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Abstract—This paper applies a constrained MPC
controller to control two quadrotors which carry a
cable-suspended payload together. The system dynam-
ics is derived from the Euler-Lagrange equation. Given
the dynamics complexity, a linear MPC controller is
employed for a control task, which is to make the pay-
load to track a desired trajectory while stabilising the
two quadrotors. The constraints on quadrotor control
signals and payload positions are taken into consider-
ation. The constrained controller could be useful for
practical control systems. The simulation results are
provided to evaluate the control performance against
an LQR controller.

I. INTRODUCTION

The research on Unmanned Aerial Vehicles (UAVs)
transporting payloads by cables is growing worthily with
a wide range of potential applications. In recent decades
the maturation has been seen for civil and military appli-
cations in different research areas such as emergency res-
cue, reconnaissance, firefighting and freight transportation
missions. The problem of multiple quadrotors transporting
a cable-suspended payload is still challenging due to the
complexity of systems.

Carrying a cable-suspended load by one, two, or mul-
tiple quadrotors have been investigated recently using
various advanced control techniques such as linear and
nonlinear controllers. A geometric controller was con-
structed to achieve the system stability of controlling a
cable suspended payload with multiple quadrotors follow-
ing a desired trajectory in [1], where a geometric feedback
controller was designed initially for a reduced system then
extended to the full system through singular perturbation
method. Cooperative transportation of a cable suspended
load was presented by the authors in [2] and [3] considering
the tracking controller based on a coordinate-free model.

Those non-linear controllers are able to stabilise the
control system but the dynamic performance cannot be op-
timised. Furthermore, the constraints on system states and
input signals are not considered. In practical applications,
it is necessary to handle these constraints for a control
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system in order to achieve a better control performance.
The constraints to be considered in such a system could
include the payload angles, positions, or quadrotor thrusts.

Model Predictive Control (MPC) has emerged as one
of the most popular and valuable control techniques since
the 1980s. The strategy of an MPC controller is to find a
sequence of optimal controlling signals in a finite optimiza-
tion horizon first and then select the first one to control
the system recursively at each time step. It can not only
optimise the cost function but also take the state or input
constraints into consideration.

Many MPC studies are proposed for single quadrotors in
two or three dimensions to implement different tasks and
improve the system performance. The simplified models
led to the design of a robust MPC controller in [4] to con-
trol the attitude of single unmanned quadrotor helicopter
in severe environmental conditions based on piecewise
affine linear systems. The challenging issue is to consider
the wind-disturbance when executing sudden manoeuvres.
The constraint on input signals was taken into account
of this system. In [5] two control algorithms LQR and
MPC were presented based on linear quadratic technique
and implemented on a quadrotor testbed (Qball-X4) to
control against the loss of control effectiveness with a fault-
tolerant control strategy. A linear MPC was proposed in
[6] and the model was simplified with only two-dimensional
movement based on the least square identification. An
integral MPC controller was applied for the autonomous
flight of single quadrotor to improve the translational mo-
tion tracking performance in [7]. The system was modelled
based on a set of Piecewise Affine (PWA) systems and the
physical constraint was considered. In manoeuvring over
constrained environments, a robust MPC controller was
presented in [8] for single quadrotor with a fixed payload
to minimize the predicted tracking errors.

Cooperative UAV control in a form of multiple team
formation was accomplished under a linear MPC control
law [9] using the Qball-X4 quadrotor. This approach was
implemented without constraints and no load considered.



Fig. 1: Two quadrotors carrying a payload

In [10] an MPC controller was presented with PID for a
quadrotor to track a predefined trajectory without con-
straints. An optimal flight control MPC for a quadrotor
with a suspended load [11] was presented using visual
feedback to compute the load position accurately. The
state vector and control vector constraints were applied.
In [12] an unconstrained MPC controller was proposed to
track a trajectory for quadrotors based on three levels of
control. By comparing the results of linear and nonlinear
MPC control to track a trajectory using Micro Air Vehicles
(MAVs) under wind disturbance [13], it shows that the
difference between them is not significant.

Our previous works on single quadrotor in [14] and two
quadrotors transporting a cable-suspended payload used
an iterative LQR controller, which is an optimised solution
for a non-linearity consideration, but without constraints.
In this paper, we develop a constrained MPC controller for
two quadrotors to transport a cable-suspended payload.

In the following, Section II presents the mathematical
model of a cable suspended payload by two quadrotors.
Section IIT illustrates the development of a constrained
MPC controller. Section IV shows the simulation results.
The conclusion and future work are given in Section V.

II. MODEL DESCRIPTION

The full system is presented in Fig. 1 including the in-
ertial frame, intermediate frames, and body-fixed frames.
The vertical and horizontal forces generated by each pro-
peller and swing angles of the cable with respect to the
intermediate frame are also shown where the intermediate
frames are the translation results from the inertial frame
to the centres of quadrotors. See table I for details. In order
to simplify the problem, some reasonable assumptions are
given as follows:

1) Each quadrotor is considered as a symmetrical rigid
body.

2) The payload is considered as a point mass and is
attached at the centre of each quadrotor.

3) The cable tension is always non-zero.

4) The air drag of the propellers is negligible.

TABLE I: Symbols and Definitions

Symbol Description
Se : TelYeze Inertial frame
Sk xyz Intermediate frame: translation from Se

Sl’f:w’gy’b“zf
E, cR3,i=1,2,3
e eR3,i=1,2,3

n* =[6,6,4]" € R3

to the center of the ith quadrotors
k=1,2

Body-fixed frame for quadrotor,
Unit orthogonal vectors of Se
Unit orthogonal vectors of Sllf
Euler angles of quadrotor defined
inZ-Y-X

T%b € R3%3 Transformation matrix from Se to Sl’;’
QF e R3 Angular velocity of quadrotor in Sf
mg Mass of the quadrotor
mp Mass of the payload
Ié €ER3 Inertial matrix of the quadrotor

with respect to S{f
Eg cR3 Position of the center of quadrotor in Se
Ep €R3 Position of the payload in Se
Tp,Yp,zZp Three elements of £p
Lk Length of the rope
L’gg Length of the quadrotor arm
ok gk e R Angles of the rope with respect to S¥
pF e R3 Unit vector from the payload to

the attached point

ikz, ikh €R3 Vertial and horizontal forces generated

dir by ith propeller, i =1,2,3,4
kp,ky € R Propeller aerodynamic parameters

in table

Some symbols and acronyms used in this paper are listed
I. The following relationships are available.

pF = [—sin(ﬁk), —cos(a®)cos(BF), sin(a®)cos(8F)

]T

§p=uapE1+ypE2+2pEs

€= €r + Lipt

1 —sin(6%) ¢k
QF =10 cos(¢¥) sin(¢F)cos(6%) ok
0 —sin(¢*) cos(¢¥)cos(6) Pk

The

quadrotor-payload
13 degrees  of

(1)

A. Euler-Lagrange Equation

has
q =

system

freedom.  Choosing

I:xP7yPaZPaalaﬂla¢17915w17a2a627¢2762a

z/)Q]T as the generalized coordinates will not only be
convenient for controlling the trajectory of the payload
but be helpful for extending to multi-vehicle situations.
As a result, the Lagrangian L is composed by subtracting
the kinetic energy T from the potential energy U and
clarified in the equations below

1 . . 1 : 1
T= §mP(£P)T -&p + imé(fé)T ‘ €1Q + E(QI)TIéQQI
1 . . 1
Smo(Ed)" €4+ 5 (@) 10

U = mpg€p - Es+mbgél, - Es +mygtl - Es
L=T-U
(2)



Then the Euler-Lagrange equation is

d (0L oL
(%)% -9

The generalized force @ defined here is based on the
choice of the generalized coordinates g and the external
conservative forces F;. For each quadrotor, the force Fj
consists of two complements f;., and f;n (equation (4))
which are related with the angular speed w; of ith propeller
[14].

(3)

FF=fF 4k i=1,2,34

K2

fE =kpwlel,i=1,2,3.4

1z

f{ch = ka%eg 4
ko 2 k (4)
Jon = knwsey
k 2 _k
J3n = —knwses
k 2k
Jip = —knwiel

where e TeQbEz» 1=1,2,3.

As seen in Fig. 1, the point where the force Fz-k is applied
on is the centre of each propeller and the corresponding
position vector is noted as £ seen in equation (5).

& = &5+ Lge}

&5 = €5 + Loeb

&5 = &5 — Loet

& = &5 — Loeb

According to the principle of virtual work, the general-
ized forces are given by equation (6) [14].

Sy e

Jj=1k=1

(5)

oF) &)

i=1,2,.,13
0q;

(6)

Taking the generalized forces and equation (2) into
equation (3), the Euler-Lagrange equation can be rewrit-
ten in

Mg = f(q,q) (7)

In the trajectory tracking control, the operating point is
considered as the balance situation where the Euler angles
of both quadrotors equal to zero and the cable angles equal
to the designed constants. The state & and control u of
the system are defined as below:

. . . 1 -1 1 A1 41 1 pl
wZ[ZP,LL‘P,yP,yP,ZP,ZP,OL7OZ,B76,¢77¢,0,
0", ot o, 6%, B2, 0%, 9%, 67,07, 0%, 9%, %] e R

T _ o8
U =[w, wa, W3, Wi, Ws, wWe, wr,ws]” €R

The linearised model is obtained in equation (8).

q:M*lg—f Aa:—f—M’lﬁ Au
€T

o U uo

(8)

Furthermore, equation (8) can be transformed into a
discrete form.

9)

Tr4+1 = Arxr + Brug

where Ay, € R?6%26 B, c R?6x8,

III. CONSTRAINED LINEAR MODEL PREDICTIVE
CONTROL

Model predictive control (MPC) is a worth describing
method based on the principle of prediction to a finite
horizon at each sample starting from the current state.
Subjected to the state and control constraints, MPC is
solved to determine the optimal control input sequence
over the finite horizon. Then, it implements the first
control input in the optimised control input sequence. The
discrete-time dynamical model description for the system
with two quadrotors carrying a cable-suspended payload
is shown in equation (9).

The finite horizon optimal control solves the following
constrained optimisation problem at each time instant &
to implement the MPC algorithm. The cost function is
presented by:

J=(zn —2N) Qs (N — z})
N+k—1
+ ) (2 — 2)TQ(xr — 2}) + uf Ruy

t=k

(10)

where the terminal state and its desired state are denoted
by xn and x};, respectively, and the reference state is
denoted by xj. The prediction horizon is denoted by IN.
Qs and Q are presented by positive semidefinite state
matrices and R is presented by positive definite matrix.
The constrained optimisation problem (COP) at each

time instant k is

min J

Uk

Subject to
Tp4+1 = Apxr + Brug
xp € X, the state constraints

ug € U, the control constraints

where the state and input constraints are presented as

X= {:Bkmin < Tk < wkmaw}
U= {ukmin < Ug < ukmaaz}

A quadratic programming (QP) algorithm can
be used to solve the COP problem at each time
instant k, which can produce an input sequence
{Upjks W1k -+ »UkyN—1k}- Then the true input
at kis up = up-



TABLE II: The used parameters for the system model

Symbol Definition Value Units
Igz Roll Inertial 4.4 x 10°3  kg.m?
Igy Pitch Inertial 4.4 x 10~3  kg.m?
Igz Yaw Inertial 8.8 x 10=3  kg.m?
le Mass 0.55 kg
m% Mass 0.55 kg
mp Mass 0.2 kg
g Gravity 9.81 m/s?
Lg Arm Length 0.17 m
Lk Rope Length 1 m
I Rotor Inertial 4.4 x 1075 lcg‘m2

IV. SIMULATION RESULTS

The simulation is conducted in MATLAB. The applied
parameters for this simulation are shown in table II. We
compare the control performance of the MPC controller
and an LQR controller to demonstrate how the constraints
on state and control vectors affect the performance.

The tracking control simulation results of the suspended
payload with two quadrotors by cables are verified by
utilizing the desired trajectory, which is a 3D-spiral trajec-
tory. The simulation on an eight shape trajectory is also
conducted.

The desired load 3D spiral trajectory is defined by
z* = cos(2m/t),y* = sin(2w/t),z* = 0.1 % ¢, where t
is started from 0 with a sampling time of 0.2s, and the
tracking simulation is up to 30s. The MPC prediction
horizon is selected as 10. The operating point of two
quadrotors with suspended load is made with rope angles
a; = 90°, 81 = 45% as = 90°, 82 = —45°. The weight
matrices of the cost function are selected as

Q = Qn =diag([1000,1,1000,1,1000,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1))

R = diag([0.0001,0.001,0.0001,0.001,0.0001, 0.001,
0.0001, 0.001])

With regard to the constraints on control vectors, the
maximum saturation limit is considered to reflect the
limitation of practical rotor’s power. They are presented
by the maximum angular velocity for all the rotors in both
quadrotors FF < 700rad/s.

With regard to the constraints on state vectors, the
maximum and minimum limits are considered to reflect
the limitation of the environment. This includes the pay-
load position limit in z direction, and the payload swing
angle limit to avoid the possible collisions. The desired
load trajectory is shown in Fig. 2 represented by the red
trajectory starting from (1,0,0). The constraints includes
xr < —0.5 and 88° < al,a2 < 92°, 40° < 1, B2 < 50°.

The MPC trajectory is shown in Fig. 2 represented by
the blue trajectory. It starts from (0,0,0), then moves

z-dimension

y-dimension

15 15 x-dimension

Fig. 2: 3D load position using the constrained MPC con-
troller

towards the desired initial point (1,0, 0) and closely tracks
the desired.

The comparisons between the MPC and LQR. controller
on the payload position and the Eular angles of the first
quadrotor are shown in Figs. 7, 8, 9, and 10. Figs. 7 and 8
show the MPC controller performs better on tracking the
desired ones, and constraining the position than the LQR
controller. Figs. 9 and 10 show the MPC controller has a
smoother pose than the LQR controller.

The desired load eight-shape trajectory is shown in red
in Figs 11 and 12. The desired initial position is (0,0, 0).
The LQR tracking performance is shown in Fig. 11. It can
be seen that the LQR tracking trajectory tries to move
closer to the desired one, but fails due to the constraint
imposed on the thrust. Further, we can not impose the
constraints on the state variables. The MPC tracking
trajectory is shown in Fig. 12 where the input thrust
and state constraints, including z; < —0.5 and 88° <
al,a2 < 92° 40° < B1,52 < 50° are imposed. It has
a very slight overshoot from the desired one short time at
the initial position. Then the tracking performance works
very well. The = direction constraint is clearly observed
and respected. In general, a much better performance has
been demonstrated by the MPC controller when compared
with the LQR controller.

The LQR trajectory is shown in Fig. 3 represented by
the blue trajectory. It starts from (0,0,0), then moves
towards the desired one, but fails to move close to it due
to the limits applied to their angular velocities.

Four angular velocities of the first quadrotor using the
MPC controller is shown in Fig. 4. It is clearly indicated
that all of them are capped at 700rad/s, i.e. the con-
straints on control vector are respected. Four angular ve-
locities of the second quadrotor have a similar performance
and are ignored here.

The rope angles with the first quadrotor using the MPC
controller and the LQR controller are shown in Figs. 5 and
6, respectively. It can be seen that the constraints on the
angles are respected by the MPC controller, but not by
the LQR controller.
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Fig. 3: 3D load position using the LQR controller with the
control limitation
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Fig. 4: The angular velocities of the first quadrotor using
MPC controller

V. CONCLUSION

In this paper, a constrained MPC controller is ap-
plied for tracking control of a cable suspended payload
with two quadrotors. A nonlinear model of the system
is developed and linearized. The constraints on state and
control vectors are considered. We evaluate our model and
the MPC controller using simulation and compare the
performance of the constrained MPC controller and the
LQR controller. The simulation results show the MPC
controller is better in controlling the system than the
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Fig. 5: The rope angles with the first quadrotor using the
MPC controller
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Fig. 6: The rope angles with the first quadrotor using the
LQR controller
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Fig. 9: The Eular angles of the first quadrotor using the
MPC controller
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Fig. 10: The Eular angles of the first quadrotor using the
LQR controller
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Fig. 11: 3D load position using the constrained MPC
controller

LQR controller under the consideration of constraints. The
constraints are an important factor in applying a controller
to practical systems. Our next step work will be focused
on the implementation of the constrained MPC controller
on a practical system.
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