
Learning Patterns from Imbalanced Evolving Data
Streams

Manal Almuammar
School of Computer Science and Electronic Engineering

University of Essex
Colchester, UK

Email: manalm@essex.ac.uk

Maria Fasli
Institute for Analytics and Data Science

School of Computer Science and Electronic Engineering
University of Essex

Colchester, UK
Email: mfasli@essex.ac.uk

Abstract—Learning patterns from evolving data streams is
challenging due to the characteristics of such streams: being
continuous, unbounded and high speed data of non-stationary
nature, which must be processed on the fly, using minimal
computational resources. An additional challenge is imposed by
the imbalanced data streams in many real-world applications,
this difficulty becomes more prominent in multi-class learning
tasks. This paper investigates the multi-class imbalance problem
in non-stationary streams and develops a method to exploit real-
time stream data and capture the dynamic of patterns from
heterogeneous streams. In particular, we seek to extend concept
drift adaptation techniques into imbalanced classes’ scenarios,
and accordingly, we use an adaptive learner to classify multiple
streams over a sequence of titled time windows. We include
examples of the falsely classified instances in the training set,
then we propose using a dynamic support threshold to discover
the frequent patterns in these streams. We conduct an experiment
on the car parking lots environment of a typical University with
three simulated streams from sensors, smart pay stations and a
mobile application. The result indicates the efficiency of applying
adaptive learner approaches and modifying the training set to
cope with the concept drift in multi-class imbalance scenarios, it
also shows the merit of using a dynamic threshold to detect the
rare patterns from evolving streams.

Index Terms—data stream; pattern discovery; imbalanced
classes; evolving stream; rare pattern

I. INTRODUCTION

The rapid evolution of technology has moved our world
toward a new era of intelligence. The remarkable development
in sensors and communications has led to the emergence of
the Internet of Things (IoT); a network of physical devices,
vehicles and other objects which are embedded with sensors,
software and network connectivity that enable these objects
to interact with their surrounding environment, collect and
exchange data [1]. According to the report of Cisco [2], 3.3
billion devices are expected to be connected to the Internet by
2021. Indeed, the data which flow from a large numbers of
sensors to report on environmental conditions or deployed in
infrastructure (such as roads and buildings), can give decision
makers a heightened awareness of real-time events.

The current trend toward data streams has introduced new
challenges. Learning from data streams is quite different to
learning from traditional data [3]: not only in the short pro-
cessing time and the computational resource constraints when
dealing with streaming data, but also in that the traditional

techniques assume stationary environments whereas in most
real-life applications (e.g., weather predictions, financial mar-
kets or monitoring systems) the environment is non-stationary
and data are evolving over time in a phenomenon called
concept drift [4] [5]. Therefore, while all available data are
considered in the traditional techniques, streaming algorithms
restrict processing to a certain window of concern, focusing
on the most recent elements in the stream.

Another common problem in real-world applications is class
imbalance [6]. Typically, it occurs in classification scenarios
where the classes are not represented equally in the data set.
In these cases, some of the classes may be rare, or appear only
occasionally in the data stream, like in fraud detection, spam
filtering or fault diagnosis in computer monitoring systems
[7] [8]. In such cases, the classifiers tend to be biased toward
the majority classes, resulting in a high accuracy classification
performance, however these classifiers will not be able to de-
tect any instance of the minority class. Multi-class imbalance
imposes additional challenges compared to two-class ones, the
situation may be exacerbated in the data stream domain as the
data are dynamically evolving and it is impossible to see the
whole picture of data [6] [7] [9]. In general, re-sampling is
the simplest and most effective imbalance technique for both
static and streaming data [7].

In the field of data mining, patterns discovery has become
a powerful tool for extracting valuable information from the
massive amount of data. Apriori [10] was the first proposed
algorithm in the literature to mining frequent patterns, it was
designed for market basket analysis. Subsequently, many other
algorithms were proposed without candidate generation such
as the FP-growth algorithm [4], but the rare pattern problem
was a major issue in these works, as they used a single
threshold to identify the frequent patterns over the entire data
set. To solve the rare patterns problem, multiple minimum
supports were introduced by Liu et al. in [11]. Up to now,
several works have been proposed in the literature, such
as Conditional Frequent Pattern-Growth and CFP-Growth++
[12], however, the construction cost of the conditional sub-
trees restricts extending them in streaming scenarios.

Motivated by the increasing proliferation of the IoT tech-
nologies in our daily life, where heterogeneous data streams
flow from multiple sources, this work investigates the com-

2018 IEEE International Conference on Big Data (Big Data)

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 2048

bined challenges posed by evolving streams and multi-class
imbalance, while it is trying to capture the dynamic patterns
in these streams. The complexity of the problem lies in the
intersection of stream processing, concept drift and imbalanced
data. The combination of these difficulties constitute a chal-
lenge not only when building an algorithm to learn from non-
stationary streams but also when evaluating its performance.
To our knowledge, the ensemble techniques approach is the
only method for overcoming the concept drift which has
been applied to the class imbalance problem in the literature
[11], more research needs to be undertaken to extend other
concept drift adaptation techniques (adaptive base learners and
learners which modify the training set) in the context of class
imbalance.

In this paper, we propose a Frequent Pattern learning
method from Evolving Streams (FP-EStream). We extend
concept drift adaptation techniques into imbalanced classes
scenarios by developing an adaptive learning algorithm using
a windows based approach. We also modify the training set
by keeping a window of the minority classes to cope with
the imbalanced classes problem. To find interesting patterns
from the incoming data streams, we use a dynamic support
threshold instead of the fixed one in the FP-growth algorithm.

The rest of this paper is structured as follows. The following
section provides the required background and the related work.
Then our proposed algorithm is demonstrated and discussed
in Section III. In Section IV, the experimental work follows;
the description and the simulation of the dataset, building
the classification model and discovering the frequent patterns.
Finally, the conclusions and the future directions of our
research are covered in Section V.

II. BACKGROUND

A. Stream Reasoning

A data stream is defined as an unbounded and ordered
sequence implicitly by arrival time or explicitly by time stamp
of data items [13], while stream reasoning is the analysis
of these data in real time to extract hidden information and
support decision making. There are a variety of streaming
data scenarios, it could be a continued flow of data items
that arrive in timely order or it might be a huge amount of
data which possibly have infinite length. Another common
scenario is where data objects’ values are changing frequently
at high speed like the stock exchange, or where the data stream
is generated continuously by multiple data sources, which
typically send in the data records simultaneously, and in small
sizes, like video or sensors streams.

B. Concept Drift

One of the biggest challenges to classify data streams in the
real-world is concept drift; this phenomenon occurs when the
data streams are generated in non-stationary environments. For
example, weather prediction models change seasonally, and
customer behaviour changes over time according to the fashion
and the season [14] [15]. The change of data streams distri-
butions over time may lead to the emergence of new classes

or changes to an existing class [16]. In fact, concept drift can
cause a degraded predictive performance of the classifiers over
time, therefore, the learning model must detect the change and
adapt itself to the current state of the environment [17] [18].
Previous studies have distinguished between two types of drifts
[15][16][19]:

• Real concept drift which indicates the changes in the
conditional distribution of the target variable given a set
of input variables, regardless the change in the inputs’
disruptions.

• Virtual drift occurs when the distribution of the incom-
ing data changes p(x) without affecting the conditional
distributions of the target variables p(y | x).

Hence, in both cases the joint distribution p(x, y) changes.
Several adaptive techniques have been proposed in the

literature to detect and cope with the drift in an evolving data
stream. Change detectors, such as the Drift Detection Method
[20] and Adaptive Sliding Window Algorithm [21] are stand-
alone techniques that detect concept drift and can be used in
combination with any stream classifier [22]. The authors in
[15] attempted to put adaptive techniques works into three
groups: window based approaches, weight based approaches,
and ensemble classifiers [15]. In general, ensemble approaches
are considered popular methods for stream classification due
to their robustness [19].

C. Imbalanced Classes Distribution

Several works have been developed in the literature to tackle
imbalanced classes in static data, most approaches aim to
achieve a more balanced distribution by using various forms
of re-sampling [23], however, similar research in the context
of data streams is limited to few works [6], and too little
attention has been paid to the multi-class imbalance issue
[7]. In brief, imbalance data streaming approaches can be
categorized into data level and algorithm level approaches
[7]. One of the recent works to cope with the multi-class
imbalance in data streams was presented in [24], the authors
used a time decay function to detect the imbalance rate
dynamically and accordingly they proposed two re-sampling-
based ensemble methods, oversampling-based Online Bagging
(OOB) and undersampling-based Online Bagging (UOB). A
more recent technique was proposed in [25], this depends on
an ensemble method which consists of voting based classifiers,
and different classes weights are used to detect the imbalanced
class in the validation set. However, this technique requires
an initialization step before the learning, and it is not clear
how the class weights will be accurate in the case of evolving
streams.

Class imbalance introduces challenges to classifier perfor-
mance measures and evaluation procedures used in stream
mining. Many performance measures have been introduced to
replace the overoptimistic accuracy, the most popular perfor-
mance evaluation strategies are the prequential test [33], G-
mean, and Kappa statistic [3] [9]. Also the use of F-score and
area under the Receiver Operating Characteristic curve (ROC

2049

curve) are common, but they are not suitable for multi-class
tasks [17] [23] [9].

D. Mining Frequent Patterns

Frequent patterns are items that appear in the dataset with
frequency under a user specified threshold. Frequent pattern
mining was introduced in 1994, when Agrawal and Srikant
proposed the Apriori algorithm [10], where association rules
are simply statements that certain groups of items or events
tend to occur together. There are two basic concepts related
to association rules, the first is the confidence or accuracy
which defines how often the rule is true. The second is the
support or the coverage which indicates the frequency of a
rule. An association rule is an implication of the form: A⇒ B
where: A ⊆ I,B ⊆ I , and A ∩ B = Φ , then we can define:
Support(A⇒ B) = p(A ∪B) and Confidence(A⇒ B) =
p(B | A). Association rule mining consists of two steps, first
finding all frequent item sets then generating rules from these
sets. An item set is considered as a frequent one when its
support is at least equal to the minimum support threshold
[26].

Many other algorithms have been developed to detect dif-
ferent patterns in the transaction data. There are three basic
frequent pattern mining methodologies: Apriori, FP-growth
and Eclat [27]. FP-growth is distinguished from the other
methodologies because there is no candidate generation, it
works in a divide-and-conquer way and requires less number
of database scans, so it is more suitable for huge database
transactions and long patterns. It simply scans the database
first to construct a list of frequent items in which items are
ordered by frequency descending order, then according to
the frequent list, the database is compressed into a frequent-
pattern tree, or FP-tree, which retains the itemset association
information. The FP-tree is mined to find frequent patterns
instead of depending on the whole data set, by starting from
each frequent length-1 pattern, constructing its conditional
pattern base, then constructing its conditional FP-tree, and
performing mining recursively on such a tree [4]. However,
FP-growth suffers from a major limitation, as it uses a single
support threshold to identify the frequent pattern for the
entire dataset. In many real-world applications, choosing a low
threshold value will identify a large number of meaningless
patterns, whereas a high threshold value will lead to skipping
rare patterns [28].

Many algorithms have been proposed to discover frequent
patterns in data streams [27] [29], but most of them do
not differentiate recently-generated information from obsolete
information that may currently be useless, insignificant, or
possibly invalid [30] [31]. A recent work in [27] developed the
FP-Stream algorithm to mine frequent patterns in data streams.
The algorithm is based on a batch environment, for each
batch, the frequent patterns are extracted by means of the FP-
growth algorithm applied on a FP-tree structure representing
the sequences of the batch, however, due to the fixed support,
the rare patterns are not detectable.

III. LEARNING PATTERNS FROM THE IMBALANCED
EVOLVING DATA STREAMS

In this section, we formulate the problem of learning pat-
terns from the imbalanced evolving streams and then introduce
our framework. We consider the problem in the area of a
heterogeneous stream reasoning and where data coming from
different sources, sensors and devices such as smart pay
stations, mobile phones etc. can be used to extract useful
information and provide support to users in a situation where
there are multiple parking lots and different types of users that
are seeking to park their vehicles.

Let S be the set of structured data streams {St1, St2, St3}
generated by different IoT devices at given time stamp T
where:
St1(f1, . . . , fi) is a stream from camera sensors sn1...snm;

m: number of the sensors that monitor the
entry of the set of parking lots

St2(f1, . . . , fk) is a stream from smart parking pay stations
ps1...psl; l: number of the parking pay
stations

St3(f1, . . . , fz) is a stream from parking mobile application
i, k, z are the number of fields in each stream
Let the first stream St1 consist of the location of the sensor,

crossing-time, car’s plate number, and if the car’s direction is
in or out. The second stream St2 (payment station stream)
comprises the location of the station, car’s plate number,
parking-time, end of the parking duration, paid fee, and if
a discount is applied. Finally, the third stream St3 (mobile
phone app stream) consists of the parking location, car’s plate
number, parking-time, end of the parking duration, paid fee,
and the driver type from the user’s profile. Let the joint of the
three streams (based on the car plate number) in a fixed time
interval (e.g., single hour) represent the current window-batch
ST , and the joint of the three streams in the previous time
interval (the previous hour) represent the previous window-
batch ST−1. As the window-batches are time based windows,
so their sizes vary, each window may consist of any number of
data items in the joint stream. This is a commonplace scenario
in car parking lots, although the structure of streams might be
slightly different.

Mainly, we are not explicitly interested in identifying the
frequent items from the various streams, but we are interested
in developing methods to discover patterns which represent
a meaningful situation in the car parking lots and which can
be used to build predictive models, i.e. capture the behaviour
of different drivers, so the driver will be able to know, before
s/he comes to a location such as a university or place of work,
how busy the parking lots are and the probability of finding
a parking space when s/he arrives. This will lead to more
efficient use of parking spaces.

Extracting the interesting patterns form evolving data
streams is hard and time consuming as a huge number of
patterns could emerge from them, therefore, the patterns
should be identified according to the level of interest. For the
purpose of this work, we propose the FP-EStream algorithm,

2050

Fig. 1. Pattern Discovery Abstract Model

which is based on an integration of two mining techniques;
classification (to extract the interesting patterns only) and
frequent pattern mining (based on a modified version of FP-
growth algorithm and using dynamic support). An abstract
model of our approach for pattern discovery from evolving
IoT data streams is shown in Fig. 1. Once we have received
a window-batch of the joint data stream for the current time
stamp (ST), we first classify the stream then we calculate the
dynamic support threshold value (SupT), next we use this
threshold to discover the frequent patterns and finally we use
the misclassified instances if any, to modify the upcoming
training windows in order to identify the rare patterns.

Before we discuss the details of our proposed technique,
and as the streams come from heterogeneous sources, it is
important to note that streams must be pre-processed before
applying our approach, this includes:

• Data cleaning, the data streams from sensors typically
contain noise which affects the data analysis, so we have
to fill the missing values, remove redundant ones and
remove outliers.

• Data integration, joining the streams to process them in
parallel over the same interval.

• Data transformation, data may have to be converted from
one format or structure into another format or structure.

• Data reduction, to obtain the optimal minimum represen-
tation in volume which produces similar analytic results.

A. Titled Time Windows

As we mentioned above, we use time window-batches in our
approach. More specifically, we will use different titled time
windows in order to detect the periodical patterns (the daily
and seasonal patterns) from the evolving streams over different
time intervals. The titled time window is automatically self-
maintained, whenever reaching the boundary of a time window
granularity, the aggregates stored in a low granularity level are
summarized and transformed to the upper granularity level
(e.g. four windows of 15-minutes-window form one hour-
window). Choosing the optimal length of the window depends
on the application domain, in general, the window sizes should
be adapted according to the drift speed in the data stream, so
small windows should be chosen during periods of fast drift,
while windows should be larger during periods of slow drift.

B. Classify the Imbalanced Evolving Streams

We choose naive Bayes (NB) as the base learning clas-
sifier, it is a supervised learning approach that assumes the
independence between attributes and uses the probabilities of
each attribute belonging to each class to make a prediction of
another attribute class. In particular, it is based on the Bayesian
theorem, which indicates that there is a simple relationship
between p(x | y) and p(y | x), which can be expressed as:

p(x | y) = p(y | x) ∗ p(x)

Let the previous defined joint stream S be represented by
a vector f = (f1, . . . , fx) representing x fields (independent
variables), this will give each class Cy the probability:

p(Cy | f1, . . . , fx)

To estimate the parameters of the NB model in our approach,
we use the maximum likelihood method which can be written
as follows:

p(Cy | f) =
p(Cy) p(f | Cy)

p(f)

which can otherwise be understood as:

posterior probability =
prior ∗ likelihood

evidence

We apply the NB classifier over sequential titled time
windows of the joint stream S, using interleaved test then train
chunks [32], where each window-batch ST of the arriving joint
stream S is used first for testing, then it is used for training
the classifier. Next, for each window-batch ST , we calculate
the joint probabilities. The joint probability is a measure
that calculates the likelihood of two or more items occurring
together at the same time point, and it can be expressed in our
approach as:

p(Cy)

x∏
i=1

p(f i | Cy)

Naive Bayes has been reported in the literature as one of
the ideal algorithms for stream mining, due to its incremental
nature; incremental learners cope with the concept drift faster
than other learners [22] [33]. Furthermore, the NB is the only
generative classification model, it provides a complete model
of the probabilistic structure of the data; this will help to
identify the interesting patterns in our approach [22].

Furthermore, to overcome the minority class problem which
occurs when the minority class instance does not appear in the
training set and appears in the test set, we seek to modify the
training set of the classifier. In particular, as we mentioned
above, every window-batch (ST) is used first for testing then
for training, so once the window-batch (ST) is used for testing,
we seek to identify the incorrectly classified instances, then
we store the minimum number of these instances in a window
(Wmin), and include them in the training set of the subsequent
windows, and we update the window (Wmin) with the arrival
of new window-batch (ST+1). This will help to ”be aware” of
the exceptional situations in the parking lots and maintaining
them for future reference.

2051

C. Support Definition

Support definition is a significant part in our pattern dis-
covery approach. We aim to develop a method to calculate
a dynamic support threshold which detects the interesting
patterns, including the rare patterns, from the imbalanced
evolving streams. To be more precise, in many real-world
application streams, some items appear very frequently in
the data set, while others rarely appear, therefore mining
frequent patterns using a fixed support threshold from these
streams is insufficient; choosing a low threshold value will
identify a large number of meaningless patterns, whereas a
high threshold value may omit the rare patterns.

Based on the definition of support in Section II-D, and
the definition of the joint probability (JP) in Section III-B
which indicates the occurrence of items together, we define
the support threshold value as follows:

SupT = min(JPsT)

So we select the minimum joint probabilities (calculated
from the NB classifiers in the previous section) for each
window batch (ST) to be the support threshold value of this
window (SupT), the support will be updated for each window-
batch. The proposed dynamic threshold calculation method
can be used with real-time or near real-time data since the
calculations depend on the current and previous time windows
(the previous time window is used to train the NB classifier).

D. Mining Imbalanced Evolving Streams

The next step is mining the frequent patterns in the joint
stream S. Our approach is based on the FP-growth algorithm,
which is used widely for static data, and in order to make
it applicable to the imbalanced evolving streams, we propose
two main modifications:

1) Using a dynamic support threshold (SupT), which has
been explained in the previous section III-C, instead of
the fixed threshold value.

2) Using the NB technique to construct and update the
FP-tree. Different than the original FP-growth algo-
rithm, which scans the data set twice, first to get the
frequencies then to find the frequent patterns, we use
the joint probabilities, which are calculated by the NB
classifier in Section III-B to indicate the frequencies
and construct the frequent items list. Accordingly, the
frequent item list is constructed based on the classifier
fields (f1, . . . , fx, class) in a descending order, then
we subsequently build the FP-tree, the tree of frequent
patterns, where each path represents a pattern. The
frequent item list and FP-tree are constructed for the
first window ST1 then they are updated with the arrival
of each window-batch STi, this reduces the cost of time
and memory needed to scan the dataset.

Using our approach, we are able to know what are the frequent
patterns over the period T. The description of our proposed
FP-EStream algorithm is illustrated in Algorithm 1.

Algorithm 1: FP-EStream algorithm for pattern dis-
covery from imbalanced evolving streams

1 FP-EStream
Input : IoT − Stream : Joint stream of

heterogeneous IoT streams
Output: FPs : Frequent patterns from IoT − Stream

2 for each incoming window ST in IoT − Stream do
3 if ST is the first window in the stream then
4 NB −model = build-the-classifier (ST)
5 else
6 NB −model = update-the-classifier (ST)
7 end
8 NB −model (ST)
9 PsT = prior probabilities from NB −model (ST)

10 CPsT = the conditional probabilities from
NB −model (ST)

11 JPsT = calculate-the-joint-probabilities(P,CP)
12 SupT = find-minimum-joint-probability(JPsT)
13 if FIL = ∅ then
14 FIL = build-frequent-item-list(JPs)
15 Build FP − tree
16 else
17 Update FIL
18 Update FP − tree
19 end
20 FPs (ST) = mining-the-frequent-patterns (SupT ,

FP − tree, ST)
21 end

IV. EXPERIMENTAL WORK

A. Data Set Description

In this paper, we apply our approach on the IoT streams
in the parking lots setting at a typical University and we
have used data from the University of Essex to construct the
experimental setting, where there are six different parking lots,
and only three main entries to all parking lots as follows:

• The first entry leads to the North car park, which is
designated for both staff members and students, also it has
special parking spaces for drop-off for the University’s
nursery, and a drop off/collection point for taxis.

• The second entry leads to the Multi-deck car park which
is intended for staff members only, and car park B which
is used by gym members in addition to staff and students.
Also, there is a drop-off/collection point for taxi at the
car park B.

• The third entry leads to car park A which is specified for
students, the Valley car park which has special parking
spaces for visitors and the Constable Building parking
lot which is designated for on-campus hotel staff and the
hotel customers/visitors.

A map of the University’s parking lots is shown in Fig. 2.
The Multi-deck car park is the only parking lot which is

equipped with a camera sensor for number plate recognition,

2052

Fig. 2. Parking lots map of University of Essex

however, the IoT trend makes us believe that in the future a lot
more places will be equipped with such sensors, and for the
purpose of this work we assume that there is a camera sensor
at each entry to sense the cars that cross the entry point.

In this scenario, the drivers, who are looking for parking
spaces, are divided into four groups: staff members, students,
gym members and visitors; staff members and students get a
discounted rate on the parking fee. Moreover, there is a smart
pay station located at each parking lot, where the drivers can
pay the parking fee, or they can alternatively pay for parking
using a (presumed) mobile phone application.

In fact, to get a real understanding of the situation in the
parking lots, we used the following techniques:

• We have approached and had in-depth discussions re-
garding the operation of the car parks with the Transport
Policy Manager of the University of Essex.

• We arranged an hour duration meetings with two of the
traffic officers of the University of Essex to obtain a
better understanding of the observed patterns from their
experience as they patrol the parking lots on a daily basis
and ensure that users have paid for parking.

• We have obtained and examined a report of the daily
usage of the multi-deck car park for three months of the
Summer term of 2016.

The parking charges are applied from 9:00 am until 16:00
from Monday to Friday, otherwise it is free to park, and if a
driver (a staff member or student) registers his/her car with
the Estates Management Help Desk, s/he is entitled to pay a
cheaper parking ticket charge, 10 pence per hour or 70 pence
per day, otherwise s/he pays the normal visitors’ rate.

There are 1620 parking spaces, where the total number of
registered users-of both staff members and students- for the
year 2015-16 was 2942 which is double the number of spaces
available in the parking lots, and the number of registered users
as staff members is 1613, exceeding the number of registered
students for 2015-16. Moreover, from the report analysis, we
found that 8:00 and 9:00 in the morning are the peak hours,
then the number of cars arriving decreases slightly; this is
reasonable considering the typical start of the working day
and therefore lectures, classes and other events. Also, there

is a significant increase in the number of cars on Tuesdays
and conversely a significant decrease on Fridays. Furthermore,
according to the interviews with the traffic officers, there is a
slight decrease in the number of cars at parking lots especially
in car park A and Valley car park towards the end of term,
while in the summer, car park A is nearly empty and the
Valley car park does not reach its full capacity and there is a
noticeable increase in the number of visitors. However, there
is no clear difference between term time and summer in other
parking lots where most of the users are staff members.

B. Model Simulation and Pre-processing

As we mentioned earlier, the car park lots in the University
of Essex are not currently equipped with sensors throughout,
so we have not had access to a full real-dataset from heteroge-
neous data streams for our work. Moreover, we searched for
data sets with a similar streaming environment, but we could
not find a sufficient one, in fact, such datasets are not publicly
available due to privacy concerns.

In order to undertake our experiments, we first conducted
an analysis of all the available data (discussion, interviews
and reports) to understand seasonal patterns of behaviour,
and subsequently we constructed a simulation model in or-
der to generate artificial data and emulate the car parking
environment (enriched with additional sensors). We chose
the simulator NetLogo to simulate drivers’ behaviour in the
parking lots. NetLogo is a multi-agent system based model
which uses its own programming language to create models
[36]. We are not going to discuss the details of the simulation
in this paper, due to space limitations, however, it is important
to note that we use the multinomial distribution to allocate cars
into parking lots, and since we do not have the precise parking
probability in each parking lot, we calculate the initial parking
probability based on the number of registered drivers. Screen
shots of the simulation are shown in Fig 3.

There are different payment schemes to pay for parking
and apart from paying on a daily basis, staff members may

Fig. 3. The graphic user interface of the simulation in NetLogo

2053

opt to pay for the car park annually. Based on the informa-
tion from the Estates Management Helpdesk, around 40% of
drivers pay the annual or term fee and do not use the daily
payment machine. Therefore, we have assumed these drivers
are using the mobile application, so we can get their payment
information through the mobile data stream, this will be used
to complement the payment data stream from the pay stations.

To apply our proposed algorithm, first, we choose the
Autumn term which consists of 11 weeks, and we consider
a working day to be from 7:00 in the morning until 16:00
in the afternoon (cleaners and maintenance staff tend to start
their shifts earlier than 9:00 am). As we are working based on
a University environment where the lectures are blocks of one-
hour, we select one-hour windows long to be the optimal time-
window length to apply our algorithm. When nine one-hour
windows are accumulated, a one day window will be formed,
similarly, five days from Monday to Friday, will create one
week window, and the 11-weeks window will form one-term
window, so we will deal with a maximum of 51 windows per
week. Then, we simulated the three streams: the sensor stream,
and the payment data stream from both the pay stations and
the mobile application. After that, we joined the streams over
the term window based on the car plate number using MS-
SQL, then we removed the rows that contain null values and
derived the parking duration from the payment information.
Moreover, as we have chosen the NB to be the classifier in
our model, and in order to prepare the data stream for the
next step, we converted the entry time into three intervals:
peak, off-peak and high-peak. We also converted the parking
duration into categorical features; it is common practice for
NB techniques to discretise all numeric features so that all
features are categorical [23].

C. Extracting Patterns from Imbalanced Evolving Streams

After joining the data streams, we seek to classify the
arriving cars to the parking lots, we want to know the type
of driver based on the collected parking information (parking
location and parking duration). Accordingly, the base learner -
the NB - is applied on the joint stream S. We implemented it
using (naivebayes) package in R [35] and the MOA software
framework [32] that contains implementations of several state-
of-the-art classifiers and evaluation methods.

Furthermore, we use interleaved test then train one-hour
windows, where each window (ST) is used first for testing,
then with the arrival of a new window, it is used for training.
There are two common approaches to evaluate the classifiers
in the streaming data: hold out (including the hold out set on
periodical intervals), and the predictive sequential (Prequen-
tial) evaluation [14][34]. While each example or window of
examples is first used to test the current model, then it is used
for training in the Prequential evaluation, only some instances
of the stream are used for testing in the periodical hold out. We
tested both approaches, and as expected, the interleaved test
then train chunks gives us better performance metrics than the
periodical hold out. Table I shows the performance difference
between the two evaluation methods. It is clear that not only

TABLE I
COMPARISON BETWEEN THE TWO EVALUATIONS METHODS

Accuracy Kappa
Interleaved chunks 99.82 99.63
Periodical hold out 79.59 51.62

the accuracy of the interleaved test then train chunks is higher
than the periodical hold out, but also that the Kappa measure
is much better. Based on the NB model, we calculate the joint
probabilities, and consequently we select the minimum value
of these probabilities to be the support threshold for extracting
the frequent patterns for this window.

In order to discover the frequent patterns, we use the calcu-
lated dynamic threshold with FP-growth-itemsets-with-strings
algorithm from SPMF library (the Java open-source pattern
mining library) [37]. Accordingly, we construct the frequent
items list for the first window from the joint probabilities,
based on the classifier attributes (sensor, parking location,
driver type) in descending order and build the FP-tree as well.
After that, we used the (rJava) package to integrate Java code
(modifed FP-growth algorithm) with the R implementation
(classification model). The screen shot in Fig 4, shows the
emerging patterns between 09:00 AM and 10:00 AM on
Monday in the first week of October (the autumn term).

In addition, in Fig 5, we can see the difference in the
emerging patterns between the beginning of the work-day,
from 08:00 to 09:00 in the morning, and the end of the
work-day, from 14:00 to 15:00 in the afternoon, for the same
Monday. Also, we can see the change in the emerging patterns
between the begining and the end of the term in Fig 6, which
shows the emerging patterns on Thursday for the same interval,
from 10:00 AM to 11:00 AM, of the first and the last week
of the Autumn term. By investigating the obtained patterns
over the different intervals: daily, weekly and over the Autumn
term, it is apparent these patterns are consistent with those in
the real data (from interviews and reports). For example, as Fig
5 shows, there is a significant decrease in the cars arrival rate in
the afternoon. Also, as shown in Fig 6, there is a considerable
drop in the cars arrival rate at the end of the term, particularly
in car park A (the student car park).

D. Results and Discussion

In order to assess our method, we evaluate the classifier
performance, then we evaluate the frequent pattern mining

Fig. 4. The emerging patterns over one-hour window

2054

Fig. 5. The change in the emerging patterns over one day

Fig. 6. The change in the emerging patterns over the term

performance and speed. Firstly, we want to show how the
proposed method of applying adaptive learner and modifying
the training set by keeping window of misclassified examples
affect the learning from the imbalanced evolving streams.
Accordingly, we compared the majority class algorithm using
interleaved chunks with the NB algorithm, using the MOA
framework over the whole dataset. From Fig 7, it can be seen
that by far the highest performance is for the NB algorithm,
this provides evidence for efficiency of applying the adaptive
learner to cope with the concept drift in the multi-class
imbalance streaming scenarios.

Then we compared the two algorithms’ outputs, the NB
algorithm with the modified training set and the NB algorithm
without modifying the training set, with the ground truth,
by comparing the predicted target values of each classifier
with the true target values. We chose three days interval from
Monday to Wednesday of the first week of the Autumn term
2015-2016. It is apparent from the data in Table II and Table III
that very few instances which the NB only algorithm classified
them inaccurately, this number was reduced using the NB
algorithm with the modified training set. In more detail, on
Tuesday between 11:00 and 12:00, when some students park

Fig. 7. The comparison between the two classification techniques

in the Multi-deck car park, both classifiers failed to classify
six instances of class (student) and classified them as (staff),
the reason is the Multi-deck car park is designated for staff-
member use, so students rarely park there (only when other
parking lots are full). However, when this occurs again on
Wednesday between 10:00 and 11:00 (after nine window-
batches), the NB algorithm with the modified training set was
able to detect the students who park in the multi-deck car park,
and it classified them correctly, where the NB only algorithm
classified them inaccurately again. Typically, techniques that
learn from the evolving stream are focusing on the most recent
data (previous window) as it is time consuming to train the
learner on all data items which have already been seen. As
far as we know, this is the first time that has been shown
experimentally that we can simply learn from the unbalanced
evolving streams and detect the minority classes’ instances in
these streams by applying adaptive learner approaches and by
modifying the training set.

Secondly, to validate the effectiveness of the dynamically
calculated support threshold in our method, we examined the
detected patterns from the joint stream S of IoT streams
using a low fixed threshold value, a high fixed threshold
value, and our dynamically calculated threshold over different
window-batches. We will demonstrate some windows in the
investigated dataset, compare the detected patterns using each
threshold and discuss the findings. Accordingly, we chose nine
consecutive windows from 07:00 until 16:00 on Wednesday of
the first week of the term in the joint stream S, and we tried to
detect the frequent patterns over these window-batches using
the following techniques:

1) FP-growth algorithm and here we selected a low fixed
threshold (SupT = zero)

2) FP-growth algorithm and here we selected a high fixed
threshold (SupT = 0.05)

3) Our proposed technique FP-EStream where the sup-
port threshold is dynamically calculated (SupT ∈
[0.001, . . . , 0.01])

TABLE II
CONFUSION MATRIX FOR THE NB CLASSIFIER ONLY

Predicted class Actual class
Staff Student Gym member Visitor

Staff 6872 11 0 1
Student 0 2936 0 0

Gym member 0 0 401 0
Visitor 0 0 0 141

TABLE III
CONFUSION MATRIX FOR THE NB WITH THE MODIFIED TRAINING SET

Predicted class Actual class
Staff Student Gym member Visitor

Staff 6872 6 0 1
Student 0 2941 0 0

Gym member 0 0 401 0
Visitor 0 0 0 141

2055

Fig. 8. The comparison between FP-EStream and FP-growth

We use the SPMF library to apply the FP-growth algorithm
on the joint stream S, and to get comparable results, the
input for the FP-growth is the same input which we used
for the classifier in the proposed FP-EStream technique. A
comparison between the three methods is shown in Fig. 8. We
can clearly see that the number of patterns extracted by the
low threshold (0) are nearly double the numbers of patterns
extracted using the dynamic threshold, however, the extracted
patterns using threshold (0) are insignificant patterns and
require an additional pruning step. By contrast, the numbers of
patterns extracted by the high threshold (0.05) are less than the
number of patterns extracted using the dynamic one, the high
threshold failed to detect any pattern relating to the visitors,
the gym-members or car park A. In general, choosing a fixed
low threshold increased the number of detected patterns, these
expanded patterns require an additional filtering step. On the
other hand, choosing a high threshold not only decreased
the number of detected patterns, but also failed to detect
all rare patterns. It is clear from the graph, that the number
of patterns discovered by our proposed dynamic threshold is
in between the two previous algorithms, it avoids too many
insignificant patterns and also enables the detection of rare
patterns. Interestingly this threshold identified all the patterns
which are detected by the lower threshold zero including the
rare patterns (no filter needed).

The speed is the main performance measure for mining
the frequent patterns. Different from the multiple conditional
tree generate-and-test approach, the classifier in our method
helps to narrow the number of derived patterns down to
only the interesting patterns, without repeated scans. Hence,
reducing the cost of the database scan and pruning search will
speed up the mining process. The average time required to
discover patterns from one-hour window of the first week of
the Autumn term using the FP-EStram is 5 ms, faster than
the average time required over the same interval using the FP-
growth 11 ms (threshold = 0). Also we needed 7.162 sec to

apply our algorithm over the whole term window, compared
to 14.268 sec to apply the FP-growth. This may scale up to
show the efficiency of applying the FP-EStram algorithm on
larger datasets and real time processing.

V. CONCLUSIONS

Discovering patterns from dynamic streams which have
skewed distributions is challenging and learning techniques
are required to process data in real-time, using minimal
computational resources, adapt with the concept drift and cope
with imbalanced class distributions. Despite the problem of
class imbalance having been studied in the context of existing
streams mining research, only few works have explored the
multi-class imbalance problem in evolving streams.

In this work, we develop a method called FP-EStream to
capture the dynamic of patterns from heterogeneous streams.
The contribution of this work is three-fold. Firstly, we apply
an adaptive base classifier in the multi-class imbalance
case to cope with the concept drift. We use the NB to
classify the multiple streams over a sequence of titled time
windows. Secondly, we keep a window of instances which
are inaccurately classified, and use it to modify the training
set over the subsequent windows, to discover the minority
classes’ instances. Thirdly, we propose a dynamically
calculated support threshold to identify the patterns from
the heterogeneous streams and detect the rare patterns. The
results have shown the usability of our method to identify
the frequent patterns from the IoT streams. This highlights
the efficiency of applying adaptive learner approaches using
modified training set to cope with the concept drift in the
multi-class imbalance scenarios. In addition, the results
support the merit of using our dynamic support threshold to
overcome the rare patterns problem in non-stationary streams
with multi-class imbalance. While ensemble techniques
are the most common approach to cope with multi-class
imbalance problem in evolving streams, this work is the first

2056

work, to our knowledge, which has shown experimentally the
efficiency of extending other concept drift adaption techniques
to the multi-class imbalanced evolving streams context. Also,
our method does not need to generate candidates or scan
the database many times, unlike other pattern discovery
approaches (e.g., FP-growth). This framework can be adapted
and used in different domains of application for discovering
patterns in IoT streams (e.g., tube fault diagnosis). For future
works, we aim to show the applicability of our method in
different domains such as water monitoring, where we have
meters, sensors, and open-data sources. Our method may be
applied on the collection of these streams to detect anomalous
behaviour patterns (e.g. leakages), react quickly to critical
situations and support predictive maintenance.

Acknowledgement The authors would like to acknowledge
the support of the Business and Local Government Data
Research Centre (grant number ES/L011859/1) funded by the
Economic and Social Research Council (ESRC) for undertak-
ing this work.

REFERENCES

[1] V. Lopez, S. del Ro, J. M. Bentez, and F. Herrera, Cost-sensitive linguistic
fuzzy rule based classification systems under the mapreduce framework
for imbalanced big data, Fuzzy Sets and Systems, pp. 5-38, 2015.

[2] Louis Columbus, ”Internet of things forecasts.”, 2017 [Online].
Available: https://www.forbes.com/sites/louiscolumbus/2017/12/10/
2017-roundup-of-internet-of-things-forecasts/#68374bc11480/.[Accessed
5-March-2018].

[3] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, and B. Pfahringer,
Efficient online evaluation of big data stream classifiers, in Proceedings of
the 21th ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 59-68, ACM, 2015.

[4] J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate
generation, in ACM sigmod record, vol. 29, pp. 1-12, ACM, 2000.

[5] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Wozniak,
Ensemble learning for data stream analysis: A survey, Information Fusion,
vol. 37, pp. 132-156, 2017.

[6] D. Brzezinski and J. Stefanowski, Prequential auc for classifier evaluation
and drift detection in evolving data streams, in International Workshop on
New Frontiers in Mining Complex Patterns, pp. 87-101, Springer, 2014.

[7] S. Wang, L. L. Minku, and X. Yao, Dealing with multiple classes in
online class imbalance learning., in IJCAI, pp. 2118-2124, 2016.

[8] D. Brzezinski, J. Stefanowski, A. Nienkotter, X. Jiang, M. Last, M.
Stoliar, M. Friedman, R. Cornelisse, S. Choenni, M. Munir, et al.,
Ensemble classifiers for imbalanced and evolving data streams,

[9] D. Brzezinski and J. Stefanowski, Prequential auc: properties of the area
under the roc curve for data streams with concept drift, Knowledge and
Information Systems, vol. 52, no. 2, pp. 531-562, 2017.

[10] R. Agrawal, R. Srikant, et al., algorithms for mining association rules,”
in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215, pp. 487-
499, 1994.

[11] B. Liu, W. Hsu, and Y. Ma, Mining association rules with multiple min-
imum supports, in Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 337- 341, ACM,
1999.

[12] S.-M. Cheng and M.-Y. Day, Technologies and Applications of Artificial
Intelligence: 19th International Conference, TAAI 2014, Taipei, Taiwan,
November 21-23, 2014, Proceedings, vol. 8916. Springer, 2014.

[13] J. Gama and M. M. Gaber, Learning from data streams: processing
techniques in sensor networks. Springer, 2007.

[14] J. Gama, R. Sebastiao, and P. P. Rodrigues, On evaluating stream
learning algorithms, Machine learning, vol. 90, no. 3, pp. 317-346, 2013.

[15] Y. Sun, Z. Wang, H. Liu, C. Du, and J. Yuan, Online ensemble using
adaptive windowing for data streams with concept drift, International
Journal of Distributed Sensor Networks, vol. 12, no. 5, p. 4218973, 2016.

[16] S. Mohamad, Active learning for data streams. PhD thesis, Bournemouth
University, 2017.

[17] T. S. Sethi and M. Kantardzic, On the reliable detection of concept drift
from streaming unlabeled data, Expert Systems with Applications, vol.
82, pp. 77-99, 2017.

[18] B. Krawczyk and M. Wozniak, One-class classifiers with incremental
learning and forgetting for data streams with concept drift, Soft Comput-
ing, vol. 19, no. 12, pp. 3387-3400, 2015.

[19] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
A survey on concept drift adaptation, ACM computing surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[20] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, Learning with drift
detection, in Brazilian symposium on artificial intelligence, pp. 286- 295,
Springer, 2004.

[21] A. Bifet and R. Gavalda, Learning from time-changing data with
adaptive windowing, in Proceedings of the 2007 SIAM international
conference on data mining, pp. 443-448, SIAM, 2007.

[22] J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren, The online
performance estimation framework: heterogeneous ensemble learning for
data streams, Machine Learning, pp. 1-28, 2018.

[23] R. N. Lichtenwalter and N. V. Chawla, Learning to classify data streams
with imbalanced class distributions, New Frontiers in Applied Data
Mining. LNCS. Springer, Heidelberg, 2009.

[24] Wang, Shuo, Leandro L. Minku, and Xin Yao, ”A learning framework
for online class imbalance learning,” Computational Intelligence and
Ensemble Learning (CIEL), 2013 IEEE Symposium on , pp. 36-45, 2013.

[25] B. Mirza, Z. Lin, J. Cao, and X. Lai, Voting based weighted online
sequential extreme learning machine for imbalance multi-class classi-
fication, in Circuits and Systems (ISCAS), 2015 IEEE International
Symposium on, pp. 565-568, IEEE, 2015.

[26] J. Hipp, U. Guntzer, and G. Nakhaeizadeh, Algorithms for association
rule mininga general survey and comparison, ACM sigkdd explorations
newsletter, vol. 2, no. 1, pp. 58-64, 2000.

[27] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu, Mining frequent
patterns in data streams at multiple time granularities, Next generation
data mining, vol. 212, pp. 191-212, 2003.

[28] R. U. Kiran and M. Kitsuregawa, Mining correlated patterns with
multiple minimum all-confidence thresholds, in Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pp. 295-306, Springer, 2013.

[29] K. P. Lakshmi and C. Reddy, Efficient classifier generation over stream
sliding window using associative classification approach, International
Journal of Computer Applications, vol. 115, no. 22, 2015.

[30] C. K.-S. Leung and B. Hao, Mining of frequent itemsets from streams
of uncertain data, in Data Engineering, 2009. ICDE09. IEEE 25th
International Conference on, pp. 1663-1670, IEEE, 2009.

[31] S. Vanamala, L. P. Sree, and S. D. Bhavani, Rare association rule
mining for data stream, in Computer and Communications Technologies
(ICCCT), 2014 International Conference on, pp. 1-6, IEEE, 2014.

[32] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, Moa: Massive online
analysis, Journal of Machine Learning Research, vol. 11, no. May, pp.
1601-1604, 2010.

[33] J. Read, A. Bifet, B. Pfahringer, and G. Holmes, Batch-incremental
versus instance-incremental learning in dynamic and evolving data, in
International Symposium on Intelligent Data Analysis, pp. 313-323,
Springer, 2012.

[34] J. Gama, R. Sebastiao, and P. P. Rodrigues, Issues in evaluation of
stream learning algorithms, in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp.
329-338, ACM, 2009.

[35] R. C. Team et al., R: A language and environment for statistical
computing, 2013.

[36] S. Tisue and U. Wilensky, Netlogo: A simple environment for modeling
complexity, in International conference on complex systems, vol. 21, pp.
16-21, Boston, MA, 2004.

[37] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu, and
V. S. Tseng, Spmf: a java open-source pattern mining library, The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 3389-3393, 2014.

2057

