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Abstra
t

We 
ontinue the study of permutations of a �nite regular semigroup

that map ea
h element to one of its inverses, providing a 
omplete de-

s
ription in the 
ase of semigroups whose idempotent generated sub-

semigroup is a union of groups. We show, in two ways, how to 
onstru
t

an involution mat
hing on the semigroup of all transformations whi
h

either preserve or reverse orientation of a 
y
le. Finally, as an appli-


ation, we use involution mat
hings to prove that when the base set

has at least four members, a �nite full transformation semigroup has

no 
over by inverse subsemigroups that is 
losed under interse
tion.
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1 Introdu
tion and General Results

1.1 Ba
kground

In [6℄ the author introdu
ed the study of permutation mat
hings, whi
h are

permutations on a �nite regular semigroup S that map ea
h element to one

of its inverses. It follows from Hall's Marriage Lemma that S will possess

a permutation mat
hing if and only if S satis�es the 
ondition that |A| ≤
|V (A)| for all subsets A of S with set of inverses V (A). Although not all �nite
regular semigroups have a permutation mat
hing, there are positive results

for many important 
lasses. In [7℄ the author 
hara
terised some 
lasses

of �nite regular semigroups by the nature of their permutation mat
hings

and determined, in terms of Green's relations on prin
ipal fa
tors, when a

�nite orthodox semigroup S has a permutation mat
hing. In this 
ase a

permutation mat
hing implies the existen
e of an involution mat
hing. In

Se
tion 1.3 we show how this result may be extended to semigroups whose

idempotent-generated subsemigroup is a union of groups.

It is not known whether the semigroup On of all order-preserving map-

pings on a �nite n-
hain has a permutation mat
hing of any kind. It was

shown in [6℄ however that OPn, the semigroup of all orientation-preserving

mappings on an n-
y
le, has a natural involution mat
hing. In Se
tion 2.1 we

summarise relevant properties of this semigroup and of Pn, the semigroup of

all orientation-preserving and orientation-reversing mappings on an n-
y
le.
This latter semigroup, whi
h was introdu
ed in [1℄ and independently by

M
Alister in [9℄, has an intri
ate stru
ture, whi
h is manifested in the 
on-

text of the problem of this paper. In Se
tion 3 we 
onstru
t a dual pair of

involution mat
hings of Pn.

There are no known examples of a �nite regular semigroup S that has a

permutation mat
hing but no involution mat
hing. It was proved in [6℄ by

graph theoreti
 te
hniques that Tn, the full transformation semigroup on an

n-set, has a permutation mat
hing but it is not known if Tn has an involution
mat
hing. However in Se
tion 4 we show that Tn (n ≥ 4) has no involution

mat
hing through so-
alled strong inverses, whi
h allows us to show that Tn
(n ≥ 4) has no 
over by inverse semigroups that is 
losed under interse
tion.

Following the texts [8℄ and [5℄, we denote the set of idempotents of a semi-
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group S by E(S). We shall write (a, b) ∈ V (S) if a and b are mutual inverses
in S and denote this as b ∈ V (a) so that V (a) is the set of inverses of a ∈ S.
We extend the notation for inverses to sets A: V (A) =

⋃

a∈A V (a); note that
this assigns a se
ond meaning to V (S), but the 
orre
t interpretation will

be 
lear from 
ontext. Standard results on Green's relations, parti
ularly

those stemming from Green's Lemma, will be assumed (Chapter 2 of [5℄,

spe
i�
ally Lemma 2.2.1) and fundamental fa
ts and de�nitions 
on
erning

semigroups that are taken for granted in what follows are all to be found in

[5℄. We shall sometimes write G to stand for either of the Green's relations

L or R.

We say that a semigroup S is 
ombinatorial (or aperiodi
) if Green's H-

relation on S is trivial. A 
ompletely 0-simple 
ombinatorial semigroup is

known as a 0-re
tangular band. The full transformation semigroup on a base

set X is denoted by TX or by Tn when X = [n] = {0, 1, 2, · · · , n− 1}.

Let C = {Ai}i∈I be any �nite family of �nite sets (perhaps with repeti-

tion of sets). A set τ ⊆
⋃

Ai is a transversal of C if there exists a bije
tion

φ : τ → C su
h that t ∈ φ(t) for all t ∈ τ . We assume Hall's Marriage

Lemma in the form that C has a transversal if and only if Hall's Condition

is satis�ed, whi
h says that for all 1 ≤ k ≤ |I|, the union of any k sets from

C has at least k members.

1.2 Permutation mat
hings

De�nitions 1.2.1 Let S be any semigroup and let F = {f ∈ TS : f(a) ∈
V (a)∀a ∈ S}. We 
all F the set of inverse mat
hings of S. We 
all f ∈ F a

permutation mat
hing if f is a permutation of S; more parti
ularly f is an

involution mat
hing if f2 = ε, the identity mapping on S.

In the remainder of the paper we shall assume that S is regular and �nite

unless otherwise indi
ated. We shall often denote a mat
hing simply by

′
, so

that the image of a is a′. We use the shorthand a′′ as an abbreviation for (a′)′.
We shall work with the family of subsets of S given by V = {V (a)}a∈S . The
members of V may have repeated elements�for example S is a re
tangular

band if and only if V (a) = S for all a ∈ S. However, we 
onsider the members

of V to be marked by the letter a, so that V (a) is an unambiguous member

of V (stri
tly, we are using the pairs {a, V (a)}, (a ∈ S)). We summarise
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some results of [6℄.

Theorem 1.2.2 [6℄ For a �nite regular semigroup S the following are

equivalent:

(i) S has a permutation mat
hing;

(ii) S is a transversal of V = {V (a)}a∈A;

(iii) |A| ≤ |V (A)| for all A ⊆ S;

(iv) S has a permutation mat
hing that preserves the H-relation; (mean-

ing that aHb ⇒ a′Hb′);

(v) ea
h prin
ipal fa
tor Da ∪ {0} (a ∈ S) has a permutation mat
hing;

(vi) ea
h 0-re
tangular band B = (Da∪{0})/H has a permutation mat
h-

ing.

In [7, Remark 1.5℄ it was shown that we may repla
e `permutation mat
h-

ing' by `involution mat
hing' in Theorem 1.2.2 as regards the impli
ations

((i) ⇔ (v)) ⇐ ((iv) ⇔ (vi)) although the missing forward impli
ation has

not been resolved.

1.3 Permutation mat
hings for an E-solid semigroup

De�nition 1.3.1 A regular semigroup S is de�ned to be E-solid if S satis�es

the 
ondition that for all idempotents e, f, g ∈ E(S)

eLfRg → ∃h ∈ E(S) : eRhLf.

An alternative 
hara
terisation of an E-solid semigroup is that of a regular

semigroup S for whi
h the idempotent-generated subsemigroup 〈E(S)〉 is a
union of groups [3, Theorem 3℄.

We prove our result on E-solid semigroups via the 
orresponding result

for orthodox semigroups. The proof of this latter result involved redu
ing

the general problem to the 
ase of 0-re
tangular bands and then showing
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that the 
orresponding D-
lass D may be diagonalised in that the R- and L-

lasses may be ordered so that all idempotents are 
ontained in re
tangular

blo
ks (whi
h then form the maximal re
tangular subbands of D); S then

has a permutation mat
hing if and only if, within ea
h D-
lass of S, these
blo
ks are similar in the following sense.

De�nition 1.3.2 Let U1 and U2 be �nite re
tangular bands, let mi and

ni denote the respe
tive number of R-
lasses and L-
lasses of Ui (i = 1, 2).
We say that U1 and U2 are similar if

m1

n1
= m2

n2
.

Theorem 1.3.3 [7, Theorems 3.7 and 3.1℄ Let S be a �nite orthodox

semigroup. Then S has a permutation mat
hing if and only if for ea
h

0-re
tangular band B = (Da ∪ {0})/H (a ∈ S) the maximal re
tangular

subbands of B are pairwise similar. In that 
ase the permutation mat
hing

of S may be 
hosen to be an involution mat
hing.

Proposition 1.3.4 Ea
h 0-re
tangular band B = (Da ∪{0})/H (a ∈ S)
of a �nite E-solid semigroup S is orthodox.

For 
ompleteness, we re
ord a proof of the Proposition but note that the


lass of all (not ne
essarily �nite) E-solid semigroups is a so-
alled e-variety,

meaning that the 
lass is 
losed under the taking of homomorphi
 images, of

dire
t produ
ts, and regular subsemigroups [4℄. Also in [4℄ is shown that a

semigroup is orthodox if and only if the same is true of ea
h of its prin
ipal

fa
tors: (also see [5, Ex. 1.4.13(iv)℄).

Proof From the de�nition of E-solidity we see that ea
h prin
ipal fa
tor

Da ∪{0} of S is itself E-solid, and B 
ertainly is regular. Next we note that

B is E-solid through two observations: H ∈ E(B) if and only if H = He for

some e ∈ E(S), and HaGHb in B if and only if aGb in S. Hen
e if B 
ontain

three idempotents He,Hf , and Hg with e, f, g ∈ E(S), and they are su
h

that HeLHfRHg in B, then eLfRg in S and by the E-solid 
ondition on

S we have eRhLg for some h ∈ E(S). We now have HeRHhLHf in B and

Hh ∈ E(B). Therefore B is E-solid.

To show that B is indeed orthodox, �rst note that by our se
ond observa-

tion, B is 
ombinatorial. Then for any two idempotents of B, whi
h we now

write as e, f , we have either that ef = 0 ∈ E(B), or otherwise eLgRf for

some g ∈ E(B) when
e, sin
e B is E-solid, it follows that h = ef ∈ E(B).
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Therefore E2(B) = E(B), as required.

Theorem 1.3.5 Let S be a �nite E-solid semigroup. Then S has a

permutation mat
hing if and only if the maximal re
tangular subbands of

ea
h of the 0-re
tangular bands (Da∪{0})/H are pairwise similar. Moreover

if S has a permutation mat
hing then S has an involution mat
hing.

Proof By Theorem 1.2.2, S has a permutation mat
hing if and only if

the same 
an be said for all B = (Da ∪ {0})/H (a ∈ S). By Proposition

1.3.4, ea
h su
h B is a �nite orthodox 0-re
tangular band. By Theorem 1.3.3,

ea
h su
h B then has a permutation mat
hing if and only if the maximal

re
tangular subbands of B are pairwise similar, giving the �rst statement

of Theorem 1.3.5. In this 
ase, again by Theorem 1.3.3, ea
h permutation

mat
hing of ea
h B may be 
hosen to be an involution mat
hing of B. Then

by (vi) implies (i) in Theorem 1.2.2 as it applies to involutions, we 
on
lude

that S itself has an involution mat
hing, thus 
ompleting the proof.

2 Mat
hings for OPn and Pn

2.1 The semigroups OPn and Pn

We re
ap some of the important properties of the semigroups OPn and Pn.

We also augment these results in order to build a type of 
al
ulus for these

semigroups. All semigroups under 
onsideration will be subsemigroups of Tn.
Basi
 properties of the representation of α ∈ Tn as a digraph G(α) 
an be

found in the text [5, Se
tion 1.5℄. Ea
h 
omponent C of G(α) is fun
tional,
meaning that ea
h vertex has out-degree 1 so in 
onsequen
e C 
onsists of a

unique 
y
le Z(α) with a number of dire
ted trees rooted around the verti
es

of Z(α). The set of 
y
le points of G(α) are exa
tly the points in the stable

range of α, denoted by stran(α), whi
h are the points of [n] 
ontained in the

range of all powers of α. Pi
tures of these digraphs are helpful in seeing what
is going on and the reader is invited to draw them where relevant, espe
ially

in the examples of Se
tion 4 where they are a natural aid to understanding.

For α ∈ Tn we write R = R(α) for its range Xα, while t = |R(α)| will
stand for the rank of α. The kernel relation of α on X will be denoted as
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ker(α) with the 
orresponding partition of Xn written as Ker(α). The set of
�xed points of α will be denoted by F (α). Fa
ts from the sour
e paper [1℄

are listed using the term Result.

De�nitions 2.1.1 (i) the 
y
li
 interval [i, i + t] (0 ≤ t ≤ n− 1) is the
set {i, i + 1, · · · , i+ t} if i+ t ≤ n− 1 and otherwise is the set

{i, i + 1, · · · , n− 1, 0, 1, · · · , (i+ t) (modn)}.

(ii) A �nite sequen
e A = (a0, a1, · · · , at) from [n] is 
y
li
 if there exists

no more than one subs
ript i su
h that ai > ai+1 (taking t+1 = 0). We say

that A is anti-
y
li
 if the reverse sequen
e Ar = (at, at−1, · · · , a0) is 
y
li
.

Remarks 2.1.2 To say that A is 
y
li
 as in (ii) is equivalent to saying

that for some subs
ript i, ai+1 ≤ · · · ≤ at ≤ a0 ≤ · · · ≤ ai and the subs
ript

i with this property is unique unless A is 
onstant. On the other hand A is

anti-
y
li
 means Ar
is 
y
li
 so that A is anti-
y
li
 if and only if for some

subs
ript i we have ai+1 ≥ · · · ≥ at ≥ a0 ≥ · · · ≥ ai (and i is unique if A is

not 
onstant). The properties of 
y
li
ity and anti-
y
li
ity are inherited by

subsequen
es and by sequen
es obtained by 
y
li
 re-ordering.

De�nition 2.1.3 A mapping α ∈ Tn is orientation-preserving if its

list of images, (0α, 1α, · · · , (n − 1)α), is 
y
li
. The 
olle
tion of all su
h

mappings is denoted by OPn. We say that α ∈ Tn is orientation-reversing

if (0α, 1α, · · · , (n − 1)α) is anti-
y
li
 and the 
olle
tion of all orientation-

reversing mappings is denoted by ORn.

Result 2.1.4 OPn is a regular submonoid of Tn. Ea
h kernel 
lass of

α ∈ OPn is a 
y
li
 interval of [n] and the maximal 
y
les of the 
omponents

of the digraph G(α) have the same number of verti
es, denoted by c(α).

De�nition 2.1.5 Let α ∈ OPn be of rank t ≥ 2. We index the members

of Ker(α) as Ki (0 ≤ i ≤ t− 1) in su
h a way that the set of initial points ai
of the 
y
li
 intervals Ki satisfy a0 < a1 < · · · < at−1, denoting this ordered

set by K(α). The list {K0,K1, · · · ,Kt−1} is 
alled the 
anoni
al listing of

the kernel 
lasses of α. For ri ∈ R(α) where r0 < r1 < · · · < rt−1 we denote

the 
y
li
 interval [ri, ri + 1, · · · , ri+1 − 1] by Ri.

Result 2.1.6 ([1℄, Theorem 3.3) For t ≥ 2 there is a one-to-one 
orre-

sponden
e Φ0 between the set of triples (K,R, i) where K and R are or-
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dered t-sets of Xn (0 ≤ i ≤ t − 1) and {α ∈ OPn : |Xα| = t} whereby

(K,R, i) 7→ α, where ea
h aj ∈ K is an initial point of a kernel 
lass of α
and ajα = ri+j (0 ≤ i ≤ t − 1), subs
ripts 
al
ulated modulo t. Moreover

Hα = {Φ0(K,R, i) : i = 0, 1, · · · , t− 1}, and so |Hα| = t.

Result 2.1.7 (i) The 
olle
tion Pn = OPn∪ORn is a regular submonoid

of Tn; R- L- and D-
lasses are determined by equality or kernels, of images,

and of ranks respe
tively (as in Tn and OPn).

(ii) the re�e
tion mapping γ : [n] → [n], whereby i 7→ n− i−1 (i ∈ [n]) is
orientation-reversing and Pn = 〈a, e, γ〉, where a is the n-
y
le (0 1 · · · n−1)
and e is any idempotent in OPn of rank n− 1; 〈a, e〉 = OPn.

(iii) OPn ∩ ORn = {α ∈ OPn : rank(α) ≤ 2}.

(iv) (ORn)
2 = OPn, OPn · ORn = ORn · OPn = ORn.

It is also proved in [1℄ and in [9℄ that the respe
tive maximal subgroups

of rank t of OPn and of Pn are 
y
li
 groups of order t and dihedral groups

of order 2t. Also every non-
onstant member α ∈ OPn fa
torizes uniquely

as α = arφ where a is the n-
y
le as above and φ ∈ On. The 
onstant

mappings on [n] 
omprise D1, the lowest D-
lass of Pn. Any permutation of

D1 is a permutation mat
hing of D1 and for that reason D1 will not need to

feature in our subsequent dis
ussion.

De�nition 2.1.8 For α ∈ Pn we shall write ρ(α) = (K,R), where K and

R are the respe
tive sets K(α) of initial points of kernel 
lasses and R(α).

Note that for any α, β ∈ S = OPn or Pn, αHβ if and only if ρ(α) = ρ(β).
We now extend Result 2.1.6 to Pn.

Theorem 2.1.9 For t ≥ 2 there is a one-to-one 
orresponden
e Φ be-

tween the set of quadruples (K,R, i, k) where K and R are ordered t-sets of
[n], 0 ≤ i ≤ t− 1, k = ±1 and {α ∈ Pn : |Xα| = t}. The 
orresponden
e is
given by (K,R, i, k) 7→ α, where ea
h aj ∈ K is an initial point of a kernel


lass of α and ajα = ri+kj (0 ≤ j ≤ t− 1), subs
ripts 
al
ulated modulo t.

Proof The �rst statement of Result 2.1.6 implies that Φ|k=1 maps bije
-

tively onto the set of non-
onstant mappings in OPn. We show that Φ|k=−1
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maps bije
tively onto the set of non-
onstant mappings in ORn. The equa-

tion Kjα = ri−j 
ertainly spe
i�es a unique mapping α = Φ(K,R, i,−1) ∈
Tn, and distin
t quadruples yield distin
t mappings. We need to 
he
k that

α ∈ ORn. We have however the following equality of two lists:

ai+1α = rt−1 > ai+2α = rt−2 > · · · > aiα = r0 (1)

It follows from (1) and Remarks 2.1.2 that the image of the 
y
li
 list K
under α is anti-
y
li
 and so α = Φ(K,R, i,−1) ∈ ORn; hen
e Φ|k=−1 is a

one-to-one mapping into the set of mappings of ORn of rank at least 2.

Conversely, let α ∈ ORn be of rank t ≥ 2. Sin
e multipli
ation on the

right by γ de�nes a bije
tion of OPn onto ORn, it follows that the kernel


lasses of α are 
y
li
 intervals and so Hα is determined by a pair of ordered

t-sets (K,R). Take i su
h that aiα = r0. Then sin
e ai+1, ai+2, · · · , ai
is 
y
li
 and α ∈ ORn, it follows that ai+1α, ai+2α, · · · , aiα is anti-
y
li
.

However, sin
e aiα = r0 = minR, it follows by Remarks 2.1.2 that (1) holds

for α and so α = Φ(K,R, i,−1). Therefore Φ||k=−1 is a bije
tion onto the

set of non-
onstant mappings of ORn. Finally note that for k = ±1, the
rank of α = Φ(K,R, i, k) is indeed t = |R| = |K|.

Corollary 2.1.10 For t ≥ 3, ea
h H-
lass H of Pn 
ontained in D(t) is
a disjoint union H = (H ∩OPn)∪ (H ∩ORn) with ea
h set in the union of


ardinal t.

Proof Let H = {α ∈ Pn : ρ(α) = (K,R)}. Then by Theorem 2.1.9,

H ∩OPn = {Φ(K,R, i, 1) : 0 ≤ i ≤ t− 1} and H ∩ORn = {Φ(K,R, i,−1) :
0 ≤ i ≤ t−1}; these two sets ea
h have t members and are disjoint by Result

2.1.7(iii).

We shall refer to the 
oding of ea
h α ∈ Pn in the form (K,R, i, k) as
the KRik-
oordinates of α, noting that (K,R, i, k) = Φ−1(α). We 
all i and
k respe
tively the shift and the parity of α.

Lemma 2.1.11 Let α ∈ Pn with ρ(α) = (K,R). Then

(i) ρ(αγ) = (K,n − 1−R); (ii) ρ(γα) = (n−K,R);

(iii) ρ(γαγ) = (n−K,n − 1−R).
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Proof (i) is immediate from de�nition as is the fa
t that R(γα) = R(α)
in (ii). Continuing in (ii), suppose that α = Φ(K,R, i, k). Then for ri+kj ∈ R
(0 ≤ j ≤ t− 1), we obtain:

ri+kj(γα)
−1 = ri+kjα

−1γ−1 = Kjγ

= (n−1)−{aj, aj+1, · · · , aj+1−1} = {n−aj+1, n−aj+1+1, · · · , n−aj−1},

where j + 1 is 
al
ulated modulo t. It follows that K(γα) = n − K(α),
thereby establishing (ii). Applying (i) and then (ii) now gives (iii) as follows:

ρ(γα · γ) = (K(γα), n − 1−R(γα)) = (n−K,n − 1−R)

Proposition 2.1.12 Let α = Φ(K,R, i, k) ∈ Pn. Then

(i) αγ = Φ(K,n − 1−R,−(i+ 1),−k);

(ii) if 0 66∈ K then γα = Φ(n−K,R, i − 2k,−k);

(iii) if 0 ∈ K then γα = Φ(n−K,R, i − k,−k);

(iv) if 0 6∈ K then γαγ = Φ(n−K,n− 1−R, 2k − (i+ 1), k);

(v) if 0 ∈ K then γαγ = Φ(n−K,n − 1−R, k − (i+ 1), k).

Proof (i) We are working throughout modulo t on subs
ripts. By Lemma

2.1.11(i) we have ρ(αγ) = (K,n − 1−R). Now

n− 1−R = {n− 1− rt−1 < n− 1− rt−2 < · · · < n− 1− r0}.

Let us denote n − 1− r−(j+1) by sj (0 ≤ j ≤ t− 1) so that R(αγ) = {s0 <
s1 < · · · < st−1}. Hen
e ajαγ = ri+kjγ = n− 1− ri+kj ; now

i+ kj = −(−i− kj), so that ajαγ = s−(i+1)−kj,

whi
h establishes equation (i).

(ii) By Lemma 2.1.11(ii) we have ρ(γα) = (n −K,R). Sin
e 1 ≤ a0

n−K = n− at−1 < n− at−2 < · · · < n− a0.
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Let us denote n− a−(j+1) by bj (0 ≤ j ≤ t− 1) so that K(γα) = {b0 < b1 <
· · · < bt−1}. Hen
e:

bjγα = (n−1−(n−a−(j+1)))α = (a−(j+1)−1)α = a−(j+2)α = ri−k(j+2) = r(i−2k)−kj,

whi
h establishes equation (ii).

(iii) Now sin
e a0 = 0 we have n− a0 = n ≡ 0 (mod n) and so:

n−K = n− a0 < n− at−1 < n− at−2 < · · · < n− a1.

Let us denote n − a−j by bj (0 ≤ j ≤ t − 1) so that K(γα) = {b0 < b1 <
· · · < bt−1}. Hen
e

bjγα = (n−1−(n−at−j))α = (a−j−1)α = a−(j+1)α = ri−k(j+1) = r(i−k)−kj,

whi
h establishes equation (iii).

(iv) By Lemma 2.1.11(iii) we have ρ(γαγ) = (n − K,n − 1 − R). Now

using (ii) we obtain

bjγαγ = r(i−2k)−kjγ = n− 1− r−(2k−i+kj) = s(2k−(i+1))+kj ,

whi
h establishes equation (iv).

(v) By Lemma 2.1.11(iii) we have ρ(γαγ) = (n − K,n − 1 − R). Now

using (iii) we obtain

bjγαγ = ri−k−kjγ = n− 1− r−(k−i+kj) = s(k−(i+1))+kj,

whi
h establishes equation (v).

Example 2.1.13 As an example we �nd γαγ for α ∈ OR10 given by:

α =

(

0 1 2 3 4 5 6 7 8 9
3 2 2 8 8 6 6 4 3 3

)

;

so that n = 10, t = 5, K = {1, 3, 5, 7, 8}, R = {2, 3, 4, 6, 8} and α =
Φ(K,R, 0,−1). Sin
e 0 6∈ K, a

ording to Proposition 2.12(iv), we should

�nd that γαγ = Φ(10−K, 9−R, 2,−1) as i(γαγ) = 2(−1)−(0+1) = −3 ≡ 2
(mod 5). Now n −K = {2, 3, 5, 7, 9}, and n − 1 − R = {1, 3, 5, 6, 7}. This

a

ords with the dire
t 
al
ulation of γαγ, whi
h 
orresponds to reversing

the image line of α (to get γα) and subtra
ting the images from n− 1 = 9.

γαγ =

(

0 1 2 3 4 5 6 7 8 9
6 6 5 3 3 1 1 7 7 6

)

.
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3 Permutation mat
hings for OPn and Pn

3.1 An approa
h via subset involutions

Lemma 3.1.1 Let A ⊆ S and let (·′) denote anH-
lass-preserving involution

mat
hing on the set A. Then (·′) may be uniquely extended to an involution

mat
hing on AH = ∪a∈AHa. In parti
ular, if A meets every H-
lass of S
then (·′) extends uniquely to an H-
lass-preserving involution of S, whi
h
we shall 
all the indu
ed involution mat
hing on S.

Proof Sin
e (·′) is H-
lass-preserving it indu
es an involution on AH by

Ha 7→ Ha′ . We then have an involution mat
hing on AH de�ned by b 7→ b′

where b ∈ Ha say and b′ is the unique inverse of b in Ha′ .

We now 
onstru
t what we shall refer to as the natural mat
hing involu-

tion for Pn, whi
h is the indu
ed involution mat
hing on Pn extending the

involution of OPn re
orded in [6℄.

Theorem 3.1.2 The semigroup Pn has an H-
lass-preserving involution

mat
hing (·′) de�ned by the rule:

(α = Φ(K,R, i, k)) ⇒ (α′ = Φ(R,K,−ki, k)) (2)

Proof From Theorem 2.1.9 and its proof it follows that (2) de�nes an H-


lass-preserving involution that maps ea
h of OPn and ORn onto OPn and

ORn respe
tively: 
ertainly α′′ = α as (−k)(−ki) = k2i = i. It remains

only to 
he
k that (α,α′) ∈ V (Pn) and by symmetry it is enough to verify

that α = αα′α. To this end take x ∈ [n] with x ∈ Kj say where the kernel


lasses of α are labelled by subs
ripts in the 
anoni
al order. Then sin
e

−ki+ k(i+ kj) = −ki+ ki+ k2j = j we obtain:

xαα′α = ajαα
′α = ri+kjα

′α = a−ki+k(i+kj)α = ajα = xα,

and so α = αα′α, as required.

Note that for t = 2 we have OPn ∩ D2 = ORn ∩ D2 = D2 and in

this 
ase k = −k (mod t). This 
ollapse in the fourth entry of the KRik-


oordinates leads to the involution mat
hing taking on the simpler form

α = Φ(K,R, i) 7→ α′ = Φ(R,K, i).

12



Examples 3.1.3 Let n = 8, t = 4, K = {0, 2, 4, 6}, R = {1, 3, 5, 7} and

α ∈ OR8 de�ned by α = Φ(K,R, 3,−1) so that α′ = Φ(R,K, 3,−1).

α =

(

0 1 2 3 4 5 6 7
7 7 5 5 3 3 1 1

)

α′ =

(

0 1 2 3 4 5 6 7
0 6 6 4 4 2 2 0

)

.

For an example in OPn let us take n = 10, t = 6, K = {0, 2, 4, 7, 8, 9},
R = {0, 1, 2, 5, 6, 7} and α = Φ(K,R, 4, 1). Sin
e −i = −4 = 2 (mod 6) we
obtain α′ = Φ(R,K, 2, 1):

α =

(

0 1 2 3 4 5 6 7 8 9
6 6 7 7 0 0 0 1 2 5

)

α′ =

(

0 1 2 3 4 5 6 7 8 9
4 7 8 8 8 9 0 2 2 2

)

.

Example 3.1.4 The natural involution inverse of a group element is not

ne
essarily a group element and nor does the natural involution map On into

itself. Both features are seen in the following example. Take n = 3, t = 2,
K = {0, 2}, R = {1, 2}, and put α = Φ(K,R, 0, 1) so that α′ = Φ(R,K, 0, 1):

α =

(

0 1 2
1 1 2

)

α′ =

(

0 1 2
2 0 2

)

;

we see that α ∈ E(O3) ⊆ E(OP3) and so is an order-preserving group

element while α′2
is the 
onstant mapping with range {2} and so α′

is not


ontained in any subgroup of OP3 and nor is α′
order-preserving. In the

next example α ∈ E(O2n), but α
′
has no �xed points.

Example 3.1.5 Take α ∈ E(O2n) so that R(α) = F (α), putting R(α)
as the set of odd members of [2n] and for ea
h even integer i ∈ [2n] we put
iα = i + 1. This yields an order-preserving idempotent α on [2n] of rank n
for whi
h

(0α, 1α, · · · , (2n − 2)α, (2n − 1)α) = (1, 1, 3, 3, · · · , 2n− 1, 2n − 1).

Now α = Φ(K,R, 0, 1) where K = {0, 2, 4, · · · , 2n − 2} and

R = {1, 3, 5, · · · , 2n− 1}. Hen
e α′ = Φ(R,K, 0, 1). The kernel 
lasses of α′

have the form (i, i + 1), (i = 1, 3, · · · , 2n − 1). We see that α′

ontains the

n-
y
le:
σ = (2n− 2 2n − 4 2n − 6 · · · 2 0),

and for all odd i we have iα′ = i − 1. (The digraph G(α) has exa
tly one


omponent 
onsisting of the n-
y
le σ along with n endpoints, one for ea
h

point on σ.) In parti
ular c(α) = 1 but c(α′) = n.
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3.2 The dual mat
hing involution of Pn

The mapping on Pn de�ned by α 7→ αγ (resp. α 7→ γα) is an involution on

Pn that maps OPn onto ORn and maps ORn onto OPn. Additionally, for

any αγ ∈ ORn (resp. γα ∈ ORn) and α′ ∈ V (α) in OPn, γα
′ ∈ V (αγ)

(resp. α′γ ∈ V (γα)) whi
h lies in ORn. The upshot of this is that any

permutation mat
hing (·′) on OPn may be extended to one on Pn by de�ning

(αγ)′ = γα′
(or dually, (γα)′ = α′γ). However, if (·′) is an involution

mat
hing, the same is not generally true of either of these extensions, even

in the 
ase of the natural inverse mat
hing. Lemma 2.1.11 supplies enough

information to make this point.

Let β = Φ(K,R, i,−1) ∈ ORn so that ρ(β) = (K,R). Writing β = αγ
so that α = βγ we get ρ(α) = (K,n− 1−R) and so ρ(α′) = (n− 1−R,K).
Then for β = γα′

we have ρ(β) = (R + 1,K). Fa
torizing β as (γα′γ)γ we

obtain ρ(γα′γ) = (R+1, n−K − 1) so that ρ((γα′γ)′) = (n−K− 1, R+1).

Finally, β = γ(γα′γ)′ for whi
h we have ρ(β) = (K+1, R+1). In parti
ular

we see that in general β 6= β, as K + 1 = K if and only if β is a member of

the group of units of Pn. However, by repla
ing the standard linear ordering

by the reverse, or as we shall 
all it the dual ordering of [n], we automati
ally

obtain a dual involution mat
hing on Pn, whi
h we shall denote by (·). This
generates a distin
t mat
hing involution of Pn to that of Theorem 3.1.2 and

we now seek to express (·) in KRik-
oordinates.

Let α = Φ(K,R, i, k). Under (·), ea
h r ∈ R is mapped to the initial

point of rα−1
in the dual ordering, whi
h is the terminal point rα−1

in the

standard ordering. It follows that Xα = K − 1. Similarly, under (·), R
be
omes the set of initial points of kernel 
lasses in the dual ordering, whi
h

is then the set of terminal points of those same 
lasses when expressed in the

standard ordering, and so K(α) = R+ 1. Therefore ρ(α) = (R + 1,K − 1).
Sin
e the 
hoi
e of ordering does not a�e
t whether or not α ∈ Pn preserves

or reverses orientation, we may write α = Φ(R+ 1,K − 1, i(α), k), where it
only remains to determine i(α).

Theorem 3.2.2 The dual mat
hing involution (·) : Pn → Pn a
ts by

α = Φ(K,R, i, k) 7→ Φ(R+ 1,K − 1), i(α), k) where:

Case (1): 0 6∈ K and n− 1 6∈ R: i(α) = 1 + k(1 − i);
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Case (2): 0 6∈ K and n− 1 ∈ R: i(α) = 1− ki;

Case (3): 0 ∈ K and n− 1 6∈ R: i(α) = k(1− i);

Case (4): 0 ∈ K and n− 1 ∈ R: i(α) = −ki.

Moreover, α is in Case (1/4) if and only if α is in Case (1/4) and α is in

Case (2/3) if and only if α is in Case (3/2).

Proof Sin
e ρ(α) = (R + 1,K − 1) it follows that ρ(αα) = (K,K − 1).
Observe that the unique member of K − 1 in the kernel 
lass Kj is aj+1 − 1
and sin
e αα ∈ E(Pn) we have:

Kjαα = aj+1 − 1

⇒ ri+kjα = aj+1 − 1 ⇒ ri+jα = akj+1 − 1

⇒ rjα = ak(j−i)+1 − 1 = a(1−ki)+kj − 1

∴ (rj + 1)α = rj+1α = a(1+k(1−i))+kj − 1 (3)

The value of i now falls into four 
ases.

Case (1): 0 6∈ K and n− 1 6∈ R. Sin
e 1 ≤ a0 and rt−1 ≤ n− 2 we have,

in as
ending order:

K−1 = {a0−1, a1−1, · · · , at−1−1}, R+1 = {r0+1, r1+1, · · · , rt−1+1} (4)

Then putting j = 0 in (3) yields (r0 + 1)α = a1+k(1−i) − 1 and so α =
Φ(R+ 1,K − 1, 1 + k(1− i), k).

Case (2): 0 6∈ K but n−1 ∈ R so that the ordered set R+1 = {rt−1+1 =
0, r0 + 1, · · · , rt−2 + 1}. Then sin
e rt−1 + 1 is the initial entry of R + 1 we

substitute j = t− 1 ≡ −1 (mod t) into (3) to re
over that i is 1− ki and so

α = Φ(R+ 1,K − 1, 1− ki, k).

Case (3): 0 ∈ K but n − 1 6∈ R so that the ordered set K − 1 =
{a1 − 1, a2 − 1, · · · , at−1 − 1, a0 − 1 = n− 1}. As in Case (1) we put j = 0 in
(3) to get a1+k(1−i)− 1 but sin
e ea
h entry is now listed one pla
e earlier in

the ordered set K−1 
ompared to Case (1), we subtra
t 1 from the out
ome

in Case (1) to obtain α = Φ(R+ 1,K − 1, k(1 − i), k).
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Case (4): 0 ∈ K and n− 1 ∈ R so the ordered set R+1 is as in Case (2)

and K − 1 is as in Case (3). Hen
e r−1 +1 is the �rst entry of R+1, whi
h,
by (3), is mapped to a1−ki, whi
h is the entry at position −ki in the list of

K − 1. Hen
e we obtain α = Φ(R+ 1,K − 1,−ki, k).

Also note that 0 ∈ K ⇔ n− 1 ∈ K − 1 and n − 1 ∈ R ⇔ 0 ∈ R+ 1. It
follows that α is in Case (1/4) if and only if α is in Case (1/4) and that α is

in Case (2/3) if and only if α is in Case (3/2).

Remarks 3.2.3 If we take the union of the natural involution mat
hing

(·)′ on OPn with the dual involution mat
hing (·) on its 
omplement in Pn,

we have another involution mat
hing on Pn. Sin
e the natural involution

mat
hing on Pn is the unique involution mat
hing that extends (·)′ to Pn

while preserving H-
lasses, it follows that this alternative mat
hing is an

example of an involution mat
hing of Pn that does not preserve H.

We may 
he
k dire
tly that (·) de�nes an involution: the only non-

obvious feature is that the formulas for the shift 
o-ordinates are self-inverse

in Cases (1) and (4) and mutually inverse for Cases (2) and (3) but these

are readily 
he
ked: for example in Case (1): 1 + k(1− (1 + k(1− i))) = i.

An approa
h by `half duals' leads to permutation mat
hings that are

however not involutions. For instan
e we may look to inverses that map to

terminal points of kernel 
lasses while keeping R as the set of initial points of

kernel 
lasses of the inverse. In detail, for α ∈ Pn su
h that ρ(α) = (K,R) the
H-
lasses de�ned by the kernel-range pairs (K,K−1) and (R,R) are groups
and so there exists a unique inverse α̇ of α su
h that ρ(α̇) = (R,K−1). The
mapping α 7→ α̇ is then a permutation mat
hing of Pn but not an involution

as ρ(α̈) = (K − 1, R − 1) 6= ρ(α) (unless α lies in the group of units of Pn).

A dual 
omment applies to the other half dual where the inverse of α lies in

the H-
lass de�ned by the pair (R + 1,K).

Examples 3.2.4 We take n = 8, t = 4, K = {0, 2, 4, 6}, R = {1, 3, 5, 7}
and put α = Φ(K,R, 0, 1). We have R + 1 = {0, 2, 4, 6} = K, K − 1 =
{1, 3, 5, 7} = R. Here we have 0 ∈ K and n−1 = 7 ∈ R so that we are in Case

(4). By Theorem 3.2.1 we obtain α = Φ(R+ 1,K − 1, 0, 1) = α, and indeed

α is an idempotent. In 
ontrast, the natural inverse α′ = Φ(R,K, 0, 1):

α = α2 =

(

0 1 2 3 4 5 6 7
1 1 3 3 5 5 7 7

)

= α, α′ =

(

0 1 2 3 4 5 6 7
6 0 0 2 2 4 4 6

)

.
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Next we revisit the �rst of Examples 3.1.3: α = Φ(K,R, 3,−1)∈ OR8, where

K = {0, 2, 4, 6} and R = {1, 3, 5, 7}. Sin
e 0 ∈ K and n− 1 = 7 ∈ R we are

in Case (4) and so α = Φ(R+1,K−1, 3,−1) and so R+1 = {0, 2, 4, 6} = K
and K − 1 = {1, 3, 5, 7} = R. Hen
e:

α =

(

0 1 2 3 4 5 6 7
7 7 5 5 3 3 1 1

)

= α.

Sin
e α = α, therefore α = α also, and α3 = α. In parti
ular, α 6= α′
. In

general, ORn 
ontains no idempotents of rank greater than 2, so that α = α2

is impossible for α ∈ ORn \ OPn.

As a third example let n = 10, t = 5, K = {1, 3, 5, 7, 8}, R = {2, 3, 4, 6, 8}
with α = Φ(K,R, 4,−1). Here 0 6∈ K and n − 1 = 9 6∈ R and so we are in

Case (1). Note that sin
e k = −1 we have for all i that i = 1 − (1− i) = i,
so in parti
ular i(α) = 4 and so α = Φ(R + 1,K − 1, 4,−1). We see that

R+ 1 = {3, 4, 5, 7, 9} and K − 1 = {0, 2, 4, 6, 7}:

α =

(

0 1 2 3 4 5 6 7 8 9
2 8 8 6 6 4 4 3 2 2

)

α =

(

0 1 2 3 4 5 6 7 8 9
0 0 0 7 6 4 4 2 2 0

)

.

Beginning with α = Φ(R+1,K− 1, 4,−1) we have 0 6∈ R+1 and 9 6∈ K− 1
so we are (ne
essarily) again in Case (1). As before i(α) = 4 and we obtain

as expe
ted:

α = Φ((K − 1) + 1, (R + 1)− 1, 4,−1) = Φ(K,R, 4,−1) = α.

In 
ontrast the natural inverse of α is α′ = Φ(R,K, 1,−1).

As an example illustrating Cases (2/3) let n = 10, t = 6,K = {1, 2, 5, 7, 8, 9},
R = {0, 4, 5, 6, 7, 9} with α = Φ(K,R, 4, 1). Here 0 6∈ K but n− 1 = 9 ∈ R,
putting α in Case (2). Theorem 3.2.1 gives i(α) = 1−ki(α) = 1−4 = −3 ≡ 3
(mod 6). Hen
e α = Φ(R+1,K− 1, 3, 1), where 0 ∈ R+1 = {0, 1, 5, 6, 7, 8}
and 9 6∈ K − 1 = {0, 1, 4, 6, 7, 8}, pla
ing α in Case (3). Therefore

α =

(

0 1 2 3 4 5 6 7 8 9
6 7 9 9 9 0 0 4 5 6

)

α =

(

0 1 2 3 4 5 6 7 8 9
6 7 7 7 7 8 0 1 4 4

)

,

and α = α: i(α) = k(1 − i(α)) = 1(1− 3) = −2 ≡ 4 (mod 6) = i(α).
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4 Inverse 
overs and involution mat
hings for Tn

4.1 Inverse 
overs for Tn

In 1971 it was shown by S
hein [10℄ that every �nite full transformation

semigroup Tn is 
overed by its inverse subsemigroups, a result that does not

extend to the 
ase of an in�nite base set, [5, Ex. 6.2.8℄. If there existed

a 
over A = {Ai}1≤i≤m of inverse subsemigroups of Tn with the additional

property that the interse
tion of any pair of semigroups of A was also an

inverse subsemigroup of Tn then we 
ould dedu
e (as explained below) that

Tn had an involution mat
hing. (The semigroupsOPn and Pn of the previous

se
tions have an inverse 
over only if n ≤ 3, [2℄).

It is 
onvenient in what follows to 
onsider the empty set also to be an

inverse semigroup. Suppose that A = {Ai}1≤i≤m is an inverse 
over of Tn
meaning that ea
h Ai is an inverse subsemigroup of Tn and that ∪

m
i=1Ai = Tn.

It follows that, for all 1 ≤ i, j ≤ m, the subsemigroup Ai,j =: Ai∩Aj of Tn has

ommuting idempotents. Indeed it follows easily from this that Reg(Ai,j),
the set of regular elements of Ai,j , forms an inverse subsemigroup of Ai,j .

However it does not automati
ally follow that Ai,j = Reg(Ai,j).

Let S be an arbitrary semigroup and a ∈ S. We say that b ∈ V (a) is a
strong inverse of a if the subsemigroup 〈a, b〉 of S is an inverse semigroup.

We denote the set of strong inverses of a by S(a). We next observe that S
has an inverse 
over if and only if every element of S has a strong inverse for,

on the one hand, if every element a has a strong inverse then S is 
overed by

its inverse subsemigroups 〈a, b〉 where b ∈ S(a). On the other hand suppose

that S has an inverse 
over. Take a ∈ S and 
hoose an inverse subsemigroup

Aa of S 
ontaining a and let b be the (unique) inverse of a in Aa. Then

A = 〈a, b〉 is a subsemigroup of Aa with 
ommuting idempotents and every

element of A is regular as for any produ
t p = c1c2 · · · ck ∈ A (ci ∈ {a, b})
we see that p′ = c′kc

′
k−1 · · · c

′
1 is an inverse of p in A, where we take a′ = b

and b′ = a, be
ause both produ
ts take pla
e within the inverse semigroup

Aa. It follows that to prove that a given semigroup S has an inverse 
over

is equivalent to showing that S(a) is non-empty for every a ∈ S.

The following general observation applies to any inverse 
overA = {Ai}i∈I
of an arbitrary semigroup S: if the pairwise interse
tion of any two mem-
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bers of A is an inverse subsemigroup of S then the same is true of arbitrary

interse
tions. To see this let J ⊆ I and 
onsider A = ∩j∈JAj . Either A
is the empty inverse subsemigroup or we may 
hoose a ∈ A and 
onsider

an arbitrary Aj (j ∈ J). Then a has a unique inverse a−1
in Aj . Now let

k ∈ J . By hypothesis, Aj ∩Ak is an inverse subsemigroup of S that 
ontains

a. Sin
e Aj ∩ Ak is an inverse subsemigroup of the inverse semigroup Aj ,

it follows that the unique inverse of a in Aj ∩ Ak is a−1
. Sin
e k ∈ J was

arbitrary, it follows that a−1 ∈ A and so A is indeed an inverse subsemi-

group of S. We shall say that S has a 
losed inverse 
over if S has a 
over

by inverse subsemigroups for whi
h all pairwise interse
tions of its members

are themselves inverse semigroups.

Theorem 4.1.1 For a �nite semigroup S:

(i) if S has a 
losed inverse 
over then S has an involution mat
hing by

strong inverses.

(ii) If every element a ∈ S has a unique strong inverse b then S has a


losed inverse 
over

C = {∩k
i=1Ui, Ui = 〈a, b〉, a ∈ S, k ≥ 1}.

(iii) If a is a group element of S then a−1, the group inverse of a in S, is
the unique strong inverse of a.

Proof (i) Suppose there exists a 
losed inverse 
over A = {A0}0≤i≤m

of S where, without loss, we in
lude ∅ as A0. The 
olle
tion A is partially

ordered by in
lusion. Sin
e every partial order may be extended to a total

order, we may order the members of A in su
h a way that if Ai ⊂ Aj , then

Ai appears before Aj in the list. This is assumed in the following argument.

We now show how A 
ould be used to build an involution mat
hing (·′)
of S for whi
h a′ ∈ S(a). First A0 has an involution mat
hing (·′) in the

empty fun
tion. Next let U = ∪k
i=0Ai (k ≥ 1). Suppose indu
tively that we

have extended the involution (·′) to V = ∪k−1
i=0Ai and that for ea
h a ∈ Aj ,

(0 ≤ j ≤ k − 1) a′ ∈ Aj (so that a′ ∈ S(a)). Let a ∈ Ak. Suppose �rst that

a ∈ V so that a ∈ Aj for some 0 ≤ j ≤ k− 1. Then a′ is already de�ned and

by the nature of the linear order we have imposed on A, Ai = Aj ∩Ak ⊆ V ,
with i ≤ j ≤ k− 1. Therefore by indu
tion we have a′ ∈ Aj ∩Ak and so the
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indu
tion 
ontinues in the 
ase where a ∈ Ak ∩ V .

Otherwise a 6∈ V . Then there exists a unique strong inverse a′ ∈ S(a) ∩
Ak. What is more a′ 6∈ V for if to the 
ontrary a′ ∈ Aj say (0 ≤ j ≤ k − 1)
then a′ is again a member of the inverse semigroup Ai = Aj∩Ak ⊆ V , where
i ≤ k−1. In this event, (a′)′ is already de�ned and would be an inverse of a′

in Aj∩Ak, when
e (a
′)′ = a. But then a ∈ Aj , 
ontrary to our 
hoi
e of a. It

follows that a′ 6∈ V and so we may extend the involution by strong inverses

(·′) to U = V ∪Ak by setting a′ as the unique inverse of a in Ak \ V for all

a ∈ Ak \ V . Therefore we see that in both 
ases the indu
tion 
ontinues.

Sin
e A 
overs S, the pro
ess terminates when k = m, yielding an involution

mat
hing by strong inverses (·′) of S.

(ii) Let U, V ∈ A and suppose that U ∩ V 6= ∅. For any a ∈ U ∩ V let b
be the unique strong inverse of a. Let u ∈ V (a) in the inverse semigroup U .
Then u ∈ S(a), when
e u = b. We may draw the 
orresponding 
on
lusion

for the inverse v ∈ V (a) ∩ V , so that u = b = v. In parti
ular b ∈ U ∩ V ,
when
e it follows that U ∩ V is an inverse subsemigroup. Therefore by

adjoining all interse
tions U1 ∩ U2 ∩ · · · ∩ Uk (k ≥ 2) of members Ui ∈ A to

the inverse 
over A we generate a 
losed inverse 
over for S.

(iii) Clearly a−1 ∈ S(a). Consider an arbitrary b ∈ S(a) and let e = ab,
f = ba. Then we have eRaLf in S. Then sin
e Ha is a group we have feHb.
Sin
e b ∈ S(a) it follows that ef = fe ∈ E(S). But then aHef = feHb
and so b, a−1 ∈ V (a) with bHa−1

, when
e b = a−1
by uniqueness of inverses

within an H-
lass.

Remark 4.1.2 As observed prior to Theorem 4.1.1, for any semigroup

with a 
losed inverse 
over, the interse
tion of any 
olle
tion of members of

A is also an inverse subsemigroup of S. This allows the argument of the

previous proof to be extended to arbitrary semigroups through the Axiom

of 
hoi
e and trans�nite indu
tion (the part (iii) argument makes no use of

�niteness). Part (ii) of Theorem 4.1.1 is a partial 
onverse of part (i). It

remains open as to whether or not the full 
onverse holds.

In the next se
tion, we shall prove that in general Tn has no involution

mat
hing by strong inverses, from whi
h it follows from the 
ontrapositive

of Theorem 4.1.1(i) that Tn has no 
losed inverse 
over.
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4.2 Closed inverse 
overs for Tn do not exist

In this se
tion our 
ontext throughout will be Tn. The a

ount here of the

onstru
tion of strong inverses in Tn follows [5, Se
tion 6.2℄.

Let α ∈ Tn. For x ∈ Xn the depth of x, denoted by d(x), is the length
of the longest dipath in G(α) ending at x; if x ∈ stran(α) we 
onventionally
de�ne d(x) = ∞. Note that d(x) = k < ∞ if and only if x ∈ Xαk \Xαk+1

.

The height of x, denoted by h(x) is the least positive integer k su
h that

d(xαk) ≥ d(x) + k + 1; again we take h(x) = ∞ if x ∈ stran(α). The height
of x is the length of the dipath whi
h begins at x and terminates at the �rst

point u whi
h is also the terminal point of some dipath that is longer than

the dipath from x to u. A ne
essary 
ondition for membership of S(a) is the
following.

Lemma 4.2.1 Let β ∈ S(α). Then for all x ∈ Xα, xβ is a member of

xα−1
of maximal depth.

When 
onstru
ting strong inverses, the 
orre
t treatment of the endpoints

of G(α), whi
h are those x ∈ Xn for whi
h d(x) = 0, is more 
ompli
ated.

The next parameter is de�ned on the verti
es of G(α) in terms of some �xed

but arbitrary β ∈ Tn, but is only signi�
ant when β ∈ V (α). For ea
h

x ∈ Xn the grasp g(x) of α is the greatest non-negative integer k su
h that

xαkβk = x.

Lemma 4.2.2 Let β ∈ S(α). If d(x) = 0, and h(x) = h then xβ = y
satis�es g(y) ≥ g(x) + 1 and yαh+1 = xαh

.

Lemmas 4.2.1 and 4.2.2 are all we require here. However, if β ∈ Tn
satis�es these 
onditions together with the equality xβα · αg(x)+1βg(x)+1 =
xαg(x)+1βg(x)+1 · βα, it may then be proved that that β ∈ S(α). We may

show from this point that Tn has an inverse 
over for the lemmas represent

the two stages in the 
onstru
tion of a parti
ular type of strong inverse

β ∈ S(α): Lemma 4.2.1 applies to points of positive depth in G(α), while for
ea
h endpoint x we may follow the dipath (of length k say) from x until we

meet a point u of depth ex
eeding k. Then uβt
has already been de�ned for

all 0 ≤ t ≤ k + 1 and we then put xβ = xαkβk+1
. This stage 
an always be


arried out and indeed this β ∈ S(α) is uniquely determined by the 
hoi
es

made in determining Xαβ. The out
ome of this is a parti
ular strong inverse
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β ∈ S(α) for su
h a β will also satisfy the additional 
ondition and indeed the

set of all idempotents αtβt, βsαs
then 
ommute with ea
h other, a ne
essary

and su�
ient 
ondition for 〈α, β〉 to be an inverse semigroup.

The main result of this se
tion is the following.

Theorem 4.2.3 The full transformation semigroup Tn has a 
losed in-

verse 
over if and only if n ≤ 3.

Lemma 4.2.4 For n ≤ 3, Tn has a 
losed inverse 
over.

Proof For n = 1, 2 we note that Tn is a union of groups so the 
laim

follows from Theorem 4.1.1. Although T3 is not a union of groups, we may

verify that ea
h α ∈ T3 has a unique strong inverse as follows.

In general, an element α ∈ Tn is a group element if and only ifXα = Xα2
.

It follows that all members of T3 of ranks 1 or 3 are group elements. There

are 33 − 3 − 3! = 18 mappings in T3 of rank 2. All of those with two


omponents are idempotent (these number 3 × 2 = 6). Those with one


omponent for whi
h |Xα2| = 2 are group elements (these also number 6).
This leaves 18− 6− 6 = 6 mappings of rank 2 with a single 
omponent and

for whi
h |Xα2| = 1. These are evidently the 6 mappings α of the form

a 7→ b 7→ c 7→ c where {a, b, c} = {1, 2, 3}, whi
h we denote for our 
urrent

purposes by (a b c). Observe that ea
h su
h α has a unique strong inverse,

whi
h is α′ = (b a c). The result now follows by Theorem 4.1.1(ii).

Examples 4.2.5 For α = (1 2 3) we have S(α) = α′ = (2 1 3), αα′ :
1 7→ 1, 2, 3 7→ 3, α′α : 1, 3 7→ 3, 2 7→ 2. The inverse subsemigroup U3 =
〈α,α′〉 is a 5-element 
ombinatorial Brandt semigroup with zero element

given by α2 = α′2
, whi
h is the 
onstant mapping with range {3}. The

subsemigroups U1, U2, U3 are pairwise disjoint. However not all interse
tions

of distin
t members of the inverse 
over C ={〈a, b〉 : b ∈ S(a)} are empty: for

example 
onsider the mapping γ : 1 7→ 3, 2, 3 7→ 1, whi
h is its own strong

inverse. Sin
e γ2 = αα′
we obtain 〈γ〉 ∩ 〈α,α′〉 = {αα′}.

By way of 
ontrast, let us examine a subsemigroup 〈α,α1〉, where α1 ∈
V (α) \ S(α): we take α1 = (3 2 1). Then e = αα1 ∈ E(T3) and has �xed

point set of {1, 2} with 3e = 2. Also f = α2 ∈ E(T3) is the 
onstant mapping

with range {3}, so that ef = f . However fe is the 
onstant mapping onto 2
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and so idempotents do not 
ommute in U = 〈α,α1〉. In fa
t U is a 7-element

regular subsemigroup of S, 
ontaining all three 
onstant mappings, as α2
1 is

the 
onstant with range {1}.

Given Lemma 4.2.4 we now need to prove that Tn does not have a 
losed

inverse 
over for n ≥ 4. The remaining substantial task is to show that

T4 has no involution mat
hing through strong inverses for that implies that

T4 has no 
losed inverse 
over. For n ≥ 5 we then 
onsider the 
opy of T4
embedded in Tn de�ned by T = {α ∈ Tn : kα = k ∀ k ≥ 5}. Suppose that

C were a 
losed inverse 
over for Tn. If α ∈ T then for any β ∈ S(α) we
have β ∈ T . It follows that CT = {A ∩ T : A ∈ C} would be a 
losed inverse


over for T , whi
h is isomorphi
 to T4, whi
h would then also have su
h a


over. Therefore, to 
omplete the proof of our theorem, it remains only to

show that T4 does not have an involution mat
hing by strong inverses.

First we identify every member of T4 that possesses a unique strong

inverse, a 
olle
tion that in
ludes all mappings of ranks 1 or 4 as these

are group elements. Indeed for any rank we only need 
onsider non-group

elements, whi
h are the mappings α su
h that Xα2
is proper subset of Xα.

Consider mappings of rank 3. It follows that |Xα2| ≤ 2. If α has two


omponents, sin
e Xα2 6= Xα, it follows that α has an isolated �xed point d
say and a se
ond 
omponent of the form a 7→ b 7→ c 7→ c, whi
h has a unique

strong inverse b 7→ a 7→ c 7→ c, d 7→ d. If α has just one 
omponent with

|stran(α)| = 2 then α ne
essarily now has the form a 7→ b 7→ c 7→ d 7→ c,
whi
h has a unique strong inverse, whi
h is the mapping b 7→ a 7→ d 7→ c 7→ d.
Otherwise |stran (α)| = 1 and α has the form a 7→ b 7→ c 7→ d 7→ d, whi
h
has a unique strong inverse given by c 7→ b 7→ a 7→ d 7→ d. We 
on
lude that

all mappings of ranks 1, 3, or 4 ea
h have a unique strong inverse.

Finally 
onsider mappings of rank 2. Sin
e we may assume there exists a

point x ∈ Xα\stran(α) (as otherwise α is a group element) it follows that we

are restri
ted to mappings α with a single 
omponent and that 
omponent

has a �xed point. The two remaining 
ases are:

A: the form of a `Y': α =

(

a b c d
c c d d

)

or B: the form β =

(

a b c d
b d d d

)

.

We next a
t the strong inverse operator S(·) for mappings of these two
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types. We will see that this generates a set of four 9-
y
les, with ea
h

mapping within a 
y
le sharing the same �xed point. Consequently these


y
les are pairwise disjoint.

The given mapping α of type A has exa
tly two strong inverses, both of

whi
h are of type B:

β1 :

(

a b c d
d d a d

)

β2 =

(

a b c d
d d b d

)

(B) (5)

The mapping β of type B also has exa
tly two strong inverses, the �rst of

type A, the se
ond of type B:

α1 :

(

a b c d
d a a d

)

(A) β2 :

(

a b c d
d a d d

)

(B) (6)

Consider the 
olle
tion C of all mappings of rank 2 with two strong inverses

and a 
ommon �xed point, d. There are 3 mappings of type A and 6 of type
B, so that C has 9 members. We use the symbols α and β, with appropriate

subs
ripts, to denote mappings of types A and of B respe
tively.

The strong inverse operator S(·) a
ting on a point in C outputs exa
tly

two distin
t mappings, whi
h are also members of C, in a

ord with the rules

(5) and (6). Let us write α1 = α for the type A mapping above. We write

β1 → α1 → β2 with the arrow indi
ating the �rst map is a strong inverse

of the se
ond (so that the reverse arrow is equally valid). We now a
t the

operator S(·) on the rightmost member of our sequen
e, whi
h will produ
e

as outputs the previous member and a new sequen
e member. Bearing in

mind rules (5) and (6) our sequen
e C will thus take on the form:

C : β1 → α1 → β2 → β3 → α2 → β4 → β5 → α3 → β6 · · · . (7)

The output of S(γ) when a
ting on γ ∈ C 
omprises two distin
t mappings,

neither of whi
h is γ, and one of whi
h is the prede
essor of γ in the sequen
e.

Eventually the output S(γ) will produ
e a repeated member of C (in addition

to the prede
essor of γ), whi
h must appear at least two steps before γ.
However, all su
h members of C, apart from β1, have already had their two

strong inverses appear in C, and so 
annot have γ as a third strong inverse.

Therefore the repeated sequen
e member is ne
essarily β1. Hen
e C is a


y
le of length l say with l ≥ 2 and l|9, and so l = 3 or l = 9. However

l = 3 would imply that β1 and β2 were mutual inverses, whi
h is not the


ase. Therefore l = 9 and and the 
y
le C is 
ompleted by β6 → β1.
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Suppose now that T4 possessed an involution (·′) by strong inverses. Any
mapping α with a unique strong inverse β is ne
essarily paired with β under

′
. This in
ludes all mappings in T4 ex
ept for the mappings whi
h are the

verti
es of the four disjoint 9-
y
les we have just identi�ed. Ea
h member of

su
h a 9-
y
le C is then paired with an adja
ent partner in that 
y
le, but

sin
e 9 is odd, this is not possible and so we have a 
ontradi
tion. Therefore

T4 has no involution by strong inverses, whi
h implies by Theorem 4.1.1(i)

that T4 has no inverse 
over 
losed under the taking of interse
tions.

Remarks 4.2.6 We may expli
itly 
al
ulate the 9-
y
le C that 
ontains

the mapping α above, denoted here as α1, through repeated use of rules

(5) and (6) as follows. We write S(α1) = {β1, β2}, with the βi as given

in (5). Then following (7) the subsequent members of C are β2 → β3 =
(

a b c d
d c d d

)

→ α2 =

(

a b c d
b d b d

)

→ β4 =

(

a b c d
d a d d

)

→ β5 =
(

a b c d
b d d d

)

→α3 =

(

a b c d
d a a d

)

→ β6 =

(

a b c d
c d d d

)

→ β7 = β1 =
(

a b c d
d d a d

)

, giving the anti
ipated 9-
y
le C.

Running down the ranks from 4 to 1, elementary 
ombinatorial 
onsid-

erations give that:

|E(T4)| = 1 + 2

(

4

2

)

+
(

3

(

4

1

)

+ (2)(2)

(

4

2

)

)

+ 4 = 1 + 12 + 36 + 4 = 53.

In a similar fashion, bra
keting term sum 
ontributions from a 
ommon rank,

the number of non-idempotent self-inverse elements is given by:

(

(

4

2

)

+
1

2

(

4

2

)

)

+ (2)(3)

(

4

2

)

+ 2

(

4

2

)

= 9 + 36 + 12 = 57.

The number of mappings with a distin
t unique strong inverse is given by:

(3!+2!

(

4

3

)

)

+
(

(3)(2!)

(

4

3

)

+(2)(2)

(

4

2

)

)+4!)+(2)(2)

(

4

2

)

)

= 14+96 = 110.

The number of mappings with exa
tly two strong inverses is 4× 9 = 36, giv-
ing the total of (53 + 57) + 110 + 36 = 256 = 44 = |T4|. The graph of strong

inverses of T4 then 
onsists of 110 singletons, 55 pairs, and four 9-
y
les.
In parti
ular the above analysis shows that T4 does possess a permutation

25



mat
hing by strong inverses. We may use one of these permutations to 
on-

stru
t an involution mat
hing of T4. (There are 24 = 16 su
h permutations,

determined by the 2 
hoi
es of orientation of the 4 
y
les). First 
onsider the
9-
y
le expli
itly 
al
ulated above in whi
h all mappings �x a point d. The

mapping α = α1 has an idempotent inverse εd =

(

a b c d
b b b d

)

. We then

remove the pair (εd, εd) from our permutation, repla
ing it by (εd, α) and
pair up the remaining 8 members of the asso
iated 9-
y
le in neighbouring

pairs. We repeat this pro
edure with the other three 
y
les, noting that

there is no repetition of idempotents used in our pairings. This then yields

an involution mat
hing for T4.

We 
lose with an example showing however that in general Tn does not

possess a permutation mat
hing by strong inverses.

Example 4.2.7 Consider the following pair of members of T8:

α1 =

(

1 2 3 4 5 6 7 8
2 3 4 5 5 3 8 4

)

α2 =

(

1 2 3 4 5 6 7 8
2 3 4 5 5 8 3 4

)

.

The two mappings are identi
al ex
ept for the inter
hange of the images of

6 and 7, and so their digraphs are isomorphi
. They share a 
ommon range:

Xα1 = Xα2 = {2, 3, 4, 5, 8}. Moreover for ea
h x ∈ Xαi (i = 1, 2) there is
a unique member of y ∈ xα−1

i of maximal depth and so by Lemma 4.2.1 we

see that any strong inverse βi ∈ S(αi) has the following form:

β1 =

(

1 2 3 4 5 6 7 8
− 1 2 3 5 − − 7

)

β2 =

(

1 2 3 4 5 6 7 8
− 1 2 3 5 − − 6

)

.

In ea
h 
ase the points of depth zero are 1, 6, and 7. For both mappings and

for any strong inverses βi we see that g(1) = 3 so that for any 
hoi
e of y =
1βi we have by Lemma 4.2.2 that g(y) ≥ 4, whi
h implies that y = 1βi = 5.
To determine 6β1 we note that 6α1 = 3 and so d(6α1) = 2 > 0+1 = d(6)+1;
hen
e h(6) = 1 and g(6) = 0. Writing y = 6β1 we have by Lemma 2.2 that

g(y) ≥ 1 and yα2
1 = 6α1 = 3 so that y = 6β1 = 1. By the same argument

with 6 repla
ed by 7 we obtain 7β2 = 1.

Finally 
onsider 7β1. We have 7α1 = 8 so we see that d(7α1) = 1
and g(7) = 1, h(7) = 2 as d(7α2

1) = d(4) = 3 > 2 + 0 = 2 + d(7) while

d(7α) = d(8) = 1 6> 1 + 0. Hen
e we have by Lemma 4.2.2 that y = 7β1
must satisfy g(y) ≥ 2 and yα3 = 7α2 = 4 so that 7β1 = 1. By symmetry we
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also obtain 6β2 = 1. Therefore ea
h of the αi has a unique strong inverse βi:

β1 =

(

1 2 3 4 5 6 7 8
5 1 2 3 5 1 1 7

)

β2 =

(

1 2 3 4 5 6 7 8
5 1 2 3 5 1 1 6

)

.

We now 
onsider a third mapping β ∈ T8 and a putative strong inverse

β′ ∈ S(β). As before we have Xβ = {2, 3, 4, 5, 8} and again Lemma 4.2.2

gives the following unique partial de�nition of β′
:

β =

(

1 2 3 4 5 6 7 8
2 3 4 5 5 8 8 4

)

β′ =

(

1 2 3 4 5 6 7 8
− 1 2 3 5 − − −

)

.

We see that 8β′ ∈ {6, 7}; for the moment let us make the 
hoi
e 8β′ = 7
and hen
eforth denote β′

by β′
1. The points of zero depth are again 1, 6,

and 7 and the same analysis that applied to the αi again yields 1β′
1 = 5.

Next we note that g(6) = 0 and h(6) = 2 as d(6α2) = d(4) = 3 > 2 + 0
but d(6α) = d(8) = 1 6> 1 + 0. Hen
e y = 6β′

1 must satisfy g(y) ≥ 1 and

yβ3 = 6β2 = 4 so that y = 6β′
1 = 1. Finally we have g(7) = 1 and h(7) = 2

as for h(6). Hen
e y = 7β′
must satisfy g(y) ≥ 2 and yβ3 = 6β2 = 4 so that

y = 7β′ = 1 also. We have then identi�ed one strong inverse of β′
1 ∈ S(β).

Similarly there exists a se
ond strong inverse β′
2 ∈ S(β) determined by the

alternative 
hoi
e 8β′
2 = 6. Ex
hanging the roles of the symbols 6 and 7

makes no di�eren
e to the images of the other domain points in that we

again obtain that 1β′
2 = 5, 6β′

2 = 7β′
2 = 1. Therefore we �nd that

β′
1 = β1 =

(

1 2 3 4 5 6 7 8
5 1 2 3 5 1 1 7

)

β′
2 = β2 =

(

1 2 3 4 5 6 7 8
5 1 2 3 5 1 1 6

)

.

The upshot of all this is that we have a set of three members of T8 in U =
{α1, α2, β} su
h that the set S(U) of all strong inverses of elements of U is

the two-element set S(U) = {β1, β2}. It follows that there is no permutation
mat
hing (·)′ on T8 that maps the set U into the set S(U), thereby yielding

the result mentioned earlier, whi
h we now formally state.

Corollary 4.2.8 There is no permutation mat
hing (·′) of Tn (n ≥ 8)
su
h that, for all a ∈ Tn, a

′
is a strong inverse of a.

Proof Example 4.2.7 shows the 
orollary is true for n = 8. For n ≥ 9 we
may extend the above example with ea
h of the the mappings α1, α2, β a
ting

identi
ally on all integers ex
eeding 8. Sin
e any strong inverse preserves


omponents, we again obtain the 
on
lusion that S(α1) = {β1}, S(α2) =
{β2} and S(β) = {β1, β2}, whi
h implies the result.
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