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ABSTRACT  

 

Study Objectives: Individuals with insomnia disorder (ID) commonly report complaints of cognitive 

control functioning. Conversely, both behavioral and neurological evidence supporting subjective 

cognitive control impairments in insomnia remain remarkably scarce and inconclusive. To investigate 

this discrepancy, the present study used next to behavioral measures, event-related potentials (ERPs) 

to assess proactive control and reactive control in insomnia. 

Methods: Individuals with insomnia disorder (n = 18) and good sleeper controls (GSC; n = 15) 

completed the AX-Continuous Performance Task, while electroencephalography (EEG) was recorded. 

This task required participants to maintain specific cue-information active in order to prepare an 

adequate response to a subsequent probe, which allowed us to measure participants’ reliance on both 

proactive and reactive control.  

Results: The results indicate that, although ID show a comparable level of performance as GSC, they 

show a reduced proactive engagement of cue-induced maintenance and response preparation processes 

(as reflected by the P3b and the contingent negative variation components). Moreover, in contrast to 

GSC, ID fail to engage reactive control (as indexed by the P3a component) in order to overcome 

invalid response tendencies. 

Conclusions:  This study provides neurological evidence for impairments in cognitive control 

functioning in insomnia. As such, our study contributes to a better understanding of the discrepancy 

between the commonly reported cognitive impairments in insomnia and the scarce objective evidence 

for these cognitive complaints. 
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STATEMENT OF SIGNIFICANCE 

Insomnia represents an enormous burden for society with high personal (e.g. risk for mental disorders) 

and economic/societal costs (e.g. health care). Individuals with insomnia disorder (ID) not only report 

sleep disturbances, but also significant alterations of daytime functioning, including fatigue and 

impaired cognitive control functioning. However, neurobehavioral research on these complaints remains 

remarkably scarce and inconclusive. Here, we provide evidence that ID show an altered cognitive 

control functioning compared with good sleepers controls (GSC). In particular, ID present with a 

significantly reduced proactive control engagement along with an absence of behavioral performance 

impairments. These findings provide neurological evidence for impairments in cognitive control in 

insomnia, which in turn provides objective evidence for the commonly reported subjective cognitive 

impairments in insomnia.  
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INTRODUCTION 

Approximately 30 to 50% of the adult population reports occasional sleep disturbances and 6 to 10% 

meets the diagnostic criteria for an insomnia disorder [1-3]. According to the International Classification 

of Sleep Disorders (ICSD-3) [4] and the Diagnostic and Statistics Manual of Mental Disorders (DSM-

V) [5], insomnia disorder is defined as an individual’s report of recurrent difficulties with initiating or 

maintaining sleep, accompanied by clinically significant distress in daytime functioning. Interestingly, 

it is often these perceived functional daytime impairments rather than the sleep disturbances per se that 

have a seemingly profound impact on patients’ daily life [6], forcing them to seek medical care [7].  

Complaints with regards to altered wake-time functioning reported by individuals with insomnia 

disorder (ID) include not only fatigue and mood disturbances, but also several complaints about 

cognitive impairments [8-10], such as difficulties in suppressing repetitive thoughts [11-13]. For 

example, individuals with insomnia disorder tend to ruminate about the diurnal consequences of their 

chronic sleep difficulties. This extensive rumination and worry have also been proposed to contribute to 

the onset and maintenance of insomnia [11, 14-18]. Rumination and worry reflect impairments in the 

ability to effectively and efficiently inhibit irrelevant information, which is an important component of 

cognitive control [19-21]. Cognitive control comprises cognitive operations such as planning a new 

strategy, evaluating it, controlling its execution and correcting possible errors. It kicks in when routine 

activation of behavior is no longer sufficient for optimal performance [22]. The prefrontal cortex (PFC) 

plays a crucial role in cognitive control [23]. Interestingly, alterations of activation patterns have been 

reported in several cognitive control related brain areas in individuals with insomnia disorder [24-26]. 

Some studies revealed a hypoactivation in prefrontal and frontoparietal regions [24-25]. In contrast, a 

more recent study observed a hyperactivation in cognitive control brain circuits in insomnia [26]. 

Interestingly, in all these studies, the observed changes in brain activation of individuals with insomnia 

disorder were not accompanied by impairments in behavioral task performance. This finding is in line 

with the compensatory recruitment hypothesis [27]. This hypothesis assumes that unaltered task 

performance can be explained by an overrecruitment of cerebral resources in response to cognitive 

challenges. Individuals with insomnia disorder would thus mobilize compensatory cognitive effort 
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(which would be indexed by overactivation in task-relevant brain areas) in order to maintain a 

comparable level of performance as good sleeper controls [27]. In turn, this reduction in cognitive 

efficiency might explain why individuals with insomnia disorder experience having to engage more 

effort to reach similar performance levels as good sleepers. Additionally, this could also contribute to 

their frequent feelings of increased mental fatigue.  

Although individuals with insomnia disorder report deficits in cognitive control functioning, it 

becomes clear that objective neurobehavioral evidence for these complaints remains surprisingly scarce 

and inconclusive [24-32]. This discrepancy might stem from the fact that previous neuroimaging studies 

focused on the under- or overrecruitment of cognitive control brain areas, assuming a generic deficit in 

cognitive control functioning in insomnia. Instead, a more fruitful approach to study the altered 

neurological profile of individuals with insomnia disorder, is departing from a dynamic viewpoint. The 

Dual Mechanisms of Control (DMC) [33] theory offers a different approach to cognitive efficiency in 

which the temporal dynamics of cognitive control recruitment are pivotal. The DMC theory 

distinguishes two cognitive control modes which differ with regards to the time-scale on which they act. 

During proactive control, goal-relevant information is sustainably maintained to anticipate and prevent 

interference before it occurs. Reactive control is a late correction mechanism mobilized just in time, to 

detect and resolve interference after its onset. Although both control modes activate the same brain 

region, namely the lateral PFC (lPFC), proactive control does so in a sustained and/or anticipatory way, 

whereas reactive control only triggers transient activation [33]. It is postulated that both strategies have 

costs and benefits, and efficient cognition mainly relies on a mixture of both [33]. The DMC predicts 

that  intrusive worry and rumination so often reported by individuals with insomnia disorder may hamper 

the active maintenance of task relevant information, which implies deficient proactive control [33]. To 

reveal this weaker proactive control in insomnia, a temporal analysis is needed. Methodologically, 

electroencephalography (EEG) is particularly suited to study the temporal recruitment of the different 

cognitive control modes in insomnia, since it has a superior temporal resolution and since a series of 

EEG components reflecting proactive and reactive control have already been identified [34, 35]. 

Although some previous studies have measured EEG differences between individuals with insomnia 
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disorder and good sleeper controls, these have focused on brain responses to auditory stimuli in or timed 

closely to transition phases between sleep and wakefulness [36, 37]. In contrast, the current study 

focused on event-related potentials (ERPs) associated with response preparation and cognitive control 

during wakefulness after potential effects of sleep inertia have dissipated.   

In this study, we examine cognitive control mechanisms in individuals with insomnia disorder and 

good sleeper controls, using the AX-continuous performance task (AX-CPT) [38]. Performance on the 

AX-CPT depends on the successful execution of two cognitive control processes. More specifically, this 

task requires the participants to maintain and update task-relevant task information (i.e. proactive 

control) as well as to use additional task information to inhibit inappropriate response tendencies (i.e. 

reactive control). We will combine this task with EEG measurement. Due to its dynamic and temporal 

approach, this design will allow us to independently measure both proactive and reactive control 

mechanisms in individuals with insomnia disorder and good sleeper controls. This will provide us with 

a better understanding of how individuals with insomnia disorder recruit cognitive control and under 

which circumstances its efficiency fails and consequently offers the potential to improve current 

intervention strategies by targeting specific cognitive control impairments. 
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METHODS 

Participants 

The participants included 20 individuals with insomnia disorder (ID) and 16 age- and sex-matched 

good sleeper controls (GSC). Individuals with  insomnia complaints met the DSM-V criteria for 

Insomnia Disorder: a predominant complaint of a dissatisfaction with sleep quality or quantity 

associated with (1) difficulty initiating, maintaining sleep or early morning awakenings; (2) the sleep 

disturbance is occurring at least three nights per week for at least three months and (3) the sleep 

disturbance causes a clinically significant distress or impairment in social, occupational, behavioral or 

other important areas of functioning; (4) the sleep difficulty occurs despite adequate opportunities (e.g. 

enough time is allotted for sleep) and adequate circumstances (e.g. quiet and comfortable sleep 

environment) to sleep and is not better explained by another sleep-wake disorder, physiological effects 

of a substance (e.g. drug or medication) nor by a coexisting mental and/or medical disorder. GSC were 

satisfied with their sleep and did not meet the diagnostic criteria for Insomnia Disorder. Exclusion 

criteria for both groups were (1) presence of a medical or neurological disorder likely to interfere with 

sleep or cognitive functioning; (2) medication use altering sleep or cognitive functioning; (3) presence 

of a psychiatric disorder (i.e. current major depressive episode, generalized anxiety disorder, bipolar 

disorder or a history of a manic episode or a lifetime history of psychotic symptoms), assessed using the 

Mini International Neuropsychiatric Interview (M.I.N.I.) [39]; (4) substance abuse (including alcohol) 

in the previous year; (5) night or shift workers; individuals with irregular sleep-wake rhythms or 

abnormal habitual bedtime hours (< 09:00 PM or > 01:00 AM); (6) pregnant women or parents with 

newborns; (7) presence of other primary sleep disorders (e.g. Restless Legs Syndrome, Obstructive 

Sleep Apnea Syndrome); (9) a body mass index < 18 and > 30 kg/m2. All participants had to be free of 

medication altering sleep or cognitive functioning at least four consecutive weeks before the start of the 

study as well as during the two weeks of the study (see flowchart of the recruitment procedure in Figure 

1). All participants had normal or corrected-to normal vision, were right- or left-handed and received a 

financial compensation (€ 25) for the completion and received a detailed clinical report regarding their 
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sleep. The study protocol was approved by the ethical board of the Vrije Universiteit Brussel, Brussel, 

Belgium (reference: 2014, 234). All participants provided written informed consent.  

 

Figure 1. Flowchart of recruitment procedure 
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Procedures 

The experimental procedure is summarized in Figure 2. The participants were recruited through 

advertisements distributed via clinical sleep centers, primary care physicians, and social media. 

Participants that volunteered to participate or showed interest in the study were contacted by phone or 

e-mail for a short information briefing and a screening interview, in which sleep complaints, sleep 

schedules, medication and/or substance consumption along with clinical history information were 

checked. Eligible candidates after this preliminary anamnesis participated in a first session (at home 

between 07:00 and 8:30 PM). This first session consisted of a complete briefing of the study’s content 

and procedure. After giving informed consent, participants underwent a clinical assessment including 

the M.I.N.I. and a DSM-V-based semi-structured interview for sleep disorders, in order to assess mental 

and sleep disorders, respectively. A home-based polysomnography (PSG) was then performed with the 

sole purpose to further exclude comorbid or previously unknown sleep disorders. At preparation for 

PSG, the participants were able to become accustomed to the equipment before going to bed at their 

habitual bedtime. Between session 1 and session 2 (see Figure 2), participants were asked to complete 

questionnaires assessing sleep functioning, mental health, daytime and cognitive functioning and 

general medical history. The following clinical instruments were administered: Pittsburgh Sleep Quality 

Index (PSQI) [40], Insomnia Severity Index (ISI) [41], Ruminative Response Scale (RRS) [42], Beck 

Depression Inventory-II (BDI-II) [43], State-Trait Anxiety Inventory (STAI) [44], Multidimensional 

Fatigue Inventory (MFI) [45], Epworth Sleepiness Scale (ESS) [46], Dysfunctional Beliefs and 

Attitudes about Sleep (DBAS-16) [47], Cognitive Failures Questionnaire (CFQ) [48] and Multifactorial 

Memory Questionnaire (MMQ) [49]. During two consecutive weeks between session 1 and 2,  

participants were also required to complete a sleep diary and to wear an actigraph to check for the 

regularity of sleep-wake schedules. After this first session, participants were either assigned to the 

experimental (ID) or the control group (GSC) based upon DSM-V semi-structured interview for sleep 

disorders and the sleep diaries (see also recommendations [50]). Eligible candidates were invited for the 

second session, consisting of a cognitive continuous performance task (AX-CPT) while under 

continuous EEG recording. After the completion of the experimental AX-CPT task, participants also 
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completed the NASA Task Load Index (NASA-TLX) [51], in order to assess the subjective cognitive 

load they experienced during the experiment. The testing session lasted about 65 minutes. Participants 

were instructed to refrain from caffeine and alcohol intake for 72 h prior to both of the sessions, except 

for small habitual quantities of caffeine in the morning (i.e. maximum 2 units). Participants refrained 

from caffeine intake approximately 2 h before the start of the experimental AX-CPT task.  
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Figure 2.  Experimental procedure
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Measures and material 

Polysomnography  

Participants underwent a full-night home-based PSG with the sole purpose of excluding (comorbid) 

sleep disorders. In order to minimize a reversed first night effect in individuals with insomnia disorder 

[52] or a first night effect in good sleeper controls [53], we performed the PSG in the participants’ home 

environment. Signals were acquired by means of the Alice PDX G3 Software (Philips Respironics Inc™ 

Alice PDX®, Philips Healthcare™, Eindhoven, The Netherlands). Bedtimes were set in accordance with 

the participants’ habitual bedtime and wake-up time. The recording montage consisted of two 

electroencephalograms (EEG) recorded from F4-A1, C4-A1 sites; two electrooculograms (EOG; LOC-

A2, ROC-A2) and two submental and bilateral anterior tibial electromyograms. Oral and nasal airflow 

were measured using oro-nasal cannulae (Pro-Flow Plus™ Pro-Tech® Mukilteo, WA, USA). 

Respiration effort was measured using thoracic and abdominal respiratory belts (Pro-Tech® CT2™, 

Mukilteo, WA, USA). Capillary oxygen saturation was measured using photo-sensitive finger-oximetry 

(Nonin® Flexi-Form® II 7000A Nonin Medical Inc, Minneapolis, MN USA and LINOP® Adt Masimo 

corp. Irvine, CA, USA). In addition, a single electrocardiography lead was measured. The maximal 

impedance for the EEG and EOG electrodes remained under the cut-off of 5 kΩ and signals were 

recorded with a sampling rate of 500 Hz. PSG measurements were visually analyzed on 21-inch 

monitors, displaying 30-second epochs. EEG and EOG signals were filtered using a high pass filter of 

0.5 Hz and a low pass filter of 20 Hz. The 30 s epochs were scored in accordance with the American 

Academy of Sleep Medicine criteria [4] by the primary author and were revised by a trained technician 

and the study supervisor. Classical variables of sleep structure included time in bed (TIB; i.e. the interval 

between lights off and lights on), sleep onset latency (SOL; i.e. the time between lights out and the first 

epoch of recorded sleep), wake after sleep onset (WASO; i.e. wake duration between the first sleep and 

the last recorded sleep epochs), early morning awakenings (EMA; i.e. wake duration between last 

recorded sleep epoch and lights on) and total sleep time (TST; TST = TIB - SOL - WASO - EMA). 

Sleep efficiency (SE) was defined as the percentage of TST divided by TIB. Other variables related to 

sleep architecture were the TST percentages of slow-wave sleep (SWS), rapid eye movement sleep 
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(REM), stage 1 (N1) and stage 2 (N2) sleep. The arousal index and the apnea-hypopnea episodes were 

defined according to American Academy of Sleep Medicine procedures [4]. The criteria for defining 

sleep disorders were an apnea-hypopnea index greater than 15 events per hour for sleep apnea and a 

periodic limb movement index greater than 15 events per hour for periodic limb movements in sleep [4, 

5]. 

 

Actigraphy  

Following the first session, participants were asked to wear an actigraph during two weeks, in order 

to check for the regularity (stability) of sleep-wake schedules. Data were recorded using the data analysis 

software ActiLife (ActiGraph®, Groningen, The Netherlands). No irregular sleep-wake schedules were 

observed among the participants.  

 

Sleep Diary  

During the two weeks between the first and the second session, participants were asked to complete 

a sleep diary evaluating their sleep (every morning) and daytime cognitive functioning (every evening) 

over a period of 14 consecutive days. Variables were added to sleep diaries to evaluate daytime cognitive 

functioning. Participants were asked to provide a subjective rating of their overall sleep quality on a 10-

point scale (0 = very poor sleep quality, 10 = excellent sleep quality). Additionally, participants were 

asked to rate on a 10-point scale the perceived frequency of difficulty with attention/concentration (0 = 

very low level of attention and concentration, 10 = very high level of attention and concentration), 

memory (0 = significant memory difficulties, 10 = no significant memory difficulties at all) and 

planning/organization (0 = significant difficulties with planning and organization, 10 = no significant 

difficulties with planning and organization at all).  
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Pre-experimental task questionnaires 

The Pittsburgh Sleep Quality Index. The Pittsburgh Sleep Quality Index (PSQI) [40] is a self-report 

questionnaire which assesses subjective sleep quality and sleep disturbances. The 19 items generate 

seven component scores (i.e. subjective sleep quality, sleep latency, sleep duration, habitual sleep 

efficiency, sleep disturbances, use of sleep medication, and daytime dysfunction). Higher scores suggest 

a poor subjective sleep quality. A global PSQI score > 5 distinguishes poor sleepers from good sleepers 

[40].  

Insomnia Severity Index. The Insomnia Severity Index (ISI) [41] is a 7-item self-report questionnaire 

that assesses insomnia symptoms (i.e. difficulties initiating sleep, maintaining sleep and early morning 

awakenings), (dis)satisfaction with sleep, interference of insomnia symptoms with daytime functioning, 

the noticeability of functional disabilities associated with insomnia for others, and level of experienced 

distress caused by insomnia. Higher scores suggest more severe insomnia. A global ISI score > 10 is 

suggested as a clinical threshold in determining clinically significant insomnia [41].   

Ruminative Response Scale.  The Ruminative Response Scale (RRS) [42] is a 22-item scale used to 

measure the tendency to ruminate as a reaction to feelings of sadness or depression. A higher score 

indicates higher levels of rumination. 

Beck Depression Inventory-II. Depressive symptomatology was measured using the Beck 

Depression Inventory-II (BDI-II) [43]. The BDI-II is a 21 item inventory measuring depressive 

symptoms, as defined by the DSM-V. The BDI-II comprises two subscales: a cognitive subscale and a 

somatic-affective subscale [54]. Higher total scores indicate a higher severity of depressive symptoms.  

State-Trait Anxiety Inventory. The State-Trait Anxiety Inventory (STAI) [44] is a 40-item self-report 

scale and measures state (A-state) and trait anxiety (A-trait). The first 20 items (A-state) ask about 

feelings of anxiety in a specific situation, the following  20 items (A-trait) ask about feelings of anxiety 

in general. Higher scores suggest a higher degree of anxiety. Only the STAI (A-trait) was used. 

Multidimensional Fatigue Inventory. The multidimensional Fatigue Inventory (MFI) [45] is a 20-

item self-report instrument designed to measure different dimensions of fatigue (i.e. General Fatigue, 
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Physical Fatigue, Mental Fatigue, Reduced Motivation and Reduced Activity). Higher scores suggest a 

higher degree of fatigue.  

Epworth Sleepiness Scale. The Epworth Sleepiness Scale (ESS) [46] is a 8-item self-report 

questionnaire that measures the likelihood of dozing off or falling asleep in seven specific situations. A 

higher score indicates a higher degree of experienced sleepiness. A global ESS score (range: 0-24) > 10 

distinguishes normal daytime sleepiness from excessive daytime sleepiness.   

Dysfunctional Beliefs and Attitudes about Sleep. The brief version of the Dysfunctional Beliefs and 

Attitudes about Sleep (DBAS-16) [47] is a self-report scale assessing different types of unhelpful sleep-

related cognitions playing an important role in the maintenance of insomnia. Higher scores indicate a 

higher level of unhelpful cognitions.  

Cognitive Failures Questionnaire. The Cognitive Failures Questionnaire (CFQ) [48] is a self-report 

questionnaire that assesses the frequency of cognitive failures (e.g. failures in perception, memory and 

motor function) in daily life. A higher scores indicate more reported cognitive failures.  

Multifactorial Memory Questionnaire. The Multifactorial Memory Questionnaire (MMQ) [49] is a 

self-report questionnaire that assesses subjective feelings (e.g. satisfaction, embarrassment) about 

memory function (i.e. Contentment subscale), the frequency of day-to-day life memory failures (i.e. 

Ability subscale) and the use of memory strategies (i.e. Strategy subscale). Higher scores indicating 

respectively greater contentment with memory, better memory ability and more frequent use of memory 

strategies. Only the Contentment and the Ability subscale were used.  

 

Cognitive experimental EEG task 

Participants were seated in an electrically shielded, dimly lit room for the duration of the whole 

experimental EEG session. A version of the AX-CPT [38] was performed on a 15-inch color CRT 

monitor connected to a computer running a Windows operating system. Stimulus delivery and the 

recording of behavioral data (reaction time and accuracy) were controlled by E-prime (www.pstnet.com; 

Psychology Software Tools). The AX-CPT was administered to measure the recruitment of cognitive 
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control. Participants were presented with a sequence of letters which appeared on a computer screen. 

These letter sequences consisted of cue-probe pairs. The task requires participants to make a target 

response when an A-cue is followed by an X-probe (i.e. AX-trials) and to respond with a non-target 

response for all other cue-probe combinations (i.e. AY-trials, BX-trials, BY-trials). Participants were 

instructed to respond by pressing one of two keys on a Serial Response Box (Cedrus RB-830; Cedrus 

Corporation, San Pedro, CA) with their right hand. Participants had to respond with their index finger 

on the left key when an A-cue was followed by an X-probe (i.e. target response). For all other cue-probe 

combinations participants had to respond with their middle finger on the right key (i.e. non-target 

response). Participants were asked to respond as fast and as accurately as possible, but speed was 

emphasized. “B” cues for the non-target BX- and BY-trials could be any letter of the alphabet, except 

“X”, “K”, and “Y” (to avoid perceptual similarity with “X”). “Y” probes for the non-target AY- and 

BY-trials could be any letter of the alphabet expect for “A” and “K”. All stimuli (in 30-point Courier 

New bold) were presented in black on a white screen. Target trials (i.e. AX-trials) constituted 70% of 

the trials. Non-target trials (i.e. AY-trials, BX-trials, BY-trials) constituted 10% of the trials, each. This 

frequency distribution induces an expectancy bias for AX-trials, leading to the preparation of a target 

response whenever an A-cue is presented.  

 A total of 400 experimental trials were administered and equally divided over five blocks (i.e. 80 

trials per block). Each block included 56 target trials and 8 of each of the non-target trials types in a 

random order. After each block, the participants were allowed to take a short break. The experiment 

started with 10 practice trials (50% target and 50% non-target trials) where the participants received 

feedback on the accuracy of their responses (i.e. the message “correct” or “incorrect”). This feedback 

was then omitted during the experimental blocks. Each experimental trial started with the presentation 

of a fixation cross which was shown for 1000 ms. Subsequently, a cue-letter was presented for 300 ms 

again followed by a fixation cross for 4900 ms (i.e. delay between cue and probe). Then, a probe-letter 

was presented for 300 ms followed by a blank screen which was presented for 1000 ms. Participants 

were able to provide a response from probe-onset until 1000 ms after probe offset. If they failed to 
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respond within this time window, the trial was marked as “no response”. The inter-trial interval (ITI) 

randomly varied from 1000 ms to 1500 ms.  

 

Post-experimental task questionnaire 

National Aeronautics Space Administration-Task Load Index. The National Aeronautics Space 

Administration-Task Load Index (NASA-TLX) [51] assesses subjective workload on six dimensions. 

The six visual analogue subscales include: mental demand (MD), physical demand (PD), temporal 

demand (TD), frustration level (FL), effort level (EL) and performance level (PL). Overall workload is 

estimated by averaging the scores of the six subscales. Higher scores indicate a greater level of 

experienced subjective workload. Participants had to complete the NASA Task Load Index, in order to 

evaluate the subjective cognitive load they experienced during the experimental AX-CPT. 
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EEG recording and data pre-processing 

EEG data were recorded from 64 scalp locations (BioSemi ActiveTwo System, BioSemi, 

Amsterdam, The Netherlands) with a sample rate of 2048 Hz. Eye movements were recorded with 

electrode pairs placed 1 cm above and below the eye (vertical EOG) and from the outer canthi of each 

eye (horizontal EOG). After recording, the EEG was down-sampled offline to a 512 Hz sample rate. For 

the pre-processing of the P3b cue-locked activity, recordings were epoched from -0.5 s to +2.5 s relative 

to the onset of the cue. For the pre-processing of the CNV cue-locked activity, recordings were epoched 

from -0.5 s to +5 s relative to the onset of the cue. For the pre-processing of probe-locked activity (N2 

and P3a), recordings were epoched from -0.5 s to +2 s relative to the onset of the probe. Baseline 

correction was performed on 200 ms prior to cue and probe onset. Artefact rejection was conducted by 

visual inspection. Artefacts not corresponding to eye blinks were manually removed. Next, independent 

component analysis (ICA) was performed, using MatLab (The Mathworks, Natick, MA, USA) EEGlab 

toolbox [55]. Subsequently, blink components and oculomotor artefacts were identified as a result of 

the ICA. Based on visual inspection, these artefactual blink components were removed from the EEG 

data. Noisy channels were replaced by an interpolated weighted average from surrounding electrodes 

using the MatLab EEGlab toolbox [55]. Data from 22 participants (cue-locked pre-processing) and 14 

participants (probe-locked pre-processing) contained noisy channels. For the P3b cue-locked pre-

processing, 3.05 channels on average were interpolated and for the CNV cue-locked pre-processing 6.44 

channels on average were interpolated. For the probe-locked (N2 and P3a) pre-processing, 3.21 channels 

on average were interpolated. Subsequently, trials with artefacts (voltage exceeding ± 200 µV relative 

to baseline, at any electrode) were removed using extreme value rejection. Finally, segments containing 

further artefacts, identified by visual inspection, were removed prior to averaging. Before averaging 

ERPs, the signals were re-referenced to the average of all 64 electrodes. For plotting purposes, data were 

filtered using a 25 Hz low pass filter. 
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Statistical approach  

All statistical analyses were conducted using IBM SPSS 25 (International Business Machines, 

Armonk, NY, USA). When the assumption of homogeneity of variances was violated in the analyses, 

we reported the corrected values for degrees of freedom, t-values and p-values. A Greenhouse-Geisser 

correction was applied to the p-values (pGG) when the assumption of sphericity was violated. We used 

the Bonferroni-corrected α-level (0.05 / number of comparisons) in order to determine significance of 

the comparisons in the pairwise samples t-tests in order to correct for multiple comparisons. 

 

Sleep and self-report analyses   

The data from the sleep diaries were averaged over the 14 days between session 1 and session 2. The 

self-report data (sleep-, daytime- and cognitive functioning), the sleep diary data and the PSG data were 

evaluated using a non-parametric Mann-Whitney U test, since normality was not observed in all these 

variables.  

 

ERP components and analyses 

In previous ERP studies using the AX-CPT, ERPs that are modulated by recruitment of proactive 

and reactive control have been reliably identified (e.g. [34, 35]). To examine whether Insomnia Disorder 

was related to impaired proactive control, we examined standard ERPs for cue-related components (P3b 

and CNV) and probe-related components (N2 and P3a). Only the experimental trials of the correct 

responses (on average 76-77% for the CNV and P3b cue-locked analyses and 84% for the N2 and P3a 

probe-locked analyses, respectively) were included in the ERP analyses. To define the spatial 

topography and time-windows, we first averaged the waveforms across groups for each cue (i.e. A-cue 

and B-cue) and each Trial Type (i.e. AX, AY, BX, BY). Based on the collapsed waveforms, we defined 

the spatial topography for the analysis of respectively cue components based on the grand-average 

difference plot between B-cues and A-cues, and probe components based on a grand-average difference 

plot of response conflict (BY-trials - AY-trials) again without taking group into account. In line with 
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previous research, these components were examined by averaging the relevant region of interest [e.g. 

56-57]. Based on the collapsed waveforms and on prior research focusing on these ERP components, 

we defined the time-windows for each component. Subsequent EEG analysis, data averaging and data 

handling were conducted using MatLab and custom-built MatLab scripts.  

Proactive control can be indexed by several ERP components during the cue-probe interval. First, 

the centro-parietal P3b component peaks around 300-600 ms after cue presentation and is believed to 

reflect target categorization, context updating and maintenance of task-relevant information [58-60]. Its 

amplitude increases with the presentation of novel task-relevant stimulus information [61]. For example, 

larger P3b amplitudes have been observed for B-cues compared to A-cues, since B-cues appear with a 

lower frequency than A-cues and can therefore be considered as more novel [34]. This cue-dependent 

modulation of the P3b component reflects that context-relevant novel information has been correctly 

updated and maintained, which characterizes enhanced proactive control mechanisms. Later in time, the 

contingent negative variation (CNV) emerges post-cue, which is thought to reflect expectation and 

general response preparation [62]. The CNV is a slow cortical potential that appears after a warning 

stimulus (e.g. a cue) and that announces the preparation of a motor action to a subsequent stimulus (e.g. 

a probe). Larger CNV amplitudes have been associated with increased response preparatory processes 

and thus an increased proactive control engagement (e.g. [35]). Since the interval between cue and probe 

is longer than one second in our design, the CNV can be separated into an initial CNV (iCNV) and a 

late CNV (lCNV) [63, 64]. The iCNV is supposed to reflect attention allocation to task-relevant 

information in order to prepare for an adequate response. The lCNV is assumed to reflect the readiness 

potential preceding actions [65].  

P3b. For the P3b, the EEG over the centro-parietal electrodes CP1, CPz, CP2, P1, Pz, P2, PO3, POz, 

and PO4 was filtered at 0.01 Hz (high-pass filter) and 30 Hz (low-pass filter), slope 24 dB/octave. B-

cues showed a later peak amplitude than the A-cues due to the fact that B-cues were presented with a 

lower frequency than A-cues. For that reason and in line with the approach used in prior research using 

the AX-CPT [34, 35], the P3b amplitude was calculated over two time-windows (i.e. 300 ms to 500 ms 
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after cue presentation and 400 ms to 700 ms after cue presentation), corresponding to the latencies which 

the grand averages exceeded a quarter of the peak amplitudes for respectively A-cues and B-cues. 

CNV. For the CNV, the EEG was filtered over the fronto-central electrodes Fz, FCz, Cz, and CPz at 

0.01 Hz (high-pass filter) and 30 Hz (low-pass filter), slope 24 dB/octave. As explained above [63, 64], 

we studied the CNV during two time-periods, more precisely, we examined the initial CNV (i.e. iCNV) 

in a time window between 1000 ms and 2500 ms post-cue and the late CNV (i.e. lCNV) in a time 

window between 3400 ms and 4900 ms post-cue.  

Both the P3b and the iCNV and lCNV following the cue were analyzed by comparing amplitudes in 

a repeated-measures ANOVA with the factors Cue (2 levels: A-cue, B-cue) and Group (2 levels: ID or 

GSC), in line with previous research with this task [34, 35]. 

 

 Reactive control can be indexed by several ERP components following the probe presentation. First, 

a fronto-central N2 component around 200-300 ms post-probe, which correlates with the activation of 

the anterior cingulate cortex (ACC), a structure that is associated with conflict detection [66]. The N2 is 

assumed to be involved in inhibiting an incorrect response tendency that is for example elicited by 

invalid cue information and conflicts with the probe information. For example, larger N2 amplitudes 

have been observed in AY-trials compared to the other types of trials, where participants prepared a 

target response after the presentation of an A-cue, which conflicted with the subsequent Y-probe 

information (e.g. [35]). Following the N2, a later P3a component emerges around 300-600 ms post-

probe, indexing stimulus evaluation [59; 67, 68] and response inhibition [69, 70]. The evaluative P3a is 

supposed to reflect the need to monitor inhibitory processes required to overcome robust response 

tendencies. In AY-trials, for example, larger P3a amplitudes have been observed, which reflected 

inhibitory processes engaged to overcome a prepared target response elicited  by the A-cue (e.g. [34]).  

N2. In order to avoid masking of the N2 by the larger P3a amplitudes a 2 Hz (high-pass) and a 12 Hz 

(low-pass), slope 24 dB/octave filter was applied to filter out the P3a component [34, 35, 71]. The N2 

was calculated over the centro-parietal electrodes FCz, Cz, CPz and Pz in the 40 ms period around the 
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peak of the component, which resulted in a time-window between 270 ms and 310 ms (for a similar 

method, see also [56, 57]). 

P3a. For the P3a, the EEG over the frontal electrode Fz was filtered at 0.01 Hz (high-pass) and 30 

Hz (low-pass), slope 24 dB/octave. The P3a was calculated over the electrode Fz in the 80 ms period 

around the peak of the component. This resulted in a time-window between 300 ms and 380 ms (for a 

similar method, see also [57]). 

Both the N2 and the P3a following the probe were analyzed by comparing amplitudes in a repeated-

measures ANOVA with the factors Trial Type (4 levels: AX, AY, BX, BY) and Group (2 levels: ID and 

GSC), in line with previous research with this task [35]. 

 

Cognitive performance analyses 

We conducted a repeated-measures ANOVA with the factors Trial Type (4 levels: AX, AY, BX, 

BY) and Group (2 levels: ID and GSC) on the median RTs of correct trials (on average 96%) and the 

mean error rates on the AX-CPT.   
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Predictions  

Figure 3 summarizes the underlying control mechanisms related to the four trial types and the 

involved ERP components associated with these control processes.  

Cognitive performance hypothesis 

An increased use of proactive control (i.e. maintenance of the task-relevant cue information to 

prepare a response in advance) will result in the preparation of a target response whenever an A-cue is 

encountered and the preparation of a non-target response whenever a B-cue is encountered. This cue-

based preparation will lead to decreased performance (i.e. slower reaction times and higher error rates) 

on AY-trials, where the initial preparation of a target response based on the cue needs to be suppressed 

in order to make the correct (i.e. non-target) response. Impaired proactive control will result in the 

opposite pattern, that is, an enhanced or preserved performance (i.e. faster reaction times and lower error 

rates or no change in reaction times and error rates) on AY-trials. As the maintenance of the A-cue is 

impaired, it will not induce an incorrect response tendency towards a target response on these AY-trials.  

In summary, we hypothesize behavioral AY-performance to be preserved or even better (i.e. faster 

reaction times and lower error rates) in ID compared to GSC, as ID are less hindered by the maintenance 

of the A-cue information on this type of trial. According to previous studies examining cognitive control 

functions in insomnia [24, 25], it may also be that no differences in behavioral performance between 

groups can be evidenced due to compensatory mechanisms resulting in preserved performance in 

insomnia. 

 

ERP hypothesis 

For the cue-related components, we generally expect that the P3b amplitude will be larger for B-cues 

compared to A-cues since the B-cues are presented with a lower frequency (20% compared to 80%) and 

thus a higher novelty. Based on our hypothesis that ID individuals present with a specific alteration of 
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proactive control, we predict the P3b to be reduced for both conditions in this group, reflecting their 

impaired engagement with this task relevant cue. Moreover, we expect an iCNV and lCNV after A-cues 

and B-cues, since both ask for a response preparation. However, we expect that the iCNV and lCNV 

amplitudes will be larger for B-cues compared to A-cues. Specifically, previous research has 

demonstrated that prior probability information (e.g. a cue stimulus) provides advance information 

regarding a subsequent stimulus requiring a response (e.g. a probe stimulus) and this probability 

information induces preparatory processes at a premotor stage. This premotor preparation, which is 

reflected by a modulation of the CNV component, leads to facilitation of the subsequent processing and 

results in faster reaction times [72]. In the AX-CPT task, participants should prepare a response to the 

upcoming probe after the presentation of an A-cue and B-cue. In case of B-cues, participants should 

prepare a non-target response regardless of the probe presented. In contrast, although A-cues will require 

a target response on the majority of trials, the final response can only be determined once the probe is 

presented. As such, participants should have greater response preparation in the cue period following B-

cues. This response preparation should evoke a clear differential activation in CNV amplitudes for A-

cues and B-cues, indicating more adequate response preparation processes. Crucially, we hypothesize 

that ID will be associated with impaired proactive control and thus impaired use of the cue information 

to adequately prepare for the upcoming likely response. Since, as described above, effective use of B-

cues should result in greater response preparation (compared to A-cues), we expect the difference in 

CNV between A-cues and B-cues to be smaller in the ID group, reflecting a reduced ability to engage 

in proactive control.  

For the probe-related components, we generally expect that the N2 and P3a amplitude will be larger 

for AY-trials compared to the other types of trials. More specifically, behavioral performance on AY-

trials will generally be impaired compared to other types of trials, due to the fact that the vast majority 

of A-cues (on 7 out of 8 trials) are followed by an X-probe, and thus require a target response. As such, 

on AY-trials, the A-cue information (that activates a target response) will conflict with the Y-probe 

information (that activates non-target response). Hence, participants will detect a response conflict (as 

reflected by larger N2 amplitudes) and will need to inhibit a pre-potent tendency to make a target 
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response (as reflected by larger P3b amplitudes). Due to an impaired proactive maintenance of cue-

information, we expect that the N2 and P3a amplitudes during AY-trials will be smaller for ID compared 

to GSC. More precisely, the A-cue information will then not be maintained. Consequently, this A-cue 

information will conflict to a lesser extent with the Y-probe information leading to smaller N2 

amplitudes (due to a smaller response conflict) and smaller P3b amplitudes (due to a lesser need for 

inhibition of an incorrect response). 
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Figure 3. Schematic overview of the underlying control mechanisms related to the four trial types (upper table) and the involved ERP components associated 

with these control processes (lower figure)
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RESULTS 

Sample description  

Thirty-six volunteers participated in the experiment. The ID group consisted of 20 participants and 

the good sleeper controls consisted of 16 participants. Two participants made significantly more errors 

(+ 2.5 SDs) than their group mean (i.e. ID or GSC) and were therefore excluded from further analysis. 

The data of one additional participant was excluded because of technical problems with the EEG 

recording. Thus, the final ID group consisted of 18 participants with a mean age of 32 years (SD = 11.36, 

age range 20 - 53 years) and the GSC group consisted of 15 participants with a mean age of 32 years 

(SD = 10.94, age range 21 - 53 years). Participants of each group were statistically equivalent in age (t 

= 0.082, p = 0.94) and in gender distribution (χ2 = 0.071, p = 0.79). There were no significant differences 

on the apnea/hypopnea index (z = -1.84, p = 0.067) and the periodic limb movements during sleep index 

(z = -0.13, p = 0.90).  

 

Sleep parameters 

Medians, interquartile ranges and between-group comparisons for the sleep variables are presented 

in Table 1.  

Polysomnography. Due to technical problems with the PSG recording equipment, the data of five 

participants were not included in between-group comparisons for recorded sleep variables. The ID group 

and the GSC group did not differ with respect to any of the recorded sleep architecture and sleep 

continuity PSG parameters. Significant differences in sleep architecture and sleep continuity between 

ID and GSC based on one-night PSG are rarely found (for similar results see for example [25, 29]). 

  

Sleep Diary and Self-Report. The ID group reported significantly more insomnia complaints (ISI; z = -

4.85, p < 0.001, r = 0.84) and a worse sleep quality over the past month (PSQI; z = -4.26, p < 0.001, r = 
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0.74) compared to the GSC group. With regards to the sleep diary variables, all group differences are in 

line with our expectations. Finally, the ID group reported a lower sleep quality the night before session 

2 compared to the GSC group (z = -3.07, p = 0.002, r = -0.53).  
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Table 1. Between-group comparisons on subjective and objective sleep variables. 

 ID (n = 18) 

Median (± IQR) 

GSC (n = 15) 

Median (± IQR) 

ID vs GSC 

Effect size (r) 

ISI 15.00 (7.25) 3.00 (4.00) -0.84*** 

PSQI 10.00 (6.00) 4.00 (3.00) -0.74*** 

Sleep Diaries (average 14 nights)    

SOL (min) 33.38 (15.00) 8.57 (22.50) -0.60** 

WASO (min) 35.90 (57.83) 7.50 (16.07) -0.62*** 

EMA (min) 27.51 (20.76) 12.86 (15.00) -0.35* 

TIB (min) 483.25 (55.21) 492.86 (43.93) -0.24 

TST (min) 385.09 (91.63) 456.43 (70.71) -0.60*** 

% SE 80.83 (15.81) 93.11 (6.67) -0.67*** 

SQ 5.68 (1.33) 8.07 (0.93) -0.80*** 

Sleep Diaries (night before session 2) 

SQ 

 

7.00 (1.75) 

 

8.00 (2.00) 

 

-0.53** 

PSG (1 night)    

AHI (events/hour) 1.25 (3.30) 0.30 (1.70) -0.32 

PLMSi (events/hour) 0.00 (1.73) 0.00 (2.20) -0.022 

 ID (n = 16) 

Median (± IQR) 

GSC (n = 12) 

Median (± IQR) 

ID vs GSC 

Effect size (r) 

SOL (min) 20.50 (19.38) 9.25 (17.00) -0.12 

WASO (min) 24.00 (40.13) 39.50 (45.50) -0.070 

EMA (min) 2.25 (19.10) 5.54 (16.99) -0.045 

TIB (min)  485.20 (103.93) 504.40 (112.05) -0.11 

TST (min) 408.75 (73.00) 440.75 (125.88) -0.19 

% SE 87.50 (15.68) 87.30 (12.68) -0.12 

 N1 (%) 10.80 (9.85) 12.65 (8.05) -0.08 

 N2 (%) 44.55 (14.83) 39.70 (7.98) -0.18 

 SWS (%) 25.40 (10.45) 22.00 (15.43) -0.070 

 REM (%) 19.50 (9.95) 22.90 (7.85) -0.28 

ArI (arousals/hour) 10.91 (6.15) 9.72 (13.61) -0.001 

ID (Individuals with Insomnia Disorder); GSC (Good Sleeper Controls); ISI (Insomnia Severity Index); PSQI 

(Pittsburgh Sleep Quality Index); SOL (Sleep Onset Latency), WASO (Wake After Sleep Onset), TWT (Total 

Wake Time), TIB (Time In Bed) and TST (Total Sleep Time) in minutes (min); SE (Sleep Efficiency = 

(TST/TIB)x100) in percent (%); SQ (Perceived Sleep Quality); N1 (Sleep Stage 1), N2 (Sleep Stage 2), SWS 

(Slow Wave Sleep) and REM (Rapid Eye Movement Sleep) in percent (%) of TST; ArI (Arousal Index) in arousals 

per hour of sleep; AHI (Apnea-hypopnea Index) per hour of sleep; PLMSi (Periodic Limb Movements during 

Sleep index) per hour of sleep; IQR (Interquartile range).  *p < 0.05, **p < 0.01, ***p < 0.001. 
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Daytime Symptoms.  

Medians, interquartile ranges and between-group comparisons for the daytime variables are 

presented in Table 2. With respect to daytime symptoms, significant group differences were found in 

the expected direction. With regard to the cognitive parameters, ID reported more everyday cognitive 

failures compared to GSC (CFQ; z = -2.53, p = 0.011, r = -0.44), while no difference was observed 

between groups regarding reported memory contentment and memory ability. All daytime cognitive 

variables (sleep diaries) showed a significant difference between groups. Finally, the ID group and the 

GSC group did not differ with regard to any of the experienced cognitive task-workload dimensions 

(NASA-TLX).  
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Table 2. Between-group comparisons on daytime variables and subjective cognitive variables.  

 ID (n = 18) 

Median (± IQR) 

GSC (n = 15) 

Median (± IQR) 

ID vs GSC 

Effect size (r) 

Daytime variables    

BDI 12.00 (12.75) 1.00 (6.00) -0.57** 

Cognitive 4.00 (3.25)  0.00 (2.00) -0.46** 

Somatic-Affective 6.50 (6.50) 1.00 (3.00) -0.50** 

RRS 41.50 (11.75) 28.00 (10.00) -0.50** 

STAI (Trait) 45.50 (16.50) 33.00 (6.00) -0.56** 

MFI    

General Fatigue 15.00 (4.50) 8.00 (5.00) -0.76*** 

Physical Fatigue 12.50 (5.50) 7.00 (4.00) -0.57** 

Decreased Activity 11.50 (7.25) 6.00 (4.00) -0.63*** 

Decreased Motivation 10.00 (5.00) 6.00 (3.00) -0.46** 

Mental Fatigue 13.50 (7.50) 8.00 (4.00) -0.46** 

ESS 6.50 (9.25) 6.00 (4.00) -0.23 

Cognitive variables     

CFQ 41.00 (18.75) 25.00 (19.00) -0.44* 

MMQ    

Contentment 54.50 (23.50) 58.00 (11.00) -0.30 

Ability 52.00 (22.50) 64.00 (19.00) -0.26 

Cognitive function (Sleep diary, average14 days)    

Attention and concentration 6.18 (1.41) 7.86 (0.86) -0.74*** 

Memory 6.42 (1.44) 8.21 (1.32) -0.67*** 

Planning and organization 6.74 (1.82) 8.21 (0.72) -0.61*** 

NASA-TLX    

Mental demands 12.50 (6.25) 10.00 (11.00) -0.20 

Physical demands 6.50 (13.25) 3.00 (2.00) -0.31 

Temporal demands 5.00 (9.25) 7.00 (4.00) -0.05 

Performance 6.00 (5.75) 6.00 (2.00) -0.10 

Effort 13.00 (2.25) 13.00 (8.00) -0.04 

Frustration 11.00 (10.25) 4.00 (8.00) -0.30 

ID (Individuals with Insomnia Disorder); GSC (Good Sleeper Controls); BDI (Beck Depression Inventory); RRS 

(Ruminative Response Scale); STAI (State-Trait Anxiety Scale); MFI (Multidimensional Fatigue Scale); ESS 

(Epworth Sleepiness Scale); CFQ (Cognitive Failures Questionnaire); MMQ (Multifactorial Memory 

Questionnaire); NASA-TLX (National Aeronautics Space Administration-Task Load Index); IQR (Interquartile 

range). *p < 0.05, **p < 0.01, ***p < 0.001
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EEG results 

Cue locked ERPsa 

P3b. Figure 4 presents the grand average cue-locked ERPs for the centro-parietal electrodes elicited 

by the different cues (i.e. A and B) for the different groups (i.e. ID and GSC) and the topographic 

distribution plots representing the average voltage measured for the P3b effect (B - A cues) over the first 

P3b time-window (300 ms - 500 ms).   

A repeated measures ANOVA with the factors Cue (2 levels: A and B) and Group (2 levels: ID and 

GSC) on the mean average voltage of correct trials during the first P3b time-window (300 ms - 500 ms), 

across the centro-parietal electrodes showed a main effect of Cue (F(1,31) = 4.22, p = 0.049, ηp
2 = 0.12). 

The P3b amplitude was larger for B-cues (MB-cue = 2.66 µV) compared to that for A-cues (MA-cue = 2.09 

µV). Crucially, there was a main effect of Group (F(1,31) = 4.62, p = 0.040, ηp
2 = 0.13). The P3b 

amplitude across cues was larger for GSC (MGSC = 3.03 µV) compared to that for ID (MID = 1.82 µV), 

which indicates that the maintenance of task-related information is decreased in ID compared to GSC. 

No interaction between Cue and Group was found.   

The same repeated measures ANOVA on the second P3b time-window (400 ms - 700 ms) across 

centro-parietal electrodes, similarly showed a main effect of Cue (F(1,31) = 31.41, p < 0.001, ηp
2 = 0.50). 

The P3b amplitude was larger for B-cues (MB-cue = 3.24 µV) compared to that for A-cues (MA-cue = 1.36 

µV). None of the other main or interaction effects reached significance.  
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Figure 4. 4a. Grand averages of the cue-locked ERPs evoked at the centro-parietal electrodes (CP1, P1, PO3, POz, Pz, CPz, CP2, P2 and PO4) for GSC and for ID. Light gray and dark gray 

horizontal bars indicate the two P3b time-windows of analysis, respectively 300 ms to 500 ms and 400 ms to 700 ms. 4bc. Topographic distribution plots for the P3b effect (B - A cues) over the 

300 ms to 500 ms time-window for GSC (4b) and for ID (4c). ID (Individuals with Insomnia Disorder); GSC (Good Sleeper Controls); A (A cue); B (B cue).
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CNV. Figure 5 presents the grand average cue-locked ERPs for the fronto-central electrodes elicited 

by the different cues (i.e. A and B) for the different groups (i.e. ID and GSC) and the topographic 

distribution plots representing the average voltage measured for the iCNV effect (B - A cues) over the 

iCNV time-window (1000 ms - 2500 ms) 

A repeated measures ANOVA with the factors Cue (2 levels: A and B) and Group (2 levels: ID and 

GSC) on the mean average voltage of correct trials during the iCNV time-window (1000 ms - 2500 ms), 

across the fronto-central electrodes showed a main effect of Cue (F(1,31) = 20.86, p < 0.001, ηp 
2= 0.40). 

The iCNV amplitude for B-cues (MB-cue = -0.72 µV) was larger compared to that for A-cues (MA-cue = 

0.69 µV). Crucially, there was an interaction between Cue and Group (F(1,31) = 4.54, p = 0.041, ηp
2 = 

0.13), indicating that the difference between the iCNV amplitudes for B-cues and A-cues was smaller 

for ID (MID-B-A-cue = -0.79 µV), compared to for GSC (MID-B-A-cue = -2.16 µV). This result indicates that 

response preparation after cue presentation is hampered in ID compared to GSC. No main effect of 

Group was observed.  

The same repeated measures ANOVA on the lCNV time-window (3400 ms - 4900 ms), across the 

fronto-central electrodes similarly showed a main effect of Cue (F(1,31) = 4.59, p = 0.040, ηp
2 = 0.13). 

The lCNV amplitude was larger for B-cues (MB-cue = -1.60 µV) compared to that for A-cues (MA-cue = -

0.66 µV). None of the other main or interaction effects reached significance.
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Figure 5. 5a. Grand averages of the cue-locked ERPs evoked at the fronto-central electrodes (Fz, FCz, Cz and CPz) for GSC  and for ID . The light grey bar indicates the iCNV window of 

analysis (1000 ms to 2500 ms) and the dark-grey bar indicated the lCNV window of analysis (3400 ms to 4900 ms). 5bc. Topographic distribution plots for the iCNV effect (B - A cues) over the 

1000 ms to 2500 ms time-window for GSC (5b) and for ID (5c). ID (Individuals with Insomnia Disorder); GSC (Good Sleeper Controls); A (A cue); B (B cue).  
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Probe locked ERPs 

N2. Figure 6 presents the grand average probe-locked ERPs for the centro-parietal electrodes elicited 

by the different trial types (i.e. AX, AY, BX, BY) for the different groups (i.e. ID and GSC). Figure 7 

presents the grand average probe-locked ERPs for the centro-parietal electrodes elicited by the different 

trial types (i.e. AY and BY) for the different groups (i.e. ID and GSC) and the topographic distribution 

plots representing the average voltage measured for the N2 effect (BY - AY trials) over the N2 time-

window (270 ms - 310 ms). 

A repeated measures ANOVA with the factors Trial Type (4 levels: AX, AY, BX, BY) and Group 

(2 levels: ID and GSC) on the mean average voltage of correct trials during the N2 time-window (270 

ms - 310 ms) across the centro-parietal electrodes showed a main effect of Trial Type (F(3,29) = 21.38, 

pGG < 0.001, ηp
2 = 0.69). Post-hoc Bonferroni-corrected paired samples t-tests indicated that the N2 

amplitude for AY-trials (MAY = -0.92 µV) was larger than that for AX-trials (MAX = -0.23 µV, t = 4.49, 

p < 0.001), BX-trials (MBX = 0.10 µV, t = -7.64, p < 0.001) and BY-trials (MBY = -0.32 µV, t = -4.25, p 

< 0.001). The N2 amplitude for AX-trials was also larger than that for BX-trials (t = -3.41, p = 0.002) 

and the N2 amplitude for BY-trials was larger than that for BX-trials (t = 4.73, p < 0.001). No difference 

was found between the N2 amplitude for AX-trials and BY-trials. An interaction between Trial Type 

and Group was present (F(3,29) = 2.64, pGG = 0.047, ηp
2 = 0.21). Planned comparisons between AY-

trials and the other types of trials showed that only the difference in N2 amplitude between AY- and 

BY-trials was significantly larger for GSC (MGSC_BY-AY = 0.98 µV) than for ID (MID_BY-AY = 0.28 µV, 

F(1,31) = 7.31, p = 0.011, ηp
2 = 0.19) which indicates that ID experience less conflict to AY trials 

compared to GSC. No difference in N2 amplitude between groups was found between AY-trials and 

AX-trials and between AY-trials and BX-trials. Means, standard deviations, standard errors of the mean 

of the Trial Types contrasts (i.e. AY trials vs the other types of trials) on the N2 amplitudes for each 

group separately and between-group comparisons are presented in Table 3.
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Figure 6. Grand averages of the probe-locked ERPs evoked over the centro-parietal electrodes (FCz, Cz, CPz and Pz) for GSC 

(upper plot) and for ID (lower plot). The grey bar indicates the N2 window of analysis (270 ms to 310 ms). ID (Individuals 

with Insomnia Disorder); GSC (Good Sleeper Controls); AX (AX-trials); AY (AY-trials); BX (BX-trials); BY (BY-trials). 



39 
 

 

Figure 7. 7a. Grand averages of the probe-locked ERPs evoked over the centro-parietal electrodes (FCz, Cz, CPz and Pz) for GSC and for ID. The grey bar indicates the N2 window of analysis 

(270 ms to 310 ms). 7bc. Topographic distribution plots for the N2 effect (BY - AY trials) over the 270 ms to 310 ms time-window for GSC (7b) and for ID (7c). ID (Individuals with Insomnia 

Disorder); GSC (Good Sleeper Controls); AY (AY trials); BY (BY trials).



40 
 

Table 3. Contrasts comparing the N2 amplitude per Trial Type for each group separately and between groups.  

Trial Types  ID 

Mean ± SD 

GSC 

Mean ± SD 

ID vs GSC 

Mean ± SE  

AY AX  0.48 (0.73)*  0.91 (0.98)**  0.43 (0.30) 

 BX -0.82 (0.76)*** -1.27 (0.73)*** -0.45 (0.26) 

 BY -0.28 (0.62) -0.98 (0.86)** -0.70 (0.26)* 

ID (Individuals with Insomnia Disorder); GSC (Good Sleeper Controls); AX (AX-trials); AY (AY-trials); BX 

(BX-trials); BY (BY-trials) *p < 0.05, **p < 0.01, ***p < 0.001.
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P3a. Figure 8. presents the grand average probe-locked ERPs for the frontal electrode elicited by the 

different trial types (i.e. AX, AY, BX, BY) for the different groups (i.e. ID and GSC).  

A repeated measures ANOVA with the factors Trial Type (4 levels: AX, AY, BX, BY) and Group 

(2 levels: ID and GSC) on the mean average voltage of correct trials during the P3a time-window (300 

ms - 380 ms) across the frontal electrode showed a main effect of Trial Type (F(3,29) = 6.51, pGG < 

0.001, ηp
2 = 0.40). Post-hoc Bonferroni-corrected paired samples t-tests indicated that the P3a amplitude 

for AY-trials (MAY = -1.63 µV) was larger than that for AX-trials (MAX = -2.94 µV, t = -3.38, p = 0.002), 

BX-trials (MBX = -3.60 µV, t = 3.92, p < 0.001) and BY-trials (MBY = -4.06 µV, t = 4.59, p < 0.001). The 

P3a amplitude for AX-trials was also larger than that for BY-trials (t = 3.51, p = 0.001). No difference 

in P3a amplitude was found between BX-trials and BY-trials and between AX-trials and BX-trials. None 

of the other main or interaction effects reached significance. 
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Figure 8. Grand averages of the probe-locked ERPs evoked at the frontal electrode (Fz) for GSC (upper plot) and for ID (lower 

plot). The grey bar indicates the P3a window of analysis (300 ms to 380 ms). ID (Individuals with Insomnia Disorder); GSC 

(Good Sleeper Controls); AX (AX-trials); AY (AY-trials); BX (BX-trials); BY (BY-trials). 
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Cognitive performance results  

The median RTs of correct responses and mean error rates as a function of Trial Type (i.e. AX, AY, 

BX, BY) and Group (i.e. ID and GSC) are summarized in Table 4.  

Reaction Times 

Inaccurate responses (on average 4.00 %) were discarded for the RT analyses. A repeated measures 

ANOVA with the factors Trial Type (4 levels: AX, AY, BX, BY) and Group (2 levels: ID and GSC) on 

the median RTs showed a main effect of Trial Type (F(3,29) = 132.50, pGG < 0.001, ηp
2 = 0.93). Post-

hoc Bonferroni-corrected paired samples t-tests indicated that participants were slower on AY-trials 

(MAY = 627 ms) compared to AX-trials (MAX = 502 ms, t = 13.36, p < 0.001), BX-trials (MBX = 433 ms, t 

= 15.69, p < 0.001) and BY-trials (MBY = 433 ms, t = 17.95, p < 0.001). Participants were also slower on 

AX-trials compared to BX-trials (t = 5.38, p < 0.001) and BY-trials (t = 5.51, p < 0.001). No difference 

in reaction times was found between BX-trials and BY-trials. None of the other main or interaction 

effects reached significance. 

Error rates 

A repeated-measures ANOVA with the factors Trial Type (4 levels: AX, AY, BX, BY) and Group 

(2 levels: ID and GSC) on the mean error rates showed a main effect of Trial Type (F(3,29) = 9.34, pGG 

< 0.001, ηp
2 = 0.49). Post-hoc Bonferroni-corrected paired samples t-tests indicated that participants 

made more errors on AY-trials (MAY = 10.64 %) compared to AX-trials (MAX = 3.18 %, t = -4.13, p < 

0.001), BX-trials (MBX = 4.58 %, t = 2.90, p = 0.007) and BY-trials (MBY = 2.09 %, t = 4.87, p < 0.001). 

No differences in error rates were found between BX-trials and AX-trials and between BX-trials and 

BY-trials. None of the other main or interaction effects reached significance. 

 

Link between experienced cognitive task-load and electrophysiological results 

Based on the results of the cue-locked data, we can conclude that ID show a reduced ability to engage 

in proactive control as reflected by an ineffective use of the cue-information in order to prepare a 
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response (i.e. smaller difference in iCNV between A-cues and B-cues in the ID group compared to the 

GSC group). Interestingly, we can investigate whether this impaired engagement of proactive control is 

crucially linked to the often reported cognitive control complaints in insomnia. If this is the case, a 

relation between self-reported task performance (as indexed by the performance scale of the NASA-

TLX) and the magnitude of the interaction in the iCNV component (reflecting the difference in iCNV 

activation to A-cues and B-cues) should be expected. A correlational analysis confirmed this relation in 

individuals with insomnia disorder, R2 = 0.35, β = -0.59, t(17) = -2.92, p = 0.010. The worse ID indicated 

they performed on the AX-CPT task, the larger the difference in iCNV amplitudes between A-cues and 

B-cues. However, an absence of this relation was observed in the GSC group. 
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 Table 4. Means (SD) of the median RTs (in ms) of the correct responses and mean error rates (in %) as a function of Trial Type (i.e. AX, 

AY, BX, BY) and Group (i.e. ID and GSC) in the AX-CPT. 

 

Group RTs (ms)    Error rates (%)   

 ID 

Mean (± SD) 

GSC 

Mean (± SD) 

ID vs GSC 

Effect size (r) 

 ID 

Mean (± SD) 

GSC 

Mean (± SD) 

ID vs GSC 

Effect size (r) 

AX 527 (123) 473 (158) 0.19  4.72 (6.77) 1.33 (1.76) 0.42 

AY 645 (120) 607 (136) 0.15  9.17 (8.18) 12.40 (13.90) 0.15 

BX 461 (176) 402 (143) 0.18  6.56 (8.38) 2.20 (2.81) 0.41 

BY 461 (152) 399 (135) 0.22  2.44 (3.68) 1.67 (1.95) 0.13 

 ID (Individuals with Insomnia Disorder); GSC (Good Sleeper Controls); AX (AX-trials); AY (AY-trials); BX (BX-trials); BY (BY-trials) 

*p < .05, **p < .01, ***p < .001 
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DISCUSSION 

This study is the first to address the temporal dynamics of cognitive control in insomnia. Using a 

continuous performance task (AX-CPT), we examined how individuals with insomnia disorder recruit 

different cognitive control mechanisms and whether insomnia was specifically associated with a 

decreased proactive control. As hypothesized, our results indicate that in general, compared to good 

sleeper controls, individuals with insomnia disorder showed indeed a significantly reduced proactive 

control engagement along with an absence of clear behavioral performance impairments.  

Consistent with previous findings [24, 25], our behavioral data indicate that individuals with 

insomnia disorder exhibit similar cognitive performance compared with good sleepers. Individuals with 

insomnia disorder however, show a decreased proactive control recruitment as reflected in the ERP cue 

and probe-related components compared to GSCs. First, individuals with insomnia disorder exhibit less 

positive P3b amplitudes to A-cues and B-cues, potentially reflecting a weaker engagement and 

maintenance of task-relevant cue-information [35, 58]. Second, the amplitude modulation of the iCNV 

in response to different cues (i.e. larger iCNV amplitudes for B-cues compared to A-cues) in good 

sleeper controls, is attenuated for individuals with insomnia disorder, suggesting that they do not 

proactively prepare an adequate response when possible (i.e. for B-cues). The decreased P3b combined 

with an absence of the modulation of iCNV amplitude suggest that the engagement and maintenance of 

task-relevant cue information is hampered in insomnia, which may subsequently interfere with the 

selection of the appropriate response. Third, the observed reduced proactive control engagement in the 

cue-locked data is further confirmed by smaller N2 amplitudes to AY-trials (i.e. smaller N2 amplitudes 

for the BY-AY contrast) in individuals with insomnia disorder. The reduced N2 amplitudes to AY-trials 

indicate that individuals with insomnia disorder experience less conflict in these trials, which can result 

from an impaired maintenance of the A-cue information (i.e. a reduced proactive control). Taken 

together, these observations reliably demonstrate that the recruitment of proactive control processes are 

significantly impaired in individuals with insomnia disorder.  

Decreased P3b and CNV amplitudes have previously been related to impairments in proactive control 

[35], assumingly reflecting a weakened ability to engage attention to relevant task goals, which is often 
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the case during rumination [19, 20]. As by Braver [33], proactive control is a cognitive control strategy 

that is strongly resource consuming, as task-goals are continuously maintained active over a certain 

period. Given that individuals with insomnia disorder in our study report significantly higher levels of 

trait rumination compared to the good sleeper control group, these task-irrelevant thoughts might occur 

during task execution and might consequently substantially reduce available cognitive capacity for 

maintenance of task-relevant information. Subsequently, this might limit efficient goal maintenance, 

and therefore reduce proactive control. One way to confirm this hypothesis, is to examine whether the 

P3b component (reflecting the capacity to engage with and maintain task-relevant information) was 

associated with higher levels of rumination. We observed that P3bB-A amplitudes were indeed 

significantly related to higher levels of rumination in the ID group (R2 = 0.27, β = -0.52, t = -2.35, p = 

0.026). The more individuals with insomnia disorder reported to ruminate, the larger the difference in 

P3b amplitudes between A-cues and B-cues. A closer inspection reveals that this effect was driven by a 

relation between lower P3b amplitudes to B-cues and higher levels of rumination in insomnia (R2 = 0.25, 

β = -0.50, t = -2.29, p = 0.036), suggesting that the more individuals with insomnia disorder reported to 

ruminate, the smaller the P3b amplitudes to B-cues were, reflecting an impaired engagement with the 

task-relevant cue-information. For the GSC group on the other hand, where low levels of rumination 

were reported, this relation between the P3bB-A amplitudes and rumination was absent (R2 = 0.011, β = 

0.10, t = 0.38, p = 0.71). These findings may partly support the hypothesis that rumination interferes 

with the effective engagement and maintenance of task-relevant information and that a high tendency to 

ruminate might account for the impaired cognitive engagement and maintenance of relevant information 

in insomnia. However, since in this study we only assessed trait rumination, we cannot make strong 

claims regarding state rumination processes affecting proactive control engagement during task 

execution. For that reason, further research is needed to examine whether state rumination is contributing 

to the relationship between trait rumination and proactive control that we observed in our study or 

whether impaired proactive control mechanisms account for increased levels of trait rumination. 

Interestingly, decreased CNV amplitudes have also been found in combination with increased 

activity in different regions of the Default Mode Network [73], a set of brain areas thought to be active 
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at rest and when the subject is not engaging in task-relevant behaviors [74]. The activation in this 

network is hypothesized to be associated with off-task internal thoughts often present during distraction, 

mind wandering and rumination for example. Disengagement from the Default Mode Network is crucial 

in order for cognitive resources to become available, to allow focus on task-relevant information and to 

optimize goal-oriented behavior. A decreased ability to disengage will consequently result in distracting 

subjects from anticipating the upcoming stimulus, thus implying a deficient proactive control. 

Interestingly, a recent study showed that individuals with insomnia disorder demonstrate reduced 

deactivation of default mode regions with increasing task difficulty [25] compared to good sleepers. 

This impaired disengagement of default mode in insomnia was accompanied by a decreased ability to 

concentrate during the task. Our data seem to support this finding. That is, we found that decreased 

subjective performance during the task correlated with increased iCNV modulation and this was only 

observed in individuals with insomnia disorder. These results therefore corroborate the hypothesis that 

individuals with insomnia disorder experience more difficulty to focus on the task at hand and are 

therefore forced to exert more cognitive effort, which may in turn explain their subjective complaints 

with regard to cognitive functioning. The previous explanation assumes that subjective performance is 

primarily predicted by proactive control mechanisms. However, other alternative explanations (e.g. 

reactive control mechanisms driving subjective performance) can be envisaged as well. For that reason, 

future studies should include more sensitive measures such as a trial-by-trial investigation of subjective 

performance and cognitive effort, to reliably map these subjective processes related to proactive and 

reactive control mechanisms.     

Although our data suggest that individuals with insomnia disorder only show decrements in the 

recruitment of proactive control, we cannot explain the overall pattern of our results solely based on the 

reliance of one single mechanism. Our data suggest that individuals with insomnia disorder show deficits 

in the recruitment of reactive control as well. We observe that individuals with insomnia disorder fail to 

differentiate between the A-cue and the B-cue information (see iCNV). According to the compensatory 

recruitment hypothesis [27], we can expect that individuals with insomnia disorder would mobilize extra 

effort (i.e. reactive control) in order to maintain a comparable level of performance. Specifically, when 
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the B-cue information is not adequately processed and used to prepare a non-target response, reactive 

control can eventually be engaged in order to compensate for the decreased proactive control and to 

maintain performance (i.e. make a non-target response to BX-trials). This should be reflected in 

increased P3a amplitudes to BX-trials (reflecting an increased response inhibition in order to suppress 

a target response to BX-trials). However, our results indicate that individuals with insomnia disorder did 

not differ with regards to the P3a amplitudes on BX-trials compared to good sleepers controls (t = 0.43, 

p = .67). This finding demonstrates that individuals with insomnia disorder do not compensate for their 

decreased proactive control. This deficient recruitment of reactive control mechanisms in turn affects 

BX-performance in individuals with insomnia disorder. More specifically, individuals with insomnia 

disorder showed a higher proportion of errors on BX-trials compared to BY-trials (t = 2.18, p = 0.044). 

In contrast, good sleepers did not show a performance decrement on BX-trials (t = 1.05, p = 0.31). 

Although, individuals with insomnia disorder made more errors on BX-trials (see larger BX-BY 

contrast) compared to good sleeper controls, this difference in BX-BY contrast was not statistically 

significant between good sleeper controls and individuals with insomnia disorder (t = 1.83, p = 0.082).  

A possible explanation for the lack of clear behavioral differences between good sleeper controls and 

individuals with insomnia disorder might arise from the heterogeneity within our sample of individuals 

with insomnia disorder. Indeed, a recent study [29] has showed that performance differences exist 

between individuals with insomnia disorder with cognitive complaints and without cognitive 

complaints. More specifically, individuals with insomnia disorder who report more severe cognitive 

complaints exhibited a poorer neurobehavioral performance compared to individuals with insomnia 

disorder without cognitive complaints and good sleeper controls. Additionally, by not taking into 

account the severity of subjective cognitive impairment among individuals with insomnia disorder, we 

might have failed to uncover clear differences in cognitive performance between individuals with 

insomnia disorder and good sleeper controls. Possibly, the heterogeneity in cognitive complaints among 

individuals with insomnia disorder might also account for the fact that we did not find differences in 

memory contentment and ability between individuals with insomnia disorder and good sleeper controls. 

Indeed, when examining our ID sample more closely and focusing on the reported cognitive complaints, 
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we observe that almost half of the sample of individuals with insomnia disorder exhibited a similar 

cognitive profile as good sleeper controls. The absence of severe cognitive complaints in a subset of 

individuals with insomnia disorder might cancel out subjective and objective cognitive impairments in 

insomnia and might in turn also account for the contradictory previous findings in the literature [29].  

Some limitations to our study must be taken into account. First of all, our individuals with insomnia 

disorder were, according to the ISI, varying in insomnia severity (i.e. ranging from subthreshold 

insomnia to severe clinical insomnia). This may be misleading as well and certain existing deficits 

characterizing certain subgroups of insomnia severity may consequently be overlooked. Future research 

may thus take into account different phenotypes in insomnia severity and intensity of cognitive 

complaints. Furthermore, future research should take into account the different phenotypes related to 

cognitive complaints in individuals with insomnia disorder, in order to achieve more reliable findings 

regarding cognitive impairment in insomnia, which may be underestimated in this current study. Note 

that, we cannot make any absolutely pure inferences regarding proactive control engagement, based on 

post-response behavioral data, since from the moment a response is required also reactive processes 

come into play. However, the EEG method we used in the current paper allows us to isolate brain activity 

related to proactive control from reactive control.   

While previous approaches have examined the neurocognitive control impairments in insomnia 

focusing on a general deficit in cognitive control, the current study is the first study to investigate how 

individuals with insomnia disorder recruit different cognitive control mechanisms and when this 

recruitment becomes inefficient from a more dynamic, temporal perspective. In summary, our results 

showed a reduced engagement of proactive control mechanisms in insomnia compared to good sleepers. 

This inefficient proactive control recruitment might actually contribute to the common cognitive 

complaints in individuals with insomnia disorder. Specifically, it is possible that individuals with 

insomnia disorder might become aware of their impaired proactive control engagement and experience 

it as cognitively challenging, resulting in the report of decreased cognitive performance. These findings 

are especially relevant given that recent reports [25, 26] highlight the importance to consider the altered 

neurological profile of individuals with insomnia disorder instead of only focusing on behavioral 
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measures. In conclusion, our study provides reliable and consistent neurological evidence for 

impairments in cognitive control functioning in insomnia and contributes to an improved understanding 

of the discrepancy between the commonly reported cognitive impairments in insomnia and the scarce 

objective findings for these cognitive complaints.  
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FOOTNOTES 

[a] We investigated whether the specific differences observed between groups regarding proactive 

control engagement were not simply due to the fact that individuals with insomnia disorder were less 

engaged in the task compared to good sleeper controls. To examine this, we investigated early visual 

ERP components, i.e. the P1. We did not observe a difference in P1 amplitudes between groups, which 

strengthens our claim that both groups were equally engaged in the task. A repeated measures ANOVA 

with the factors Cue (2 levels: A and B) and Group (2 levels: ID and GSC) on the mean average voltage 

of correct trials during the first P1 time-window (80 ms - 120 ms), across the occipital electrodes (O1, 

Oz, O2) did not show a main effect of Cue (F(1, 31) = 1.074, p = 0.31, ηp
2 = 0.033). There was no main 

effect of Group (F(1, 31) = 0.29, p = 0.60, ηp
2 = 0.009). No interaction between Cue and Group was 

found (F(1, 31) = 1.10, p = 0.30, ηp
2 = 0.034). 

 

 

 

 


