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Return Reversals and the Compass Rose: Insights from 

High Frequency Options Data  

 

 

Abstract:  

We study the occurrence and visibility of the compass rose pattern in high frequency 

data from individual equity options contracts. We show that the compass rose pattern 

in options contracts is more complex than portrayed in prior work with other asset 

classes. We find that the tick/volatility ratio proposed in prior studies gives 

inconclusive results on the pattern’s visibility. A major contribution arises from 

linking the compass rose pattern with return reversals, which gives new insights on 

the pattern’s predictability. We show that return reversals are revealed as an element 

of the compass rose pattern and are particularly evident at higher sampling 

frequencies. We study the determinants of these reversals, and report that return 

reversals are primarily associated with high transaction frequency and decrease with 

the presence of additional market makers. Also, the hypothesis that there is a reaction 

to overnight events which is reflected in prices at the market open is not supported. 

Reversals are less prevalent for larger firms and when trade sizes are larger. 

 

Keywords: compass rose, high frequency data, return reversals, equity options 
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1 Introduction 

Researchers and practitioners are increasingly focused on analysis and trading at a 

high frequency (intraday) level. This is one of the main growth areas in financial 

market research in recent years. New insights on market practice and price behaviour 

are revealed by research on this type of data. This paper focuses on option markets, 

where the leverage effect magnifies the potential profit from any trading opportunities 

identified. This is the first study to link the compass rose pattern with intraday return 

reversals. This feature could significantly influence the predictability arising from the 

pattern. We also present a regression model which identifies many important 

influences on the presence of return reversals. Reversals are more evident when 

transaction frequency is high and when prices are high. They are less prevalent when 

more market makers are present, for larger firms and when trade sizes are larger. 

In the market microstructure literature, the compass rose pattern dates back to 

Crack and Ledoit (1996). The pattern appears when plotting present and lagged 

returns, whereby symmetrical lines that radiate from the origin are produced. As 

prices must be multiples of the minimum tick size, the number of lines radiating from 

the zero return is restricted and lines are more prevalent at the more popular ticks. The 

issue of seeking predictability from the compass rose can be linked to other strands of 

literature e.g. on serial correlation or the random walk (dating back as far as Kendall, 

1953 and Roberts, 1959). Return reversals are an additional layer to the analysis in 

this paper. Return reversals are embedded in the compass rose pattern but are more 

evident at higher sampling frequencies. 

 Some prior studies have concentrated on the predictive powers of the pattern 

(see Lee at al., 2005 and Chen, 1997), however no direct relationship between the 

compass rose and forecasted returns has been documented. Lee et al. (2005) suggest 
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that the compass rose pattern increases returns’ predictability in an ARCH or GARCH 

model when the return from the compass rose contains (marginally) more information 

than the forecasted returns from the model. Szpiro (1998) argues that the discrete 

nature of prices is the only condition that causes the compass rose pattern to emerge. 

Previous evidence for the existence of the pattern has been presented for equity and 

foreign exchange markets (e.g. Cai et al., 2003 and Lee et al., 2005). The calculation 

of returns for at-the-money options involves changing strike prices over time, which 

can lead to more complex dynamics in the compass rose pattern. We also show that 

the tick/volatility ratio is not supported as a consistent indicator of the visibility of the 

compass rose in individual equity options. We report that the effectiveness of the ratio 

deteriorates as the data frequency increases. Hence, at an ultra high frequency level, 

the tick/volatility ratio cannot be used as a basis for implementing trading strategies.  

The remainder of this paper is organised as follows. Section 2 discusses the 

literature on the compass rose pattern and Section 3 outlines the data sample and 

methods. Section 4 analyses the compass rose pattern in individual equity options and 

Section 5 presents the empirical evidence. Section 6 concludes the paper. 

 

2 Literature Review  

Crack and Ledoit (1996) show that the plot of daily stock returns against their lagged 

values (also known as a phase portrait) reveals a structure that resembles a compass 

rose. The plot produces symmetrical lines that radiate from the zero return, located at 

the origin. The number of these lines is restricted by the minimum tick size. Szpiro 

(1998) demonstrates that when prices do not vary, a grid pattern emerges, whereas 

when prices are allowed to float, a smeared pattern (in addition to being grid) 
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becomes apparent.
1
 Extreme volatility of prices causes the pattern to disappear as the 

plot becomes smudged. Crack and Ledoit (1996) suggest three conditions for the 

pattern to appear: price discreteness, the fact that price changes are relatively small 

(especially over intraday intervals) and that the price level of the asset varies over a 

relatively wide range.  However, Szpiro (1998) identifies that the “sole necessary and 

sufficient condition” for the pattern to emerge is that trading is in discrete prices.  

The underlying motivation for the study of the compass rose pattern lies in its 

potential predictive power and its implications for statistical tests. It is reported that 

the existence of the pattern in intraday and daily returns affects the Jarque-Bera and 

the Lilliefors tests for normality (Annaert et al., 2004) and alters the statistical 

properties of the Brock-Dechert-Scheinkmann (BDS) chaos test (Kramer and Runde, 

1997). Fang (2002) shows that for tick-by-tick data with a high tick/volatility ratio, 

the compass rose pattern distorts the asymptotic theory for the random walk test 

statistics. Amilon (2003) notes that the compass rose pattern affects the parameter 

estimates in ARCH and GARCH models. Finally, embedded nonlinearities in the 

pattern may increase return predictability (see Batten and Hamada, 2008; Chen, 1997; 

Antoniou and Vorlow, 2005). 

Previous research has studied daily or intraday versions of the compass rose 

pattern in equity markets (Amilon, 2003; Cai et al., 2003; Fang, 2002; Wang et al., 

2000), the foreign exchange market (Lee et al., 2005, Szpiro, 1998), and futures 

markets (Lee et al., 1999). Wang and Wang (2002) show that the compass rose 

pattern may be visible in returns on equally weighted portfolios. Chen (1997) and Lee 

et al. (1997) note that the existence of daily price limits influences the appearance of 

the pattern.  

                                                 
1
 These patterns refer to simulated scenarios. For a detailed illustration, see Szpiro (1998). 
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Gleason et al. (2000) demonstrate that the ratio of the tick size to returns’ 

volatility (measured as the standard deviation of returns), determines the threshold 

value above which the pattern is visible (see also Lee et al., 2005 and McKenzie and 

Frino, 2003). Wang et al. (2000) show that the pattern might not be visible for thinly 

traded stocks as too few observations fall into each radiant. Cai et al. (2003) show that 

there is an optimal frequency of observations that produce the clearest compass rose. 

Although a quantifiable measure of the pattern’s visibility is proposed by Wang and 

Wang (2002), the large amount of zero returns in the context of high frequency data 

tends to lead to inconsistent results on the application of this measure (Mitchell and 

McKenzie, 2006). 

 

3 Data and Methodology 

The data include all trades and quotes for individual equity option contracts traded at 

the NYSE-Euronext London International Financial Futures Exchange (Euronext-

LIFFE) during 2005. In order to avoid stale pricing problems while capturing a 

sufficient number of contracts, we select equity options that report at least one trade 

per day for the data period. The total number of observations for the 28 firms included 

in the sample is 133,375,200.
2
 

To calculate the returns on individual equity options, we follow the procedure 

introduced by Sheikh and Ronn (1994). Returns are calculated only for the at-the-

money, nearest to mature contracts. Using the midpoint quote, even for the highly 

traded options, may lead to the use of stale prices, hence only ask prices are used in 

                                                 
2
 6 (22) firms have a tick size of 0.25 (0.50). No tick size changes are reported during the sample 

period. 
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the returns calculation (see ap Gwilym et al., 1997 and Bollerslev and Melvin, 1994). 

At each time interval, the first ask price is obtained. For the closing return calculation, 

the last ask price of the day is obtained. The closing ask price and the first ask quote 

of the next day are used for the computation of the opening returns. Different strike 

prices can meet the at-the-money criteria for a given asset in consecutive intervals. 

The procedure adopted is the following: at every interval
3
 t, the first ask price for the 

at-the-money nearest maturity contract is obtained. Then, at the next time interval t + 

1, the ask price with the same strike price is obtained. The logarithmic return is 

calculated from these two prices. If however, there is no ask with the same strike price 

in the next interval t + 1, we search for the last available ask price in interval t which 

satisfies the criteria. When the return for the interval t to t + 1 is calculated, the same 

procedure is repeated for the next interval t + 2.  

Previous studies have focused solely on trade data to generate the pattern, 

whereas, for options, calculating returns on trades is not recommended because of the 

thin trading in options with specific exercise price and maturity combinations. In 

order to demonstrate the effect of thin trading on the visibility of the pattern, we also 

compute returns using trade data only. For comparison purposes, we also calculate 

returns using Ultra High Frequency (UHF) quotes data (i.e. all observations). 

A further section of the analysis is dedicated to the linkage between return 

reversals and the compass rose pattern. A regression model is applied to test several 

hypotheses. We expect that return reversals are less common for high-priced 

securities, since these securities tend to be followed by more analysts, hence they 

                                                 
3
 The regression variables are calculated on an hourly basis. In order to show the effect of sampling 

frequency on the visibility and properties of the compass rose pattern, we also compute returns using 

15- and 30-minute intervals (following the same procedure). 
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should be more efficiently priced on an intraday basis (see Gosnell, 1995). TS is the 

average trade size per interval and controls for differences in the traded size per 

interval. Similarly, in order to control for the trading frequency effect, Liq is defined 

as the average number of observations per interval. It is expected that a low 

proportion of reversals will be observed at the market open associated with a reaction 

to overnight events, and a higher proportion of reversals observed at the close 

associated with less information arrival (Buckle at al., 1998). We expect that the 

designated market maker scheme
4
 increases the dissemination of information, such 

that a lower proportion of reversals is expected for options contracts included within 

this scheme. Also, we hypothesize that options approaching the maturity date will 

exhibit a higher proportion of reversals as a result of the increased certainty about 

option value (assuming the absence of other major news events). Finally, higher 

valued firms will tend to have greater liquidity hence a lower proportion of reversals. 

The model studied is the following:  

 

RRi,t = + Pri,t + TSi,t + Liqi,t + ODt + CDt +                                        (1) 

               DMMi + TTMi,t + FVi,t +  

 

Where RR is the percentage of return reversals per asset i and at each hourly time 

interval t. Expected signs (discussed above) for coefficients are given in Table 2. Pr is 

the natural log of the average trade price at each time interval per contract. TS is the 

natural log of the average trade size at each time interval per contract. Liq denotes the 

average number of observations at each time interval per contract. OD and CD are the 

open and close dummies respectively. DMM is the Designated Market Maker dummy. 

                                                 
4
 Designated Market Makers are assigned by NYSE-Euronext to increase liquidity in specific 

individual equity options. Out of 28 firms in this sample, 16 are covered by DMMs. 
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TTM is the average time to maturity at each time interval. FV denotes the firm size as 

the natural log of market capitalization per day for each contract. 

 

4 Analysis of the compass rose pattern in options contracts 

Let Rt be the simple arithmetic return for the period t-1 to t, Pt be the price at the close 

of the interval t, nt is the price change in ticks h at interval t, and Si the strike price, 

, where T is the time series of prices for a single contract. When the strike price, 

S, is uniform across all contracts (or not applicable e.g. in other asset classes), the 

ratio of Rt+1 over Rt gives the following: 

 

, when Pt ≈ Pt-1 (Crack and Ledoit, 1996)                                (2) 

or 

  when Pt ≠ Pt-1 (Szpiro, 1998)                          (3) 

 

In options markets, the assumption that prices are continuously distributed cannot be 

achieved, as the appropriate computation of intraday returns is not contract-specific 

but depends on the relevant (at-the-money) strike prices at each consecutive interval. 

This makes it unlikely that , and differences between Pt and Pt-1 can be 

relatively large. Also, Equation 3 is true only for a uniform S. Hence, equation 3 is not 

universal; sub-formulas arise because of the restrictions applied for the strike price, S. 

When we expand these restrictions, the ratio of Rt+1 over Rt gives the following:   
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Sk = Sk+1, Si = Si-1                       (4) 

             

Where . It follows that the assumption of a uniform 

S for all T, namely k = i, cannot be inferred.
5
 Since,  and h is 

constant, equation 4 becomes: 

 

                             (5) 

 

Even though the use of nearest-to-mature, at-the-money contracts significantly 

reduces the variability of strike prices included in the final returns’ sample, we cannot 

preclude the use of different strike prices for consecutive returns, hence, the following 

functions are true for Rt and Rt+1: 

 

                                             (6) 

 

The latter implies that the compass rose pattern in options contracts is more complex 

than that portrayed in Szpiro (1998) for other asset classes.  

 

                                                 
5
 As the returns’ calculation formula is for the nearest-to-mature contracts only, the formulae discussed 

refer only to different strike prices. If maturity was also allowed to float, the complexity of the 

formulae would increase.  
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5 Empirical Evidence on the Compass Rose Pattern in 

High Frequency Options Data 

5.1 The Tick/Volatility Ratio as a Determinant of the Compass Rose 

Pattern 

Gleason et al. (2000) and Lee et al. (2005) demonstrate the potential importance of the 

tick/volatility ratio as an indicator of the quality of the compass rose pattern. Wang 

and Wang’s (2002) Q measure for the pattern’s visibility is not reliable for assets with 

a tick/volatility ratio greater than 0.5 (see Mitchell and McKenzie, 2006). Following 

from these studies, this section analyses the tick/volatility ratio in order to achieve 

further insights on its applicability in high frequency data and in options contracts. 

We propose that the visual inspection of the pattern is ultimately necessary because 

the existing attempts to propose quantitative measures are not adequate for options 

contracts or for any application based on ultra high frequency data (for any asset 

class).  

 

***Insert Table 1 about here*** 

 

Table 1 presents the tick/volatility ratio for all 28 firms (only calls are 

presented) for different time intervals. Panel A is based on employing the ultra high 

frequency (full, quotes) dataset. Panels B and C present the results for tick/volatility 

ratios and visual quality at 15-minute and 30-minute intervals respectively. Panel D 

results are based on actual trades. Panels A and D (UHF and trades) demonstrate the 

importance of time in the appearance of the pattern, which will be discussed later. The 
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other important category of information documented in Table 1 is the percentage of 

observations that fall on the horizontal and vertical axes.  

Based on Panels B and C of Table 1, it is easily asserted that the quality of the 

pattern is not only determined by the tick/volatility ratio, as this would mean that the 

quality would actually improve for decreasing volatility levels (taking into account 

tick size changes, i.e. intra-tick levels). In particular, Table 1 shows that the quality of 

the pattern is not an increasing function of the tick/volatility ratio. As an example, 

Figures 1a and 1b show two option contracts (OAZA and OCPG) that exhibit 

contrasting results on the appearance of the pattern when sampled at 15 minute 

intervals. It is clear that the pattern is more (less) visible for OCPG (OAZA), which 

contrasts with the tick/volatility ratio supposition of Lee at al. (2005), as OCPG has 

the lower ratio.    

 

***Insert Figure 1 about here*** 

 

At relatively high tick/volatility ratios (within a given tick size), the pattern is 

clearly visible at higher sampling frequencies. For lower sampling frequencies, there 

are not enough data points to make the pattern appear. The latter is demonstrated in 

Figure 2 for OBBL, where the pattern starts to emerge at the higher sampling 

frequency (Figure 2b in contrast to Figure 2a). Table 1 shows that when a higher 

frequency of data is studied, the quality of the pattern consistently increases.  

 

***Insert Figure 2 about here*** 
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The above analysis implies that the tick/volatility ratio alone gives 

inconclusive results on the strength of the pattern. Cai et al.’s (2003) analysis captures 

the fact that trading frequency, and especially the percentage of observations that lie 

on the axes, play an important role in the quality of the pattern. The latter partially 

explains why contracts with similar tick/volatility ratios do not produce similar 

quality patterns. The second explanation of the above is associated with differences in 

the price level of securities, which is embedded in the calculation of returns and is 

discussed in previous research (see Gleason et al., 2000, McKenzie and Frino, 2003 

and Lee et al., 2005).  

We argue that prior studies have failed to grasp the full extent of the trading 

process by imposing artificial restrictions (clock time) on the trading process. That is, 

by using data collected at 1-minute, 5-minute intervals and at lower frequencies, a 

substantial amount of information is lost when observations are discarded. Panel A of 

Table 1 confirms that the compass rose pattern is easily visible at the UHF level. 

Figure 3a shows that even for very low tick/volatility ratios, the compass rose pattern 

is easily discernible. For the UHF level, Table 1 indicates that there is no close link 

between tick/volatility ratios and the pattern’s visual quality. This result is very much 

affected by the fact that, as the number of observations increase, the price and 

volatility levels remain relatively stable. Even at the UHF level, when prices vary 

sufficiently, the compass rose pattern becomes “smudged” and “smeared” (as 

expected by Szpiro (1998)). This means that some rays overlap and cause the pattern 

to disappear, which is demonstrated to some extent in Figure 3b. Finally, Panel D of 

Table 1 shows that the appearance of the pattern deteriorates when trade data are 

used. Hence, the tick/volatility ratio, when used for trade data, gives no indication on 

the strength of the pattern. The high proportion of observations on the axes is at least 
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partially one of the reasons for the low visibility of the compass rose pattern in trade 

data (see Cai et al., 2003).   

 

***Insert Figure 3 about here*** 

 

5.2 The Compass Rose Pattern and Return Reversals 

An issue that has not been previously documented in the literature is the relationship 

of the compass rose pattern with return reversals. A price reversal is defined as “a 

price change in the opposite direction to the previous price change” (Gosnell, 1995, p. 

226). Similarly, a return reversal occurs when a positive (negative) return follows a 

negative (positive) return.  

Evidence of intraday price reversals is previously documented (see Buckle et 

al., 1998 and Grant et al., 2005). The frequency of reversals is closely linked to the 

rate of information arrival to the market and the correction of previous mispricings 

(see Cox and Peterson, 1994). That is, when a price change (return) is followed by 

another price change (return) in the same direction, it is assumed that new information 

is being incorporated into prices. If a return reversal occurs, there is no new 

information. Gosnell (1995) identifies that controlling for price reversals is important 

for testing market efficiency. Also, Grant et al. (2005) note that price continuations at 

the market open may lead to an overreaction and any jump in prices at the market 

open will often be followed by a correction, which means that price reversals will 

appear. While the latter suggests that a contrarian strategy may potentially exploit this 

overreaction, Grant et al. (2005) report that positive returns generated by this strategy 

are eroded by transaction costs. 
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In a compass rose plot, price reversals are found in the north-west (NW) and 

south-east (SE) quadrants. These are cases where negative returns are followed by 

positive (NW) and positive returns are followed by negative (SE). Zero lagged returns 

and/or zero returns fall on the axes, hence, are neither reversals nor continuations. The 

existing literature on the compass rose pattern has shown no clear indications of a 

prevalence of return reversals.  

 

***Insert Figure 4 about here*** 

 

Figure 4a reveals that when UHF returns are plotted, a parabolic line that declines 

from the NW to the SE through the origin can emerge.
6
 Before we investigative the 

properties of the pattern, we discuss some explanations found in the literature. Firstly, 

the non-linearity of the pattern arises from the arithmetic computation of returns. The 

use of logarithmic returns would replace the parabolic line with a straight line. 

Secondly, Park (1995) shows that bid-ask bounce i.e. successive quotes or trades 

where ask and bid prices follow each other generates price reversals.  However, in the 

context of the findings presented in Figure 4, bid-ask bounce explanations of the 

pattern are not feasible because these options returns series are created using only ask 

prices.  

A question remains as to why the magnitude of this pattern varies and in some 

cases is not noticeable (e.g. Figure 4b). Figure 5 presents the average duration 

observed between two consecutive returns for all option contracts in the UHF sample. 

The horizontal axis denotes duration in seconds and the vertical axis denotes the 

                                                 
6
 A similar effect is observed in electricity prices (see Batten and Hamada, 2008). Lee at al. (2005) note 

that the same feature can emerge using a Monte Carlo simulation. 
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percentage of observations reported during the particular time interval. The columns 

are observations-weighted so that transaction frequency differences across firms do 

not affect the results. We hypothesize that, if trading differences exist between the 

four quadrants, these will be exploited by traders and duration will reveal the speed of 

adjustment in ways similar to that found in Christie and Schultz (1994), where it is 

reported that traders react differently in assets with clustered prices. The hypothesis is 

also closely linked to the fact that volume is evenly distributed across the four 

quadrants.  

 

***Insert Figure 5 about here*** 

 

Figure 5 shows that at a duration of one second positive momentum is the 

most common observation and as the plot is observations-weighted, duration 

differences across the four quadrants disappear. However, the results also reveal that 

there is a greater tendency for return reversals at durations of 15 seconds or more. The 

latter is documented across all options contracts and it might be partially explained by 

strategic quote behaviour.  

Buckle et al. (1998) show for the Short Sterling and FTSE100 futures 

contracts that price reversals are relatively low at the market open and high at the 

market close. The findings on the market open and close imply information arrival at 

the open and the implementation of trading strategies by day traders at the market 

close. Also, the authors suggest that there is a strong link with scheduled 

macroeconomic announcements, thus, the intraday proportion of reversals reaches its 

lowest point at the time of these announcements. Similarly, Gosnell (1995) shows that 
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price reversals for NYSE stocks are low at the market open and relatively stable 

during the trading day and near the market close.  

 

***Insert Figure 6 about here*** 

 

Figure 6 shows that a clear intraday pattern of return reversals emerges from 

our dataset. In particular, reversals are most prevalent at the market open and the 

market close, whereas during the middle of the trading day, they are less common. 

This does not support the hypothesis that overnight news is disseminated at the 

market open. In contrast, Figure 6 suggests that information arrival is maximised two 

hours after the market open (10:00am). This coincides with the release time of the 

scheduled macroeconomic announcements from the Bank of England and the Office 

of National Statistics.
7
  

Table 2 presents the results for the regression model of return reversals.
8
 

Hypotheses for the signs of the coefficients were discussed in Section 3. We 

anticipate that higher-priced securities exhibit fewer return reversals due to being 

more efficiently priced. However, the results show that there is a strong positive 

association between the price level and the percentage of return reversals. This 

finding is in contrast with Gosnell (1995). Hence, return reversals are more common 

for high-priced options. As hypothesized, larger trade size is associated with a lower 

proportion of return reversals. In line with the price level variable, we hypothesize 

that the more liquid firms will exhibit less return reversals (see Gosnell, 1995). The 

                                                 
7
 The release time for the scheduled macroeconomic announcements is 09.30GMT and the figure uses 

hourly data. 

8
 Estimation is by OLS. No autocorrelation or heteroskedasticity is detected. 
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liquidity variable shows that higher trading frequency is associated with more return 

reversals which may reflect strategic trading or quotation.  

 

***Insert Table 2 about here*** 

 

The opening and close dummies are both highly significant and positive 

confirming the U-shaped pattern of Figure 6. The result for OD is not consistent with 

Buckle et al. (1998), but supports the hypothesis that liquidity traders operate at the 

market open (see Cox and Peterson, 1994). The CD dummy is consistent with a lack 

of information arrival at the market close.  

The DMM dummy is highly significant and positive which reflects the 

Euronext designated market makers’ obligation to offer continuous prices at each 

price level (hence, a lower proportion of reversals). The time-to-maturity variable is 

significant for calls only. The findings suggest that return reversals marginally 

increase close to expiration dates. Finally, the firm value variable is negative and 

highly significant, which is consistent with the hypothesis of Gosnell (1995) that 

assets of larger firms are more liquid.  

Table 2 indicates that return reversals in individual equity options are more 

common at higher price levels and when liquidity levels are higher. Liquidity seems 

more important than information at the market open. The Designated Market Maker 

scheme enhances the dissemination of information, thus more market makers lead to 

fewer reversals. Finally, options that are closer to the expiration date tend to exhibit 

more frequent return reversals. 
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6 Conclusions 

The paper studies the occurrence and visibility of the compass rose pattern in high 

frequency individual equity options data. We show that the compass rose pattern in 

options contracts is more complex than for other asset classes (e.g. Szpiro (1998)) 

because the at-the-money strike price can change over time. The tick/volatility ratio is 

not a reliable indicator for the strength of the compass rose pattern and its 

effectiveness decreases at higher data frequencies. This point is very important 

because it is widely claimed that the compass rose pattern is an inherent feature of 

discrete asset prices, thus identifying a measure of its visibility is of great 

significance.  

Lee at al. (2005) suggest that the visibility of the compass rose pattern may 

give rise to increased returns’ predictability. Such indications have particular 

significance for options contracts because their relatively low price levels enhance the 

implications of discreteness (Amilon, 2003), while the leverage effect in options 

magnifies potential profits from any market inefficiencies. The manifestation of return 

reversals in the compass rose pattern may indicate an increase in returns’ 

predictability in some situations, arising from serial correlation. High frequency 

traders are well placed to capitalise on any such predictability. The paper contributes 

new evidence that the pervasiveness of the compass rose pattern is strongly associated 

with trading frequency. However, our findings do not indicate clear trading strategies 

based on any metric for the visibility of the pattern. 

A major element of the paper’s contribution arises from linking return 

reversals with the compass rose pattern. We show that return reversals are captured 

within the compass rose pattern, especially at higher sampling frequencies. The 

parabolic diagonal line that can distort the compass rose pattern when UHF data are 
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used is caused by an increased presence of return reversals. Duration estimates show 

that strategic trading may be associated with the timing of reversals. In contrast with 

Gosnell (1995), return reversals are found to increase with price level and with the 

frequency of price observations. However, reversals are inversely related to trade size, 

as hypothesised. Hence, the evidence on the relationship between return reversals and 

liquidity proxies is mixed. This is a potential avenue for future research. 

The hypothesis that there is a reaction to overnight events which is reflected in 

prices at the market open is not supported. Return reversals could remain prevalent at 

this time due to heterogeneous expectations among market participants.  However, 

intraday news arrival does have an impact by reducing the percentage of reversals 

observed in a given interval. Finally, a lower proportion of return reversals is 

associated with assets which have designated market makers, implying an increase in 

the information content of quotes in these cases.  
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Table 1: Price level, tick/volatility ratios and visual inspection of the compass rose pattern for all contracts. 

   Panel A: UHF Quotes Panel B: 15-min Panel C: 30-min Panel D: Trades 

Name 

Tick 

Size 

Average  

Price Level Tick/Vol 

% on 

Axes 

Visual 

Quality Tick/Vol 

% on 

Axes 

Visual 

Quality Tick/Vol 

% on 

Axes 

Visual 

Quality Tick/Vol 

% on 

Axes 

Visual 

Quality 

OAWS 0.25 13.85 7.26 30.80 Good 11.06 38.24 Fair 9.91 31.07 Poor 15.65 72.73 Bad 

OBBL 0.25 16.36 1.05 33.51 Good 10.35 34.32 Fair 9.47 29.29 Bad 13.37 66.19 Bad 

OBTG 0.25 7.04 1.22 44.21 Excellent 13.01 67.40 Fair 11.32 62.23 Poor 16.73 80.92 Bad 

OSAN 0.25 10.86 1.52 33.76 Good 10.80 44.89 Fair 9.67 38.08 Poor 16.22 78.26 Bad 

OTCO 0.25 11.36 6.02 43.13 Excellent 11.36 46.48 Good 9.89 40.55 Fair 11.60 60.68 Bad 

OVOD 0.25 3.67 1.01 52.40 Excellent 17.69 88.05 Fair 14.74 82.32 Poor 20.53 92.26 Bad 

OAAM 0.5 60.15 18.98 37.45 Fair 21.99 27.65 Poor 19.31 20.75 Bad 23.07 41.84 Bad 

OAZA 0.5 72.89 1.99 25.16 Fair 21.39 21.83 Bad 19.11 16.07 Bad 24.95 52.30 Bad 

OBLT 0.5 31.91 16.55 39.23 Good 22.30 36.83 Fair 19.65 29.02 Fair 22.79 50.63 Bad 

OBOT 0.5 22.82 11.98 36.74 Excellent 21.79 40.71 Good 19.55 34.66 Fair 24.88 65.10 Bad 

OBP 0.5 32.06 2.16 36.90 Good 21.90 42.69 Good 19.65 37.79 Bad 27.59 67.96 Bad 

OBSK 0.5 18.87 2.01 37.67 Excellent 22.74 53.77 Good 19.67 44.25 Fair 31.51 77.72 Bad 

OCPG 0.5 18.35 9.44 9.99 Excellent 18.23 26.85 Good 18.66 33.62 Good 25.85 73.61 Bad 

OCUA 0.5 18.60 2.18 38.08 Excellent 21.30 46.57 Fair 20.03 44.68 Poor 22.48 64.29 Bad 

OEMG 0.5 55.97 23.42 13.80 Fair 22.48 24.13 Poor 19.41 18.13 Bad 28.15 63.91 Bad 

OGNS 0.5 19.55 1.97 39.38 Good 21.72 52.19 Fair 20.43 48.07 Poor 34.34 78.25 Bad 

OGXO 0.5 38.02 2.15 33.99 Fair 21.08 31.97 Poor 18.84 23.77 Bad 23.97 58.92 Bad 

OHSB 0.5 21.43 2.21 39.23 Good 23.41 50.09 Good 20.83 41.71 Fair 32.43 81.07 Bad 

OKGF 0.5 20.32 11.98 27.93 Excellent 20.08 39.59 Good 19.07 36.08 Fair 34.34 81.25 Bad 

OLS 0.5 42.68 14.60 21.15 Fair 21.52 26.05 Fair 18.88 22.92 Bad 26.33 54.44 Bad 

OPRU 0.5 28.86 3.29 36.48 Fair 21.39 38.74 Poor 19.73 37.21 Bad 24.34 65.78 Bad 

ORBS 0.5 43.39 1.96 26.57 Fair 21.02 29.02 Poor 19.30 23.68 Bad 26.04 63.88 Bad 

ORTZ 0.5 70.97 2.04 21.85 Fair 22.08 23.92 Poor 18.72 17.26 Bad 24.69 43.68 Bad 

ORUT 0.5 29.59 16.29 36.81 Good 22.42 35.85 Fair 20.29 31.34 Poor 24.13 60.16 Bad 

OSCB 0.5 38.22 16.75 46.00 Fair 21.77 31.11 Poor 19.43 24.27 Bad 26.55 59.70 Bad 

OSPW 0.5 14.93 8.91 24.88 Excellent 21.20 52.24 Good 20.45 53.16 Fair 30.10 80.50 Bad 

OTAB 0.5 33.30 2.18 26.26 Good 20.89 33.58 Poor 19.39 27.75 Bad 30.51 71.17 Bad 

OTSB 0.5 24.08 2.05 38.59 Good 21.82 46.83 Fair 20.03 40.68 Poor 24.38 65.00 Bad 

The table presents the tick/volatility ratio for all 28 contracts (call only) for different time intervals. Panel A uses the ultra high frequency (full, quotes) dataset and Panel B is created using 

trades.  Panels 2 and 3 show tick/volatility ratios and visual quality at 15-minute and 30-minute intervals respectively. The visual quality of the pattern is ranked as follows: bad, poor, fair, 

good, excellent (see Wang and Wang, 2002). 
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Table 2: OLS Regressions 

Variable Expected Sign Call Put 

Intercept  53.67*** 56.83*** 

   42.56 45.37 

Pr - 4.96*** 4.55*** 

   29.70 26.72 

TS - -3.00*** -2.70*** 

   -15.98 -14.57 

Liq - 0.02*** 0.01** 

   5.86 2.06 

OD - 5.46*** 6.05*** 

   14.62 16.67 

CD + 1.10*** 1.07*** 

   3.18 3.18 

DMM - -3.79*** -3.44*** 

   -13.57 -12.65 

TTM + -0.02* -0.01 

   -1.80 -0.73 

FV - -2.10*** -2.42*** 

   -13.11 -15.89 

R-Squared  0.10 0.09 

No. of Obs.  54,235  54,410 
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Where RR is the percentage of return reversals per time interval; Pr is the natural log of the 

average trade price at each time interval per contract; TS is the natural log of the average 

trade size at each time interval per contract; Liq denotes the average number of 

observations at each time interval per contract; OD and CD are the open and close dummies 

respectively; DMM is the Designated Market Maker dummy; TTM is the average time to 

maturity at each time interval; FV denotes the firm size as the natural log of market 

capitalization per day for each contract. *, **, *** significant at the 10%, 5% and 1% 

levels, respectively. T-statistics are reported. 
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Figure 1a Figure 1b 

 

Figures 1a and 1b. 15-Minute Time Interval Plots for OAZA (21.39) and OCPG (18.23) 

respectively. Tick/Volatility Ratios in Parentheses. 
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Figure 2a Figure 2b 

 

Figure 2a: 30 minute Interval Plot for OBBL 

Figure 2b: 15 minute Interval Plot for OBBL 
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Figure 3a Figure 3b 

Figures 3a and 3b. UHF Plots for OBTG (1.22 / 44.21%) and OEMG (23.42 / 

13.80%) respectively. Tick/Volatility ratios and the Percentage of Observations on the 

Axes are in parentheses. 
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Figure 4a Figure 4b 

 

Figures 4a and 4b. UHF Plot of OCUA and OEMG respectively 
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Figure 5. Average Duration Estimates 
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Figure 6. Intraday Distribution of Reversals 
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