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Abstract
Supply networks need to exhibit stability in order to remain functional. Here, we apply

a generalized modeling (GM) approach, which has a strong pedigree in the analysis of

dynamical systems, to study the stability of real-world supply networks. It goes beyond

purely structural network analysis approaches by incorporating material flows, which

are defining characteristics of supply networks. The analysis focuses on the network of

interactions between material flows, providing new conceptualizations to capture key

aspects of production and inventory policies. We provide stability analyses of two

contrasting real-world networks—that of an industrial engine manufacturer and an

industry-level network in the luxury goods sector. We highlight the criticality of links

with suppliers that involve the dispatch, processing, and return of parts or sub-assem-

blies, cyclic motifs that involve separate paths from a common supplier to a common

firm downstream, and competing demands of different end products at specific nodes.

Based on a critical discussion of our findings in the context of the supply chain man-

agement literature, we generate five propositions to advance knowledge and under-

standing of supply network stability. We discuss the implications of the propositions

for the effective management, control, and development of supply networks. The GM

approach enables fast screening to identify hidden vulnerabilities in extensive supply

networks.
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1 | INTRODUCTION

Supply networks need to remain functional in the presence of
disturbances and disruptions (Tang, 2006). The capability of a
network to withstand disturbances and disruptions is related to
the concept of stability. This is a term commonly used in a
number of disciplines to refer to the capability of a system to
remain close or converge back to a steady state following a trig-
gering event (Guckenheimer & Holmes, 1983). In the absence

of stability, even small disturbances may drive a supply net-
work away from a desired or planned state (Venkateswaran &
Son, 2007; Wei, Wang, & Qi, 2013). Here, we are interested in
the stability of material flows in supply networks, where its loss
manifests itself by divergence from an equilibrium state and by
oscillations, leading to uncontrolled inventory build-ups and/or
stock-outs, production overtime and/or production shutdowns,
all of which will typically have very costly consequences
(Venkateswaran & Son, 2007). Although firms that constitute a
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supply network would be expected to react to such undesired and
costly consequences by revising their policies over time, for
instance by changing the replenishment period or shifting orders
to other suppliers, costs will still be incurred until these measures
show their effect.Worse still, such reactivemeasures may not lead
to the intended outcomes, because individual firms are embedded
in complex supply networks, which need to be understood in their
entirety (Pathak, Day, Nair, Sawaya, & Kristal, 2007; Surana,
Kumar, Greaves, & Raghavan, 2005). It is therefore imperative to
understand the stability properties of supply networks.

Supply network stability has been investigated in previous
studies, particularly in the context of inventory control policies
(Sarimveis, Patrinos, Tarantilis, & Kiranoudis, 2008; Wang &
Disney, 2016). Many studies in the literature on supply net-
work dynamics have focused on isolated parts of larger supply
networks such as buyer–supplier dyads or retailer-wholesaler-
manufacturer triads (Sarimveis et al., 2008; Wang & Disney,
2016). Some recent studies in the context of the bullwhip effect
have considered larger networks (Chatfield, 2013; Dominguez,
Framinan, & Cannella, 2014), showing that insights from small
networks cannot be directly transferred to the larger networks
to which they belong. Complex network analysis approaches
developed in other disciplines (Newman, 2003) have been
applied in supply chain management. However, knowledge
and understanding of the stability of large dynamic supply net-
works is still limited. This may be explained to some extent by
the size and nontrivial network structure of large dynamic sup-
ply networks, as well as the low visibility that pertains in many
such networks (Choi, Dooley, & Rungtusanatham, 2001). An
extensive supply network may incorporate hundreds of suppliers,
of which only a small fraction are tier-one suppliers directly visi-
ble to a focal or prime organization in a network. Even if a focal
organization invests resources to analyze the structure of its entire
supply network, there are a multitude of operational details that
cannot be captured, for example, different suppliers may use dif-
ferent modes of production and different inventory management
policies. The problem is further complicated by the intractability
of models that seek to capture the dynamics of large networks,
especially when nonlinearities are considered.

Supply chain management is not the only field that faces
the challenge of modeling and analyzing large dynamic net-
works. Systems of equal or greater complexity are studied in
ecology, which has a long history of mathematical modeling
and places substantial emphasis on the study of stability
(Grimm & Wissel, 1997; May, 2013). Generalized modeling
(GM) is an important approach that has been used in ecology
and other domains to address the challenge of network
modeling when there is uncertainty about the precise mathe-
matical forms of relationships that define a system (Gross &
Feudel, 2006; Gross, Rudolf, Levin, & Dieckmann, 2009).

In this article, we apply generalized models to manufactur-
ing supply networks to investigate instabilities emerging from

the pattern of interactions between firms, that is, the network
topology. In contrast to the conventional modeling approaches
for supply chain dynamics such as control theory, agent-based
models, and discrete-event simulation, the GM approach
enables the stability of a network to be investigated in the absence
of detailed information on operational policies, using information
primarily derived from the network structure, that is, who is con-
nected with whom. We take a high-level network view and con-
sider supply as being continuous and instantaneous. This lean
modeling approach does not seek to capture instabilities such as
the bullwhip effect that may arise at a finer level of granularity,
due to the effects of discreteness, delays, and stochasticity.

The article makes four significant contributions to the sup-
ply chain management literature. First, we provide stability
analyses of two contrasting real-world supply networks—the
inbound supply network of an industrial engine manufacturer
and an industry-level supply network in the luxury goods sec-
tor. Second, we present a set of five propositions on the stabil-
ity of supply networks. The propositions relate to both the
network structure and the material flows on the network and
seek to advance the extant knowledge on the stability of sup-
ply networks. Cyclic motifs and competition from different
product streams in a supply network are identified as having
destabilizing effects. Links with suppliers that have bi-
directional flows, performing operations such as painting and
machining, have a high influence on the rest of the network at
the onset of instability but a lower sensitivity to disturbances
occurring elsewhere in a network. Limited product availability
may have a stabilizing impact in small inbound networks
serving a single prime entity but can become destabilizing in
industry-level networks formed from the intertwining of sepa-
rate networks. The more quickly the production rate is
adjusted to account for changes in the inventory level, the
more likely the supply network is to be stable.

The third contribution of the study is the insights and guid-
ance provided for organizations to manage critical suppliers.
Prime entities in supply networks that have the required visibil-
ity and power can consider strategic development activities
with influential suppliers in their supply networks. Investing in
extra buffers is recommended, if organizations are highly sensi-
tive to disturbances elsewhere in the network. Investment in
capacity is recommended for suppliers that are at the apex of
cycles and/or supply directly or indirectly to multiple prime
entities. The fourth contribution is the introduction and devel-
opment of new conceptualizations for generalized turnover and
elasticity parameters, which capture crucial aspects of material
flows, inventory management, and production policies in sup-
ply networks. These conceptualizations allow the GM
approach to be applied in a computationally efficient way that
can be automated for fast screening of extensive supply net-
works. This enables the stability implications of a perceived
change in some part of the system to be quickly investigated,

2 DEMIREL ET AL.



which can facilitate adaptive management decisions to account
for stability.

The article is organized as follows. In Section 2, we posi-
tion the work in the context of the literature. In Section 3, we
develop and build a generalized model of supply networks
using an illustrative but nontrivial example, a triadic supply
network. We use this network to establish a GM-based stabil-
ity analysis method for supply networks and show how the
method can be adapted for real-world supply networks. In
Section 4, we present and describe the two real-world supply
networks investigated. In Section 5, we present the results of
the stability analyses of these networks, discuss the findings
in the context of the literature, formulate propositions on sup-
ply network stability, and identify opportunities for further
research.

2 | LITERATURE REVIEW

This work relates to three strands of literature: the stability
of supply networks, the analysis of supply networks using
complex networks approaches, and GM of dynamical sys-
tems and the stability of ecological networks.

2.1 | Stability of supply networks

Ivanov and Sokolov (2013) define supply chain stability as
“the ability to ensure continuity,” which can be captured by
different mathematical constructs. In this work, we use the
dynamical systems concept of asymptotic stability that corre-
sponds to the ability of a system to return back to the steady
state following a disturbance (Guckenheimer & Holmes,
1983). A related concept is that of resilience, described by
Christopher and Peck (2004) as “the ability of a system to
return to its original state or move to a new, more desirable state
after being disturbed.” It is insightful to highlight the differ-
ences between stability and resilience. While stability is a basic
desirable dynamic property of a supply network without an
explicit consideration of performance, resilience explicitly
refers to a desired state in the presence of a performance objec-
tive that should be achieved within a set time-window
(Ivanov & Sokolov, 2013). For instance, if we consider a sup-
ply disruption, it is a question of stability whether the inventory
levels can return back post-disruption to the pre-established
levels over time, rather than for instance oscillating between
overstocking and shortages, which are implicitly undesired
states, whereas it is a question of resilience whether the desired
customer satisfaction level can be achieved within a reasonable
time window. This conceptualization is consistent with the
equilibrium definitions of stability and resilience in the ecology
literature, where stability refers to the capability to return back
to a steady state and resilience is concerned with the speed of
the return (McCann, 2000).

Stability has been analyzed in the supply chain and
operations management literature mostly in the context of
inventory dynamics, where dynamic stability is characterized
by whether or not a considered inventory level can be sustained
over time (Dejonckheere, Disney, Lambrecht, & Towill, 2003;
Disney & Towill, 2002; Warburton, 2004; Wei et al., 2013).
These studies use variations of the inventory- and order-based
production control system (IOBPCS) (Towill, 1982), which
are based on linear fractional control rules and constitute gener-
alizations of the standard “inventory order up to level” models
(Dejonckheere et al., 2003). Although the models in the litera-
ture are predominantly linear, some studies have sought to
consider nonlinearities due to the nonnegativity of flows
(Laugesen & Mosekilde, 2006; Wang, Disney & Wang, 2012;
Warburton, 2004) and the strain on the system due to limited
capacity and/or product availability (Spiegler & Naim, 2017;
Spiegler, Naim, Towill, & Wikner, 2016; Venkateswaran &
Son, 2007). These studies show that nonlinearities greatly
influence the stability and the dynamics, leading for instance to
chaotic behavior (Laugesen &Mosekilde, 2006).

Thus, conventional modeling approaches mainly use spe-
cific and in most cases linear inventory control policies to
identify the conditions of instability. Such approaches facili-
tate analytical tractability in small and serial supply chains but
do not scale to allow the analysis of large networks. There-
fore, understanding the stability properties of large supply net-
works with general nonlinear formulations remains an open
question, which we address here.

2.2 | Analysis of supply networks using
complex network approaches

The structure of supply networks has attracted substantial
research interest. Several real supply networks have been docu-
mented in the literature. Atalay, Hortacsu, Roberts, and Syver-
son (2011) present a network consisting of all major supply
relations between publicly traded U.S. companies. Saavedra,
Reed-Tsochas, and Uzzi (2008, 2009) map the supply network
between designers and contractors in the New York garment
industry. Supply networks from the automotive and vehicle
industries have been documented by several studies (Brintrup,
Ledwoch, & Barros, 2016; Choi & Hong, 2002; Lomi &
Pattison, 2006; Kito, Brintrup, New, & Reed-Tsochas, 2014).
Bode andWagner (2015) identified two structural dimensions of
supply network complexity: horizontal complexity (the number
of first-tier suppliers) and vertical complexity (the number of
tiers). However, real supply networks deviate from a hierar-
chical tree topology and involve further aspects such as
degree heterogeneity (Atalay et al., 2011; Brintrup et al.,
2016; Brintrup, Wang, & Tiwari, 2015), the intertwined
nature of supply chain networks (Brintrup et al., 2016; Nair,
Narasimhan, & Choi, 2009), and the interrelatedness between
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suppliers within the same tier (Brintrup et al., 2015; Choi &
Wu, 2009; Lomi & Pattison, 2006).

The impact on firms of the structure of supply networks to
which they belong has been discussed with reference to net-
work measures such as clustering coefficient, shortest path
length statistics, and centrality (Bellamy & Basole, 2013;
Hearnshaw & Wilson, 2013; Kim, Choi, Yan, & Dooley,
2011). In particular, centrality measures have been used to
quantify the importance of firms with respect to their positions
within supply networks and to assess systemic risk in networks
(Brintrup et al., 2015, 2016). At the node level, centrality mea-
sures of degree, betweenness, and closeness have been linked
with operational load, operational criticality, and informational
independence, respectively (Kim et al., 2011). At the system
level, Nair and Vidal (2011) show that increased average path
length reduces performance robustness when suppliers are sub-
jected to disruptions. The percolation process in physics, where
nodes or links are removed (Albert, Jeong & Barabási, 2000),
has also been applied to study the topological resilience of sup-
ply networks (Kim, Chen, & Linderman, 2015; Thadakamalla,
Raghavan, Kumara, & Albert, 2011). Such node and link re-
movals are analogous to catastrophic failures of suppliers, for
example, disruptions for Ericsson and Nokia due a fire occur-
ring at a supplier's facility (Chopra & Sodhi, 2004). It is well-
known that scale-free networks are very robust against random
failures but fragile against targeted attacks (Albert et al., 2000),
which has implications for the critical role of hubs in supply
networks (Kim et al., 2015; Thadakamalla et al., 2011).

The studies on the impact of supply network structure on
performance (e.g., Kim et al., 2015; Nair & Vidal, 2011;
Thadakamalla et al., 2011) use synthetic networks, while
structures of real-world supply networks tend to be different
from those of idealized models (Brintrup et al., 2016; Kito et
al., 2014). Therefore, the impact of network structure on per-
formance in real-world supply networks remains an open
research question. We address this gap in the context of sup-
ply network stability by applying GM, a dynamical systems
method from ecology, to two real networks. In doing so, we
incorporate a defining characteristic of supply networks,
dynamic flow, to the investigation and quantification of
node and link importance, differently from the existing stud-
ies (e.g., Brintrup et al., 2016).

2.3 | GM and the stability of ecological
networks

In socioeconomic systems, there is a great degree of uncer-
tainty about the functional forms that can adequately capture
relationships between entities in the system. This problem is
amplified in large systems, such as extensive supply net-
works, where such information and understanding is limited.
This raises significant challenges in investigating stability

because a mathematical model with the same structure can
behave very differently for different functional forms (Gross,
Ebenhöh, & Feudel, 2004). GM was introduced originally
in ecology to overcome this challenge (Gross et al., 2009;
Gross & Feudel, 2006). Since its introduction, it has become
a tool that complements conventional modeling approaches in
ecology (Aufderheide, Rudolf, & Gross, 2012; Gross et al.,
2009; Gross & Feudel, 2006; Yeakel, Stiefs, Novak, & Gross,
2011) and has been applied in areas such as systems biology
(Steuer, Gross, Selbig, & Blasius, 2006; Zumsande, Stiefs,
Siegmund, & Gross, 2011), historical analysis (Gross &
Feudel, 2006), and social-ecological systems (Lade et al., 2015).

GM uses unspecified or general functions instead of spe-
cific functions (Gross & Feudel, 2006). Constructing a general-
ized model starts with identifying dynamic state variables
(stocks), for example, inventory levels, and their inflows and
outflows, such as a flow of materials from a supplier to a buyer.
The rate of each flow is represented by a mathematical func-
tion, which may take a specific form, if known. However, spec-
ifying functional forms is generally not possible and almost all
flows are expressed as unspecified functions in applications of
GM to social systems (e.g., Lade et al., 2015). Once the interac-
tions are defined in this way, the GM approach enables the sta-
bility of a network to be characterized in terms of a set of
generalized parameters that we explain in Section 3. Once the
generalized parameters are established, stability analysis can
take two forms. In small systems, the critical conditions that
lead to changes in stability, that is, bifurcations, may be solv-
able analytically (e.g., Gross & Feudel, 2006; Zumsande et al.,
2011). In large systems, this is generally not feasible and
numerical computation is required (e.g., Gross et al., 2009;
Lade et al., 2015). Stability analysis of large systems is under-
taken by sampling across a parameter space of generalized
parameters, thus enabling the investigation of relationships
between generalized parameters and stability (Gross et al.,
2009). Although the use of generalized parameters and the sta-
bility analysis procedure are standard approaches in GM, their
definition, formulation, and interpretation are domain-specific
and challenging for specific contexts.

Applications of GM have revealed important insights on
the stability of ecological networks. Gross et al. (2009)
investigated the stability of food webs with a particular focus
on network complexity. Since the seminal work of May
(1972), it is known that food webs become unstable with
growing size and connectivity, if they are assumed to be ran-
domly connected. However, large complex food webs do
exist in reality and there must therefore be factors that con-
tribute to their stability. The ecology literature has proposed
various mechanisms that contribute to the stability of large
networks, including the abundance of predator–prey rela-
tions (Allesina & Pascual, 2008), network modularity and
nestedness (Bascompte & Stouffer, 2011; Rohr, Saavedra, &
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Bascompte, 2014), and heterogeneity of link strengths
(Bascompte, Jordano, & Olesen, 2006). Based on a large en-
semble of networks, Gross et al. (2009) use the GM method
to show that the variability in the strengths of links between
species has a destabilizing role in large webs in contrast to
their stabilizing role in small webs. This necessitates that
further mechanisms are required for stability, such as having
multiple predators for intermediate species and top predators
being generalists (Gross et al., 2009).

GM is not the only approach used in ecology to characterize
the general stability properties of ecological networks. For
instance, Rohr et al. (2014) use structural stability to investigate
the stability of all feasible steady states where all species can
coexist, instead of a specific steady state. Saavedra, Rohr,
Gilarranz, and Bascompte (2014) apply this approach to socio-
economic systems where countries are represented as agents
that compete for resources. Saavedra et al. (2014) show that
stability decreases with increasing global competition for
resources and with the heterogeneity in distributions of
resources. There are similarities and differences between GM
and structural stability analysis. GM does not provide explicit
feasibility conditions but instead assumes their existence, while
Rohr et al. (2014) and Saavedra et al. (2014) calculate the feasi-
bility as well as stability conditions. GM characterizes the sta-
bility for the whole family of nonlinear models in terms of
generalized parameters, to which any specific functional form
and steady state can be mapped, while Rohr et al. (2014) and
Saavedra et al. (2014) consider specific functional forms. Dif-
ferently from the local stability analysis of GM, structural sta-
bility considers global stability, which is a stronger condition
that requires the explicit form of the functional relationship,
which GMdoes not consider.

Here, we use for the first time the GM method to study the
stability of supply networks. The adoption of a method devel-
oped in ecology to supply networks is consonant with the anal-
ogies between the two types of systems discussed in Surana
et al. (2005) and Saavedra et al. (2008, 2009, 2014); Saavedra,
Stouffer, Uzzi, and Bascompte (2011). Here, we define, spec-
ify, and interpret concepts of elasticity, sensitivity, and influ-
ence, in the context of supply networks. Although the concept
of elasticity is widely used in economics, its application to
material flows and inventory in supply networks is novel.

2.4 | Theoretical positioning of the study

We seek to fill the theoretical gaps discussed above by identify-
ing through analysis the factors that contribute to the stability of
large supply networks in their entirety. On the one hand, inven-
tory dynamics models noted in Section 2.1 capture operational
details, such as order batching, discrete delays, and forecast
inaccuracy, which do not scale to large networks for the study
of their stability properties. Therefore, the impact on stability of

the larger supply networks to which dyads or triads belong is
missed by these approaches. On the other hand, complex net-
works methods used to investigate supply networks (see
Section 2.2) either rely on centrality metrics, not capturing the
dynamical processes, or they resort to simulation, which is not
informative for stability. We move beyond purely structural
analyses of supply networks and seek to incorporate dynamic
material flows, which are defining characteristics of supply net-
works. In doing this, we make a compromise between calculat-
ing purely structural network metrics and incorporating
inventory dynamics at a level of detail, which would result in
mathematical intractability for an entire network. The price paid
for capturing nonlinearities and scalability to large networks is
the exclusion of discreteness, stochasticities, and delays consid-
ered in the literature that focuses on much smaller systems at a
much finer level of granularity. The principal assumption we
make of continuous flow is reasonable and plausible at a high
level for supply networks captured in their entirety, which is
our focus in this study. This approximation may be poor when
local control of flows in a network by a single entity has a
strong impact on overall network behavior. Our approach thus
provides a high level assessment of the stability properties of
supply networks, which is valuable for initial screening of the
network to identify suppliers and patterns of supply that are crit-
ical for stability. It can be combined with specified inventory
models for critical suppliers, if more information is available.

3 | GM FRAMEWORK FOR SUPPLY
NETWORK ANALYSIS

Here, we show how a generalized model can be developed to
analyze a supply network. We illustrate the approach using
the simple but nontrivial triadic supply network illustrated in
Figure 1 that captures the interrelatedness between suppliers
where a first-tier supplier to one firm supplies at the same
time to another first-tier supplier of the same firm. We present
a generalized model and its analysis for this triadic network.
We then develop the building blocks for a more general GM
method to analyze real-world supply networks. We present
the main steps here. A fuller mathematical exposition is given
in the Supporting Information Appendix.

The triadic network comprises three organizations: a prime
company and two suppliers. These organizations form the
nodes of the network, while product flows constitute the arcs.
The supply network produces the final product 6, which is
assembled by the prime company (Organization C) from two
outsourced parts (Parts 4 and 5). The prime company receives
Parts 4 and 5 from suppliers A and B, respectively. However,
production of Part 5 by first-tier supplier B depends on the
supply of Part 3 by supplier A. The production of Part 5 addi-
tionally requires Part 2, while Parts 3 and 4 both require Part
1. Parts 1 and 2 are assumed to be supplied without constraint
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from the external environment. We assume a constant deter-
ministic demand, which is reasonable for products with station-
ary demand and low variability.

We use state variables P1, P2, … , P6 to denote the total
system inventory of products 1 to 6. We do not differentiate
between the inventory levels of a given type of part held by
different firms. We assume that parts become immediately
available at the respective buyer when needed. This abstrac-
tion means that we do not seek to capture dynamics that arise
from lower level coordination problems such as delay-
induced instabilities (e.g., Warburton, 2004; Wei et al., 2013)
or periodic reviews and order batching (e.g., Lee, Padmanab-
han, & Whang, 1997). The approach enables us to take a lean,
“bird’s eye” perspective of flow on the network. We examine
higher level network effects critical for real-world networks
where detailed information on production, replenishment, and
transportation processes is unlikely to be available.

To set up and analyze a generalized model, four steps are
necessary. In step one, differential equations with unspeci-
fied functions are formulated to describe the time-evolution
of the state variables (P1, P2, … , P6). In step two, GM uses
a simple mathematical transformation, where each variable
and function is normalized with respect to their values in the
steady state. This provides the first set of generalized param-
eters: turnover parameters that capture the speed of inven-
tory turnover. In step three, the Jacobian matrix (a standard
matrix obtainable from a system of differential equations) is
calculated for the normalized system. This provides the sec-
ond set of generalized parameters: elasticity parameters that
characterize the sensitivity of the unspecified functions to
changes in the state variables at the steady state (Gross &
Feudel, 2006). Elasticity parameters provide a measure of
nonlinearity (see Supporting Information Appendix). In step
four, the asymptotic stability of the network is determined
by calculating the leading eigenvalue of the Jacobian matrix
(more precisely, the eigenvalue with the largest real part).
The network is unstable, if this eigenvalue has a positive real
part and stable otherwise. In large networks, the leading
eigenvalue is computed numerically for random samples
from the generalized parameter space.

The inventory levels (P1, P2, … , P6) change in time due
to production and shipments in response to orders. To

describe this, we use the notation X + Y ) Z, meaning that
product Z is assembled from parts X and Y. Using this nota-
tion, the production and ordering processes in the triadic net-
work are described by the following relationships:

Input : � ) P1 F1

� ) P2 F2

A : P1 ) P3 F3

P1 ) P4 F4

B : P2 + P3 ) P5 F5

C : P4 + P5 ) P6 F6

Output : P6 ) � F7,

where� represents the external environment, that is, sources and
sinks in the system. Each of the flows is assigned an auxiliary var-
iable Fi, which denotes the rate at which the respective material
flow occurs. The material flows F1 and F2 describe the supply of
external parts, F3‑F6 denote the production of parts and the final
product, andF7 denotes the sale of the final product.

The inventory level of a product increases due to flows where
the respective product is manufactured or delivered and decreases
due to flows where the respective part is used in assembly pro-
cesses or sold. The production rate of a product depends on (a) its
current inventory level, which is a basic principle of inventory
control, (b) the inventory levels of parts required for its produc-
tion, due to its potential limitation by the unavailability of the
requested quantity, and (c) the inventory levels of other parts
manufactured by the same firm, due to shared resources. Taking
such processes and interdependencies into account, the dynamics
are captured by the following system of differential equations.

d
dt
P1 = −F3 P1,P3,P4ð Þ−F4 P1,P4,P3ð Þ + F1 P1ð Þ

d
dt
P2 = −F5 P2,P3,P5ð Þ + F2 P2ð Þ

d
dt
P3 = −F5 P2,P3,P5ð Þ + F3 P1,P3,P4ð Þ

d
dt
P4 = −F6 P4,P5,P6ð Þ + F4 P1,P4,P3ð Þ

d
dt
P5 = −F6 P4,P5,P6ð Þ + F5 P2,P3,P5ð Þ

d
dt
P6 = −F7 P6ð Þ + F6 P4,P5,P6ð Þ ð1Þ

In the steady state (denoted by F*
i and P*

j , for flow i and

inventory level j, respectively), the flows are balanced, that

FIGURE 1 Triadic supply network
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is, dPi /dt = 0, for i = 1, 2, … , 6. As materials cannot
appear or vanish from the model except in predefined
sources and sinks, the material flow must be conserved
across the network. Hence, F*

2 = F*
3 = … = F*

7, which we
denote as F*, and F*

1 = 2F*. The subsequent steps of the
GM analysis use standard methods from dynamical systems
theory (see Supporting Information Appendix). As an out-
come of this procedure, the stability is expressed as a func-
tion of the generalized parameters.

3.1 | Generalized parameters

We now introduce the generalized parameters that appear in
the triadic network, which are defined analogously for real-
world networks (see Section 3.4). We use a statistical sam-
pling approach for the investigation of a network's stability
(see Section 3.2) that requires us to identify plausible ranges
for generalized parameter values, which is also discussed
below.

3.1.1 | Steady-state flow rate

A single free parameter, F*, characterizes all steady-state
flow rates, which must be positive. A dynamical system can
be rescaled with respect to time without affecting its dynami-
cal features. Therefore, F* can assume its value from a large
range of positive values. We use the range (0, 10] to study
the stability of the triadic network.

3.1.2 | Steady-state inventory level

In contrast to the flow rate, the inventory levels of different
products P1, … , P6 can be different in the steady state. In
the following, we use P* to refer to any one of these inven-
tory levels. We assume quasicontinuous instantaneous flows
for the differential equation formulation, which requires
the state variables not to be too small. We therefore consider
P* 2 [1, 10], but more extensive ranges could also be
considered.

3.1.3 | Elasticity to inventory level

The elasticity to inventory level captures the sensitivity of the
production rate to the inventory level of the part produced.
We collectively denote the elasticity to inventory level param-
eters as fI. To explain the concept of elasticity to inventory
level, we refer to the IOBPCS model. In a simplified version
of this model where work-in-process inventory is not con-
trolled, replenishment is expressed as the sum of the demand
forecast and a fraction of the deviation of system inventory
from its desired level. As the replenishment amount decreases
with increasing inventory level, the elasticity to inventory

level is nonpositive, that is, fI ≤ 0 (see Supporting Informa-
tion Appendix for a calculation of the elasticity parameter for
a nonlinear generalization of the IOBPCS control rule).
Because the elasticity to inventory level describes the impact
of the inventory level on its incoming flows, it captures the
self-inhibiting role of inventory control. The more negative
the elasticity to inventory level is, the more quickly a discrep-
ancy in the inventory level is resolved. The limit value of fI =
0 is observed, when the desired rate of production cannot be
achieved because of production capacity or part availability
limitations. We consider the range fI 2 [−2, 0].

3.1.4 | Elasticity to supply

The elasticity to supply characterizes the dependence of the
production rate of a certain product i on the availability of
parts j that are required for its production. We collectively
refer to the elasticity to supply parameters as fS. The elastic-
ity of finished goods sales to their availability is given fur-
ther consideration in the Supporting Information Appendix.

If the desired rate of production set by inventory level
and demand can be achieved, changing the level of parts
inventory does not impact the production rate, and thus fS =
0. If the inventory level of parts is insufficient to meet a
desired production rate, which may be the case when exter-
nal demand far exceeds the supply for a popular product, the
production rate needs to be adjusted according to the inven-
tory level of parts, thus fS > 0. Such strain due to limited
material availability is considered by Spiegler et al. (2016).
If all parts available in stock are used directly for production,
then fS = 1. We note that for deteriorating ingredients in
flow manufacturing industries, the production rate is mostly
set by the inventory levels of ingredients, that is, fS is gener-
ally positive. Hence the value of elasticity to supply charac-
terizes whether parts availability drives production or not
(fS > 0 and fS = 0, respectively). In the following, we focus
on the range fS 2 [0, 2].

3.1.5 | Elasticity to coproduction

Many organizations use the same resources to produce dif-
ferent parts. The elasticity to coproduction characterizes the
interdependence between production rates of parts manufac-
tured by the same organization using the same resources. In
the triadic network, Organization B produces Parts 3 and
4, and we collectively refer to the elasticity of the production
rate of Part 3 (or Part 4) to the inventory level of Part
4 (or Part 3) as fC.

If Parts 3 and 4 use the same limited resources and Orga-
nization B runs at full capacity, then an increase in the pro-
duction rate of Part 3 can only happen at the expense of a
decrease in the production rate of Part 4, and vice versa.
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Considering that the desired production rate of a part
decreases with its inventory level, the elasticity to coproduc-
tion is positive. The more capacity allocated to a part, the
smaller is its coproduction elasticity to the other part. The
more sensitive the desired production rate to the inventory
level of a part is, the higher the elasticity to coproduction of
the other part (see Supporting Information Appendix). This
concept is related to the capacitated multiitem lot sizing
problem (see Karimi, Fatemi Ghomi, & Wilson, 2003),
where the elasticity to coproduction would characterize the
dependence of the production rate of an item on the inven-
tory level of the other item at the previous step.

Elasticity to coproduction may also be negative (fC ≤ 0).
For instance, in a production system with sequence-
dependent setup costs, where the setup for Part 4 after Part
3 has a low cost, it might be advantageous to align the pro-
duction of Part 4 with Part 3, hence making its production
dependent on the other product. Similarly, if a product is a
by-product of another (for instance in the chemical industry),
its production rate is necessarily the same as the production
of the primary product.

In summary, a positive value of elasticity to coproduction
refers to the sensitivity of the production rate to another part
competing for the same resources, while a negative value
characterizes the induced production of a part by another.
We consider both positive and negative values and use the
range fC 2 [−2, 2].

3.2 | Statistical sampling and analysis
procedure

We compute the stability of the triadic network numerically
across the parameter space of generalized parameters in the
plausible ranges identified above, as summarized in Table 1.
To investigate the impact of generalized parameters on sta-
bility, we use two ensembles (i.e., random samples) of
parameter values that each contains 106 sets of parameters.
In the ensemble of individual parameters, each parameter,

for example, inventory level P*
1, is drawn independently and

uniform randomly from the corresponding range in Table 1,
whereas in the ensemble of identical parameters, all parame-
ters of the same type, for example, all inventory levels
P*
1,…,P*

6, are assigned the same value drawn uniform ran-
domly. The ensemble of individual parameters captures the
heterogeneity between different firms across the network.
However with increasing network size, it becomes difficult
to investigate the influence of each parameter. The ensemble
of identical parameters is a simplification, because it
assumes that the same type of generalized parameter takes
the same value for all firms, but it allows the impact of
parameters to be investigated in greater depth.

To measure the effect of certain generalized parameter on
stability, we first divide the corresponding range in Table 1
into bins of width 0.05. For each bin, we determine the frac-
tion of stable supply networks among all networks where the
generalized parameter falls into that bin. This procedure
gives us an estimate of the probability of randomly picking a
stable network when a generalized parameter falls within a
narrow parameter range. This probability has been used in
many GM studies (e.g., Gross et al., 2009) and is commonly
called the proportion of stable webs (PSW). When uniform
distributions are used, PSW provides an estimate for the
fraction of the generalized parameter space, where the net-
work is stable. If further information is available, this uncer-
tainty can be reduced by applying nonuniform distributions.
In addition, interdependencies between parameters can also
be included.

Here, we present the method as a strategic thinking tool,
which helps to identify the overall impact of generalized
parameters on stability. However, in further studies, model
parameters can be calibrated using historical inventory levels
and material flow data (see Supporting Information Appen-
dix). This could enable a focal organization to gauge the
impact of specific policies to improve the likelihood of
stability.

3.3 | Stability of the triadic supply network

Figure 2 shows the PSW when each of the generalized
parameters is varied.

3.3.1 | Steady-state flow rate

The steady-state flow rate does not have a significant impact
on the stability of the network, as shown in Figure 2a for
both ensembles. This may seem counterintuitive. It might be
thought that a system with large flow must experience high
strain and hence be more prone to instabilities. However,
this is not true a priori. A supply network where the flow is
pushed close to its capacity will generally be less responsive

TABLE 1 Generalized model parameters and their ranges

Parameter Interpretation
Initial
range

Reduced
range

Turnover

F* Steady-state flow rates (0,10] –

P* Steady-state inventory
levels

[1,10] 5

Elasticity

fS Elasticity to supply [0,2] [0,1]

fI Elasticity to inventory
level

[−2,0] [−2,0]

fC Elasticity to coproduction [−2,2] [−1,1]
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to further attempts to increase the flow rate. In the general-
ized model, this responsiveness is captured by the elasticity
to inventory level. The results below on the elasticity to
inventory level confirm that more strained systems are more
likely to be unstable. As we draw the elasticity parameters
independently of F*, systems with a high flow rate are not
more strained than systems with a low flow rate. Rather, sys-
tems with a high flow rate have a higher capacity such that
they are on average as strained as systems with a lower
flow rate.

3.3.2 | Steady-state inventory level

Similar to the flow, the PSW is not affected by the steady-
state inventory levels (Figure 2b). Again this result may
seem counter-intuitive as high inventory levels are often
used as buffers against disturbances. While it is true that
high inventory levels may mitigate the effect of instabilities

by ensuring that demand can be met and thus backlogs can
be avoided, the results show that high inventory levels in
themselves do not affect the onset of instabilities in this net-
work. We stress that this result does not imply that inventory
management does not impact stability of the network, but
rather that the elasticity to inventory level is a more impor-
tant factor on stability than steady-state inventory levels.

3.3.3 | Elasticity to supply

The PSW increases with increasing elasticity to supply, but
starts to saturate for higher values (Figure 2c). In order to un-
derstand this effect, first consider fS = 0, which is observed
when supply availability does not limit production. In this
case, an increase in the part inventory level does not lead to
a higher production rate, resulting in an overflow of inven-
tory, which has a destabilizing effect. The steady state under
consideration can however still be stable (PSW ≈0.5) as the

(a) (b)

(c) (d)

(e)

FIGURE 2 PSW as a function
of the generalized parameter values in
the ensembles of identical (red) and
individual (green) parameters [Color
figure can be viewed at
wileyonlinelibrary.com]
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excess part inventory leads to less production of the part,
because fI ≤ 0, which might push the inventory back to its
steady-state level. However, for the case fS > 0, where the
production is limited by part availability, changes in the part
inventory can be compensated by an increased or decreased
rate of production, resulting in a higher likelihood of
stability.

3.3.4 | Elasticity to inventory level

The PSW is larger for larger negative values of the elasticity
to inventory level, and thus fI has a stabilizing effect
(Figure 2d). Consistent with the discussion above, produc-
tion being more responsive to the current inventory level
leads to a higher probability of stability. There is a higher
risk of instability for strained systems (fI ≈ 0).

3.3.5 | Elasticity to coproduction

The PSW is highest for fC ≈ 0, when the production rates of
the two products manufactured by the same organization are
independent of one another (Figure 2e). The need to shift
production from one part to the other due to a capacity con-
straint, that is, fC > 0, and the dependent production of one
part to the other, that is, fC < 0, are both destabilizing.

Generating the above results for the triadic network is
straightforward and provides valuable indicators of the likely
stability of this small network. The approach can be extended
to large networks.

3.4 | Extension of the model and analysis
approach to real-world supply networks

To construct generalized models for large real-world supply
networks (e.g., consisting of at least 30 firms, which is an
order of magnitude bigger than the triad), the procedure
developed above can be used but with some adjustments to
include specific information available about the networks.
Doing so improves the quality and depth of the analysis and
its interpretations.

The first adjustment required for a realistic supply network
arises from the existence of processing links (Figure 3a), where
a product is shipped to a supplier for processing (e.g., painting
or machining) and then shipped back to the organization of ori-
gin. If an organization (Node j) in the network has regular as
well as processing links, we assume that it first assembles an
unprocessed product from the parts that arrive via regular links
(solid links from top row). Next, the unprocessed product that
is sent along the processing link (dotted link) is processed at the
relevant processing supplier (Nodes i), without being combined
with other parts, and then shipped back as a processed product
(solid link heading from left to right). The original organization

then distributes the product using its regular outgoing links
(dashed link). This is consistent with the use of processing sup-
pliers in many industrial product supply networks including
that of our industrial collaborator that manufactures industrial
engines (see Section 4.2.1).

The second adjustment is the existence of multiple prime
companies or retailers (Nodes i and j) that sell a product to the
external market (Figure 3b), where the material flow can termi-
nate in different consumer products. While the material flow of
each individual part is still conserved in the steady state, it is no
longer true that all flows are determined by a single flow profile
in the network, which may result in non-unique solutions (see
Supporting Information Appendix). The same problem occurs
in other domains and is solved by decomposing the steady-state
flow rates into different flux modes (Steuer et al., 2007). Each
of these flux modes represents a feasible flow of material
through the system. Every feasible flow profile can then be
written as a superposition of these flux modes. The flow profile
in the steady state is thus formed as a linear combination of flux
modes, where the contributions of each flux mode is expressed
by a generalized parameter.

The third adjustment is the existence of organizations
such as stockists that procure raw materials from different
alternative sources and supply them to companies further
downstream (Figure 3c). In contrast to a manufacturing firm,
for which we assume that each of the incoming parts is com-
plementary for the production of the outgoing product, we
assume that all incoming products of a stockist (Node i) are
identical. Therefore, an additional flux mode is created for
each incoming link.

The statistical analysis of stability can be directly applied to
large networks due to the computational efficiency of the
approach (see Supporting Information Appendix). Further anal-
ysis of the defining Jacobian matrix allows the sensitivity and
the influence of nodes and links to be computed (Aufderheide,
Rudolf, Gross, & Lafferty, 2013). Influence provides a measure
of the propensity of disturbances to a focal part of the network
to spread into the wider network. In contrast, sensitivity pro-
vides a measure of the propensity of disturbances in the wider
network to affect a focal part (see the Supporting Information
Appendix for formal definitions).

FIGURE 3 Extension to real-world supply networks:
(a) processing suppliers, (b) multiple prime companies/retailers, and
(c) stockists [Color figure can be viewed at wileyonlinelibrary.com]
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4 | RESEARCH DESIGN: REAL-
WORLD SUPPLY NETWORK CASE
STUDIES

We apply the GM-based stability analysis to two real net-
works, which provide a valuable cross-case analysis between
networks at different levels.

4.1 | Case selection

We are concerned with multi-tier manufacturing supply net-
works, where our analysis focuses on material flows rather
than supplier–buyer contractual agreements, as for instance
in Saavedra et al. (2008, 2009). We use theoretical sampling
(McCutcheon & Meredith, 1993) to choose two cases with
representative but also contrasting network characteristics
that can be anticipated to affect supply network stability.

The first case focuses on a manufacturing supply network
that is driven by a focal firm and that has high horizontal and
vertical complexity. Products such as machinery, computer
and electronics, appliances, and transportation vehicles have
complex bill-of-material structures. Due to the high degree of
outsourcing, their production can be expected to be organized
into multi-tier supply networks with high horizontal and verti-
cal complexity, forming our sampling frame. Although such
networks are common in practice, their mapping is generally
difficult and time-consuming. One potential source of data is
the public reporting of supplier–buyer transactions, which is
for instance used in Atalay et al. (2011) for network mapping.
However, such information is insufficient to study material
flows where all flows must end up in the same final product.
Such detailed network mapping (e.g., Choi & Hong, 2002)
generally requires close collaboration with powerful prime
entities that have the required visibility, information, and
resources. An ongoing collaboration between the authors and
a prime manufacturer of high-value engineered products facil-
itated access to such data, which formed the basis of the first
case selection. The prime manufacturer is a leading multina-
tional organization that produces industrial engines.

The second case focuses on industry-level networks, which
involve all firms in a given industry including prime manufac-
turers, their suppliers, and upper tier suppliers. Industry-level
networks are formed by a combination of individual supply
networks considered in case one, but with overlapping and
shared supply routes. The intertwining of such individual net-
works is common (Brintrup et al., 2016; Nair et al., 2009)
and can be expected to have implications for stability mainly
due to competing demands of different prime manufacturers
from shared suppliers. Therefore, the second case provides a
contrasting example to the first case, that is, a theoretical repli-
cation (Yin, 2009). Industry-level networks have been mapped
in the literature, for instance, for the automotive industry by

Kito et al. (2014) and Brintrup et al. (2016). In particular, we
are interested in industries where all firms involved are exclu-
sively supplying within that sector where the overall network
provides a self-contained unit of analysis. Collaboration with a
leading insurance provider for supply networks has provided
access to such an industry-level network in the luxury goods
sector. Different supply networks within this industry are
highly intertwined because each prime manufacturer produces
similar products in the same product family using many com-
mon sets of parts supplied by a common set of suppliers.

4.2 | Data collection and information on the
two real-world supply networks

Generalized models of supply networks essentially require
information on who is connected with whom, that is, buyer–
supplier relationships. These relationships are summarized
in an adjacency matrix that is used to set up the generalized
model. Additional information on supplier types and link
types (e.g., part manufacturers, stockists, assemblers, proces-
sing links) helps in subsequent analysis. For this study, these
data and general contextual information were collected for
the industrial prime network and provided for the industry-
level network. The network information was encoded in R
files, which were then used for the stability analysis and
visualization. The GM method is used principally to gener-
ate insights on network stability with network information of
this type. We discuss the potential in further work for spe-
cific functional forms to be incorporated in a GM approach
when further information is available.

We note that the two supply networks have relatively static
structures in the short-to-medium term, which constitutes the
timescale we are interested in for the stability analysis we con-
duct. The suppliers participating in these networks are special-
ists in the relevant manufacturing and processing technologies
and the time to acquire and switch to a new supplier is long.
This is in contrast to supply networks where there are many
alternative suppliers and the switching cost and time may be
low and the network structure is more transient, for example,
the garment industry networks analyzed in Saavedra et al.
(2008, 2009) andMacCarthy and Jayarathne (2013).

4.2.1 | Inbound supply network of a prime
manufacturer for an engineered product

The data for the inbound supply network did not exist in the
form needed and was collected by the research team in close col-
laboration with the prime manufacturer. The principal contact
person, the Supplier Development and System PurchasingMan-
ager, facilitated data collection as well as access to functions and
individuals within the business and their supporting information
systems. The primary data collection was carried out mainly
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during a one-week site visit by three members of the research
team to the prime's main manufacturing assembly facility in
2014. A list of questions was sent to the contact person the week
before the visit. The site visit started with a presentation of the
research project. The data collection was organized around
semi-structured interviews with 13 managers and employees
from different business functions including the purchasing and
supply, production planning, and finance functions. At the end
of each day, a review meeting was held with the contact person
to go through the list of questions and schedule extra meetings,
where needed. Following the visit, requests for clarification and
further data were made by emails and phone calls. Two months
after the visit, a site visit report was submitted to the organization
for validation. The results of the GM analysis were presented
about 12 months later and discussed with the firm.

The data collection covered various, mostly quantitative,
aspects of the supply network and operations management
practices of the prime manufacturer. Questions asked within
interviews covered product information, inventory manage-
ment policies, questions regarding the supply network
including basic information about suppliers and subsuppliers
(company name, location, part/process supplied, lead time),
performance data, and history of relationships with sup-
pliers. Validity and reliability were ensured by having multi-
ple investigators and multiple sources of information.
Access was provided to company documents such as bro-
chures, product data sheets, ERP systems data, performance
data, and risk registers with explanations where needed.
Meeting notes were held by each member of the research
team and a single short report was produced at the end of
each day. The mapping of the supply network was achieved
with close assistance of managers of the machining and fab-
rication sub-assembly (see below). Although the key infor-
mation on first- and upper tier suppliers (company name and
location, part supplied or activity done, and connection with
other suppliers) was accessible, it was not kept centrally.
With the help of the managers, we sought information from
employees with responsibility for specific parts, and in a
number of cases contacting suppliers for upstream informa-
tion. Collected information was encoded into fields for com-
pany name, location, part supplied or activity done, and
connection with other suppliers. Theoretical saturation was
reached when all material flow paths for important parts up
to the raw material level were covered.

The manufacturer specializes in offering customized
engines tailored to specific customer needs. A build-to-order
inventory positioning strategy is used because the volume
of demand for final products is low and the variety and cus-
tomization of these products are high. The product build is
organized into four different subassemblies: casting, machin-
ing and fabrication, engine drive, and systems. The machining
and fabrication subassembly supply network was selected for

the analysis. This choice was because the prime manufacturer
is the design owner and this supply network requires a high
degree of active management to guarantee coordinated sup-
ply. The network involves suppliers with different roles (raw
material suppliers, part manufacturers, processing suppliers,
assemblers, and stockists), which is organized into a multi-tier
network. Despite the level of control that the prime can exer-
cise over its suppliers, supply network visibility is still limited
because of its extent and depth, its geographical spread, and
the limited resources available to monitor beyond the first tier.
The information on the performance and the operational poli-
cies of upper tiers were not registered or documented and the
burden of managing upper tiers was mainly passed onto the
first-tier suppliers.

The inbound supply network map (Figure 5) is organized
around the prime manufacturer (Node 27). It consists of
55 organizations, six of which are stockists. The organiza-
tions are linked by 74 product flows including six processing
links. While the prime manufacturer has 17 incoming links,
the suppliers at the highest tier have none. In addition to the
high horizontal and vertical complexity and degree heteroge-
neity, the network involves a further aspect: interrelatedness
between suppliers, that is, some of the suppliers appear at
multiple tiers. For example, the aggregator (Node 1) repre-
sents both a tier-two and tier-three supplier, and triadic
motifs are present in the network (e.g., formed by Nodes
10, 22, and 27) as well as a pentadic motif (e.g., formed by
Nodes 1, 27, 45, 49, and 54). The mean degree (average
number of links per node) is 1.3455, the average path length
of the undirected network is 3.5434, and the (undirected)
clustering coefficient is 0.0268.

4.2.2 | Industry supply network in the luxury
goods sector

The data on this case was provided by one of our industrial
partners that is an external stakeholder, an insurance pro-
vider, making risk assessments of supply networks. The
insurance company has policies that provide coverage for
supply networks in their entirety. Our contact in the insur-
ance company was the Global Supply Chain Product Leader.
There were strong issues of commercial confidentiality
related to this case. The communication with the company
was organized around two meetings and several follow-up
email and phone conversations for clarification that spanned
over a time period of more than one year. The first meeting
involved an explanation of the research project by two mem-
bers of the research team, who attended the meeting and dis-
cussion of the supply network provided. The second
meeting focused on the presentation of the results of the
analysis and the discussion of the policy implications of the
approach. Data triangulation was provided by supporting
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documents, that is, an industry report prepared by a third
party and brochures on the supply network insurance prod-
ucts and supply network risk assessment tools. We note that
we have relied on the supply network information provided
and cross-checking was not possible. Given the use by the
organization of the information for risk assessment, it is
likely that the information is reliable.

The second case is an industry-level supply network from
the luxury goods sector. The network comprises a set of
companies that are concentrated in the same geographical
region. The network as a whole has a global monopoly for
this luxury product, which has a considerably high and
growing global demand. The network consists of 36 prime
companies, several first-tier and many secondary and tertiary
part suppliers, with some being processing suppliers. There
is a common trend of vertical integration, where prime com-
panies extend their domain of activities to include more pro-
duction, by acquisition of suppliers or bringing the
production of parts in-house. This is documented by the
public records of company acquisitions. There is still a high
degree of variation in prime company profiles in terms of
their involvement in production and their degree of vertical
integration. The extended supply networks of different prime
companies significantly overlap, forming a highly inter-
twined network. Consequently, stock-outs due to unavail-
ability of parts and capacity problems are common and have
been identified as a major threat for the sector. Another con-
sequence is the challenge of supply allocation for suppliers
with limited capacity that have to balance the supply
between multiple competing buyers. This has lead to several
disputes between companies regarding capacity allocation to
customers.

The supply network is shown in Figure 7. It consists of
107 organizations. There are 32 suppliers that either manufac-
ture parts from raw materials or receive basic parts from the
external environment. In total, these parts are exchanged along
185 links including 5 processing links. The mean degree is
1.7290, the average path length of the undirected network is
3.4914, and the (undirected) clustering coefficient is 0.0386.

5 | RESULTS AND DISCUSSION

In the following, we first investigate the stability of the two
networks introduced in Section 4, compute the influence and
sensitivity in both networks, and compare the influence and
sensitivity of nodes with measures of network centrality. We
discuss the results of the GM analysis of these networks in
the context of the literature and formulate five propositions
on the dynamic behavior of supply networks. We finish with
a discussion and elaboration of the general insights and the
theoretical, managerial, and policy implications of the study.
We conclude by noting future research directions.

5.1 | Inbound supply network of an
engineered product

To compute PSW, we used the reduced parameter range
(Table 1), set the flux mode strengths range to (0, 5], and
computed PSW for 106 parameter instances randomly gener-
ated from the ensemble of identical parameters.

The results (Figure 4) show some similarities to the tri-
adic network (Figure 2). However, the overall PSW in the
inbound network of the engineered product is lower than in
the triadic network. As in the triadic network, PSW increases
as the magnitude of the elasticity to inventory level increases
and neither the steady-state flow rates nor the inventory
levels are major factors influencing stability. Plotted over
the elasticity to coproduction range, PSW still peaks at zero
elasticity but its decline for positive values is sharper. Thus,
stability suffers if interdependencies exist between the pro-
duction of different parts by a single supplier. PSW remains
largely constant across different values of the elasticity to
supply. Therefore, adapting the production rate to the inven-
tory levels of parts in this network does not have the stabiliz-
ing impact observed for the triadic network.

Going beyond the analysis applied to the triadic network,
we also analyze which manufacturers and parts have the
strongest influence on network dynamics leading to instabil-
ity and which are most sensitive to disturbances in the net-
work. To compute these measures, we initialize the system
by drawing the generalized parameters from a subset of the
reduced range (fS 2 [0, 0.5], fI 2 [−2, 0], fC 2 [−0.1,
0.1], P* = 5), with flux mode strengths in the range (0, 5],
in order to increase the number of stable systems so that we
have a sufficiently high number of cases where the network
is at the onset of instability.

The analysis reveals that the most influential and sensitive
organization is the prime manufacturer (Node 27), closely fol-
lowed by a stockist (Node 2) that is of comparable importance
for the network (see Figure 5). These organizations are also the
nodes with highest degrees (Figure A2 in Appendix A). In
addition, the influence of upper tier organizations tends to be
less than their sensitivity to disturbances. In contrast, the influ-
ence of lower tier organizations tends to be greater than their
sensitivity. We observe that the outgoing links from stockists
(e.g., Node 2) tend to be highly influential. The incoming parts
and the suppliers of these parts for stockists are of lower influ-
ence but of higher sensitivity compared to other parts flowing
from suppliers to manufacturers at the same tier. Furthermore,
we observe that raw material suppliers who supply to more
than one buyer in the system (e.g., Nodes 8 and 33) have high
sensitivity. Conversely, the processing nodes (Nodes 13, 29,
and 38) that can be identified from bidirectional links have
larger influence but smaller sensitivity than others with similar
degree. We denote these as “processing nodes” because of the
nature of the flows they receive.
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5.2 | Industry supply network in the luxury
goods sector

We use the same ensemble with the same parameter ranges
used in Section 5.1. The results for PSW (Figure 6) show sim-
ilarities to the inbound supply network for the engineered
product. However, PSW for the industry network declines
with increasing elasticity to supply, albeit this is a relatively
weak effect. Hence, the impact of elasticity to supply changes
from being stabilizing in the triadic network to being destabi-
lizing in the industry-level network. The extended inbound

network of a single industrial manufacturer is an intermediate
case in which elasticity to supply does not have a significant
effect on stability.

Figure 7 shows that the most highly connected organiza-
tion (Node 41) in the industry-level supply network is both
the most sensitive and the most influential. Note that in the
network visualization in Figure 7, organizations are aligned
according to their degree, that is, organizations with higher
degree are closer to the center. These central (high degree)
organizations tend to be both influential and sensitive.
Beyond the effects of node degree, we observe network
structural effects that also existed for the inbound network of
the prime manufacturer. For instance, organizations with
processing links (e.g., Nodes 22 and 79) tend to be more
influential and less sensitive than organizations with a simi-
lar degree (e.g., Nodes 57 and 74), which is discussed fur-
ther in regard to a generic proposition presented below
(Proposition 1). A general observation for both networks is
that upper tier organizations tend to be more sensitive than
influential, although, both their sensitivity and influence are
relatively low. Lower tier organizations are in general more
influential than sensitive, with both influence and sensitivity
values being relatively large.

5.3 | Comparison of influence and sensitivity
with measures of network centrality

While network centrality measures quantify importance
purely from a structural point of view, the influence and sen-
sitivity measures quantify the importance of nodes under
dynamic conditions and account for both network structure
and flows on the network. We compare the two classes of
measures in order to gain insights on the interaction between
the network structure and network dynamics. We consider
degree, closeness, and betweenness centrality measures,
which are also used in the supply chain management litera-
ture in the context of risk assessment (see Section 2.2).

The results summarized in Table 2 and plotted in
Figure A1 in Appendix A show that the correlations of all
measures are reasonably high overall. Both influence and
sensitivity are very highly correlated with degree and
betweenness centrality measures for the inbound supply net-
work, indicating that high-degree nodes and nodes located
on shortest paths (the stockist and the prime company) are
highly influential and sensitive, while nodes that are not cen-
tral with respect to these aspects do not induce or suffer from
instability to the same extent in this network.

The correlation is lower for the industry-level network,
which comprises a collection of individual supply networks.
While the correlation with degree and betweenness centrality
decreases in comparison to their values for the inbound net-
work, the closeness centrality correlation is similar for this

(a)

(b)

(c)

FIGURE 4 PSW for the inbound supply network of an
engineered product [Color figure can be viewed at
wileyonlinelibrary.com]
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network. Investigating these patterns in more detail, more
insights are evident. For the industry-level network, degree
centrality identifies Node 41 as an outlier. However, GM
identifies Nodes 22, 76, and 79 also as being highly influen-
tial (Figure A3 in Appendix A). From our analysis and dis-
cussion in Section 5.2, it is evident that the sensitivity and
influence of Nodes 22 and 79 are increased by the proces-
sing link between them. Thus links, especially processing
links, to a node with high influence and sensitivity, may
increase the sensitivity and influence of the node itself. This
also explains the high influence and sensitivity of Node 76.

The analysis confirms that node-based centrality metrics
may explain the spread of disturbances in supply networks
to some extent. In particular, high-degree centrality corre-
sponds to a firm receiving many types of parts, processin-
g/assembling products, and/or delivering the output products
to many customers. Considering that managing each of these
connections implies a burden for a focal organization, degree
centrality may be interpreted as a measure of operational
load in supply networks (Kim et al., 2011). Our results show
that the node degree is correlated with the sensitivity to dis-
turbances, which is consistent with the interpretation of
degree as capturing operational load in supply networks.
Problems arising in high-degree nodes can be expected to
spread to the rest of the network. This is consonant with the
impact of high-degree nodes, that is, hubs, on epidemic
spreading in complex networks (Pastor-Satorras, Castellano,
Van Mieghem, & Vespignani, 2015) and network resilience

(Albert et al., 2000; Kim et al., 2015). In both networks stud-
ied, high-degree centrality indicates high influence and sen-
sitivity. However, the dynamic measures of influence and
sensitivity that capture flows on a network provide more
subtle and important insights for the onset and impact of
instability in supply networks that we discuss below.

5.4 | Identifying organizations, network
motifs, and operations policies critical for
network stability

Analyses of the inbound supply network of the industrial
engine manufacturer and the industry-level supply network
in the luxury goods sector highlight specific features of orga-
nizations and specific network motifs, that is, specific sub-
graphs that define patterns of interactions between nodes,
that are important for stability and that are influential for,
and/or sensitive to, the spreading of disturbances when insta-
bilities emerge. Sensitive organizations and sensitive links
between organizations are highly likely to be affected by dis-
turbances in the network. Influential organizations and influ-
ential links between organizations are highly likely to trigger
problems elsewhere in the network.

We observe in both networks that links with suppliers we
denote as “processing suppliers,” which receive, process, and
return subassemblies (e.g., suppliers that perform operations
such as painting and machining), are characterized by high
influence but low sensitivity. Disturbances emanating from

(a) (b)

FIGURE 5 Influence and sensitivity of parts and suppliers in the inbound supply network of an engineered product. (a) Influence of supplier
(blue) and parts (red) on instability. (b) Sensitivity of suppliers and parts toward perturbations. Node 55 (external market) omitted from figures for
clarity [Color figure can be viewed at wileyonlinelibrary.com]
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these links will quickly affect the material flow even if such
processing suppliers themselves might have low degree. Such
nodes prove to be disruptive, if instability originates within
that processing link. Due to their low sensitivity, processing
suppliers are more likely to withstand instabilities originating
elsewhere. Although the disturbances elsewhere will eventu-
ally affect them, they are not particularly sensitive. This is
supported by the experience of our industrial collaborator
with the disruptions caused by suppliers that perform opera-
tions such as machining or painting at different tiers of the
supply network being common. The above discussion leads
us to formulate Proposition 1.

Proposition 1 Disturbances originating in links with proces-
sing suppliers that receive, process, and return subassemblies
tend to influence the flows in the rest of the network strongly
but such suppliers are likely to withstand disturbances origi-
nating elsewhere in the network.

The GM analysis provides a valuable initial screening
method to identify a set of suppliers for scrutiny and potential
supplier development and/or the need for network redesign to
achieve stronger vertical integration. Highly sensitive organiza-
tions that are strongly affected, resulting in a surplus or lack of
products, can be advised to invest in flexibility, extra buffers,
and resource redundancy (e.g., Kamalahmadi & Parast, 2016
for related approaches). Influential organizations may need
strong, active monitoring and management by prime entities
because the problems they face may trigger risks throughout
the network. Processing suppliers and organizations that are
highly connected, for example, stockists and assemblers, con-
stitute such examples. Considering that influential suppliers
may be positioned deep in the network and may lack the neces-
sary resources to cope with disturbances, the prime network
entities need to ensure such nodes are visible, apply a strategic
supply network development approach and, where appropriate,
invest in developing their capabilities before problems arise
(Krause, Handfield, & Scannell, 1998). Vertical integration of
such suppliers may also be considered, which is a trend noted
in the context of the luxury goods sector analyzed.

Network properties such as the level of nestedness and
compartmentalization have been shown to impact stability in
ecological networks (Bascompte & Stouffer, 2011; Rohr
et al., 2014; Saavedra et al., 2011). Specific types of network
motifs may strongly influence stability of the larger net-
works to which they belong, irrespective of the dynamical
properties of the rest of the system (Aufderheide et al., 2012;
Zhigulin, 2004). In this study, we observe in particular the
destabilizing role of cycles in supply networks. Elasticity to
coproduction captures the interdependence between the rates
of production of parts manufactured by a single organiza-
tion. As the absolute value of the elasticity to coproduction
increases, the likelihood of stability decreases in all the three
networks studied. If the same organization produces multiple
parts that end up in the same final product through assembly
processes further downstream in a supply network, this leads
to a cyclic motif. Hence, the elasticity to coproduction is
closely linked to cycles. The real-world supply networks
analyzed here contain an abundance of cycles, a feature
which has also been noted for some other supply networks
reported in the literature (Brintrup et al., 2016; Lomi & Patti-
son, 2006). In particular, there is an increased awareness of
triadic relationships in supply networks (Choi & Wu, 2009).
In our GM analysis, we observe the potentially detrimental
effects such relationships have on network stability, which

(a)

(b)

(c)

FIGURE 6 PSW for the industry supply network in the luxury
goods sector [Color figure can be viewed at wileyonlinelibrary.com]
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agrees with the anecdotal experience of our industrial part-
ners (Section 4.2.1) that triadic supply relationships create
coordination problems. This occurs because the common
supplier at the apex of a cyclic motif needs to balance the
capacity demands from multiple customers, and thus the
coproduction elasticity affects stability even if they are for
different end products, as in the industry-level network stud-
ied. This can be more generally interpreted as competition
for limited resources. Investigating socioeconomic systems
in a context where individual countries compete for limited
financial resources, Saavedra et al. (2014) show that network
stability decreases with the level of competition. Our results
show similar insights about the impact of competition for
limited resources in a manufacturing supply network con-
text. This can in particular explain the source of the
decreased stability for the industry-level network in compari-
son with the inbound supply network of an engineered prod-
uct for a single manufacturer. These observations lead us to
formulate Propositions 2 and 3.

Proposition 2 Cyclic motifs, which involve two separate
paths of material flows from a common supplier at the apex
of the cycle to a common firm further downstream, destabi-
lize material flows.

Proposition 3 When different end-product streams share a
common supply network, competition between them has a
destabilizing effect on material flows in the network.

These propositions highlight the importance of effective
capacity planning and management in supply networks,
which is particularly challenging for a disparate industry-
level network in comparison to a coordinated prime-driven
network of a large industrial player. Furthermore, they point
supply chain managers to ways of identifying suppliers criti-
cal for stability due to capacity constraints. Suppliers that are
located at the apex of cyclic network motifs and those sup-
pliers providing parts for multiple prime manufacturers or

TABLE 2 Correlation between classical network measures and sensitivity and influence for the inbound supply network (SN1) and industry
supply network (SN2)

Correlation Sensitivity SN1 Influence SN1 Sensitivity SN2 Influence SN2

Betweenness centrality 0.930 0.953 0.572 0.363

Closeness centrality 0.652 0.689 0.643 0.693

Degree centrality 0.998 0.983 0.630 0.461

(a) (b)

FIGURE 7 Influence and sensitivity of parts and suppliers in the industry supply network in the luxury goods sector. (a) Influence of supplier
(blue) and parts (red) on instability. (b) Sensitivity of suppliers and parts toward perturbations. Node 107 (external market) omitted from figures for
clarity [Color figure can be viewed at wileyonlinelibrary.com]
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multiple retailers are critical for stability. Sufficient capacity
needs to be in place for these suppliers to minimize the inter-
dependence between production rates of different products,
thereby removing the need for compromise between differ-
ent prime entities. Considering that many real supply net-
works are highly intertwined (Atalay et al., 2011; Brintrup
et al., 2016), this constitutes a major challenge for stability.
For instance, the disruption in the supply of a specific paint
pigment from a common supplier deep in the network led to
an industry-wide cascade in the automotive industry (Park,
Hong, & Roh, 2013). Strategies such as strong aggregate
capacity planning processes, multisourcing, and investment
in capacity “cushions,” may be advocated to address or miti-
gate the effects of such instabilities.

Elasticity to supply captures the effect of the inventory
level of parts on the production rate. An elasticity value of
zero corresponds to the case where desired production orders
can be satisfied with parts available in stock, while a positive
value corresponds to limited part availability that constrains
production. We find that limited part availability has a posi-
tive effect on the likelihood of stability for the triadic net-
work. However, the results for the industry-level network
indicate a negative impact. The contrast in these effects sup-
ports the nontrivial impact of the product limitation on sta-
bility conditions reported in Venkateswaran and Son (2007),
although we note a fundamental difference in the contexts.
We consider a supply network with product assembly and
instantaneous flows while Venkateswaran and Son (2007)
consider a single manufacturer with multiple production
stages and material delays. Venkateswaran and Son (2007)
compare the stability conditions under limited versus unlim-
ited product availability, showing that an otherwise stable
state can be destabilized by the strain due to product avail-
ability constraints, while the opposite is also possible.
Hence, the stability implications of product availability con-
straints are nontrivial. This also resonates with a finding
from ecology: a factor that is stabilizing for small food webs
can become destabilizing for larger food webs (Gross et al.,
2009). This leads us to formulate Proposition 4.

Proposition 4 Constraints on part availability may be sta-
bilizing for small isolated networks for a single prime entity
but may destabilize industry-level supply networks that are
comprised of multiple intertwined product flows.

If systemic material shortages exist at an industry level,
supply networks may be prone to instability and potentially
to collapse. Such industry level instabilities may ultimately
result in network disintegration and/or degeneration to smal-
ler and less intertwined networks. The industry-level net-
work investigated here was found overall to be less stable
than the inbound network, which in turn is less stable than

the triadic network. This echoes the findings in ecology that
larger food webs are more prone to instability and require
special structural and functional properties to ensure stability
(May, 1972; May, 2013; McCann, 2000). Clearly, we need
to be cautious in inferring the topological causes or predic-
tors of instability in supply networks. However as a testable
proposition, it signals a direction for further empirical stud-
ies of real networks (of which there are still only a limited
number reported in the literature).

In the analyses, we find that the steady-state flow rates
and inventory levels do not have a strong direct effect on
network stability. This is consistent with findings in ecology
(Gross et al., 2009) that turnover parameters do not have a
significant effect on stability. In inventory control models,
the conditions that lead to the loss of stability have been
shown to be independent of the steady-state flow and inven-
tory levels (e.g., Warburton, 2004). Thus, we argue that the
buffering role of inventories does not strongly impact the
onset of instabilities. However, buffer inventories may
clearly minimize the impact of disturbances and disruptions
once they occur. This is in agreement with the lean perspec-
tive of inventories, that is, the existence of inventory may
mask fundamental operational problems. However, we do
observe that stability is influenced by the dependence of the
material flow on the inventory level, that is, elasticity to
inventory level, which captures how quickly the production
is adjusted to cover for deviation from desired inventory
levels. This stabilizing effect of the elasticity to inventory
level results from the self-limitation of production, that is,
the more that is produced the less the need to produce more.
This is in agreement with the known effect that negative
feedback loops are stabilizing in dynamical systems
(Sterman, 2000). However, this observation should be inter-
preted with caution given the nongranular level at which we
study network behavior. Here, we do not capture delay
induced instabilities, which could counteract the stabilizing
role of elasticity to inventory level. Based on these observa-
tions, we formulate Proposition 5.

Proposition 5 The steady-state level of inventory and mate-
rial flows do not strongly impact the onset of stability. The
more quickly the production rate is adjusted to account for
changes in the inventory level, the more likely the supply
network is to be stable.

Propositions 4 and 5 explain the impact of part availabil-
ity and inventory abundance on supply network stability.
Supply networks need to be monitored for deviations from
their designed or intended states (Ivanov & Sokolov, 2013;
Ivanov, Sokolov, & Kaeschel, 2010). If such deviations
occur, for instance due to changes in demand or due to dis-
ruptions, the control policies need to be adapted to ensure
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stability, for example by more promptly adjusting produc-
tion rates or by elevating the significance of part limitation
constraints by working closely with existing suppliers or
using backup suppliers. However, in supply networks, such
a response may be difficult to automate as may be possible
in some engineered systems and requires active managerial
involvement (Ivanov & Sokolov, 2013). The GM approach
enables the stability implications of a perceived change in
some part of the system to be quickly investigated, which
can facilitate adaptive management decisions to account for
stability. In particular, within a software implementation of
the methodology, it is straightforward to rerun an analysis
on a reconfigured network to assess the benefits or disbene-
fits of adaptive strategies. For example, the effect on net-
work vulnerability of adding dual sourcing to a critical
supply line, or cutting out an existing aggregator, can be
assessed.

5.5 | Contributions to theory, managerial and
policy implications, and further research
directions

We have applied a methodology emanating originally from
ecology, GM, to study supply network stability. We have
shown how GM concepts and constructs can be defined,
applied, and interpreted in a supply network context. We
introduce material flow related elasticity concepts to the sup-
ply chain management domain, which is consonant with their
widespread use in economic theory (Nievergelt, 1983). The
approach goes beyond purely structural network analysis
approaches (e.g., Bellamy & Basole, 2013; Kim et al., 2011)
by incorporating not just network structure but also the mate-
rial flows on supply networks. This is significant because
material flow is a defining characteristic of such systems.

Through the application of contemporary dynamical sys-
tems theory and network science concepts and tools, we gen-
erate quantitative information and indicators that can help
direct improvements in a supply network. The approach is rel-
atively parsimonious in the required input information and
can therefore be applied in many practical contexts, where
only limited resources can be invested in supply network
monitoring. The method can be used as a triage approach to
identify hidden potential vulnerabilities in a network about
which a focal organization might not otherwise be aware.

The study provides new insights contributing to theoreti-
cal understanding of supply networks. Propositions 1‑5 pro-
vide testable relationships for future investigation to
underpin and further develop the understanding of supply
network stability. Propositions 1‑3 provide indicators to
identify hidden vulnerabilities to instability in supply net-
works, highlighting the criticality of links with suppliers that
involve the dispatch, processing and return of parts or sub-

assemblies, cyclic motifs that involve separate paths from a
common supplier to a common firm downstream, and com-
peting demands of different end products at specific nodes.
Such “rules of thumb” are particularly valuable in focusing
the attention of managerial decision makers on supply net-
work stability, given the widespread use of such heuristics in
practice (Katsikopoulos, 2011). The approach supports stra-
tegic supply network development activities and capacity
planning at the supply network level. Propositions 4 and
5 provide guidelines on the impact of part availability limita-
tions and inventory control policies on supply network sta-
bility, which can be used within an adaptive management
system. Proposition 4 highlights that lessons learned from
small networks may not be transferable to extensive supply
networks. This is a significant observation given the trends
of elongation and increasing complexity of supply networks
(Marucheck, Greis, Mena, & Cai, 2011).

The GM methodology provides a platform for systemic
risk management of supply networks. There are clear bene-
fits of such approaches for prime focal companies, such as
large industrial firms that seek to design, manage, and con-
trol their supply networks, and also large retailers and brand
owners that are reliant on globally dispersed supply net-
works (MacCarthy & Jayarathne, 2013). Furthermore, there
is a growing supply chain insurance market, where insurers
seek to understand and quantify their risk exposure. Policy
makers in government and industry bodies are also inter-
ested in understanding the vulnerabilities of critical supply
networks that contribute to employment and economic
growth. The network approach developed here is consistent
with the risk management agenda proposed for financial net-
works (Haldane & May, 2011). In this context, our approach
provides an effective and efficient method that offers practi-
cal help to organizations seeking to design, manage, or risk-
assure their supply networks.

The approach has significant potential for further study of
adaptation in supply networks, particularly with respect to
planning, control, and governance mechanisms (Choi et al.,
2001; Ivanov et al., 2010; Pathak et al., 2007). It enables the
impact on stability of a wide spectrum of policies adopted by
supply network members that are typically beyond the reach
or influence of a focal organization to be investigated. Experi-
mentation with generalized elasticity parameters can provide
insights on network stability characteristics under different
policies, indicating whether and where the adaptation of plans
and possibly restructuring of a network is required.

The method can be further developed to enable decision
support and may be augmented with tools from network
visualization, data and statistical science, and decision sci-
ence. There are opportunities for further refinement of the
GM approach, particularly in tailoring and calibrating the
parameters for specific contexts. Developing models that
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incorporate work-in-process and transport inventories to cap-
ture the impact of material delays is a natural step forward
but requires hurdles of model size and model tractability to
be overcome. Generalized models can also be combined
with more granular and specific modeling approaches, such
as control theory, agent-based modeling, and discrete-event
simulation, enabling more detailed information for critical
suppliers to be incorporated, if available.

The computational efficiency of GM makes it possible to
process large libraries of different network topologies to
identify robust general network design rules. We draw an
analogy with ecology. Evolution tends to produce ecosys-
tems that are stable against perturbations and are thus robust
and resilient. The analogy with the desire of industry to
design and operate robust and resilient supply networks is
too obvious to ignore. Constructing metrics, including vul-
nerability indices, to quantify the stability of a supply net-
work to different potential risks is a potential area for
development. Such metrics can be aided by the GM frame-
work presented. A relevant area for further research is the
study of supply network resilience to catastrophic failures
(e.g., Chopra & Sodhi, 2004), which could be studied by
analyzing the leading eigenvalue of the generalized Jacobian
matrix that characterizes the recovery time.

Finally, the ecology literature presents interesting find-
ings that may have further implications for supply network
stability. For instance, the variability in link strengths has
been shown to have a strong impact on the stability of eco-
logical networks (Bascompte et al., 2006; Gross et al., 2009;
McCann, 2000). The investigation of whether such phenom-
ena hold in supply networks is a promising area for
further work.
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APPENDIX A. | FIGURES FOR THE
COMPARISON OF SENSITIVITY/INFLUENCE
WITH CLASSICAL NETWORK MEASURES

Figures A1, A2, and A3 below are noted in Sections 5.1 and 5.3.
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