feature clusters. This reduces the train-
ing time from hours and days to less than a minute even
when processing thousands of features. The training data
requirements are reduced to just a single frame.

The tracking algorithm showed varying degrees of
success, but it is more about the weakness of colours
as a unique feature. In videos that had distinct fore-
ground/background colours, the algorithm successfully
tracked the colours for all frames in the video. In cluttered
scenes similar foreground/background videos, the track-
ing algorithm was able to track the objects for a while be-
fore background colours started appearing in the results.
The latter of the two types of videos showed more suscep-
tibility to erroneous results. An improvement to the track-
ing algorithm could include increasing strictness in ac-
cepting tracking results. This can be achieved by thresh-
olding the validity at which results are acceptable.
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 Density based clustering for learning object features to track. 

 Density based clustering for tracking objects in videos. 

 Training and tacking without knowing the number of objects. 

 Performance of the tacking and training algorithms. 
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