Accepted Manuscript

Learn-select-track: An approach to multi-object tracking

Onalenna J. Makhura, John C. Woods

PII:	S0923-5965(18)30969-X
DOI:	https://doi.org/10.1016/j.image.2019.02.009
Reference:	IMAGE 15511
To appear in:	Signal Processing: Image Communication

Received date :15 October 2018Revised date :20 February 2019Accepted date :20 February 2019

Please cite this article as: O.J. Makhura and J.C. Woods, Learn-select-track: An approach to multi-object tracking, *Signal Processing: Image Communication* (2019), https://doi.org/10.1016/j.image.2019.02.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Learn-Select-Track: An Approach to Multi-Object Tracking

Onalenna J. Makhura^{a,1,*}, John C. Woods^a

^aComputer Science and Electronic Engineering, University of Essex, Colcl ster, Uniter, Kingdom

Abstract

Object tracking algorithms rely on user input to learn the object of interest. In multi-object tracking, this can be a challenge when the user has to provide a lot of locations to track. The paper prosents a new approach that reduces the need for user input in multi-tracking. The approach uses density by ad charactering to analyse the colours in one frame and find the best separation of colours. The colours selected from the protection are learned and used in subsequent frames to track the colours through the video. With this train. Approach, the user interaction is limited to selecting the colours rather than selecting the multiple location to be track d. The training algorithm also provides online training even when training on thousands of features.

bjects.

requirements.

Keywords: Multi-Object Tracking, Object Colours, density-b. ed clustering, low level local features

1. Introduction

Object tracking is an important and active research field. The research focus has evolved over the courses from short term (frame by frame) [1, 2] to long erm [3, 4] to multi object tracking(MOT) [5, 6, 7]. Till surge in research interest has also seen an increase in date at dedicated to object tracking such as MOT 16 [\mathcal{F}_1 and benchmarks such as BMTT 2016 [9].

Tracking algorithms built around single tracking such as Kernelized Correlation $Fi^{(1)}$, "[2] and online boosting [1] rely on the user input as a region of interest(ROI) around the object. Unique ferences are learned from that ROI and used to track the or surrence of the object in subsequent video frames. The order is downside to applying this training to multiple objects is that the user has to provide more ROIs which can be come a big challenge when the objects number in the order of the advantage of these algorithms, how er, is the the object to be tracked can be learned on the fly making the more adaptive to new

February 20, 2019

The other approach is to train the objects to be tracked offline. The features learned can then be applied online to track the objects. Haar-like cascades [10] are one such algorithm that have gained widespread use. Deep learning approaches [6, 11, 12] have also gained traction for multiobject tracking. While these approaches often achieve state of the art performances with accurate object detection and tracking, the need for offline training is still a major problem. The objects to be tracked have to be known beforehand, which usually requires a lot of data on the objects. The offline nature of these approaches is often due to the time it takes to train and the computational power

In this paper, we introduce a different approach to tracking multiple objects. We have called the approach Learn-Select-Track. The algorithm is designed to have online training where user interaction is independent of the number of objects to be tracked while having the ability to track hundreds of objects at the same time. The training stage is made up of the learning and selection. For this paper, we use colours as features to be tracked in the videos. While colour is not the most distinctive feature to use, in this paper, we use it to obtain multiple locations

^{*}Corresponding author

Email ada vs: ojmak @essex.ac.uk (Onalenna J. Makhura)

Preprint s. `mitt d to Journal of Visual Communication and Image Representation

for tracking. In essence, our approach works with any feature that uses distance measure for matching.

In the *learning* stage, the algorithm analyses the colours in the video frame to find the best colour separation as clusters. In the *selection* stage, the user is given the detected colours to choose the ones they are interested in. The user interaction is therefore dependent on the number of colours detected in the video rather than the number of objects to be tracked.

We separate the colours in the frame by employing a density based clustering algorithm. Due to computational intensity of the algorithm, it is impractical to use every pixel in the frame. We therefore use a local feature detection algorithm to detect the find points on the image and use the colours at those locations as input to the clustering algorithm. The tracking stage combines the colours selected from the previous frame with the colours in the current frame. The clustering algorithm is used again to find the clusters in the new combined data and the previous selection is used to find the similar colours in the current frame.

The rest of the paper is structured as follows; Section 2 discusses the research publications related to $u \sim v_{per}$, per, specifically, the recent research into deep learning $u \sim multi$ object tracking, the local feature algorithms and the density clustering algorithms. In section 3, $v \neq u_{Sec}$ as the training and tracking approach in this paper. Section 4 discusses the results from our tests. Finally, give conclusions and possible future improvements.

2. Related Work

Wu et al.[7] leveraged the pover condiscriminate correlation filters (DCF) [13] and the Markov consisting process (MDP) to develop an MOT. If new e of DCF provides resilience to occlusion and sofe valuation in addition to improved accuracy in single object tracking. They use MDP to integrate two DCF by sed trackers into the multi-object tracker and address the update problem of the appearance model.

Lan et al. [14] r opose an MOT approach that exploits interactions between trackingts. They introduce *close* and *distant* tracklet in praction *Close interaction* imposes physical configuration on the temporally overlapping tracklets and *diant* hangies appearance and motion consistency between two temporally separate tracklets. While both Lan *et al.* and Wu *et al.* as x_1 ¹¹ as scores of other publication in this field *d* obt. in good performances on dozens of objects, they \dot{c} and .ddress the issue of initialisation of targets or propose γ ways of simplifying that process when the number of objects to be tracked reach hundreds.

Other researcher , we attended to address the MOT problem of initial sation in a variety of ways. In [15], Türetken *et al.* provides, a way of tracking elliptical cell populations in the edge by using image segmentation and elliptical fiture to find cell candidates. They create a hierarchy of these condidates and use network flow integer program. Ing to select the most temporally consistent cell candidates voit this approach promises good results for cells, it does not generalise well to arbitrary shapes especied, which dealing with live objects which can change shape. In videos.

Object trajectories have been used to successfully track rult ple objects. Wang et al.[16] applied generalised m. mum cost flows(MCF) algorithm to jointly optimised rons cutive batches to generate a set of conflicting traiectories. They then apply MCF again to obtain optimal • atching between trajectories from consecutive batches. Maksai et al.[17] used a non-Markovian approach to impose global smoothness constraints on the trajectory segments. The main weakness of trajectory based methods is the loss of visual features of the objects such as colours and texture. This loss of information means that differentiating objects from their motion can be a challenge. Another challenge is that they can only perform well in motionless cameras as any motion from the camera will make all the objects including the background to generate trajectories.

This problem is nullified when using offline based learning approaches such as Haar-like features[18] and deep learning techniques. Recent publications such as Zhang et al. [6], Wancun et al.[19] and Chen et al. [11] have demonstrated how convolutional neural networks can provide state of the art performances in multi-object tracking. Deep learning platforms such as YOLO [12], Caffe [20] provide a way of simplifying the training process. However, they introduce a problem of limiting the number of objects to be tracked to only those that have been trained on. Any new objects require collecting a lot of data on the new object including a lot of time to train on the new model.

In this paper, we introduce density based clustering as a way of learning the new object but also to provide a way of bypassing the need for the user to provide a lot of data regarding the object to be learned. Density Based Clustering for Applications with Noise (DBSCAN)[21] is a clustering algorithm that was designed for finding clusters in spatial databases. The algorithm works by detecting clusters when there are at least a certain number of points, *minPts*, within a certain distance ϵ , of a certain point, *p*. The algorithm therefore requires *minPts* and ϵ as inputs. As such, to use this algorithm properly, one needs to have an insight into the dataset.

Hierarchical DBSCAN (HDBSCAN) was developed by Campello et al. [22] to get get around the need for ϵ . It achieves this by finding all possible DBSCAN solutions for different values of ϵ and uses the concept of cluster stability to choose the final clusters. This leads to clusters that have different values of ϵ that relies on the points distribution within it. Since it only requires *min*² is as a parameter, the algorithm is perfect for explorato. τ data analysis where the densities of the clusters cannot be determined beforehand.

Frame colours are the feature being tracked in this paper. However, the HDBSCAN computational requirements restrict the size of the dataset. The mallest v leo frame size in the dataset used in this paper 640:560, which would results in 230400 data points. The more more and CPU times for distance calculations vould 'e huge. In order to avoid using every pixe' we se Srieded-Up Robust Features(SURF) [23] to find significe at points in the frame.

SURF descriptors describe the 'istribution of intensity content within the neighbourhood of the interest point. Each descriptor is extracted by the erlaying a 4x4 grid over the interest point as shown in Figure 1. For each square, a Haar wavelet response is concluded in the horizontal (d_y) and the vertical (d_x) . The values also calculate to get the information about the polarity of the intensity changes. This leads to each square having a vector $v = (\sum d \sum d_y, \sum |d_x|, \sum |d_y|)$. With 16 squares, this 'unis to a recypoint descriptor vector with 64 dimensions. For this aper, we are using the RGB values at the location where the descriptors were found.

Figure 1: Oriente. madratic grid with 4x4 square sub-regions is laid over the interest point c d the $\sum d_x, \sum d_y, \sum |d_x|, \sum |d_y|$

3. Learn-Colect-Track

1. Section discusses the design of the Learn-Select-Track alg. ithm. We first discuss the validity calculation used ∞ itermine if a *minPts* value produced good clusteries, gresults. Then we discuss the training process the algon im goes through to find best colour separation for the h. frame. The colours selected on this frame, along with the *minPts* are then used to track and update the colour model by the tracking algorithm. Since SURF features are created from the surrounding area, we use a Gaussian smoothing algorithm with a 5x5 kernel to get an average at the feature location.

3.1. Validity Calculations

In one of our previous paper [24], we demonstrated that given a set of local features from a video frame, density based clustering can find clusters that represent very similar features. We applied HDBSCAN to SURF keypoint descriptors to detect which of them were similar. The paper proved that the detection works well even without a specified measure of similarity.

The detected clusters were then analysed statistically for skewness and kurtosis values. These values were calculated for core distances and intra-cluster distances. Using the distances, a percentage based measure of similarity was calculated for each cluster within the results of a particular value of *minPts*.

For this paper, there was a need to find out whether a chosen value of *minPts* produced acceptable results. To find out how good the results are, we use Algorithm 1. With this algorithm, we were able to test the validity of

the clustering results to decide whether to use them or try another value of *minPts*.

Algorithm 1: Calculating validity for overall clus-
tering results for a particular minPts value.
Data: skew c - Skewness value from core

distances Data: kurtosis_c - Kurtosis value from core distances Data: skew_d - Skewness value from intra cluster distances Data: kurtosis_d - Kurtosis value from intra cluster distances **Result:** validity = 0if $skew_d > 0$ & $kurtosis_d > 0$ then *validity* \leftarrow *validity* + 2 else if $skew_d < 0 \& kurtosis_d > 0$ then $validity \leftarrow validity + 1$ else | validity \leftarrow validity -1end if $skew_c > 0 \& kurtosis_c > 0$ then *validity* \leftarrow *validity* + 2 else if $skew_c < 0$ & $kurtosis_c > 0$ then validity \leftarrow validity + 1 else $validity \leftarrow validity - 1$ end

3.2. Training

In their paper, [22] exp' and that in the dendogram, the most prominent clusters so ive the longest. Detecting these clusters in colour space gives the best separation of colours in the fram λ . While their analysis was about using the same value of *r* in *Pts*, we find this holds even when varying λ . Colour nodel training aims to detect these cluster by vary, g the HDBSCAN parameter *minPts* for the dapset made up of the colours at the locations of the ' cal locations from 3 to 30 inclusively. We then use the results to detect the best choice of *minPts*.

In order \therefore speed i p the cluster detection for varying

values of *minPts*, our HDBSCAN n. Plementation¹ reuses the calculated distances f on be first value to get new core distances which w then use to create a new minimum spanning tree to extrac. Prominent clusters from.

The training begins by extracting a new colour space dataset, C, from the local fc ture data set, D, and the frame, F. For consisting with OpenCV, the implementation keeps this character in a systat data structure. The resulting dataset is for $n \times n_{\rm h}$ trix where each row contains the BGR values of the pixel. Given the dataset, incrementally varying minetic results in three observations of interest to the training algorithm:

- Obset, for 1: Given two values of minPts, min, r_i and $minPts_{i-1}$, where $minPts_{i-1} = minPts_i$. ter sets resulting from them are such that $where of the clusters from <math>minPts_{i-1}$ merge to form a clust, that appears in the results for $minPts_i$ or bebecome noise.
- **Observation 2:** Given two values of minPts, $minPts_1$ and $minPts_{i-1}$, where $minPts_{i-1} = minPts_{i-1}$, 1, if one of the clusters has the same number of points as $minPts_{i-1}$, and it is distinct from other clusters, its points will be labelled as noise for $minPts_i$.
- **Observation 3**: Changing the value of *minPts* does not affect the resulting clusters, but rather results in smaller cluster sizes as some of the outlier points become noise.
- **Observation 4**: Changing the value of *minPts* does not affect the resulting clusters in any way.

Ideally, the colour model training algorithm should detect a sequence of *minPts* values where Observation 4 occurs. However, in practice, this scenario is unlikely as clusters are not perfectly defined within the dataset. Instead, the algorithm looks for Observation 3. Within a specified range on *minPts* values, there is always a chance that there will be more than one sequence where Observation 3 occurs. The algorithm gets around this by detecting the longest sequence. The lowest *minPts* value in that sequence is then treated as the optimum value for colour separation.

¹https://github.com/ojmakhura/hdbscan.git

It is worth noting that ideally, the lowest possible value of minPts = 3 could be used to avoid repetitive cluster detection. While the similarity of the points within the clusters would be high, there is a high likelihood that there will be a high number of clusters. This provides practicality problems as asking the user to choose between a lot of colour clusters becomes tedious and error prone.

Detecting the clusters that appear for consecutive values of *minPts* can be achieved in two ways. The first approach requires direct comparison of the clusters. Given two sets of clusters for two values of *minPts*, $C_l = \{c_1^l, ..., c_n^l\}$ and $C_{l-i} = \{c_1^{l-i}, ..., c_n^{l-i}\}$, where *l* is *minPts*, *n* and *m* are the number of clusters and *i* is an arbitrary value such that $l-i \ge 3$, the points of each cluster in C_{l-1} have to be compared to each point in each cluster in C_l . This approach develops a $O(n^2)$, where n is the number of points in the dataset.

The approach used in this paper stems from Observation 3. Starting at the first value where this observat, appears, the number of cluster does not change. Since most data structures that can be used for managing clusters and their points such as hash tables, maps and α_{s} 'onaries already keep a record of their size, the complexity of this approach is O(1). Worst case scenariog the number of clusters have to be counted each time which results in a O(m) complexity, where *m* is the number of clusters. Experimentally, it has been found that $n \ll n$.

Another experimental observation involves the application of the learnt colour model (x) such that frames. The results show that if the object and some of the background colours are different shides of the same colour, subsequent frames can end up with background and object colour clusters merging. While cluster-wise there is nothing wrong with the cluster, the ging if they have some similarity, the tracker car lose up or object.

Assuming i = 1, v pen ' ie sc' hario in Observation 1 occurs, the cluster that res. "Is from clusters in C_{l-1} merging has more point at that the sum of the merging clusters. This is because it order to the erge the clusters, some of the points that were not is end to the regret the clusters are brought in the new of the new cluber in C_{l-1} are brought in to form part of the new cluber in C_{l-1} are inclusion of these points into the new cluber set in C_{l-1} are similarity of points in the new cluster.

3.3. Track and Update

The track and update algo \dots requires the learnt colour model S_{i-1} and \dots mi Pts, s_i , at which the model was learnt. In addition it requires the colour datasets D_{i-1} and D_i . A new dat set $D = D_{i-1} \cup D_i$ such that it has length r = p + q where p and are lengths of d_{i-1} and D_i respectively. With the arrangement, the first p points of D belong to D_{-1} .

HDBSCAN is $t^i cn$ at plied to D with $minPts = 2 * s_i$ and the data labels, $L \neq e$ extracted for D. L is then split into two such $\ldots t L = L_{i-1} \cup L_i$, where L_{i-1} has p labels for the dataset D_{i-1} and L_i has q labels for dataset D_i . We then need \ldots find t^i e new labels for the selected points in S_{i-1} . It is worun noting that if any of the points now has a noise label. the point is ignored. Using the new S_{i-1} labels using L_i . The new selected model S_i will then be used imput to the track and update for the frame F_{i+1} .

V ith this approach using two frames, the method in this paper is therefore only concerned with frame-byi, me tracking. We also used HDBSCAN on *D* with $ninPts = 2 * s_l$ so that we can get clusters that span L_{i-1} and L_i . If we only used $minPts = s_l$, the resulting clusters could be such that each of L_{i-1} and L_i have their own independent clusters which would make updating the colour model impossible.

In theory, if we wanted to increase temporal awareness of the track and update algorithm to *y* frames, the colour model S_{i-1} would not need to change, but the combined dataset would have to change such that $D = D_{i-v-1} \cup D_{i-v-2} \cup ... \cup D_i$.

3.4. Testing Approach

The common datasets available were unsuitable for testing in this paper for three reason. The first reason is that they are predominantly about people and general urban settings. Since people have different skin colours and wear different coloured clothes, the datasets are not suitable for testing the approach in this paper. The second reason is that their benchmarks often require the localisation of the objects during tracking. However, the approach described in this paper uses colour from pixels which do not provide any information on the size or shape of the objects. The final reason is the lack of videos with really high number of objects.

To test our approach, we used an object counting dataset VOC- 18^2 . While it was designed for object counting, the videos contain a variety of scenes with birds (*voc*- $18-bd-\{1-22\}$) and blood cells (*voc*- $18-bd-\{1-4\}$) which provide a good platform to test our approach. The dataset is also not annotated and does not have predefined benchmarks for common object tracking evaluation.

In order to use the dataset we devised simple benchmarks for testing the effectiveness of our approach. The training algorithm was assessed on the number of clusters the selected minPts produced. Ideally, the number of clusters considered to be acceptable was set to be between 2 and 10 not counting the noise cluster. The track and update algorithm was assessed on the number of frames it took before the colour model was lost. For both the training and tracking algorithms, the times were also recorded. For training, we measured the time it took for the algorithm to analyse the colours and select the best minPts for detecting colour separation. For tracking, we measured the time it took for the algorithm to combine the colorrs in the current and previous frame, detect clusters and s lect the colour model for the current frame. As simple as these metrics are, they provide a very powerful in sure of checking whether the train-select model of training an. the track and update approaches work.

4. Results and Discussions

The algorithms developed in the p. vior s sect on were tested separately. The training alg rithm, was developed to select the best colour separation in the video frame by finding the best value of *mi Pts*. The algorithm then requires the user to choose from the colours detect by HDBSCAN for the selected alue of *minpts*. The selected *minPts*, the number of clusters chosen were recorded in Table 1.

The tracking algorit⁴ m w s used to test the *minPts* selection from the train. ∞ gorit⁴ m. We looked at how long it took in terms of the v. ¹a frames before the tracker lost the colour r odel. The effects of user choice of colours on the tracking algorithm were also tested. We also tested the time. ¹t for x to learn the colour model as

well as how long it took to track $\mathbf{u}_{\mathbf{k}}$ features from frame to frame.

4.1. Colour Model Trainin_b

When evaluating ' is training results, we first looked at the change in the n mber of lusters as minPts is varied from 3 to 30. The in vortant output from this part of the algorithm is the optimum minPts value and the selected colour model /hich are, oth used for tracking the colours from one frame to the p xt. The quality of the choice for these two is contacted on place of looking at the tracking results.

The overall tren, 'from the videos we tested the training algorithm, 'n show in exponential decay in the number of cluster, 'for inclusing value of *minPts*. In most cases the higher value of *minPts* results in the same clusters being device with slight variations in the number of points in each or "lusters as well as the number of clusters found.

Figure 2: The training frame from voc-18-bd-1 video.

Figure 3: The training results for *voc-18-bd-1* video. The numbers on top of the plot points shows the validity of the results at that *minPts* value.

In Figure 3, the trend can be clearly seen as the number of clusters falls from 263 with minPts = 3 to 2 between $minPts = \{10, ..., 30\}$. The dominance of these two clusters signifies that the video frame has two dominant colours which can be seen in Figure 2 showing flamingoes sitting on water and Figure 4 which shows how the colours of the frame were clustered.

²https://gitl. b.com/ojm khura/voc-18.git

Not the definition of the defi

Table 1: The training results with VOC-18 dataset. The number of points column shows the number of colour points detected in the first frame and duration column shows the amount of time it took to analyse the colours by the training algorithm.

Video	Points	min- -Pts	Clus- -ters	Time
voc-18-bd-1	3375	6	7	17.43
voc-18-bd-2	265	7	3	0.3196
voc-18-bd-3	415	4	11	0.355
voc-18-bd-4	198	6	5	0.2354
voc-18-bd-5	141	6	3	0.2049
voc-18-bd-6	246	6	4	0.2161
voc-18-bd-7	201	8	2	0.1312
voc-18-bd-8	379	3	24	0.2773
voc-18-bd-9	156	7	2	0.0972
voc-18-bd-10	222	7	5	0.1810
voc-18-bd-11	219	15	4	0.1571
voc-18-bd-12	329	5	11	0.2711
voc-18-bd-13	1934	10	3	
voc-18-bd-14	193	6	4	0.1605
voc-18-bd-15	185	6	2	0.1395
voc-18-bd-16	308	3	17	0.5, 15
voc-18-bd-17	300	4		0.3416
voc-18-bd-18	157	6	1.3	673 ر 0
voc-18-bd-19	304	3	24	
voc-18-bd-20	1826	3	151	4.6714
voc-18-bd-21	853	6	4	1.0212
voc-18-bd-22	129	14	2	0.0621
voc-18-bl-1	6631	13	2	37.4817
voc-18-bl-2	6010	25	5	31.601
voc-18-bl-3	325 ,	15	4	10.1651
voc-18-bl-4	1('9	8	3	3.8409

Figure 4: A sc ter plot c .oc-18-bd-1 colours and the results of the clusters of the select 'value of minPts = 6.

Wh. only 2 clusters were detected for the majority of the *minr*. values, there was intertwining between the *m.* -*is* sequences that produced 2 and 3 clusters. As per the des. n of the algorithm both sequences were rejected. final selected value resulted in 7 clusters which (Figre) is still low enough for the choice of colours to be sin ple.

The strictness of the algorithm over the continuity of clusters between varying values of *minPts* can cause the lection of a value that has a high number of clusters. In the test video *voc-18-bd-20* (Figure 5), the number of clusters being discovered was irregular. This resulted in *minPts* = 3 selection, which had 151 clusters (See Figures 6 and 7). This presents a challenge for the part of the training algorithm that requires a person to select the colours of interest.

Figure 5: The training frame from voc-18-bd-20 video.

However, the validity of the results showed that all the values of *minPts* produced results with validities greater than 0. In fact, for *minPts* = 30, the two clusters produced, $\{2, 3\}$, had core distance confidences of 73% and 61%, and intra-cluster distance confidences of 70% and 71% respectively. The 3D scatter graph of the colours in

Figure 6: The training results for *voc-18-bd-20* video. For this video, the *minPts* selected was 3 which had 151 clusters.

Figure 7: 3D scatter graph of voc-18-bd-20 video's first frame.

the frame shows the grouping.

The effect of using validity to control the quanty of minPts can be seen in video voc-18-bd-3. In the video, there are birds flying over water with the sup causing a glare over the frame such that there is a gradual conge in the pixel values (See Figures 8 and 9). Furthermore, some of the birds' colours are affected by the grad naking it difficult for clear separation of craours

Figure 8: The trai. re fro . voc-18-bd-3 video.

The 3D scatter (igure 10) shows that a good argument can be made for (groups (c colours in the frame. However, the glare called too nuch variance in the colours affected. This did not only affect the validity values (minPts = 12, ..., 30), but also affected the smooth separation of the colours (minPts = {6, ..., 12}). In this case,

Figure 9: The training esults 10. voc-18-bd-3 video. For this video, the minPts selected was 4 while and 11 clusters.

F. ure 10: 3D scatter plot of the first frame of voc-18-bd-3 video.

aster 4 was the one chosen to represent the colours of the objects of interest.

The overall results shown in Table 1 show that for most of the videos, the training algorithm managed to select values of *minPts* with the number of clusters less than 10. We found that this number of clusters is manageable for selection of object colours. In three of the videos (*voc-18-bd-9*, *voc-18-bd-20*, *voc-18-bl-1*), the provided clusters did not offer a good selection of colours as such there were no colours learnt. In *voc-18-bd-9* (Figure 11) and *voc-18-bl-1* the detected clusters did not offer a choice of clear objects of interest colours. In *voc-18-bl-1*, the number of clusters for the chosen *minPts* was just too many for an attempt at choosing the colours.

4.2. Frame by Frame Colour Tracking

The tracking results are shown in Table 2. The table does not have results for videos *voc-18-bd-9*, *voc-18-bd-20* and *voc-18-bl-1* because the training algorithm did not successfully learn the colour model. The "*Tracker Lost at*" column shows the first frame at which the tracker loses the selected colour model. In analysing the result from the tracker, we considered two scenarios; instant

Figure 11: Options for colour selection *voc-18-bd-9_selection* video. With selected *minPts* = 7, the colour points that are actually on the birds have been labelled as the noise.

failure (colour model lost in less than 10 frames), a cessful tracking.

In the 23 videos where the colour model was successfully learned, 7 of them fell in the instant f much proup. In those videos, the results in the frame when the colour model was lost showed either a significant decrease i the number of clusters detected or a significant increas. In the number of points in the selected color i model (She Table 3).

In terms of the number of clust .s, the enc. is that the points that were rejected in the r ev. is frame end up being labelled with the colour model points . 'tich causes the tracker to loose the model. T is a so leads to an increase in the number of points. 't cas's where the number of clusters did not change, there x = s a significant change to the structure of the clusters. But since we were not doing deep cluster analysis the tracking algorithm did not recognise the loss of the in ordel.

In videos such $r \cdot voc-18$ -ba-13 (Figure 12) where there is a distinct diffe ence of c lours between the difference in colours of inter st and t a background, our algorithm successfully t ... ked the chosen colours from beginning to end of the t deo. The was observed in 10 of the videos. The rest of t e videos showed varying degrees of success-

Figure 12: The u. 'ver results for *voc-18-bd-13* video showing the first and the last frame.

ful tracking

the effect of user selection of the colours during the algoriu. In training can be seen in *voc-18-bl-2* video. Fig-13 and 14 depict clusters 5 and 6 that the training log athm offered as some of the possible choices for the colour model. Cluster 5 points (Figure 13) are on the larker side of the blood cells while cluster 6 points (Figure 14) are in the middle of the cells. However, the middle the cells have colours similar to the background. Selecting cluster 6 as part of the tracked colours resulted in the introduction of noise in the 34th frame. If cluster 5 is the only one selected, the tracking algorithm successfully tracked the colours in all the frames.

Figure 13: *voc-18-bl-2* video cluster 5. The points are on the edge of the cells where the colours are more distinct.

The background/foreground similarity problem observed in *voc-18-bd-3* video during training was also encountered during tracking. Selecting all clusters that are on the birds results in the tracking algorithm losing the colour model by frame 14. However, if only the clusters on the dark parts of some of the birds are selected, the tracking algorithm did not loose the colour model until the end of the video.

Table 2: The results of tracking the colours based on the selected colours.

Video	Longth	Tracker
video	Length	Lost at:
voc-18-bd-1	77	67
voc-18-bd-2	71	71
voc-18-bd-3	103	103
voc-18-bd-4	65	41
voc-18-bd-5	56	56
voc-18-bd-6	37	10
voc-18-bd-7	87	2
voc-18-bd-8	85	2
voc-18-bd-10	143	101
voc-18-bd-11	121	121
voc-18-bd-12	155	2
voc-18-bd-13	73	73
voc-18-bd-14	105	105
voc-18-bd-15	99	22
voc-18-bd-16	110	5
voc-18-bd-17	115	115
voc-18-bd-18	75	3
voc-18-bd-19	85	53
voc-18-bd-21	117	117
voc-18-bd-22	93	38
voc-18-bl-2	94	94
voc-18-bl-3	80	6
voc-18-bl-4	49	4'

Table 3: The table showing the videos where the model instantly.

Video	Clusters (I-1)	Clr sters	Poi- nts (I-1)	Poi- nts (I)
voc-18-bd-6	7	4	10	67
voc-18-bd-7	3	3	9	67
voc-18-bd-8	25	0	36	190
voc-18-bd-12	12	3	29	215
voc-18-bd-16	7	2	16	30
voc-18-bd-18	3	3	24	42
voc-18-bl-	5	2	1291	2318

Figure 14: voc -1 bl-2 v .co 'uster 6. The points are in the middle of the blood cells where v_{i} a lot s' nilar in colour to the background.

4.3. Training and Fracking Times

In C is sect. • we discuss the training and tracking durations from our approach. The data shown in the figures ar the uncests for all the videos even for those where the training or tracking failed. The argument for this is that since the algorithm processes all the points in both failure ind access, the information on the time it takes is still we do investigating for this paper. Our implementation takes advantage of the computational resources available by using OpenMP[25] to parallelise some parts and imto ove speed. We tested the our approach on a Dell XPS laptop with a 7th generation i7 and 16GB RAM.

The bulk of HDBSCAN's complexity is dominated by the distance calculation. The distance matrix is symmetric with 0 on the principal diagonal such that such that $d_{i,j} = d_{j,i}$ and $d_{i,j} = 0$ if i = j. This property of the distance matrix allows for significant reduction in the memory requirements by only storing the top half of the matrix. If the length of the dataset is denoted by n_x , then the new distance matrix as a vector will have length $n_d = n_x(n_x - 1)/2$. Our implementation takes advantage of this property to speed up distance calculations and reduce required memory. However, the overall complexity of the algorithm is still $O(n^2)$. The colour model training times can be seen in Table 1 while the complexity has been highlighted in Figure 15.

Table 2 shows the average number of point per frame for each of the videos in the dataset and the average time it took for each frame. The data in the table has also been arranged in ascending order of the average number of points. It is worth noting that the number of points per frame may vary widely as they rely on the number of objects in the video. It is also worth noting that for tracking, we use points from two frames which means per frame,

Figure 15: The graph of number of points vs time for learning the object colour model on the first frame.

the algorithm is processing around twice the number of points. The tracking algorithm still relies on HDBSCAN which mean it is also a $O(n^2)$ as can be seen in Figure 16.

Figure 16: The graph of average number of po^{i} t per i ame v the tracking duration.

5. Conclusion

In this paper we have present of an approach for tracking colours of interest in multiple locations in videos without the need for the tiser to directly input the locations. The approach \sqrt{s} to ded on videos with different properties that and she ilar background/foreground and she ilar background/foreground. We tested the approach on \sqrt{s} videos with varying degrees of success. Willie the paper uses colours for tracking, this approach contain work \sqrt{s} th other features that are matched using euclid an distance.

average	time take. to Jces	s ch frame arra	inged in ascending	order.
		Avenage	Average	
	Video	Average	Duration	
	Video	Points Por Video	Per Frame	
		Fer video	(s)	
	v.~18_bd_2	47	0.06234171	
	_bd_22	106	0.03249336	
	voc_18_bd_18	144	0.00843991	
	vc18_bd_14	152	0.03234725	
	c_18_bd_9	172	0.01150438	
	voc_18_bd_5	193	0.05855851	
	voc_18_bd_15	199	0.05959434	
	voc_18_bd_7	218	0.03284515	
	voc_18_bd_19	256	0.03664438	
	voc_18_bd_17	270	0.03493461	
	voc_18_bd_4	271	0.06568578	
	voc_18_bd_16	290	0.05997002	
	voc_18_bd_6	293	0.15951065	
	voc_18_bd_10	315	0.06294197	
	voc_18_bd_11	359	0.07135481	
	voc_18_bd_12	401	0.18854269	
	voc_18_bd_8	426	0.09738525	
	voc_18_bd_3	509	0.10776893	
	voc_18_bd_21	951	0.15017254	
	voc_18_b1_4	1659	0.91024479	
	voc_18_bl_3	1912	1.03131769	
	voc_18_bd_13	1918	1.47564444	
	voc_18_b1_20	1950	0.83814666	
	voc_18_bd_1	3271	3.08022	

Table 4: The aver ge nur ... f points being tracked per frame and the

Out of the 26 videos, the training algorithm was able to select *minPts* values where the number of clusters was 10 or less in 20 of the videos. In the 6 video where this observation did not hold, the results showed a fluctuating number of clusters and validity values for all values of *minPts*. Future improvement on the training algorithm could include an in-depth analysis of the clusters for varying values of *minPts* to detect the points that cause the validity of the results to reduce. The points can then be manually removed from the results in order to obtain more stable clusters.

The most important feature of the training algorithm and this paper is the online training capability that reduces the user input. It also overcomes the weaknesses of deep learning techniques by reducing the amount of work, time and computational requirements. While deep leaning approaches rely on user labelled data and supervised offline training, our approach reduces the user interaction to selection of detected feature clusters. This reduces the training time from hours and days to less than a minute even when processing thousands of features. The training da requirements are reduced to just a single frame.

The tracking algorithm showed varying deg. $\sim 10^{-10}$ success, but it is more about the weakness of colou. as a unique feature. In videos that had distinct foreground/background colours, the algorithm succe fully tracked the colours for all frames in the vid \circ . In clutt red scenes similar foreground/background video. the tracking algorithm was able to track the objects for a will be fore background colours started appearing in the results. The latter of the two types of videos should be tracking algorithm could include in the susceptibility to erroneous results. An inprovement of the tracking algorithm could include in the same strictness in accepting tracking results. This can be achieved by thresholding the validity at which r sub, are acceptable.

References

- H. Grabner, M. Grabner, H. Bischof, Real-time tracking via on-line by string (2006) 6–11.
- [2] J. F. Henricies, R. C. seiro, P. Martins, J. Batista, High-speed "acking with kernelized correlation filters, <u>CBE transactions on Pattern Analysis</u> and N achine 1. 'elligence 37 (3) (2015) 583–596. doi:10.'109/TP/ MI.2014.2345390.

- [3] N. Wang, W. Zhou, H. Li, Caliable re-detection for long-term tracking, h. FF. Transactions on Circuits and Systems or Villeo Technology (2018) 1– 1doi:10.1109/TCSV1. 18.2816570.
- [4] W. Kang, X. Li, S. L G. Liu, Corrected continuous correction filter for long-term tracking, IEF Access 6 (2018) 11959–11969. doi:10.1 09/A/CL SS.2018.2810382.
- [5] J. H. Loon, L.-H. Yang, J. Lim, K.-J. Yoon, Bayesian mu, 'i-object tracking using motion context fro. multiple objects, in: Applications of Computer "sion (" V), 2015 IEEE Winter Conference on, 2015, n. 33-40. doi:10.1109/WACV.2015.12.
- [6] . Zhang, Y. Tang, B. Fang, Z. Shang, Fast mult-object tracking using convolutional neural networks with tracklets updating, in: 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), 2017, pp. 313–317. doi:10.1109/SPAC.2017.8304296.
- [7] C. Wu, H. Sun, H. Wang, F. Kun, G. Xu, W. Zhang, X. Sun, Online multi-object tracking via combining discriminative correlation filters with making decision, IEEE Access (2018) 1– 1doi:10.1109/ACCESS.2018.2858853.
- [8] A. Milan, L. Leal-Taixé, I. D. Reid, S. Roth, K. Schindler, MOT16: A benchmark for multi-object tracking, CoRR abs/1603.00831. arXiv:1603.00831. URL http://arxiv.org/abs/1603.00831
- [9] R. B. Girshick, P. F. Felzenszwalb, D. McAllester, Benchmarking multitarget tracking: Motchallenge 2016, https://motchallenge.net/workshops/bmtt2016/.
- [10] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Vol. 1, 2001, pp. I–511–I–518 vol.1. doi:10.1109/CVPR.2001.990517.

- [11] L. Chen, H. Ai, C. Shang, Z. Zhuang, B. Bai, Online multi-object tracking with convolutional neural networks, in: 2017 IEEE International Conference on Image Processing (ICIP), 2017, pp. 645– 649. doi:10.1109/ICIP.2017.8296360.
- [12] J. Redmon, A. Farhadi, Yolo9000: Better, faster, stronger, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6517–6525. doi:10.1109/CVPR.2017.690.
- [13] D. S. Bolme, J. R. Beveridge, B. A. Draper, Y. M. Lui, Visual object tracking using adaptive correlation filters, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 2544–2550. doi:10.1109/CVPR.2010.5539960.
- [14] L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, T. S. Huang, Interacting tracklets for multi-object tracking, IEEE Transactions on Image Processing 27 (9) (2018) 4585–4597. doi:10.1109/TIP.2018.284312
- [15] E. Türetken, X. Wang, C. J. Becker, C. Hubbold, P. Fua, Network flow integer programming to Lock elliptical cells in time-lapse sequences, IEEE Transactions on Medical Imaging 36 (4) (2017) 042–951. doi:10.1109/TMI.2016.2640859.
- [16] X. Wang, B. Fan, S. Chang, Z. Wang, X. Liu, D. Tao, T. S. Huang, Greedy bate' -based minimumcost flows for tracking multiple oject, IEFC Transactions on Image Processing 26 (1. (207)) 4765– 4776. doi:10.1109/TIP.2017/723239.
- [17] A. Maksai, X. Wang, F. Fleure, P. Fua, Nonmarkovian globally costs int multi-object tracking, in: 2017 IEEE International Conference on Computer Vision (ICC ¹⁵ 2017, pp. 2563–2573. doi:10.1109/ICCV 2017.278.
- [18] R. Lienhart, J. Yu, A' extended set of haarlike features for rap, object detection, in: Proceedings. Ir ernational Conference on Image Processing, V. 1, 20 2, pp. I-900-I-903 vol.1. doi:10.1109/i.STP.2002.1038171.
- [19] L. Wuncun, Wenyan, Z. Liguo, Z. Xiaolin, L. Jiafi, Multi-scale behavior learning

for multi-object tracking, n. 2017 First International Conference on Flectronics Instrumentation Information f ster s (EnS), 2017, pp. 1–5. doi:10.1109/EIIS.2017. 298683.

- [20] Y. Jia, E. Slehamer, J. Donahue, S. Karayev, J. Long, R. Crshick, S. Guadarrama, T. Darrell, Caffe: Compluted architecture for fast feature embedding, arY preprint arXiv:1408.5093.
- [21] J. Sender, M. Lster, H.-P. Kriegel, X. Xu, Density-Leed clustering in spatial databases: The algorith gdbscan and its applications, Data Min. Know' Discov. 2 (2) (1998) 169–194. au. 10.1023/A:1009745219419. URL http://dx.doi.org/10.1023/A: 1009745219419
- R. J. G. B. Campello, D. Moulavi, A. Zimek,
 J. sander, Hierarchical density estimates for data clustering, visualization, and outlier detection, ACM Trans. Knowl. Discov. Data 10 (1) (2015) 5:1–5:51. doi:10.1145/2733381.

URL http://doi.acm.org/10.1145/2733381

- H. Bay, A. Ess, T. Tuytelaars, L. V. Gool, Speeded-up robust features (surf), Computer Vision and Image Understanding 110 (3) (2008) 346–359, similarity Matching in Computer Vision and Multi-media. doi:10.1016/j.cviu.2007.09.014.
 URL http://www.sciencedirect.com/science/article/pii/S1077314207001555
- [24] O. Makhura, J. Woods, Multiple feature instance detection with density based clustering, in: 2018 IEEE International Conference on Consumer Electronics (ICCE) (2018 ICCE), Las Vegas, USA, 2018.
- [25] L. Dagum, R. Menon, Openmp: An industrystandard api for shared-memory programming, IEEE Comput. Sci. Eng. 5 (1) (1998) 46–55. doi:10.1109/99.660313. URL http://dx.doi.org/10.1109/99.660313

Highlights

- Density based clustering for learning object features to track.
- Density based clustering for tracking objects in videos.
- Training and tacking without knowing the number of objects.
- Performance of the tacking and training algorithms.

Conflict of Interest

I, Onalenna Junior Makhura, declare that there is no conflict of interest for this paper.