
  

 

 1 

 

Multichannel Contagion vs Stabilisation in  

Multiple Interconnected Financial Markets 

Antoaneta Sergueiva1,2,3,*, V L Raju Chinthalapati**,  

Thanos Verousis*** and Louisa Chen$  

*Department of Computer Science, University College London, UK 
**Business School, University of Greenwich, London, UK 
***Newcastle University Business School, Newcastle University, UK 
$ School of Business, Management, and Economics, University of Sussex, UK 

Abstract 

To date, existing studies that use multilayer networks, in their multiplex form, to 

analysing the structure of financial systems, have (i) considered the structure as a non-

interconnected multiplex network, (ii) no mechanism of multichannel contagion has 

been modelled and empirically evaluated and (iii) no multichannel stabilisation 

strategies for pre-emptive contagion containment have been designed. This paper 

formulates an interconnected multiplex structure, and a contagion mechanism 

among financial institutions due to bilateral exposures arising from institutions’ 

activity within different interconnected markets that compose the overall financial 

market. We design minimum-cost stabilisation strategies that act simultaneously on 

different markets and their interconnections, in order to effectively contain potential 

contagion progressing through the overall structure. The empirical simulations 

confirm their capability for containing contagion. The potential for multichannel 

contagion through the multiplex contributes more to systemic fragility than single-

channel contagion, however multichannel stabilisation also contributes more to 

systemic resilience than single-channel stabilisation. 

I:  Introduction 

Real and engineered systems have multiple subsystems and layers of connectivity. 

Networks are now established as models providing insights into the structure and 

function of complex systems. Single-layer networks, however, are unable to address 

the emerging multilayer patterns of interactions and self-organisation among entities 
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in complex systems. That challenge has called for the development of a more general 

framework – multilayer networks. The theory of multilayer networks is in its early 

stages, and a comprehensive review of recent progress is provided in Kivelä et al. 

(2014) and Boccaletti et al. (2014). Among existing studies, a promising mathematical 

framework is based on tensors and introduced by De Domenico et al. (2013, 2015). A 

special case of multilayer networks are multiplexes, where each layer consists of 

mostly the same nodes, and edges within a layer exist only between different nodes 

while links between layers exist only between instances of the same node in different 

layers. According to the formal definition in De Domenico et al. (2013, 2015) and 

Kivelä et al. (2014), a fundamental aspect of modelling multiplex networks is taking 

into account and quantifying the interconnectivity between layers, as it is responsible 

for the emergence of new structural and dynamical phenomena in multiplex 

networks. 

Multilayer networks, in their multiplex form, have been introduced within the last 

three years to analysing the structure of financial systems, and existing studies have 

modelled and evaluated interdependencies of different type among financial 

institutions. In particular, the global financial crisis that erupted in August 2007 clearly 

illustrated the role of financial linkages as a channel for propagation of shocks. 

Indeed, the spreading of the financial turmoil from the US sub-prime mortgage 

market via the securitisation instruments to the banks’ off-balance-sheet vehicles and 

further to the banks’ balance sheets and to other financial and non-financial sectors 

exposed unforeseen counterparty linkages and eroded confidence in a way which 

further amplified the effect of the initial shocks.  

 

Research in the area of financial network analysis has shown that modelling the 

interlinking exposures either between financial institutions, among the sectors of the 

economy or across entire national financial systems, can assist in detecting important 

shock transmission mechanisms. Policy recommendations could then be targeted 

towards structural changes that mitigate the adverse consequences that may emerge 

in closely intertwined systems in times of crisis. Related to the multilayer network 

analysis, empirical studies have considered the structure as a non-interconnected 

multiplex rather than as an interconnected multiplex network. However, no 

mechanism of multichannel contagion has been modelled and empirically evaluated, 

and no multichannel stabilisation strategies for pre-emptive contagion containment 

have been designed. 

This paper formulates an interconnected multiplex structure, and a contagion 

mechanism among financial institutions due to bilateral exposures arising from 

institutions’ activity within different interconnected markets that compose the overall 

financial market. We introduce structural measures of absolute systemic risk and 

resilience, and relative systemic-risk indexes. The multiple-market systemic risk and 

resilience allow comparing the structural (in)stability of different financial system or 

the same system in different periods. The relative systemic-risk indexes of institutions 

acting in multiple markets allow comparing the institutions according to their relative 

contributions to overall structural instability within the same period. Based on the 

contagion mechanism and systemic-risk quantification, this study designs minimum-

cost stabilisation strategies that act simultaneously on different markets and their 

interconnections, in order to effectively contain potential contagion progressing 

through the overall structure. The stabilisation strategies subtly affect the emergence 

process of structure to adaptively build in structural resilience and achieve pre-

emptive stabilisation at a minimum cost for each institution and at no cost for the 

system as a whole.  
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We empirically evaluate the new approach using large regulatory databases, 

maintained by the Prudential Regulatory Authority (PRA) of the Bank of England, that 

include verified capital requirements for UK-incorporated deposit takers and 

investment firms and granular information on their bilateral exposures due to 

transactions in the fixed-income market, securities-financing market, and derivatives 

market. The empirical simulations of the designed multichannel stabilisation 

strategies confirm their capability for containing contagion. The potential for 

multichannel contagion through the multiplex contributes more to systemic fragility 

than single-channel contagion, however multichannel stabilisation also contributes 

more to systemic resilience than single-channel stabilisation. 

The paper is organised as follows. Section II discusses the related literature on 

multilayer networks. Importantly, in Section II, we discuss the gaps in the existing 

research and outline our contributions to the field. Section III describes and visualizes 

the datasets. In Section IV: (i) a single-layer contagion mechanism is formulated 

aligned with current regulatory requirements; then (ii) corresponding relative 

systemic-risk indexes of institutions and absolute measures of the layer’s systemic risk 

or resilience are quantified; and finally (iii) a single-layer strategy is designed for 

building in structural resilience and evaluated empirically. Section V: (i) formulates a 

multichannel contagion mechanism within the banking system due to exposures 

arising from banks’ interactions in the three interconnected markets; (ii) quantifies 

corresponding multiplex systemic-impact indexes of institutions and structural 

systemic risk of the multilayer system; (iii) designs and empirically evaluates 

minimum-cost multichannel stabilisation strategies. Finally, Section VI states the 

conclusions and sets directions for further research. 

II:  Related literature and contribution  

Multilayer networks, through the special case of multiplexes, have only been 

used in the last three years to study interdependencies among entities within financial 

systems. Multiplexes can model different type of relations (edges) existing among a 

set of entities (nodes) in a system and include interlayer dependence (edges). 

Serguieva (2012) argued that though single-layer network models had been gradually 

adopted in the structural analysis of financial systems, such analysis rather required 

more effective models as network of networks and ensemble networks. Serguieva 

(2013a, 2013b) outlined how an interconnected multiplex can be used to model the 

different type of exposures among banks, arising from their activities in different 

markets trading different financial instruments, and suggested using the tensorial 

framework. The current paper starts with this earlier idea, and now – having access to 

data – develops the model in detail, implements empirically, and extends the 

methodology towards contagion and stabilisation analysis. Serguieva (2015, 2016a) 

address how the multilayer network can be extended further to incorporate financial 

market infrastructures. A multiplex model is also used in Bargigli et al. (2015) to 

present the Italian interbank market, where exposures are broken down in different 

layers by maturity and by the secured and unsecured nature of contracts. They 

evaluate similarity between the structures of different layers and find the differences 

are significant. The conclusion is that the structural differences will have implication 

for systemic risk. The authors do not formulate or evaluate systemic risk, and the 

study considers the layers separately as a non-interconnected multiplex. The 

interconnected multilayer structure of the interbank market is not analysed. 
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Next, Poledna et al. (2015) use a multiplex model to quantify the contributions 

to systemic risk of the Mexican banking system from four layers: deposits and loans, 

securities cross-holdings, derivatives, and foreign exchange. They implement Debt 

Rank (Battiston et al., 2012) to measure systemic risk as fraction of the economic value 

in a network that is potentially affected by the distress of some banks. The systemic 

risk of a layer is the average Debt Rank of all banks due to their connectivity in that 

layer, and the total risk of the system is the average Debt Rank of all banks due to the 

connectivity in the projection of all layers. The results show a non-linear effect, with 

the sum of systemic risk of all layers underestimating the total risk. The suggested 

comprehensive approach in the study accounts for the capital, assets and liabilities of 

banks, but does not consider their minimum capital requirements and risk-weighted 

assets. A bank is considered failed in the real system, however, when its capital 

depletes to the level of minimum capital requirements, not when it depletes entirely. 

The minimum capital requirements are based on risk weighted assets, and two banks 

with the same amounts of capital, assets and liabilities, will differ in their amounts of 

risk-weighted assets. Therefore, they will differ in their minimum capital requirements, 

and thus differ in their funds available in excess of the minimum. The funds in excess 

of the required minimum are those that can be used to cover exposures as they 

materialise. Our study shows that this requires modifying to a different extent the 

impacts among different financial institutions, in order to simulate contagion that 

accounts for each institution’s individual conditions for failure and corresponding 

individual spreading rates within the contagion process. This has a significant effect 

on potential contagion processes and their outcome. Further, Poledna et al. (2015) 

consider different layers but assume the combined system is the projection of all 

layers rather than the multiplex of interconnected layers, and therefore do not model 

contagion throughout the multiplex structure. 

The current paper also builds on research done at the Bank of England. Langfield 

et al. (2014), where the authors argue that markets for different financial instruments 

are distinct in their economic rationale and function, and discuss potential advantages 

of analysing the interbank market as an interlinked structure of different network 

layers. They provide an in-depth empirical analysis of layers in the UK banking system, 

but do not model a multilayer network neither quantify systemic risk.  

In conclusion:  

(i) the theory of multilayer networks is in its infancy,  

(ii) there are very few studies addressing multilayer or multiplex networks 

when analysing the structure of financial systems,  

(iii) existing studies of interlinkages within banking systems have recognised 

their multilayer structure and modelled each layer as a network,  

(iv) contagion processes within each layer and within the projection of all 

layers have also been modelled, and the corresponding systemic risk has 

been quantified in monetary terms.  

However, within the existing literature: 

(i) the system has not been modelled as an interconnected multiplex;  

(ii) multilayer contagion processes have not been formulated,  

(iii) the existing single-layer contagion models are not closely aligned with 

regulatory requirements 

(iv) no stabilisation strategies have been designed for pre-emptive, 

minimum-cost contagion containment. 
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With this paper we address concerns (i)-(iv), formulate solutions, and provide 

empirical results. We work with the tensorial mathematical framework, which has 

not been used in financial analysis, and in Serguieva (2016a) derive step-by-step 

tensors of ranks two, four, and six within the context of financial systemic risk. 

Providing detailed domain interpretation of the models allows Serguieva (2016a, 

2017a) to extend the range and scope of stress-testing scenarios.  

In this paper, without going into the details of tensor analysis, we directly use 

the derived tensor models and focus only on concerns (i)-(iv). Their solutions 

effectively formulate an approach for building-in structural stability within the 

banking system and resilience against potential crises. Though resilience is 

quantified as a structural rather than monetary measure, when built in it provides 

for sustaining a system’s monetary value. Importantly, resilience is achieved 

through subtly and adaptively balancing the emergence process of structure, 

rather than through penalising institutions. Systemic instability is due to the 

emerged structure rather than being a fault of an institution. We do not 

recommend collecting a fund of penalties and waiting for institutions to get in 

distress before accessing it, as suggested in Markose (2012). Instead, containment 

of potential contagion is achieved pre-emptively by introducing a minimum 

change to the structure in each period, at a minimum cost for each institution 

and no cost for the system as whole.  

III:  Empirical data and visualisation 

The data used in this paper are large counterparty exposures reported by systemically 

important UK-incorporated deposit takers and investment firms to the Bank of 

England’s supervisory arm, the Prudential Regulation Authority. At the time of our 

investigation, the data spanned five quarters, a pilot in June 2014 and collections in 

December 2014 to September 2015. We access from the database, the firms’ twenty 

largest exposures to banks, where banks are broadly defined as 

 banks 

 building societies 

 broker-dealers 

 and additionally, exposures to the eight largest UK banks are reported if not a 

top twenty counterparty 

The firms report these large exposures gross, except where a legally enforceable 

netting agreement exists between the transacting entities. The reports are on a UK-

consolidated basis. Further, we have data on counterparty exposures broken down 

by financial market. Each market in turn consists of a range of financial instruments 

and transactions. These markets and their attendant instruments and transactions are 

as follows: 

 the fixed income market, consisting of senior, subordinated and secured debt 

instruments reported gross at mark-to-market (MtM) values, further segmented 

by residual maturity and currency 

 the securities financing market, consisting of securities lending and borrowing, 

and repo and reverse repo transactions reported gross notional, with further 

breakdowns by residual maturity, currency and type of collateral 

 derivative exposures reported net MtM after collateral and net MtM at default, 

split by various derivative contract types 
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The second database used in this study is the extensive Banking Sector 

Monitoring (BSM) database maintained by the PRA, where we access quarterly data 

on UK-consolidation basis for the reporting institutions, including: 

 Total Own Funds  

(Common Equity Tier 1 Capital + Additional Tier 1 Capital + Tier 2 Capital); 

 Total Risk Exposure Amount (risk-weighted assets) 

 Ratio of Total Own Funds to Total Risk Exposure Amount 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Large exposures of UK-incorporated deposit takers and significant 

investment firms – empirical multilayer structure by type of market 



  

 

 7 

 

These data are further complemented with calculations from an in-house PRA tool 

for verifying the Capital Adequacy of each reporting institution, including: 

 Minimum Capital Requirement; 

 Ratio of Available Regulatory Capital to Total Own Funds. 

The empirical data on inter-institutional exposures are visualised in Figure 1, where 

each of the three layers corresponds to the exposure structure within a different type 

of market – fixed-income, securities-financing, and derivatives. The size of nodes 

representing institutions is proportionate to the number of exposure links they 

participate in. Figure 1 is based on one of the quarterly periods, between June 2014 

and September 2015, however it presents key features observed in all periods – the 

markets differ in their emerging exposure structures. Particularly, different institutions 

to a different extent, and a different number of institutions, have a key role (visualised 

as more interconnected, larger size nodes) in different markets. Therefore, the analysis 

will better inform and facilitate regulation if each market is incorporated distinctly 

within an overall multilayer structure, rather than all markets being amalgamated into 

(projected on) a single network of exposures as visualised in Figure 2. This figure 

presents the same quarterly period but does not observe the richer structure from 

Figure 1. 

The argument for the structural differences between markets is further supported 

with the visualisation in Figure 3, where each market is clustered into communities 

according to edge betweenness. Betweenness of an edge (exposure link) is a measure 

based on the number of shortest paths (smallest number of links) between any two 

nodes (institutions) in the network that pass through that edge. If a large number of 

shortest paths pass through the same edge, then it is in the bottleneck linking 

communities of nodes. Different colours are used in Figure 3 for different 

betweenness communities within the three financial markets. Possible contagion 

paths within communities are little obstructed but such between communities are 

less accessible. Therefore, contagion will progress differently within the different 

layers (markets), as they have different betweenness communities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 Figure 2: Large exposures of UK-incorporated deposit takers and 

significant investment firms – empirical single network 



  

 

 8 

 

In addition to the graphical depiction in Figure 3 of network characteristics at the 

three different markets, we further estimate Katz-Bonacich centrality (Bonacich, 1987) 

of the individual nodes (institutions). Katz-Bonacich centrality measure of a given 

institution depends on how many other institutions in the exposure network are 

connected with it and up to what extent. Since Katz-Bonacich centrality of each node 

depends on both the network connectivity and the node’s degree of connectedness, 

it throws light on each institution’s importance in the exposure structure, and 

therefore provides a glimpse into its possible impact on a contagion process within 

the network. Table 1 presents the ranking of ten anonymized institutions according 

to their Katz-Bonacich centralitiy. It shows that each institution has a different rank in 

different markets. The variation in the ranking of an institution across different 

markets provides an evidence that the dynamics of contagion processes will differ in 

different markets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Large exposures of UK-incorporated deposit takers and significant 

investment firms – empirical betweenness communities by type of market 
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Table 1: Katz-Bonacich Centrality 

Institutions Fixed-income rank SF rank Derivatives rank 

I 2 1 5 

II 4 19 13 

III 6 18 1 

IV 8 9 15 

V 10 8 12 

VI 12 13 2 

VII 14 6 8 

VIII 16 12 17 

IX 18 14 20 

X 20 19 21 

Note: This table reports the empirical rank of institutions according to their 

Katz-Bonacich Centrality. The results are based on data for one of the quarters 

in the period June 2014 to September 2015. Institutions refer to anonymized 

banks. Fixed-income refers to the fixed income market, SF refers to the 

securities financing market and Derivatives to the derivatives markets. 

 

We provide a detailed comparison in Serguieva (2016a, 2017a) of the structure and 

centralities of single-layers (markets) within any of the available quarterly data 

periods, and a comparison among periods, concluding decisively that the structures 

differ. Thus analytical approaches that consider markets are incorporated distinctly 

(Figures 1 and 3) or indistinctly (Figure 2), within the overall structure of exposures, 

will observe different contagion processes, identify different systemic risk measures 

and indexes, and recommend different stabilisations strategies. It is also necessary to 

evaluate links between markets (see section V), and then the argument is clear that a 

multilayer network – incorporating all interconnected markets simultaneously but 

distinctly – provides the more realistic results. 

IV: Formulation and evaluation of single-market contagion 

dynamics and design of effective stabilisation strategies 

4.1. Contagion dynamics in the derivatives market 

A link in the derivatives market will generally represents how an institution  𝑖  impacts 

another institution  𝑗  in that market – the contribution of  𝑖  to 𝑗’s  probability of 

failure – as suggested in (Markose, 2012). We build the structure here involving 

further details and scenarios and following closely the current regulation and the 

definition of different exposures data, in comparison with existing studies, and modify 

the optimisation in approximating the contagion process. First, the probability of 

failure of an institution  𝑗  after the start of a contagion process is modelled as 

dependent on 𝑗’s  own funds and its minimum capital requirement (Serguieva, 2016a, 

2017a). The contagion dynamics is analysed for the 22 reporting institutions, referred 

to collectively as ‘banks’. 

 The current regulatory reporting framework recommended by the Basel 

Committee on Banking Supervision and implemented in the UK, and the 

accounting standards with reference to UK GAAP and the International Financial 
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Reporting Standards, look at the different nature of derivatives in comparison 

with other financial instruments. Banks report their net MtM after collateral 

derivatives exposures (NAC), and their net derivatives exposures-at-default 

(EAD). Reported NAC values are non-negative and account for enforceable 

bilateral netting arrangement4 between non-defaulted banks throughout 

different netting sets, and for received collateral5. The reported exposure-at-

default values6 (EAD) are non-negative and account for collateral, netting 

arrangement, and adds-on applicable at default (see footnotes 4,5,6), and as a 

result the EAD amounts are larger than the NAC amounts. We will first use EAD  

values, and the impact among institutions in the derivatives market will be 

denoted with the matrix  𝑆 = [𝑠𝑖𝑗 ]  of size  𝑛 × 𝑛 , where each element  𝑠𝑖𝑗   

reflects a failed bank’s  𝑖  contribution to the default probability of a second bank  

𝑗 , and  𝑛  is the number of reporting institutions. The elements  𝑠𝑖𝑗
  

 

  are 

proportionate to the reported by bank  𝑗  exposure at default  𝐸𝐴𝐷𝑗𝑖  to bank  𝑖,  

and inversely proportionate to the own funds  𝐶𝑗  of bank  j.  The impact matrix  

𝑆   can include both a positive component  𝑠𝑖𝑗   proportionate to  𝐸𝐴𝐷𝑗𝑖 𝐶𝑗⁄   and 

a positive component  𝑠𝑗𝑖
  

 

  proportionate to  𝐸𝐴𝐷𝑖𝑗 𝐶𝑖⁄ .  This is due to received 

collaterals, netting sets and adds-on applicable at default. In comparison, existing 

studies on contagion in derivatives markets assume that impact between two 

institutions exists only in one direction and approximate it as proportionate to 

the differences in gross exposures. 

 Further, when bank  𝑖  defaults, then the available funds  𝐴𝑗  of bank  𝑗  are 

reduced with the reported amount of its exposure at default  𝐸𝐴𝐷𝑗𝑖  to bank  𝑖.  

Here, the available funds  𝐴𝑗 = 𝐶𝑗 −𝑀𝐶𝑗  are the difference between the total 

own funds  𝐶𝑗  and the minimum capital requirements  𝑀𝐶𝑗  of  j .  When bank  j  

defaults, the own funds available funds  𝐴𝑖  of bank  𝑖  are reduced with the 

reported amount of its exposure at default  𝐸𝐴𝐷𝑖𝑗  to bank  𝑗.  The Own Funds of 

a bank are evaluated as the sum of its Common Equity Tier 1 Capital (CET1), 

Additional Tier 1 Capital (AT1), and Tier 2 Capital (T2). The Minimum Capital 

Requirements to be maintained by a bank are set by current regulation as a 

percentage of its Total Risk Exposure Amount (risk weighted assets), including 

buffers in the case of some institutions, and verified by the Prudential Regulatory 

Authority. 

 The non-negative impacts  𝑠𝑖𝑗
  

 

  include the case when  𝑗  receives greater 

collateral from  𝑖  that brings the reported exposure to zero (see footnote 5). If 

bank  𝑗  does not report an exposure  𝐸𝐴𝐷𝑗𝑖  to  𝑖  because the two institutions 

                                                           
4  According to the regulatory reporting directives, derivatives transactions are only netted if they are in 

the same netting set. A ‘netting set’ is a group of transactions with a single counterparty that are subject 

to a single, legally enforceable, bilateral netting arrangement. Each transaction that is not subject to a 

legally enforceable bilateral netting arrangement is interpreted as its own netting set. Where cross-product 

netting is legally enforceable, such transactions are considered ‘nettable’. 
5  According to the regulatory reporting directives, Net MtM After Collateral for a netting set is computed 

as Net MtM Before Collateral less the value of collateral received from a counterparty to collateralise the 

exposure of that netting set. The collateral includes the one received under legally enforceable credit 

support annexes, as well as any collateral held in excess of what is legally required. The collateral only 

represents what is received / is in hand on a confirmed settlement basis, and does not include collateral 

owed to but not actually held by the firm. When collateral received is greater than Net MtM Before 

Collateral, then Net MtM After Collateral is zero. 
6  Exposure At Default (EAD) is the counterparty credit risk exposure net of collateral, as specified in the 

Prudential Requirements for Banks, Building Societies and Investment Firms BIPRU 13, and calculated either 

using the Mark-to-Market Method (BIPRU 13.4), the Standardised Method (BIPRU 13.5), or the Internal 

Model Method (BIPRU 13.6). 
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do not interact in the derivatives market (though they may interact in the fixed-

income and/or the securities-financing markets) then 𝑠𝑖𝑗
  

 

= 0.  When the 

exposure of  𝑗  to  𝑖  is below the reporting threshold then again  𝑠𝑖𝑗
  

 

= 0,  as  𝑖  

does not significantly impact  𝑗  directly and so does affect the structural analysis 

insignificantly. 

Therefore, the derivatives layer here is built as accurately as possible, using 

reported data without attempting approximation. In comparison, most studies 

work with aggregated data and approximate institution-to-institution exposures 

and impact. However, approximated structures differ from empirical systems in 

a way that cannot be anticipated, and thus mislead analysis and regulatory 

implications (Cont et al., 2013). 

Here, we consider the boundary case of a single market in isolation, when it 

is not aware of the liabilities in other markets. An intermediate case is to assume 

that institutions in the single market are aware of their overall but not bilateral 

liabilities in other markets, and the approach presented here can also be applied 

for that case. The intermediate case will account for the overall amount of 

exposures, but not for the dynamics of activating exposures in other layers and 

propagating impact among institutions and markets. The case when the multiple 

market system is aware of all granular exposures is analysed in Section V.  

 When the available funds  𝐴𝑖  of  𝑖  deplete, the bank is considered as failed. 

Therefore,  𝑝𝑖 =
𝐴𝑖

𝐶𝑖
 is the percentage of own funds that can be used to cover 

triggered exposures, and  𝑝𝑖  differs from institution to institution. Even if two 

banks i  and  j  have equal total own funds  𝐶𝑖 = 𝐶𝑗 , they may have very different 

minimum capital requirements  𝑀𝐶𝑖 ≠ 𝑀𝐶𝑗 , and therefore different ratios   

𝑝  
𝑖
≠ 𝑝  

𝑗
 
 . Within the database used here, the ratios  𝑝𝑖  differ up to a factor of  4, 

i.e.   max   
1≤𝑖,𝑗≤𝑛

  

(𝑝𝑖/𝑝𝑗) ≈ 4.  In comparison, existing studies assume that  𝑝  is the same 

for all institutions and does not depend on risk-weighted assets. Assuming  𝑝  is 

the same corresponds to a spreading rate  (1 − 𝑝)  in the contagion process, for 

each institution. 

The following steps show how the contagion process progresses iteratively 

among the banks. Let 𝐵𝑞  is the set of banks defaulted by step  𝑞  and   

𝐵𝑞 = ⋃ 𝛽𝑘
𝑞
𝑘=1  , where  𝛽𝑘  represents the set of banks failed at step 𝑘. In order to 

describe the contagion process, we follow the logic in Firfine (2003) and Markose 

(2012). The condition for default of each bank 𝑖 ∉ 𝐵𝑞 at step (𝑞 + 1) in the 

contagion process is  

∑ (𝑠𝑗𝑖 )𝑗∈𝐵𝑞
𝑖∉𝐵𝑞

= ∑ (
𝐸𝐴𝐷𝑖𝑗

𝐶𝑖
)𝑗∈𝐵𝑞

𝑖∉𝐵𝑞

> 𝑝𝑖 = 𝛼𝑖 𝑝
 

𝑚𝑖𝑛
         for  𝛼𝑖 > 1 .  (1) 

At step (𝑞 + 1), Equation (1) verifies whether the net losses of the bank 𝑖 ∉ 𝐵𝑞 are 

greater than 𝑝𝑖 proportion of its capital 𝐶𝑖 . We set 𝑝 = 𝑝𝑚𝑖𝑛 = min
 1≤𝑖≤𝑛  

(𝑝𝑖)
      , which 

corresponds to a spreading rate  (1 − 𝑝𝑚𝑖𝑛)
     
. One can modify Equation (1) as   

∑ (
𝐸𝐴𝐷𝑖𝑗

𝐶𝑖
𝑚 )𝑗∈𝐵𝑞

𝑖∉𝐵𝑞

= ∑ (
𝐸𝐴𝐷𝑖𝑗

𝛼
𝑖
   𝐶𝑖
)𝑗∈𝐵𝑞

𝑖∉𝐵𝑞

> 𝑝  
𝑚𝑖𝑛
          for  𝛼𝑖

   
 

> 1. (2) 

Where 𝐶𝑖  

  
𝑚 = 𝛼𝑖𝐶𝑖 > 𝐶𝑖. The unique  𝛼𝑖  for each bank  𝑖  is applied, and though 

the spreading rate is  (1 − 𝑝𝑚𝑖𝑛) , the unique default condition for each institution 
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and its unique spreading rate is incorporated into the contagion dynamics 

through  𝛼𝑖 . 

Further going into the details of the contagion process, the following flowchart 

in Figure 4 would be helpful in understanding the evolution of the contagion 

process. 

 

 

 

 

 step  𝒒 = 𝟎 

A set of banks fail at time  𝑞 = 0.  This is due to a trigger that is internal or external 

to the system of reporting banks. It is not known what trigger will be active and 

which banks will fail. However, if the defaulted banks are denoted with  𝛽0 , then 

the probability of default of a bank  𝑖 ∈ 𝛽0  at  𝑞 = 0  is assumed as  𝜋𝑖,0    
𝑖∈𝛽0  

= 1 .  

The probability of default of the other banks  𝑖 ∉ 𝛽0  is assumed as insignificantly 

Figure 4: Flowchart for the contagion process 
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small  0 < 𝜋𝑖,0    
𝑖∉𝛽0  

= 
1

𝐶𝑖

 
𝑚
≪ 1 . Due to the failure of banks  𝛽0 , a contagion process 

starts, and the model derived here will account for any possible set  𝛽0 . 

 

 step  𝒒 = 𝟏  

The set of banks that fail at step  𝑞 = 1  is denoted with  𝛽1 . It is not known which 

banks participate in  𝛽1 , as the elements of  𝛽0  are not known in advance. A 

bank  𝑖 ∈ 𝛽1  fails at step  𝑞 = 1 , because  

  
∑ (𝐸𝐴𝐷𝑖𝑗)𝑗∈𝛽0  

(𝑖∈𝛽1) 

 𝐶𝑖
𝑚

 > 𝑝𝑚𝑖𝑛 , and its probability 

of default at  𝑞 = 1  is  𝜋𝑖,1    
𝑖∈𝛽1

= 1.  On the other hand, the probability of default 

of banks  𝑖 ∈ 𝛽0  at  𝑞 = 1  is  𝜋𝑖,1    
𝑖∈𝛽0  

= 0 , as they already failed at step  at  𝑞 = 0 . 

Let us denote the set of banks that have failed by step 𝑞 = 1 as 𝐵1 , then   

𝐵1 = 𝛽0 ∪ 𝛽1 . For completeness, the set of banks that have failed by  𝑞 = 0  can 

be denoted as  𝐵0  where  𝐵0 = 𝛽0 , and therefore  𝐵1 = 𝐵0 ∪ 𝛽1 . The probability 

of default of a bank  𝑖 ∉ 𝐵1  surviving at  𝑞 = 1  is  𝜋𝑖,1    
𝑖∉𝐵1

=

    
∑ (𝐸𝐴𝐷𝑖𝑗)𝑗∈𝛽0  

(𝑖∉𝐵1) 

𝐶𝑖

 
𝑚

 < 𝑝𝑚𝑖𝑛 . 

Here,  𝜋𝑖,0    
𝑖∉𝛽0  

≈ 0  are not taken into account as these are insignificantly small.  

 step  𝒒 = 𝟐 

The set of banks that fail at step  𝑞 = 2  is denoted with  𝛽2 , and the set of banks 

that have failed by step  𝑞 = 2  is denoted with  𝐵2 , where  𝐵2 = 𝐵1 ∪ 𝛽2 .  A bank  

𝑖 ∈ 𝛽2  (for 𝑖 ∉ 𝐵1)  fails at step  𝑞 = 2  because the depletion of its available funds 

exceeds the threshold  

   
∑ (𝐸𝐴𝐷𝑖𝑗)𝑗∈𝐵1  
(𝑖∈𝛽2) 

𝐶𝑖

 
𝑚

 

> 𝑝𝑚𝑖𝑛  , and its probability of default is  

𝜋𝑖,2    
𝑖∈𝛽2

= 1.  The probability of default of banks  𝑖 ∈ 𝐵1  at step  𝑞 = 2  is  𝜋𝑖,2    
𝑖∈𝐵1  

= 0,  

as they already failed at step  𝑞 = 0  or  𝑞 = 1.  The probability of default of a 

bank  𝑖 ∉ 𝐵2  surviving at  𝑞 = 2  is  𝜋𝑖,2    
𝑖∉𝐵2 

.  By analogy with the epidemiology 

literature,  (1 − 𝑝𝑚𝑖𝑛)  is the rate of infection, which in this case is a rate of 

‘spreading default’ or spreading losses. One percent of bank  𝑖’s  capital probably 

infected at step  𝑞 = 1  has the potential to infect  (1 − 𝑝𝑚𝑖𝑛)  percent of its capital 

at step  𝑞 = 2. If a bank fails due to infected (lost) capital it also loses up to  

(1 − 𝑝𝑚𝑖𝑛)  percent of its capital that has not been infected so far. Then these 

losses will affect other banks at the next step, etc. The percentage of 𝑖’s  capital 

probably lost at  𝑞 = 1  is  𝜋𝑖,1    
𝑖∉𝐵1

=

    
∑ (𝐸𝐴𝐷𝑖𝑗)𝑗∈𝛽0  

(𝑖∉𝐵1) 

𝐶𝑖

 
𝑚

 , which depends on  𝑖’s  exposures 

to banks that failed prior to 𝑞 = 1.  This  𝜋𝑖,1    
𝑖∉𝐵1  

  is also 𝑖’s  probability of default at  

𝑞 = 1  and has the potential to infect or to bring probable losses of  

(1 − 𝑝𝑚𝑖𝑛)𝜋𝑖,1    
𝑖∉𝐵1 

  percent of its capital at  𝑞 = 2.  Exposures of  𝑖  to banks  𝑗 ∈ 𝛽1  



  

 

 14 

 

that failed at  𝑞 = 1  are lost at  𝑞 = 2 , and also contribute to the probability  

𝜋 𝑖,2    
𝑖∉𝐵2 

  of 𝑖’s default at 𝑞 = 2. Therefore: 

𝜋𝑖,2    
𝑖∉𝐵2 

= (1 − 𝑝𝑚𝑖𝑛) 𝜋𝑖,1    
𝑖∉𝐵2

+ ∑ (
𝐸𝐴𝐷𝑖𝑗

 

𝐶𝑖

 
𝑚
 𝜋 𝑗,1   

𝑗∈𝛽1

)𝑗∈𝛽1  
(𝑖∉𝐵2) 

   where   𝜋 𝑗,1   
𝑗∈𝛽1 

= 1   

It is not known prior to the start of contagion which banks will default at each 

step, and the probability  𝜋𝑖,2    
𝑖∉𝐵2 

 is derived here for any possible  𝐵0, 𝐵1 , 𝐵2 .  

 step  𝒒 

The set of banks that fail at step  𝑞  is denoted with  𝛽𝑞 , and the set of banks 

that have failed by step  𝑞  is denoted with  𝐵𝑞 , where  𝐵𝑞 = 𝐵𝑞−1 ∪ 𝛽𝑞 . A bank  

𝑖 ∈ 𝛽𝑞  (for  𝑖 ∉ 𝐵𝑞−1)  fails at step  𝑞  because  

   
∑ (𝐸𝐴𝐷𝑖𝑗)𝑗∈𝐵𝑞−1

(𝑖∈𝛽𝑞)  
 

𝐶𝑖

 
𝑚

 

 

> 𝑝𝑚𝑖𝑛 , and its 

probability of default at  𝑞  is: 

𝜋𝑖,𝑞    
𝑖∈𝛽𝑞

= 1  (3a) 

For banks  𝑖 ∈ 𝐵𝑞−1 , the probability of default at step  𝑞  is: 

𝜋𝑖,𝑞         
𝑖∈𝐵𝑞−1

= 0 (3b) 

as they already failed prior to step  𝑞.  The probability of default of banks  𝑖 ∉ 𝐵𝑞  

surviving at  𝑞  is:  

𝜋𝑖,𝑞    
𝑖∉𝐵𝑞

= (1 − 𝑝𝑚𝑖𝑛)  𝜋𝑖,𝑞−1
𝑖∉𝐵𝑞  

+ ∑ [(
𝐸𝐴𝐷𝑖𝑗

 

  𝐶𝑖
𝑚
  ) 𝜋𝑗,𝑞−1   

𝑗∈𝛽𝑞−1

]𝑗∈𝛽𝑞−1

(𝑖∉𝐵𝑞)  

  (3c) 

for  𝜋𝑗,𝑞−1   
𝑗∈𝛽𝑞−1

= 1  and  𝜋𝑖,𝑞−1    
𝑖∉𝐵𝑞      

= (1 − 𝑝𝑚𝑖𝑛)  𝜋𝑖,𝑞−2
𝑖∉𝐵𝑞  

+ ∑ [(
𝐸𝐴𝐷𝑖𝑗

 

𝐶𝑖
𝑚
  ) 𝜋𝑗,𝑞−2   

𝑗∈𝛽𝑞−2

]𝑗∈𝛽𝑞−2

(𝑖∉𝐵𝑞)  

. 

 step  𝒒 = 𝒒𝒔𝒕𝒐𝒑 

The contagion process ends at  𝑞 = 𝑞𝑠𝑡𝑜𝑝  because all remaining banks fail by  

𝑞𝑠𝑡𝑜𝑝  or because none of the remaining banks fails  at  𝑞𝑠𝑡𝑜𝑝. 

Equations (3a,b,c) present an iteration in the contagion process, and can be 

summarised into and approximated with the linear system of equations: 

Π𝑞
  = [(1 − 𝑝𝑚𝑖𝑛)𝐼 + 𝑆′ 

  

 

] Π𝑞−1
     (4a) 

where  Π𝑞
    is the non-negative probabilities vector of size  𝑛 : 

Π𝑞
  

𝐸𝐴𝐷

= [  𝜋1,𝑞
  , ⋯ ,   𝜋𝑖,𝑞

  , ⋯ , 𝜋𝑛,𝑞
  ]

′

      (4b) 

The impact matrix  𝑆   at each step  𝑞  of the contagion process, 0 < 𝑞 ≤ 𝑞𝑠𝑡𝑜𝑝, is:  

𝑆 =

[
 
 
 
 
 𝑠11
⋮

𝑠𝑖1
⋮

𝑠𝑛1

…
⋱
…
⋰
…

𝑠1𝑗
⋮

𝑠𝑖𝑗
⋮

𝑠𝑛𝑗

…
⋰
…
⋱
…

𝑠1𝑛
⋮

𝑠𝑖𝑛
⋮
𝑠𝑛𝑛]

 
 
 
 
 

    with    𝑠𝑖𝑗
  

 

= {  

𝐸𝐴𝐷𝑗𝑖
 

𝐶𝑗

 
𝑚

≥ 0  , 𝑓𝑜𝑟  𝑖 ≠ 𝑗

0                            , 𝑓𝑜𝑟  𝑖 = 𝑗

 (4c) 

At step  𝑞 , the impact  𝑠𝑖
  

 

 of bank  𝑖  on institutions in the derivatives market is:  
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𝑠𝑖
  

 

=  ∑ ( 𝑠𝑖𝑗
  

 

)  =  ∑ (
𝐸𝐴𝐷𝑗𝑖

 

𝐶𝑗

 
𝑚
)  > 0𝑛

𝑗=1
𝑛
𝑗=1    (5) 

and bank  𝑗  is affected with  𝑠𝑗
  

 

  by all institutions’ activity in this market: 

𝑠𝑗
  

 

=  ∑ ( 𝑠𝑖𝑗
  

 

)  =  ∑ (
𝐸𝐴𝐷𝑗𝑖

 

𝐶𝑗

 
𝑚
)  > 0𝑛

𝑖=1
𝑛
𝑖=1    (6) 

The contagion dynamics throughout steps from  𝑞 = 0  to  𝑞 = 𝑞𝑠𝑡𝑜𝑝  is expressed as 

the system of equations: 

Π𝑞𝑠𝑡𝑜𝑝

  = [(1 − 𝑝𝑚𝑖𝑛) 𝐼 + 𝑆′ 
  ]
  𝒒𝒔𝒕𝒐𝒑

  Π0
   . (7) 

4.2. Relative systemic-risk indexes and a structural  

measure of systemic-risk in a single market  

Control systems theory (Nise, 2011) tells us that if the maximum Eigenvalue of  

[(1 − 𝑝𝑚𝑖𝑛) 𝐼 + 𝑆′ 
  ]  is  𝜆

[(1−𝑝𝑚𝑖𝑛) 𝐼 +𝑆
′
 
  
]

  
max 

> 1  then the contagion process diverges to 

the destruction of the banking system at some  𝑞 = 𝑞𝑠𝑡𝑜𝑝.  If  𝜆
[(1−𝑝𝑚𝑖𝑛) 𝐼 +𝑆

′
 
  ]

  
max

< 1  

then the system survives and converges to a steady state at some  𝑞 = 𝑞𝑠𝑡𝑜𝑝 . This 

stability condition can be formulated in terms of the maximum Eigenvalue  𝜆
𝑆  

  
max

   
 

  of 

matrix 𝑆 .  Using Eigenvalue shifting and considering that the right and left 

Eigenvectors have the same corresponding maximum Eigenvalue, i.e.  𝜆
𝑆

 

 

  max 
= 𝜆

𝑆′ 
  
 
  

max 

  

denoted as  𝜆
  

max 

 , produces the stability condition: 

𝜆
[(1−𝑝𝑚𝑖𝑛) 𝐼 +𝑆

′
 
  ]

  
max 

 =  (1 − 𝑝𝑚𝑖𝑛)  + 𝜆
  

max 

< 1      ⇒     𝜆
  

max 

< 𝑝𝑚𝑖𝑛   (8) 

Further, matrix analysis (Chatelin, 2013) asserts that the largest Eigenvalue of a real-

valued non-negative matrix is positive and has positive corresponding right and left 

Eigenvectors, if the matrix is irreducible. Here,  𝑆′ 
  

  

 is real-valued and non-negative 

but reducible, and its irreducible submatrix can be identified by applying Tarjan's 

algorithm. For the sake of simplicity in the notation, for the context of connected 

submatrix, all the variables are modified with ~ on the top. So, the strongly connected 

submatrix, denoted with  �̃�
  = [�̃�(𝑖𝑗)

  ] , corresponds for the derivatives market. It 

does not include all reporting banks, however banks outside the strongly connected 

component have incomparably lower potential to influence the system. Therefore, 

the Eigenpair analysis is performed on the irreducible submatrix  �̃�  , and corresponds 

to the contagion process: 

Π𝑞𝑠𝑡𝑜𝑝

  = [(1 − 𝑝𝑚𝑖𝑛) 𝐼 + �̃�′
   ]
 𝑞𝑠𝑡𝑜𝑝

  Π0
     (9) 

within the strongly connected component with 𝑚 ≤ 𝑛 participating  

banks. The largest Eigenvalue of  �̃�
    is  𝜆

�̃�  

  
max

 
 

 and we denote this as 

𝜆
�̃�  

  
max  

= 𝜆
�̃�′  

  
max 

= �̃�
  

             

 

  
𝑚𝑎𝑥

. Then the stability condition from Equation (8) transforms into:  
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�̃�
  

              
 𝑚𝑎𝑥

< 𝑝  𝑚𝑖𝑛              
 

  

 

= min
 1≤𝑖≤𝑚

(
𝐴(𝑖)

  

 

�̃�(𝑖)
  

 ) (10) 

where 𝑝  𝑚𝑖𝑛              

  

 
  

 

is evaluated over the 𝑚  banks. The Eigenvalue satisfies the following 

inequalities: 

�̃�
  

              
 𝑚𝑎𝑥

≤ ‖�̃�′
  
 

‖
∞
=

 
𝑚𝑎𝑥

  
1≤𝑗≤𝑚  

(�̃�(𝑗)
  )  (10a) 

�̃�
  

              
 𝑚𝑎𝑥

≤ ‖�̃�
  ‖

∞
=

 
𝑚𝑎𝑥

  
1≤𝑖≤𝑚

(�̃�(𝑖)
  )  (10b) 

and according to Equations (5,6) this leads to: 

 

�̃�   
              

 𝑚𝑎𝑥

≤ 𝑚𝑖𝑛 [

 
𝑚𝑎𝑥

  
1≤𝑖≤𝑚

(∑ (
𝐸𝐴�̃�(𝑗𝑖)

  𝐶𝑚(𝑗)  
)

𝑚
𝑗=1 ) ,

 
𝑚𝑎𝑥

  
1≤𝑗≤𝑚

(∑ (
𝐸𝐴�̃�(𝑗𝑖)

  𝐶𝑚(𝑗)
   
) 

𝑚
𝑖=1 )]     (11) 

In other words, the largest Eigenvalue is bounded by the maximum impact of a bank 

on the strongly-connected derivatives submarket and by the maximum impact 

caused by that derivatives submarket on a bank.  

Notice that Eigenvalue shifting preserves Eigenvectors, and therefore  

finding the Eigenpair  ( �̃�   
              
𝑚𝑎𝑥 ,   𝑣  

[(1−�̃�  𝑚𝑖𝑛
 ) 𝐼+�̃�′]

 )  of  matrix 

[(1 − 𝑝  𝑚𝑖𝑛
 

  

 

)  𝐼 + �̃�′
  ]  that represents the contagion process is equivalent to finding 

the Eigenpair  ( �̃�
  

            
 𝑚𝑎𝑥

, 𝑣
�̃�′

  
)

 

 

 of  �̃�′  . This Eigenpair is generated here through an 

iterative optimisation as follows: 

𝜗𝜏 =
(�̃�′ ) 𝜗𝜏−1

‖(�̃�′ ) 𝜗𝜏−1‖
 ∞

=
(�̃�′ ) 𝜗0

‖(�̃�′ )
𝜏 

 𝜗0‖
 ∞

         for     𝜏 ≥ 1 (12a) 

 

including a normalisation with the infinite norm  ‖(�̃�′
  ) 𝜗𝜏−1‖

∞
 at  

each iteration 𝜏, which assures that Equation (11) is satisfied. This  

Eigenpair  ( �̃�
  

              
 𝑚𝑎𝑥

,   𝑣  
�̃�′

 )

   

 is produced at convergence  𝜗𝜏 = 𝜗𝜏−1 , for  𝜗𝜏 = 𝜗𝜏−1 =

�̃�′𝑣�̃�′ = �̃�𝑚𝑎𝑥𝑣�̃�′ . Therefore:  

𝑣
�̃�′

= (�̃�′ )
−1

𝜗𝜏  (12b) 

If the resulting Eigenvector  𝑣
�̃�′

  
 is divided by the square of its Euclidean norm  

(  ‖𝑣�̃�′‖2 )
2  then: 

 

𝑢 =

𝜈   

�̃�′ 

 

 

(  ‖𝑣  
�̃�′
‖
 2
 )
2

 

            and           𝑢′ 𝜈  
�̃�′

 

 

=  1 (13a,b) 

Here, vector  𝑢  corresponds to  �̃�   
             

  
𝑚𝑎𝑥

 and to the right Eigenvector  𝑣    of the 

transposed  �̃�′   and satisfy Equation (13b). These are the qualities of the right 
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Eigenvector of the impact matrix  �̃�   
  
 . So, the positive vector  𝑢 = 𝑢  

�̃�  
 gives the 

ranking, according to their systemic impact, of the banks participating in the strongly 

connected substructure of the derivatives market. The maximum Eigenvalue satisfies: 

�̃�
  

𝑚𝑎𝑥 = 𝑢′  
�̃�

 
𝑆′   𝜈   

�̃�′
 =  𝜈′   

�̃�′
 
 
�̃� 𝑢  

�̃�  
 (14) 

and relates to system’s stability. In the condition from Equation (10), the difference  

�̃�
  

            𝑚𝑎𝑥 − 𝑝  𝑚𝑖𝑛
 

  

 

 can be interpreted as the system’s distance from structural stability. If  

�̃�
  

             
 

 
𝑚𝑎𝑥

 is only slightly larger than  𝑝  𝑚𝑖𝑛
 

  

 

 then the system will be eventually destroyed 

but the contagion process will take long time, and it may be possible to intervene 

constructively. If  �̃�
 

  
𝑚𝑎𝑥

 is quite larger than  𝑝  𝑚𝑖𝑛
 

  

 

  then the contagion will be more 

intense, and the system will be destroyed quickly. Therefore, we can formulate the 

systemic risk emerging in the derivatives market as the structural measure: 

𝑆𝑅𝑟𝑖𝑠𝑘
 = {

�̃�𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛 > 0       (area of fragility)                

 0 , 𝑖𝑓  �̃�𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛 < 0       (area of resilience)
  (15a) 

This measure allows comparing the stability of two structures (markets) irrespectively 

of monetary values. For example, the banking systems in two countries may be 

similarly instable but involving different monetary values. The objective here, through 

designing stabilisation strategies in the next Sections, is to build in structural 

resilience. Then the system will better sustain its associated monetary values. 

We also formulate with Equation (15b) the systemic risk index of a bank  𝑖  in 

percentages. This can be interpreted as the percentage that  𝑖  contributes to systemic 

instability or to the systemic risk  𝑆𝑅𝑟𝑖𝑠𝑘
  of that market:  

𝑆𝑅𝐼(𝑖)  

   

 
  =

{
 
 

 
 

 𝑆𝑅�̃�(𝑖)   =

𝑢(𝑖)  

�̃� 

∑ (𝑢(𝑖)  
�̃�
)

𝑚
  

𝑖=1

 > 0;       for     𝑖 ∈ {1,⋯ ,𝑚 }         

 
  = 0   ;       for     𝑖 ∈ {𝑚 + 1,⋯ , 𝑛}                                        

   (15b) 

Banks participating in the strongly connected substructure of the market have 

positive indexes, while banks outside it have zero indexes and do not contribute to 

the 𝑆𝑅𝑟𝑖𝑠𝑘
 . Here,  𝑆𝑅�̃�(𝑖)            

  

  are relative measures and  𝑆𝑅𝑟𝑖𝑠𝑘
   is an absolute measure, 

due to interconnectivity in the derivatives market. The index  𝑆𝑅�̃�(𝑖)            

    

  of bank  𝑖  can 

be translated in absolute terms as the part  (𝑆𝑅�̃�(𝑖)             
  𝑆𝑅𝑟𝑖𝑠𝑘

 ) that  𝑖  contributes to 

the structural systemic risk  𝑆𝑅𝑟𝑖𝑠𝑘
  . 

4.3. Stabilisation strategies in a single market 

Most studies analysing the structure of financial systems do not quantify systemic 

risk. The few studies quantifying risk rarely comment on single-layer stabilisation 

strategies, and multilayer strategies have not been addressed. Existing studies of the 

derivatives market recommend that capital surcharges are collected only from very 

few top-ranked systemically important institutions, and set aside in a fund that then 

can be accessed by any institution when in distress. Such step will be helpful but not 

optimal. It will not really build in structural resilience into the system, and is not pre-

emptive as it expects institutions to fall in distress. When institutions fall in distress, 
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they will need large funding to be able to recover, and such approach is still at a 

significant cost for the system. The fund may deplete while helping some institutions 

and not others, as well. We consider that it is not sufficient to collect surcharges but 

it is important to distribute them optimally among all institutions, and it is necessary 

to collect them in an optimal cost-effective way. In order to achieve structural balance, 

not only the very top few institutions should participate in the stabilisation strategy 

but all institutions with nonzero systemic impact (nonzero systemic risk index). The 

most important institutions can be viewed as and are ‘most guilty’, but system’s 

instability is not entirely their fault – it is rather a fault of the emerged structure. 

Therefore, if a stabilisation strategy subtly and adaptively affects the emergence 

process of structure, it will build in systemic resilience and achieve pre-emptive 

stabilisation at a minimum cost. The participation of institutions in the strategy is 

proportionate to their systemic indexes but with a very small fraction of their capital, 

and these fractions are immediately redistributed optimally and granularly among the 

same institutions. The strategy is at no cost for the system, the surcharges are 

optimised at their minimum for an institution in comparison with other mechanisms, 

and the participation of any institution is less than its surcharges as it immediately 

proportionate compensations. The strategy includes a stabilisation step in the current 

period only if the systemic risk or resilience at the end of the last period was less than 

a targeted threshold. Therefore, the structure is maintained around the threshold, 

only minimum adjustments are required, and in some periods they may not be 

required. This could be implemented as part of the infrastructure mechanism, and 

would also play the role of monitoring systemic stability. If we look for an analogy, 

this mechanism may resemble the varying margin within the current clearance 

mechanisms. 

Based on the indexes from Equation (15b), a systemic risk surcharge for an 

institution  𝑖  is formulated as: 

𝑆𝑅𝑆(𝑖)  
 

 = 𝛾  𝑆𝑅𝐼(𝑖)             
 =  

= {
𝑆𝑅�̃�(𝑖)   

  = 𝛾  𝑆𝑅�̃�(𝑖)             
     for   0 < 𝛾 ≪ 1 ;  𝑖 ∈ {1,⋯ ,𝑚 }

0                                   for    𝑖 ∈ {𝑚 + 1,⋯ , 𝑛}                     
    (16) 

It is applied to evaluate a fraction  𝛾  𝑆𝑅�̃�(𝑖)
  �̃�(𝑖)  

 

𝑚  of its capital. Here, 𝛾   is very 

small and optimised to estimate minimum surcharges for each institution  𝑖  that when 

distributed in a balancing way to each institution  𝑗 , in proportion to the impact of  𝑖  

on  𝑗 , will bring the system to the targeted structural threshold. This is equivalent to 

building in structural resilience. The proportion is the ratio of the impact  �̃�(𝑖𝑗)
  

   

  of 

bank  𝑖  on  𝑗  divided by the overall impact of bank  𝑖  on the derivatives market, 

�̃�(𝑖) =  ∑ ( �̃�(𝑖𝑗) )
 

𝑚
𝑗=1 

 , for 𝑖, 𝑗 ∈ {1,⋯ ,𝑚 }. Let us denote with  𝑋(𝑖𝑗)  the proportion 

of the surcharge on 𝑖 distributed to  . Equation (17) shows how impact matrix 

  �̃� = [�̃�(𝑖𝑗) ]  changes into  �̃�          
  
𝑟

 : 

 [�̃�𝑟(𝑖𝑗)
  
 

]   
= [�̃�(𝑖𝑗)

    
 

(1 + ∑ ( 
𝑋(𝑖𝑗)

 

𝑝  𝑚𝑖𝑛
 

  

 

 𝐶(𝑗)𝑚
                    

  )
𝑚   

 
𝑖=1

)⁄ ] =  

  

=

[
 
 
 
 
 

�̃�(𝑖𝑗)
   
  

1+∑ (𝛾 𝑆𝑅�̃�(𝑖) (
�̃�𝑖
𝑚

�̃�𝑚𝑖𝑛�̃�𝑗
)(

�̃�(𝑖𝑗)
  
   

∑ (�̃�(𝑖𝑞)
  
   
)

𝑚
𝑞=1

))𝑚
𝑖=1

]
 
 
 
 
 

 (17) 
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It considers that the funds  �̃�(𝑗)

  

 = �̃�(𝑗) − 𝑀�̃�(𝑗)    available to  𝑗  increase to  

�̃�(𝑗)
               
𝑟 = �̃�(𝑗)  +∑ 𝑋(𝑖𝑗)

     
𝑚   

 
𝑖=1

  with the proportionate fractions 𝑋(𝑖𝑗).  In Section 4.1, 

we denoted the ratio of available to total own funds of  𝑗  as  𝑝(𝑗) = �̃�(𝑗)

  

   𝑝   
  

 

=

𝐴(𝑗)

𝐶(𝑗)
=

�̃�(𝑗)  

  

 𝐴(𝑗)

  

 

𝐶(𝑗)

 
𝑚                    

  Maintaining the parameter  𝑝  𝑚𝑖𝑛
 

  

 

= 𝑝  𝑚𝑖𝑛
 

  

                 
𝑟

 in the simulation of 

contagion within the rebalanced structure leads to: 

𝑝  𝑚𝑖𝑛              
 

  

 

=
𝐴(𝑗)

  

 

𝐶𝑚(𝑗)
=

𝐴𝑟(𝑗)

𝐶𝑚,𝑟(𝑗)
=

𝐴(𝑗)

  

  +∑ 𝑋(𝑖𝑗)𝑚
𝑖=1

𝐶𝑚,𝑟(𝑗)
  (18a) 

and to a new modified value  �̃�𝑚,𝑟(𝑗) after rebalancing: 

�̃�𝑚,𝑟(𝑗) = �̃�𝑚(𝑗) (1 +
∑ 𝑋(𝑖𝑗)
𝑚

𝑖=1 

𝑝  𝑚𝑖𝑛
 

   𝐶𝑚(𝑗) 
)  (18b) 

This produces the denominator in Equation (17), because  �̃�(𝑖𝑗)
  =

𝐸𝐴𝐷(𝑗𝑖)

𝐶𝑚(𝑗)
  and: 

�̃�𝑟(𝑖𝑗)
  

=
𝐸𝐴𝐷(𝑗𝑖)

 

𝐶𝑚,𝑟(𝑗)
 =  

=
𝐸𝐴𝐷(𝑗𝑖)

 

𝐶𝑚(𝑗)(1+
∑ 𝑋(𝑖𝑗)
𝑚

 
𝑖=1 

�̃�  𝑚𝑖𝑛
    �̃�𝑚(𝑗) 

)

=
�̃�(𝑖𝑗)

 
  

 

(1+
∑ 𝑋(𝑖𝑗)
𝑚

 
𝑖=1 

�̃�  𝑚𝑖𝑛
    �̃�𝑚(𝑗) 

)

  (18c) 

The rebalancing preserves  �̃�
  
𝑟

  as non-negative, and the Eigenpair analysis  

can be validly applied. Equation (17) reduces 

 
𝑚𝑎𝑥

  
1≤𝑖≤𝑚𝐸𝐴𝐷

(�̃�(𝑗)     
  
 
𝑟  

) and 

 
𝑚𝑎𝑥

  
1≤𝑖≤𝑚𝐸𝐴𝐷

(�̃�(𝑖)     
  
 
𝑟  

) 

, and from Equation (11) it follows that:  

�̃�
  

 
𝑚𝑎𝑥,𝑟

≤ 𝑚𝑖𝑛 [

 
𝑚𝑎𝑥

  
1≤𝑖≤𝑚

(�̃�(𝑗)     
  
 
𝑟  

) ,

 
𝑚𝑎𝑥

  
1≤𝑗≤𝑚

(�̃�(𝑖)     
  
 
𝑟  

)] ≤ 𝜆
  

 
 𝑚𝑎𝑥

  (19) 

 

The largest Eigenvalue is reduced7, which is equivalent to increasing structural 

resilience. The parameter  γ   is identified, through search and optimisation, as the  

                                                           
7  If the model is considered without the financial context, then reducing the maximum Eigenvalue can be 

attempted alternatively. For example, by reducing the sum of elements in a row of  

the transposed [�̃�(𝑗𝑖)           
  
   
 

]
 ′

by increasing the denominator of the elements with a factor of (1 + 𝛿). (notice 

that each element in a row is  �̃�(𝑗𝑖)
  
   
 

=
 

𝐸𝐴�̃�(𝑖𝑗) �̃�𝑚(𝑖)⁄  and has the same denominator) In the financial 

context here, this will mean that we charge an institution  𝑖  with a fraction of its capital and then use that 

fraction to increase the capital of the same institution. The meaning of a systemic risk charge  for  𝑖 , 

however, is rather to increase funds available to institutions affected by  𝑖  and so reduce the impact  of  𝑖  

on them. 
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smallest value that when applied in Equation (17) transforms the system  �̃�
  
 

  into a 

system  �̃�
  
𝑟

  with targeted threshold  𝑆𝑅 𝑟𝑖𝑠𝑘           
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

 . With a minimum structural change, 

the value of systemic risk in Equation (15a) moves in direction towards the area of 

resilience. 

 

The empirical analysis next is performed for one of the quarters in the period 

from June 2014 to September 2015, and the results are presented in Table 2. In that 

quarter, 19  out of the  22  reporting institutions participate in the strongly connected 

component within the structure emerging from interlinkages in the derivatives 

market. Therefore, 19 institutions have nonzero systemic-risk indexes and affect 

structural stability. The largest Eigenvalue is  0.07268  and satisfies the condition  

�̃�   
             
𝑚𝑎𝑥 < 0.14573,  indicating that the system is in the area of structural resilience. We 

can define a measure  𝑆𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒   of structural resilience as:  

𝑆𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 = {
 0 , 𝑖𝑓  𝑝  𝑚𝑖𝑛

 − �̃�
  

            
 𝑚𝑎𝑥
  

< 0

𝑝  𝑚𝑖𝑛
 − �̃�   

              
𝑚𝑎𝑥 > 0           

 (20) 

 

If  𝑝  𝑚𝑖𝑛
  is only slightly larger than  �̃�

  
             

 𝑚𝑎𝑥

 , the contagion process will eventually be 

contained but this will take long time, and a number of institutions will default though 

part of the system will survive. If  𝑝  𝑚𝑖𝑛
 

  

  

  is quite larger than  �̃�
  

              
 𝑚𝑎𝑥

 , then the contagion 

will be contained quickly and a large part of the system will survive. 

 

Table 2: Empirical Contagion Dynamics in the 

Derivatives Market 

n 22 

m 19 

𝑝𝑚𝑖𝑛              

 

 
  

 

 0.14573 

�̃�
  

 𝑚𝑎𝑥

 < 0.14573 

�̃�
 

             
 𝑚𝑎𝑥

  for   𝛾 = 0 0.07268 

𝑆𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
    for   𝛾 = 0 0.07305 

Note: This table reports the empirical contagion 

dynamics in the derivatives market based on data for 

one of the quarters in the period June 2014 to 

September 2015. n refers to the number of reporting 

banks, mEAD refers to the number of banks in the 

strongly connected submatrix, EAD refers to net 

derivatives exposures-at-default, p refers to the 

minimum rate of recovery for the connected banks, 𝜆 

refers to the maximum stability condition for the 

connected banks, 𝛾 is the parameter optimised in the 

stabilisation strategy and SRResilience refers to systemic 

risk of structural resilience.  
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The empirical result here is  𝑆𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 = 0.07305.  For a threshold of  𝑆𝑅 𝑟𝑖𝑠𝑘           
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   

 

   

= 0,  

no stabilisation step is necessary at the start of the next quarterly period, and 

therefore results of simulating stabilisation strategies are not included in Table 2. We 

will note, however, that any movement in direction towards smaller  𝑆𝑅𝑟𝑖𝑠𝑘 > 0  or 

larger  𝑆𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
  > 0  is equivalent to building in resilience. For example, a meta 

strategy may involve different thresholds 𝑆𝑅 𝑟𝑖𝑠𝑘           
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

(𝑡𝑘) > 0 in different periods 𝑡𝑘 , 

1 ≤ 𝑘 ≤ 𝑇,  so that the system gradually moves to a long-term target. A meta strategy 

may also involve buffer thresholds  𝑆𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

(𝑡𝑘) > 0  in some periods, as the current 

contagion and stabilisation analysis is in response to a trigger and the contagion it 

activates, but does not account for two different triggers activating a second 

contagion processes while the first is still running or just after it ends. A threshold 

must be selected carefully for a subtle effect, and the selection may depend on the 

scope, size and monetary value of the system or subsystem being analysed. 

 

Table 3: Comparative Empirical Results under NAC and EAD scenarios 

NAC EAD 

𝑛 𝑛 = 22 𝑛 = 22 𝑛 

m  𝑚𝑁𝐴𝐶 = 16 𝑚 = 19 m  

�̃�𝑚𝑖𝑛             

   

 𝑁𝐴𝐶  

 

 0.26843 0.14573 �̃�𝑚𝑖𝑛            

   

   

�̃�
  

𝑁𝐴𝐶             

 𝑚𝑎𝑥

 < 0.26843 < 0.14573 �̃�
  

            
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 

 𝑚𝑎𝑥

 

�̃�
 

𝑁𝐴𝐶              

 𝑚𝑎𝑥

  for   𝛾𝑁𝐴𝐶 = 0 0.00715 0.07268 �̃�
 

 𝑚𝑎𝑥

  for   𝛾 = 0 

𝑆𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
 𝑁𝐴𝐶    for   𝛾𝑁𝐴𝐶 = 0 0.26128 0.07305 𝑆𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒

    for   𝛾 = 0 

Note: This table shows the comparative empirical results under net MtM after collateral 

derivatives exposures (NAC) and net derivatives exposures-at-default (EAD) scenarios 

based on data for one of the quarters in the period from June 2014 to September 2015. 

n refers to the number of reporting banks, m refers to the number of banks in the strongly 

connected submatrix, p refers to the minimum rate of recovery for the connected banks, 

𝜆 refers to the maximum stability condition for the connected banks, 𝛾 is the parameter 

optimised in the stabilisation strategy and SRResilience refers to systemic risk of structural 

resilience. 

 

Notice that Equations (4a,7) represent a more intensive contagion dynamics (a 

boundary scenario) than Equations (3a,b,c). The formulation of  [�̃�(𝑖𝑗)
  ] corresponds 

to analysis of a structure functioning as if the going-concern exposures to non-failed 

banks were also equal to the exposures at-default. The going concern principle in 

accounting is the assumption that an entity will remain in business for the foreseeable 

future. Next, we will perform the analysis of the derivatives layer for a structure 

functioning as if the going-concern exposures are equal to the net MtM exposures 

after collateral (NAC). These are the correct going-concern exposures, because up 

until its failure, a non-failed bank  𝑖  affects with NAC exposures the other non-failed 

banks  𝑗.   
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The NAC-scenario is also boundary, as it assumes that a failed bank  𝑖  affects 

with the going-concern exposure NAC a non-failed bank  𝑗,  instead with the exposure 

at-default EAD . The reported non-negative 𝑁𝐴𝐶𝑖𝑗  , for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 , account for 

received collateral and for enforceable bilateral netting arrangement between non-

defaulted banks throughout different netting sets. The tensor (structure) can include 

both a positive impact  𝑠
𝑖𝑗

 
𝑁𝐴𝐶 > 0  of bank 𝑖 on bank 𝑗 proportionate to  𝑁𝐴𝐶𝑗𝑖 , and a 

positive impact  𝑠𝑖𝑗
  

   
𝑁𝐴𝐶

> 0  of bank 𝑗 on bank 𝑖  proportionate to  𝑁𝐴𝐶𝑖𝑗 .  Next, the 

steps described above for the  𝑆   analysis are now applied to  𝑆 
  

 
𝑁𝐴𝐶

,  and lead to 

evaluating the Eigen pair  ( �̃�
  

𝑁𝐴𝐶              

 𝑚𝑎𝑥

,   𝑢  
�̃� 
𝑁𝐴𝐶

 )

    

  of the strongly connected 

substructure  �̃�  

      
𝑁𝐴𝐶  = [�̃�(𝑖𝑗)

  
𝑁𝐴𝐶

] , the indexes: 

𝑆𝑅�̃�(𝑖)             
  

𝑁𝐴𝐶

=
𝑢(𝑖)

 

�̃� 
 

𝑁𝐴𝐶

∑ (𝑢(𝑖)  

�̃� 
 

𝑁𝐴𝐶
)

𝑚
  

𝑁𝐴𝐶

𝑖=1

 

          for     𝑖 ∈ {1,⋯ ,𝑚𝑁𝐴𝐶} (21a) 

and the resilience: 

𝑆𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
 𝑁𝐴𝐶 =

{
 
 

 
 0 , 𝑖𝑓    �̃�

  
𝑁𝐴𝐶              

 𝑚𝑎𝑥

− 𝑝  𝑚𝑖𝑛              
 

  

 
𝑁𝐴𝐶

≥ 0                                              

  |�̃�
  

𝑁𝐴𝐶              

 𝑚𝑎𝑥 

− 𝑝  𝑚𝑖𝑛              
 

  
𝑁𝐴𝐶

| ,     𝑖𝑓  �̃�
  

𝑁𝐴𝐶              

 𝑚𝑎𝑥

− 𝑝  𝑚𝑖𝑛              
 

  

 
𝑁𝐴𝐶

< 0

  (21b) 

 

Tables 3 and 4 report and compare empirical results for the NAC-scenario and the 

EAD-scenario. The structural resilience of the empirical system under the NAC-

scenario is 𝑆𝑅𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒   

 

  
𝑁𝐴𝐶 

= 0.26128 , which is higher than the resilience under the EAD-

Table 4: Systemic Risk Ranking and Indexes in the Derivatives Market 

Institutions A B C D 

rank at  𝛾𝑁𝐴𝐶 = 0, 

(going-concern systemic 

dynamics) 

10 8 

0 

(not participating in the 

fragility strongly-connected 

component) 

7 

rank at  𝛾 = 0, 

(at-default systemic 

dynamics) 

3 8 10 15 

𝑆𝑅�̃�
  

𝑁𝐴𝐶
(𝑖)  at  𝛾𝑁𝐴𝐶 = 0 2.34% 3.01% 0% 4.00% 

𝑆𝑅�̃�
  (𝑖)  at  𝛾 = 0  13.15% 5.09% 4.03% 0.81% 

Note: Systemic Risk Ranking and Indexes in the Derivatives Market based on data for one 

of the quarters in the period from June 2014 to September 2015. A-D refer to the 

anonymised banks,  NAC refers to net MtM after collateral derivatives exposures, EAD 

refers to net derivatives exposures-at-default   𝛾 is the parameter optimised in the 

stabilisation strategy, SRI(i) refers to Systemic Risk Index for the i-th bank in the strongly 

connected component. 
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scenario  𝑆𝑅𝑅𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒  

  = 0.07305.  Different number of reporting banks have nonzero 

structural impact,  𝑚𝑁𝐴𝐶 = 16 ≠ 𝑚
  
= 19,  and participate in the corresponding two 

strongly connected components. The ranking and index of each bank are different 

under the two scenarios. The institution encoded with  𝐴  in Table 4 is of higher 

ranking under EAD but lower ranking under NAC, which is also confirmed by its 

corresponding indexes. The opposite is true for institution  𝐷, it is of higher ranking 

under NAC and of lower ranking under EAD. Institution  𝐵  has the same rank 8 among 

the  𝑚𝑁𝐴𝐶   banks and among  the 𝑚  banks, but it has different indexes 

𝑆𝑅�̃�𝑖𝑛𝑑𝑒𝑥         
  

  

  
𝑁𝐴𝐶

(𝐵) = 3.01% and  𝑆𝑅�̃�𝑖𝑛𝑑𝑒𝑥
  

  

(𝐵) = 5.09%.  Bank  𝐶  is of medium ranking 

under EAD and is not ranked under NAC, therefore has zero structural impact  

𝑆𝑅�̃�𝑖𝑛𝑑𝑒𝑥
  

  
𝑁𝐴𝐶

(𝐶) = 0.  

The empirical results confirm that if we would like to introduce subtle changes in 

the structure in order to increase its resilience, then different banks and to a different 

extent will participate in a strategy under each of the two scenarios. NAC and EAD are 

boundary scenarios, and the strategy can be formulated with surcharges depending 

both on NAC and EAD indexes, instead. In the terminology, we will use from now on 

‘systemic-impact index’ 𝑆𝐼𝐼(𝑖) instead of systemic-risk index 𝑆𝑅𝐼(𝑖), and 

correspondingly ‘systemic-impact surcharge’ 𝑆𝐼𝑆(𝑖) instead of systemic-risk 

surcharge  𝑆𝑅𝑆(𝑖). This terminology accounts for the fact that the index measures the 

proportionate contribution of an institution to systemic risk, but also for the fact that 

this potential of an institution for structural impact can be used in stabilisation 

strategies to build in structural resilience. In the case of the EAD and NAC scenarios, 

the new terminology translates as: 

𝑆𝐼𝑆(𝑖)𝑠𝑢𝑟𝑐ℎ𝑎𝑟𝑔𝑒
  = 𝑓 ( 𝛾  𝑆𝐼�̃�(𝑖)   

  
𝑁𝐴𝐶

,  𝛾𝑁𝐴𝐶  𝑆𝐼�̃�(𝑖)   
  ) (22) 

In comparison, Poledna et al. (2015) and Markose (2012) do not differentiate between 

the two types of derivatives exposure. The contagion algorithm in Poledna et al. 

(2015) prevents a failed bank to have effect beyond the period of its failure. The 

approach presented here builds in targeted resilience even when none of the 

institutions fails. It also does not directly restrict and so preserves the emerged 

preferences of interaction among banks, and so introduces minimum changes to the 

system. However, it introduces an incentive for institutions to adapt their preferences 

to the emergence of a more resilient structure of interactions. A next task is to extend 

the algorithm to provide that the effect of a non-failed bank is proportionate to NAC 

exposures, the effect of a failed bank is proportionate to EAD exposures, and a failed 

bank has no effect beyond the period it fails.  
 

V: Formulation and evaluation of multiple-market 

contagion dynamics and stabilisation strategies 

Banks, especially large ones, have numerous and dispersed financial operations, 

extensive off-balance-sheet activities, and opaque financial statements. They are 

highly interconnected through their capital markets activities, interbank lending, 

payments, and off-balance-sheet arrangements. For example, the BoE database used 

here accounts for the interaction of reporting institutions in the fixed-income market, 

securities-financing market and derivatives market.  
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Section IV above does not consider simultaneously contagion dynamics due to 

connectivity within all markets and among markets, and this is the focus of Section V. 

For example if bank  i  is highly affected in the derivatives market by failing banks  

jϵ{1,…,n} and has to liquidate its other assets holdings (e.g. bond holdings) to cover 

the losses, then the stress in the derivatives market as downwards pressure on prices 

can transmit to other assets markets through bank i’s interlinkages in these markets. 

In other words, the interaction of bank i within the derivatives market has an impact 

on its interaction within the fixed-income market, and contributes to the probability 

of bank i failing in the fixed-income market due to its interlinkages in the derivatives 

market. 

A recent example is the 2007 subprime mortgage market crisis in the US that caused 

the values of various securities linked to US real estate to plummet, and developed 

into a full-blown international banking crisis with the collapse of the investment bank 

Lehman Brothers on September 15, 2008. Excessive risk-taking by banks such as 

Lehman Brothers (i.e. a strongly connected node) helped to magnify the financial 

impact globally.  

5.1. Theoretical formulation 

A model incorporating simultaneously but distinctly all interconnected markets can 

be formulated as a tensor-multiplex (Serguieva, 2016, 2017a), where  𝑆 is a tensor of 

rank four: 

𝑆 =  ∑ ∑ ∑ ∑ (𝑆  𝑖𝑗
ℓ

𝑘  
) 𝜀𝑖 ⊗ �⃗⃗⃗�𝑗 

′

⊗ 𝜀ℓ ⊗ �⃗⃗⃗�𝑘 
′𝑛 

𝑖=1

𝑛 
𝑗=1

𝑚 
ℓ=1

𝑚 
𝑘=1  (23) 

for   𝑆  𝑖𝑗
ℓ

𝑘  
{
= 0     if     𝑖 = 𝑗 ∧ ℓ = 𝑘 ∨  𝑖 ≠ 𝑗 ∧ ℓ ≠ 𝑘
≥ 0     if     𝑖 ≠ 𝑗 ∧ ℓ = 𝑘 ∨  𝑖 = 𝑗 ∧ ℓ ≠ 𝑘

 

where  𝑚 = 3  corresponds to the three markets, i.e.  𝑘, ℓ = 1  for the fixed-income 

market,  𝑘, ℓ = 2  for the securities-financing market, and  𝑘, ℓ = 3  for the derivatives 

market. The number of institutions is  𝑛 , and  𝑆  𝑖𝑗
ℓ

𝑘  

    
≥ 0  is the impact of bank  𝑖 – 

due to its interaction in market  ℓ – on institution  j  acting in market  k.  The impact  

𝑆 𝑖𝑗
ℓ

𝑘  
≥ 0  between two different institutions  𝑖 ≠ 𝑗  is due to their interaction within 

the same market  ℓ = 𝑘,  while the impact is  𝑆 𝑖𝑗
ℓ

𝑘  
= 0  when we consider  𝑖  and  𝑗  

as acting in different markets  ℓ ≠ 𝑘.  Further,  𝑆 𝑖𝑗
ℓ

𝑘  
≥ 0  when the same institution  

𝑖 = 𝑗  acts in different markets  ℓ ≠ 𝑘,  while  𝑆 𝑖𝑗
ℓ

𝑘  
= 0  when this institution acts in 

the same market  ℓ = 𝑘.  An interconnected multiplex is a multilayer network where 

mostly the same nodes participate in different type of interactions 

(interdependencies), and the interaction of a node due to one type of activities is 

dependent on its interaction due to another type of activities. A tensor can be 

considered as an interconnected multiplex that also incorporates a basis (innate) 

structure. In Equation (23),  𝜀𝑖 ⊗ �⃗⃗⃗�
𝑗 
 
′

⊗ 𝜀
ℓ
⊗ �⃗⃗⃗�

𝑘 
 
′

 stands for the basis structure that 

includes four vectors  𝜀𝑖 ,  �⃗⃗⃗�
𝑗 
 
′

, 𝜀
ℓ
 ,  �⃗⃗⃗�

𝑘 ′

 in their cohesion or tensor multiplication, 

hence the tensor is of rank four. These vectors characterise, correspondingly, 

institutions  𝑖,  institutions  𝑗,  markets  ℓ , and markets  𝑘 , for  𝑖, 𝑗 ∈ {1,⋯ , 𝑛}  and  

ℓ, 𝑘 ∈ {1,⋯ ,𝑚}. Tensor-multiplex models expand the scope of feasible structural 

analysis and stress testing of the financial system (Serguieva, 2016, 2017a). Here, they 
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are only used in modelling contagion and stabilisation processes within multiple 

interconnected markets. 

We build the tensor of rank four as including nine subtensors of rank 2 (see 

Figure 5). The impact matrix  [𝑠(𝑖𝑗)  𝐷 
 
  
 

]  in the derivatives market  (𝐷)  has the same 

meaning as  [𝑠𝑖𝑗 ]  in Section IV and: 

 

𝑆  𝑖𝑗
ℓ

𝑘  
= {

(𝑆  𝑖𝑗≠𝑖
ℓ=𝐷

𝑘=𝐷 
) = 𝑠(𝑖𝑗)  𝐷 

 
  
 

= 𝑠(𝑖𝑗)
   

 

            

(𝑆  𝑖𝑗=𝑖
ℓ=𝐷

𝑘=𝐷 
) = 𝑠(𝑖𝑖)  𝐷 

 
  
 

= 0
 

     
                         

for   𝑖, 𝑗𝜖{1,⋯ , 𝑛} (24a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:   Four-dimensional structure of impact  

It captures impact among institutions within each  

financial market and between any pair of markets. 

fixed-income market (FI):  three-dimensional decomposition of size   

𝒏 × 𝒏 × 𝟑  of impact magnitudes, where affecting institutions are in 

market FI 

securities-financing market (SF):  three-dimensional decomposition of size   

𝒏 × 𝒏 × 𝟑  of impact magnitudes, where affecting institutions are in market 

SF 

derivatives market (D):   

three-dimensional decomposition of 

size  𝒏 × 𝒏 × 𝟑  of impact magnitudes, 

where affecting institutions are in 

market D 
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Banks report to the PRA database their exposures in the fixed-income  market  (𝐹𝐼)  

as gross MtM values, then  𝑀𝑡𝑀(𝑗𝑖)𝐹𝐼 
  

  will denote the exposure of bank  𝑗  to  bank  

𝑖  in the  𝐹𝐼  layer.  Banks also report their exposures in the securities-financing market  

(𝑆𝐹)  as gross Notional values, then  𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙(𝑗𝑖)𝑆𝐹 
  

  will denote the exposure of 

institution  𝑗  to  institution  𝑖  in the  𝑆𝐹  layer.  This reported information does not 

allow differentiating between going-concern and at-default multiplex exposures. 
 

The impact structure  [𝑆  𝑖𝑗
ℓ

𝑘  
] will be evaluated as follows. The impact matrix  

[𝑠(𝑖𝑗)  𝐹𝐼
 

  
 

],  due to interconnectivity in the  𝐹𝐼  market, has elements: 

𝑆  𝑖𝑗
ℓ

𝑘  
=

{
  
 

  
 
(𝑆  𝑖𝑗≠𝑖

ℓ=𝐹𝐼
𝑘=𝐹𝐼) = 𝑠(𝑖𝑗)  𝐹𝐼 

 
  
 

= {

𝑀𝑡𝑀(𝑗𝑖)𝐹𝐼 

  
−𝑀𝑡𝑀(𝑖𝑗)𝐹𝐼 

  

  𝐶(𝑗) 
 

> 0           

0 , 𝑖𝑓 
𝑀𝑡𝑀(𝑗𝑖)𝐹𝐼 

  
−𝑀𝑡𝑀(𝑖𝑗)𝐹𝐼 

  

  𝐶(𝑗) 
 

≤ 0

                    

(𝑆  𝑖𝑗=𝑖
ℓ=𝐹𝐼

𝑘=𝐹𝐼) = 𝑠(𝑖𝑖)  𝐹𝐼 
 

  
 

= 0                                      for 𝑖, 𝑗𝜖{1,⋯ , 𝑛}
 

 

  (24b) 

where   𝐶(𝑗) 
   are the total own funds of bank  𝑗.  The impact matrix  [𝑠(𝑖𝑗)  𝑆𝐹

 
  
 

] , due to 

interconnectivity in the  𝑆𝐹  market, has elements: 

𝑆  𝑖𝑗
ℓ

𝑘  
=

{
  
 

  
 
(𝑆  𝑖𝑗≠𝑖

ℓ=𝑆𝐹
𝑘=𝑆𝐹) = 𝑠(𝑖𝑗)𝑆𝐹

  
 

= {

𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙(𝑗𝑖)𝑆𝐹 

  
−𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙(𝑖𝑗)𝑆𝐹 

  

  𝐶(𝑗) 
 

> 0           

0 , 𝑖𝑓 
𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙(𝑗𝑖)𝑆𝐹 

  
−𝑁𝑜𝑡𝑖𝑜𝑛𝑎𝑙(𝑖𝑗)𝑆𝐹 

  

  𝐶(𝑗)  
≤ 0

      

(𝑆  𝑖𝑗=𝑖
ℓ=𝑆𝐹𝑇

𝑘=𝑆𝐹) = 𝑠(𝑖𝑖)𝑆𝐹
  
 

= 0                                      for 𝑖, 𝑗𝜖{1,⋯ , 𝑛}
 

 

 (24c) 

The impact magnitudes between markets are correspondingly: 

 [𝑠(𝑖𝑗)  𝐹𝐼→𝑆𝐹
 

  
 

]  composed by the impact of institutions  𝑖  in the fixed-income market  

ℓ = 𝐹𝐼 on institutions  𝑗  in the securities-financing market  𝑘 = 𝑆𝐹 : 

𝑆  𝑖𝑗
ℓ

𝑘  
=

{
 
 

 
 (𝑆  𝑖𝑗=𝑖

ℓ=𝐹𝐼
𝑘=𝑆𝐹)   = 𝑠(𝑖𝑖)  𝐹𝐼→𝑆𝐹 

  = ∑ 𝑠(𝑞𝑖)  𝐹𝐼 
 

  
 

𝑛
𝑞=1  

(𝑆  𝑖𝑗≠𝑖
ℓ=𝐹𝐼

𝑘=𝑆𝐹)   = 𝑠(𝑖𝑗)  𝐹𝐼→𝑆𝐹 
  = 0                        

for  𝑖, 𝑗, 𝑞𝜖{1,⋯ , 𝑛} (25a) 

 [𝑠(𝑖𝑗)  𝐹𝐼→𝐷
 

  
 

]  composed by the impact of banks  𝑖  in market  ℓ = 𝐹𝐼  on banks  𝑗  

in market  𝑘 = 𝐷 : 

𝑆  𝑖𝑗
ℓ

𝑘  
=

{
 
 

 
 (𝑆  𝑖𝑗=𝑖

ℓ=𝐹𝐼
𝑘=𝐷)   = 𝑠(𝑖𝑖)  𝐹𝐼→𝐷 

  = ∑ 𝑠(𝑞𝑖)  𝐹𝐼 
 

  
 

𝑛
𝑞=1  

(𝑆  𝑖𝑗≠𝑖
ℓ=𝐹𝐼

𝑘=𝐷)   = 𝑠(𝑖𝑗)  𝐹𝐼→𝐷 
  = 0                        

for  𝑖, 𝑗, 𝑞𝜖{1,⋯ , 𝑛} (25b) 

 [𝑠(𝑖𝑗)  𝑆𝐹→𝐹𝐼
 

  
 

]  comprises the impact of  𝑖  in market  ℓ = 𝑆𝐹  on  𝑗  in market   

𝑘 = 𝐹𝐼 , and  [𝑠(𝑖𝑗)  𝑆𝐹→𝐷
 

  
 

]  comprises the impact of  𝑖  in market  ℓ = 𝑆𝐹  on  𝑗  in 

market  𝑘 = 𝐷 : 

𝑆  𝑖𝑗
ℓ

𝑘  
=

{
 
 

 
 (𝑆  𝑖𝑗=𝑖

ℓ=𝑆𝐹
𝑘=𝐹𝐼)   = 𝑠(𝑖𝑖)  𝑆𝐹→𝐹𝐼 

  = ∑ 𝑠(𝑞𝑖)  𝑆𝐹 
 

  
 

𝑛
𝑞=1

(𝑆  𝑖𝑗≠𝑖
ℓ=𝑆𝐹

𝑘=𝐹𝐼)   = 𝑠(𝑖𝑗)  𝑆𝐹→𝐹𝐼 
  = 0                      

for  𝑖, 𝑗, 𝑞𝜖{1,⋯ , 𝑛} (26a) 
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𝑆  𝑖𝑗
ℓ

𝑘  
=

{
 
 

 
 (𝑆  𝑖𝑗=𝑖

ℓ=𝑆𝐹
𝑘=𝐷)   = 𝑠(𝑖𝑖)  𝑆𝐹→𝐷 

  = ∑ 𝑠(𝑞𝑖)  𝑆𝐹 
 

  
 

𝑛
𝑞=1

(𝑆  𝑖𝑗≠𝑖
ℓ=𝑆𝐹

𝑘=𝐷)   = 𝑠(𝑖𝑗)  𝑆𝐹→𝐷 
  = 0                       

for  𝑖, 𝑗, 𝑞𝜖{1,⋯ , 𝑛} (26b) 

 [𝑠(𝑖𝑗)  𝐷→𝐹𝐼
 

  
 

]  includes the impact of  𝑖  in market  ℓ = 𝐷  on  𝑗  in market  𝑘 = 𝐹𝐼 , 

and  [𝑠(𝑖𝑗)  𝐷→𝑆𝐹
 

  
 

]   includes the impact of 𝑖  in market  ℓ = 𝐷  on  𝑗  in market   

𝑘 = 𝑆𝐹 : 

𝑆  𝑖𝑗
ℓ

𝑘  
=

{
 
 

 
 (𝑆  𝑖𝑗=𝑖

ℓ=𝐷
𝑘=𝐹𝐼)   = 𝑠(𝑖𝑖)  𝐷→𝐹𝐼 

  = ∑ 𝑠(𝑞𝑖)  𝐷 
 
  
 

𝑛
𝑞=1

(𝑆  𝑖𝑗≠𝑖
ℓ=𝐷

𝑘=𝐹𝐼)   = 𝑠(𝑖𝑗)  𝐷→𝐹𝐼 
  = 0                    

  for  𝑖, 𝑗, 𝑞𝜖{1,⋯ , 𝑛} (27a) 

𝑆  𝑖𝑗
ℓ

𝑘  
=

{
 
 

 
 (𝑆  𝑖𝑗=𝑖

ℓ=𝐷
𝑘=𝑆𝐹)   = 𝑠(𝑖𝑖)  𝐷→𝑆𝐹 

  = ∑ 𝑠(𝑞𝑖)  𝐷 
 
  
 

𝑛
𝑞=1

(𝑆  𝑖𝑗≠𝑖
ℓ=𝐷

𝑘=𝑆𝐹)   = 𝑠(𝑖𝑗)  𝐷→𝑆𝐹 
  = 0                      

 for  𝑖, 𝑗, 𝑞𝜖{1,⋯ , 𝑛} (27b) 

Equations (24a,25a,25b), Equations (24b,26a,26b) and Equations (24c,27a,27b) 

describe, respectively, the bottom, middle and top three-dimensional matrixes within 

the four-dimensional structure, which corresponds to the impact multiplex [𝑆  𝑖𝑗
ℓ

𝑘  
]

    

 

of size  n × n × 3 × 3.  In order to maintain the analogy between the variables that are 

used in Sections 4 and the variables that are going to be used in the multiplex 

unfolded context in this section, all the necessary variables that are used in Sections 

4 are used here with a hat (^) on them. The next step is to identify the multiplex 

strongly connected component. We apply Tarjan’s algorithm to the unfolded impact 

matrix [�̂�  𝑖𝑗]

    

 of size 3𝑛 × 3𝑛 created by unfolding the multiplex [𝑆  𝑖𝑗
ℓ

𝑘  
]  of size  n ×

n × 3 × 3  along the indices  𝑘  and  𝑙 , 

[�̂�  𝑖𝑗] =  

[
 
 
 
 

 

[𝑠(𝑖𝑗)  𝐹𝐼→𝐹𝐼 
  ] [𝑠(𝑖𝑗)  𝐹𝐼→𝑆𝐹 

  ] [𝑠(𝑖𝑗)  𝐹𝐼→𝐷 
  ]

[𝑠(𝑖𝑗)  𝑆𝐹→𝐹𝐼 
  ] [𝑠(𝑖𝑗)  𝑆𝐹→𝑆𝐹 

  ] [𝑠(𝑖𝑗)  𝑆𝐹→𝐷 
  ]

[𝑠(𝑖𝑗)  𝐷→𝐹𝐼 
  ] [𝑠(𝑖𝑗)  𝐷→𝑆𝐹 

  ] [𝑠(𝑖𝑗)  𝐷→𝐷 
  ]

 

]
 
 
 
 

   (28) 

and identify the  �̂�   number of banks that have nonzero structural impact on the 

multiplex. The parameter  �̂�
  

𝑚𝑖𝑛               

 

  
 

 

  in simulating the contagion process  

is evaluated over the multiplex strongly connected component [�̂̃�  𝑖𝑗]
  

  
 of  

size  3�̂� × 3�̂�   
 , and  �̂̃�𝑚(𝑗)  are the modified own funds corresponding to this 

parameter. The unfolding  [�̂̃�  𝑖𝑗]  is in the format from Equation (28), now for the  �̂�  

banks, and preserves the spectral properties of  [�̂�  𝑖𝑗
ℓ

𝑘  
]
 

   

   of size  �̂� × �̂� × 3 × 3.  By 

analogy with the algorithm from Sections 4, now the Eigenpair  ( �̂̃�   
          

  
𝑚𝑎𝑥

,   𝑢
�̂̃� 

 

  )

 

of  

[�̂̃�  𝑖𝑗]
  
  is generated. Then, the Eigenpair  ( Λ̂̃

  
           

 𝑚𝑎𝑥

,   𝑈  
𝑆 
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥
 

 ) for  [�̂̃�  𝑖𝑗
ℓ

𝑘  
]   is 

obtained as: 
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Λ̂̃
  
  

  
max 

= �̂̃�
  

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥     
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑    

  
max

    and     𝑈  
�̂̃� 

  
𝑓𝑜𝑙𝑑𝑖𝑛𝑔
⇐        𝑢

�̂̃� 

   (29) 

where  𝑈  
�̂̃�  

   is an Eigenmatrix of size  �̂�
  

 × 3  rather than an Eigenvector.   

Following the approach in Serguieva (2016a, 2017a), we formulate the multiplex 

systemic risk  𝑆�̂�  𝑟𝑖𝑠𝑘
 

    and resilience  𝑆�̂�  𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
 

   as:  

𝑆�̂�  𝑟𝑖𝑠𝑘
 

  

  
 

  
 

=

{
 
 

 
 �̂̃�

  

 𝑚𝑎𝑥

−  �̂�  𝑚𝑖𝑛              

   

 
  > 0               

 0  ,    𝑖𝑓   �̂̃�
  

 𝑚𝑎𝑥

−  �̂�  𝑚𝑖𝑛              
 

  

 

≤ 0

   (30a) 

𝑆�̂�  𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
 

  

  
 

  
 

=

{
 
 

 
 

 

0  ,   𝑖𝑓  �̂̃�
 𝑚𝑎𝑥

− �̂�  𝑚𝑖𝑛              
 

  

 

≥ 0

�̂�  𝑚𝑖𝑛              
 

  

 

− �̂̃�
  

 

  
𝑚𝑎𝑥

< 0             

   (30b) 

The multiplex systemic-impact indexes are: 

𝑆𝐼�̂�(𝑖)            
 

  =  

=

{
 
 

 
 
𝑆𝐼�̂̃�(𝑖)   

   =

𝑈(𝑖)  

�̂̃� 
 

   

∑ (𝑟(𝑖)  

�̂̃� 
  
 

)
�̂�

  
  

𝑖=1

 

 ,    for   𝑖 ∈ {1, … , �̂� } 

0  ,    for   𝑖 ∈ {�̂�
  

 + 1,⋯𝑛}                                      

 (31a) 

where: 

𝑈
�̂̃�  

 

  
 

= 𝑈  
�̂̃� 

 

 

   [1 1 1]′   (31b) 

and the with corresponding surcharges are: 

𝑆𝐼�̂�(𝑖)  𝑠𝑢𝑟𝑐ℎ𝑎𝑟𝑔𝑒
 

 
  = 𝛾  𝑆𝐼�̂�(𝑖)            

 =  

= {
𝑆𝐼�̂̃�(𝑖)  𝑠𝑢𝑟𝑐ℎ𝑎𝑟𝑔𝑒

 
  = 𝛾  𝑆𝐼�̂̃�(𝑖)  𝑖𝑛𝑑𝑒𝑥          

 
      for  0 < 𝛾 ≪ 1;  𝑖 ∈ {1,⋯ , �̂� }

0                                 for    𝑖 ∈ {�̂� + 1,⋯ , 𝑛}                   

 (31c) 

The multiplex stabilisation strategy is designed as follows. The parameter  

 𝛾  is optimised to estimate the minimum fractions of capital 

 𝛾    𝑆𝐼�̂̃�(𝑖)    
   �̂̃�𝑚(𝑖)      

  
         
  

for each institution  𝑖 ∈ {1, … , �̂� }  that when distributed in a 

balancing way among institutions 𝑗 ∈ {1, … , �̂� }, in proportion to the impacts of  𝑖  

within the multiplex, will bring the system to a targeted threshold  𝑆�̂� 𝑟𝑖𝑠𝑘           
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   

  (𝑡)  or  

𝑆�̂�𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

   (𝑡).  The proportion is the ratio of the impact (�̃�  𝑖𝑗
ℓ

𝑘  
)

  

  

  of bank  𝑖  in 

market  ℓ  on bank  𝑗  in market  𝑘,  divided by the overall impact 

  �̂̃�(𝑖)   

  = ∑ ∑ ∑ (�̂̃�  𝑖𝑞
𝑦

𝑧  
)
   �̂�

 
𝑞=1

3
 

𝑦=1

3
 

𝑧=1  of bank  𝑖  within the multiple-market 

structure, for  𝑖, 𝑗 ∈ {1,⋯ , �̂� }  and  ℓ, 𝑘 ∈ {1,2,3}.  Let the fraction that 𝑗 receives from 
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𝑖, in result of this, is denoted with  𝑋(𝑖𝑗) .  

Then the non-charged four-dimensional matrix �̂̃�   
  
 

= [(�̂̃�  𝑖𝑗
ℓ

𝑘  
)

  

  

]
  

  

 representing the 

multiplex is modified into the impact structure  �̂̃�   
  

 
𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑

  as  follows: 

 

 

[(�̂̃�  𝑖𝑗
ℓ

𝑘  
)

  
𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑   

 

] = [(�̂̃� 𝑖𝑗
ℓ

𝑘  
)

  

  
   
 

(1 + ∑ ( 
∑ ∑ (𝑋 𝑖𝑗

ℓ

𝑘  
)

3  
𝑘=1

3  
ℓ=1

�̂�  𝑚𝑖𝑛              
  �̂̃�(𝑗)

    

  

  
𝑚      

  )
�̂�

 

𝑖=1 )⁄ ] =  

=

[
 
 
 
 
 
 
 
 
 
 

(�̂̃�
 𝑖
𝑗

ℓ

𝑘  
)

   
  

1 +∑

(

 
 
 
 
 

�̂�    𝑆𝐼�̂̃�(𝑖)     

(

 
 �̂̃�(𝑖)

  

  
𝑚       

�̂̃�
𝑚𝑖𝑛

    
 �̂̃�(𝑗)

  

  
𝑚       

)

 

(

 
 
 
 ∑ ∑ (�̃�̂

 𝑖
𝑗

ℓ

𝑘  
)

  
   

3  
𝑘=1

3  
ℓ=1

∑ ∑ ∑ (�̃�̂
 𝑖
𝑞

𝑦

𝑧  
)

  

 
 

�̂�
𝑞=1

3
 

𝑦=1

3
 

𝑧=1
)

 
 
 
 

)

 
 
 
 
 

�̂�
 

𝑖=1

]
 
 
 
 
 
 
 
 
 
 

  (32) 

for  0 ≤ 𝛾   
 ≪ 1  ;  𝑖, 𝑗 ∈ {1,⋯ , �̂� }  ;  ℓ, 𝑘 ∈ {1,2,3} 

It considers that the funds  �̂̃�(𝑗) = �̂̃�(𝑗) − 𝑀�̂̃�(𝑗)  available to  𝑗  increase to  

�̂̃�(𝑗)

  
𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑  = �̂̃�(𝑗)  + ∑ 𝑋(𝑖𝑗)

     
�̂�
𝑖=1

  with the proportionate fractions  𝑋(𝑖𝑗).  We 

denote the ratio of available funds to total own funds of  𝑗   

as  �̂�(𝑗)  
 

 
  

 

= �̂̃�(𝑗)  
 

 
  

 

  �̂�  𝑚𝑖𝑛
 

  

 

=
𝐴(𝑗)

   

 

�̂�(𝑗)   
  

        =
�̂̃�(𝑗)

  

 

  𝐴(𝑗)

�̂�𝑚(𝑗)
  

 . Maintaining the parameter  

�̂�  𝑚𝑖𝑛              
 

  

 

= �̂�  𝑚𝑖𝑛              

  

 
  

  
𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑

 , for comparability of the simulation of contagion within the 

initial and the rebalanced structures, leads to: 

�̂�
𝑚𝑖𝑛               

    =
𝐴(𝑗)  

 

  

 

�̂�(𝑗)

 
𝑚  
=

𝐴(𝑗)  
 

     
𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 

�̂�(𝑗)

    
𝑚  𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 

=
𝐴(𝑗)  

 

  

  +∑ 𝑋(𝑖𝑗)
�̂�   

 
𝑖=1

�̂�(𝑗)

    
𝑚  𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 

 (33a) 

and to a new modified value  �̂̃�(𝑗)

    
𝑚  𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑   after rebalancing: 

�̂̃�(𝑗)

    
𝑚  𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 = �̂̃�(𝑗)

 
𝑚   (1 +

∑ 𝑋(𝑖𝑗)
�̂�

 
𝑖=1 

𝑝  𝑚𝑖𝑛              
  �̂�(𝑗)

 
𝑚   

)  (33b) 

which produces the denominator in Equation (32). 

The rebalancing reduces the largest Eigenvalue  �̂̃�
 

𝑚𝑎𝑥               
𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑

< �̂̃�
  

 
𝑚𝑎𝑥                  

, which is 

equivalent to building in structural resilience. Thus, the minimum redistribution pre-

emptively reduces the effect of potential contagion in quarter  𝑡  based on the 

multiplex structure of exposures and the minimum capital requirements at the end of 

quarter  (𝑡 − 1).  The mechanism can be implemented automatically within the market 

infrastructure. It does not restrict the emerged preferences of banks for interaction 

within the multiplex of markets, but rebalances – at minimum cost and adaptively – 
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how the system covers exposures collectively through the existing interlinkages. The 

mechanism also allows the banks to adapt their interaction preferences within the 

rebalancing impact structure, through incentives towards the emergence of a more 

resilient structure. In the terminology of computational intelligence approaches, this 

is analogous to the methodology of ‘reinforcement learning’. The optimum 

mechanism involves not only the very top few but all reporting institutions that have 

nonzero systemic impact within the multiplex of markets at end of quarter (𝑡 − 1). 

The institutions are involved proportionately to their systemic impact at  (𝑡 − 1) , 

which is their potential to affect structural fragility and resilience in quarter 𝑡. The 

subtle rebalancing uses this potential and builds in resilience, instead of allowing this 

potential to drive the system further into fragility. The mechanism does not collect 

the surcharges into a fund to sit aside, but immediately uses them to achieve a 

stabilisation effect pre-emptively. Waiting for institutions to get in distress in order to 

access a fund will cost more. The redistribution also immediately compensates all 

institutions after the surcharges, where different institutions are compensated to a 

different extent. Thus effectively, each institutions is charged even less than the 

fraction of capital evaluated at the first step of the algorithm. While the charge 

depends on the systemic impact of a bank, its compensations depend on the systemic 

impact of other banks that affect the first bank through interlinkages. Finally, the 

potential for multichannel contagion through the multiplex structure contributes 

more to systemic fragility than single-channel contagion, however a positive point is 

that multichannel stabilisation also contributes more to systemic resilience than 

single-channel stabilisation. 

5.2. Empirical evaluation 

The empirical results presented in Tables 5 and 6 are evaluated for one of the quarters 

in the period from June 2014 to September 2015. Table 5 indicates that the multiplex 

structure does not meet the stability condition  �̂̃�
 

  
𝑚𝑎𝑥

=< 0.1457 , and therefore is in 

the region of structural fragility. The systemic risk of the unbalanced structure is  

𝑆�̂�  𝑟𝑖𝑠𝑘 
 

  
        

= 0.32867 , and contagion will not be contained if triggered. If a threshold of 

𝑆�̂�  𝑟𝑖𝑠𝑘            
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 = 0 is targeted, then a stabilisation strategy with an  

optimum parameter  𝛾𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 = 0.02850  will bring the system below this threshold.  

The  structural  resilience  of  the  rebalanced  system  is  𝑆�̂�  𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒  

 
  

        
𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑  

= 0.00005,  and 

contagion will be contained if triggered. The number of banks with nonzero systemic 

impact at the end of this quarter is  19,  and they participate in the stabilisation step 

at the start of the next quarter. Notice that the threshold may be  𝑆�̂�  𝑟𝑖𝑠𝑘            
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑    

 ≠ 0.  Ffor 

example, within a long-term meta-strategy  0 < 𝑆�̂�  𝑟𝑖𝑠𝑘            
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 (𝑡) < 𝑆�̂�  𝑟𝑖𝑠𝑘            
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 
  (𝑡 − 1).  

Alternatively,  𝑆�̂�  𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
 

  

     
𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑  

= 0.00005  may be considered as too small. Though a 

potential contagion will be contained, a significant part of the system may be 

destroyed. Thus, a larger resilience threshold may be targeted  𝑆�̂�  𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

 > 0.00005. 

Table 6 presents the systemic impact indexes of three banks encoded as  𝐸, 𝐹, 𝐺.  

Institution  𝐸  has a high systemic impact in the multiplex and contributes significantly 

to multiple-market contagion and stabilisation. However,  𝐸  is of little importance in 
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the single-layer structure of the derivatives market, and will contribute little to 

destabilising or stabilising processes there. Institution  𝐹  is of medium importance in 

both structures, but contributes different proportions to systemic risk (resilience) in 

the multiple-market system and in the single market. Bank 𝐺 has no systemic 

significance in multiplex contagion, while still contributing systemic impact in the 

single market. The empirical results show that banks differ in their significance and 

ability to influence the structure under the multiple-market scenario and the single-

market scenario. The institutions will participate to a different extent in strategies to 

embed structural resilience under the two scenario. Stabilising the single market will 

not stabilise the multiplex of markets. Stabilising the multiplex will stabilise the single 

markets in the context of their interlinkages within the overall system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Structural Resilience of the Empirical Multiplex 

n 22 

�̂�  

19  

(18 overlapping banks 

with  

the derivative market) 

�̂̃�  
𝑚𝑖𝑛            

 

 
 

 

 0.14573 

𝜆
  

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

 𝑚𝑎𝑥

 < 0.14573 

  𝑆�̂�  𝑟𝑖𝑠𝑘
 

  
     

   

( no stabilisation implemented and 
 

 �̂̃�
  

  
𝑚𝑎𝑥                  

= 0.47440   at   𝛾 = 0 ) 

0.32867 

  𝑆�̂�  𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
 

  
    

𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑  
   

( stabilisation implemented and 

 �̂̃�
  

 
𝑚𝑎𝑥                
𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑

= 0.14568    at    �̂�
𝑚𝑖𝑛 = 0.02850 ) 

0.00005 

Note: Structural resilience of the empirical multiplex based on data 

for one of the quarters in the period from June 2014 to September 

2015. n refers to the number of reporting banks, �̂� refers to the 

number of banks in the strongly connected subtensor, 𝜆 refers to the 

maximum stability condition for the connected banks,  𝛾 is the 

parameter optimised in the stabilisation strategy  and SR refers to 

systemic risk for the risk and resilience conditions. 
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VI:  Conclusions 

Single-layer networks have now been adopted in modelling financial systems, 

however this task rather requires multilayer models, or interconnected multiplex 

networks as first approximation. There are few studies using non-interconnected 

multiplexes for modelling the structure of financial systems, and this has limitations 

in representing and analysing the complex system. The existing analyses also use the 

networks to represent but not affect the structure, and the approaches quite loosely 

follow regulatory requirements. We have identified gaps not addressed in current 

research, and then formulated solutions and provided empirical analysis. 

There are powerful implementations of ensemble networks to non-financial 

domains. We touched on their ability to approach problems where single networks 

cannot cope, when evolving an ensemble and implementing to equity analysis in 

(Serguieva, Kalganova, 2002). The nature of the problem in focus here requires 

multilayer rather than ensemble networks, however we still address the capabilities 

of evolving networks as highly effective computational-intelligence techniques. 

Evolving an interconnected multiplex network through multiple periods allows not 

only modelling the multiple-market structure but also simulating strategies and 

suggesting meta-strategies for subtly affecting the structure towards building in 

targeted resilience. The hybrid approach can work with dynamic meta-strategies.8  

The contributions in this study are as follows:   

(i) The structure accounts for minimum capital requirements based on risk weighted 

assets.   

                                                           
8  The dynamic meta-strategies provide incentives for the participants to adapt to and discover more-

resilient structures but do not impose a particular structure. In computational intelligence terminology, this 

is analogous to a reinforcement learning technique. 

Table 6: Systemic Impact Ranking and Indexes in Multiple Markets vs a Single Market 

Institutions E F G 

rank at  �̂�𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 = 0, 

(multiple-market contagion dynamics) 
2 10 

0 

(not participating  

in the multiplex strongly-connected 

component) 

rank at  for   𝛾 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠  

  = 0, 

(single-market contagion dynamics) 
17 9 18 

𝑆𝐼�̂�(𝑖)
    at  �̂� = 0 

(multiple-market systemic impact) 
16.34% 0.33% 0% 

𝑆𝐼𝐼
  

𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠
(𝑖)  at  𝛾 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠  

  
𝐸𝐴𝐷

= 0  

(single-market systemic impact) 
0.28% 4.05% 0.23% 

Note: Systemic Impact Ranking and Indexes in Multiple Markets vs a Single Market based on data for one of the 

quarters in the period from June 2014 to September 2015.  𝛾 is the parameter optimised in the stabilisation 

strategy and SII refer to the Systemic Impact Index for multiple market and single market systemic impact. 
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(ii) The contagion model is formulated with an overall ‘infection’ (spreading) rate 

that allows for a unique spreading rate of each institution, both in single-market 

contagion and in multiple-market contagion.   

(iii) The structure of the derivatives market accounts for positive net exposures in two 

directions between the same two institutions, due to different netting sets and 

enforceable netting agreements.   

(iv) The derivatives market is analysed acknowledging that exposures on a going-

concern basis (to a non-failed bank) and exposures at-default (to a failing bank) 

differ. The values of MtM net derivatives exposures after collateral and MtM net 

derivatives exposures at default are used, correspondingly.   

(v) Systemic risk measures and systemic resilience measures are formulated, both 

for a single market and for the interconnected multiplex of markets. These are 

structural rather than monetary measures. However, the focus here is on building 

in structural resilience that then allows a system to sustain its associated 

monetary value.   

(vi) Systemic impact indexes are formulated for each institution, both in a single 

market and within the multiple-market structure. The terminology ‘systemic 

impact index’ rather than ‘systemic risk index’ is used to indicate that the 

potential of an institution to affect the structure, though contributing to 

contagion processes, can also be used in strategies to contribute to stabilisation 

processes. 

(vii) Single-channel and multiple-channel stabilisation strategies are formulated that 

subtly and adaptively evolve the structure towards targeted thresholds of lower 

systemic risk or higher systemic resilience. The stabilisation mechanism works at 

a minimum cost for each institution and no cost for the system as a whole. It 

introduces subtle structural changes that do not restrict emerged interactions 

and preferences among institutions but rather balance how the system as a 

whole copes with the emerged structure of exposures. The mechanism could be 

implemented as part of the market infrastructure. This may also lead to 

institutions gradually adapting their preferences to the mechanism, and thus 

leading to the emergence of interactions underlying a more stable structure that 

would involve fewer and infrequent stabilisation steps. 

(viii) All institutions that participate at the end of a period in the strongly connected 

component of the multilayer network, also have nonzero systemic impact 

indexes and the potential to affect the structure at the beginning of the next 

period. Only if the system does not meet a targeted threshold at the end of a 

period, a stabilisation step is applied at the beginning of the next period. It 

involves all institutions with nonzero systemic index rather than the very top few, 

in order to achieve effective rebalancing, where minimum charged fractions are 

immediately redistributed as compensations. If we look for an analogy, this 

mechanism may resemble the varying margin within the current clearance 

mechanisms. This also acknowledges that systemic risk is not entirely a fault of 

an institution but of the emerged structure. 

(ix) Empirical simulations of single-channel and multiple-channel contagion and 

stabilisation processes are performed using large granular databases now 

available to the Bank of England. The simulations confirm the ability of the 

multiplex network to capture contagion dynamics throughout multiple 

interconnected markets. The simulations also confirm the ability of the designed 

multilayer stabilisation strategies to pre-emptively build in structural resilience 
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and reduce a potential contagion effect. The empirical systemic impact indexes 

for the same institutions differ within a single market and multiple markets, and 

therefore a strategy that builds in resilience within a single market will not 

stabilise the interconnected multiplex of markets. Building in resilience within the 

multiplex will stabilise the single markets in the context of their interlinkages 

within the overall structure. 

Next, we will extend the current analysis comparatively across different quarterly 

periods, involving in each period the three markets first separately and then as an 

interconnected multiplex. We will further design, simulate and compare different 

multi-period meta-strategies with dynamic thresholds. Finally, the multichannel 

processes can be instantiated with more granular and higher frequency data 

(Serguieva, 2016b). We anticipate confirming within the more dynamic setting, the 

current result that the potential for multichannel contagion through the multiplex 

structure contributes more to systemic fragility than single-channel contagion, but 

multichannel stabilisation also contributes more to systemic resilience than single-

channel stabilisation. 
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