
Noname manuscript No.
(will be inserted by the editor)

Core clustering as a tool for tackling noise in cluster labels

Renato Cordeiro de Amorim · Vladimir
Makarenkov · Boris Mirkin

Accepted: 18 January 2019

Abstract Real-world data sets often contain mislabelled entities. This can be particu-
larly problematic if the data set is being used by a supervised classification algorithm
at its learning phase. In this case the accuracy of this classification algorithm, when
applied to unlabelled data, is likely to suffer considerably. In this paper we introduce
a clustering-based method capable of reducing the number of mislabelled entities in
data sets. Our method can be summarised as follows: (i) cluster the data set; (ii) se-
lect the entities that have the most potential to be assigned to correct clusters; (iii)
use the entities of the previous step to define the core clusters and map them to the
labels using a confusion matrix; (iv) use the core clusters and our cluster membership
criterion to correct the labels of the remaining entities. We perform numerous exper-
iments to validate our method empirically using k-nearest neighbour classifiers as a
benchmark. We experiment with both synthetic and real-world data sets with different

This manuscript has been accepted for publication in the Journal of Classification (Springer).
c©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

R.C. de Amorim
School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ. UK.
Tel: +44 (0)1206 872895
E-mail: r.amorim@essex.ac.uk

V. Makarenkov
Département d’informatique, Université du Qubec à Montréal, C.P. 8888 succ. Centre-Ville, Montreal
(QC) H3C 3P8 Canada.

B. Mirkin
Department of Computer Science and Information Systems, Birkbeck University of London, Malet Street,
London WC1E 7HX, UK.
and
Department of Data Analysis and Machine Intelligence, National Research University Higher School of
Economics, Moscow, Russian Federation.

BM thanks the Laboratory for Decision Choice and Analysis of the National Research University
Higher School of Economics Moscow RF for partially supporting his work in the framework of the HSE
University Basic Research Program funded by the Russian Academic Excellence Project ‘5-100’.

2 Renato Cordeiro de Amorim et al.

proportions of mislabelled entities. Our experiments demonstrate that the proposed
method produces promising results. Thus, it could be used as a pre-processing data
correction step of a supervised machine learning algorithm.

Keywords label noise, clustering, k-means, core clustering, Minkowski distance.

1 Introduction

The arrival of new technologies has made it quite easy to acquire vast amounts of
data. However, labelling such data (i.e., assigning the class memberships to entities)
is far from being a trivial task. More often the labelling process is subject to human
interpretation, leading to inconsistencies caused by disagreements or mistakes in hu-
man, including expert, labelling. This may have significant implications in machine
learning. Mathematically the problem can be formulated as follows. Let X be a data
matrix composed of the entity (i.e., object) vectors x1, x2, ..., xi, ..., xn ∈ Rm, where
m is the number of features (i.e., variables) characterising every entity. Let us also de-
fine the label vector y = (y1, y2, ..., yi, ..., yn) in which yi represents the label of xi.
Classification algorithms will attempt to determine the function h : X→ y and apply
this function to an unlabelled data matrix. Hence, the accuracy of any classification
algorithm is intrinsically related to the availability and correctness of labels.

Meanwhile, mistakes and disagreements in the labelling process are not uncom-
mon, thus leading to a certain proportion ρ of incorrect labels in y. The higher the
value of ρ, the lower ability of h to correctly map X to y. Since this issue affects
most classification algorithms, one may be interested in reducing ρ as much as pos-
sible. One could argue that minimising the role humans play in the labelling process
would reduce the value of ρ. Human experts could be asked to label a small sample
of entities and a computerised method could label the remaining entities. However,
methods following the active learning framework (Settles 2009) are not flawless and
may also lead to high proportions ρ of mislabelled entities.

In this paper, we introduce a clustering-based method which is capable of reduc-
ing ρ. There are three main assumptions behind our method:

1. For each cluster Sk, its centre ck does not much depend on the wrong labels;
2. For each cluster Sk, there must be an identifiable cluster core S′k around its centre
ck (k = 1, 2, ...,K);

3. For any two entities from the same core xi, xj ∈ S′k, their correct labels must be
the same.

Therefore, we will identify cluster centres, build the core clusters around them,
use these core clusters to identify mislabelled entities, if any, and relabel them ac-
cording to the core clusters and a specific cluster membership criterion.

2 Related work

Real-world databases are estimated to contain around five percent of encoding errors,
all fields taken together, when no specific measures for improving the coding errors

Core clustering as a tool for tackling noise in cluster labels 3

are taken (Maletic and Marcus 2000; Redman 1998; Orr 1998; Frénay and Verleysen
2014). The exact value of this estimate may be subject to debate, however, the exis-
tence of such errors can have a considerable impact on the accuracy of classification
algorithms. With this in mind we begin by providing further details regarding label
noise in the next subsection followed by a subsection on clustering.

Semi-supervised clustering is a different research area. The general idea is that
some previous knowledge can be used to guide the clustering process. This previous
knowledge usually has the form of pairwise must-link and may-not-link constraints.
These constraints can be used to generate an initial, rather limited, set of cluster la-
bels that are assumed to be correct. In our setting, a certain proportion of entities is
mislabelled, but the investigator knows neither the proportion, nor the mislabelled
entities. Neither is he or she interested in classifying the entities. Our approach fo-
cuses on the data pre-processing stage in which we attempt to reduce the number of
incorrect labels. Therefore, our paper has very little to do with semi-supervised clus-
tering. Nonetheless, we direct interested readers to relevant surveys (Grira, Crucianu,
and Boujemaa 2004; Zhu 2006; Jain, Jin, and Chitta 2014) and references therein.

2.1 Label noise

A data set may have two distinguishable types of noise, feature noise and label noise
(Zhu and Wu 2004). Feature noise is present in the actual values of features. By
consequence this type of noise affects the data matrix X. Label noise affects the
labels assigned to each entity, altering the actual values of y. Notice that label noise
affects solely the observed label, y, not the true label of each entity. In particular,
label noise does not alter the data matrix X.

Feature selection and feature weighting can be used to address the presence of
feature noise in data. These two have an older and longer body of research than that
of label noise (see for instance Guyon and Elisseeff 2003; Saeys, Inza, and Larrañaga
2007; De Amorim 2016; Frénay and Verleysen 2014 and references therein). Having
received much less attention, label noise remains an unsolved problem in supervised
classification (Bouveyron and Girard 2009). However, the label noise is potentially
more harmful than the feature noise (Zhu and Wu 2004; Sáez et al. 2014). Two possi-
ble reasons for this, according to Frénay and Verleysen (2014), are as follows. First,
the degree of relevance of each feature may vary, whereas any misclassified label yi
will always have a large impact in learning. In fact, a single feature may have differ-
ent degrees of relevance in different clusters (De Amorim and Mirkin 2011). Second,
an entity xi is described over m features (usually m >> 1), but it has a single label
yi. Label noise may be less harmful than feature noise if there is a large number of
features compromised by feature noise (Quinlan 1986).

There can be different potential sources of label noise (Frénay and Verleysen
2014):

1. The labeller may not have been provided with sufficient information in order to
produce reliable labels (Hickey 1996).

2. The error may occur in the labeller itself. One should note that these two cases
may occur even if the labeller is in fact an automated method.

4 Renato Cordeiro de Amorim et al.

3. The labelling of an entity xi is subject to individual or group human judgment.
This is a frequent case in medicine. For instance, experts in electrocardiogram
analysis seldom agree on the exact boundaries of signal patterns (Hughes, Roberts,
and Tarassenko 2004).

4. Data encoding and communication problems may also be the source of label noise
(Zhu and Wu 2004; Angluin and Laird 1988).

A decrease in the accuracy of classification algorithms is, arguably, the most
recognised outcome of the presence of label noise in data. However, this is far from
being the only negative consequence of label noise (Frénay and Verleysen 2014).
Label noise may also pose a threat to feature selection and weighting. Other conse-
quences include: changes in learning requirements (i.e., an algorithm may need more
labelled data on the learning stage), increase in the complexity of models to learn,
distortion of the labels’ frequency, etc.

There are two main approaches to address the issue of label noise (Pechenizkiy
et al. 2006). One approach is to devise algorithms within the supervised learning
framework that are naturally robust to the presence of label noise. Another approach,
referred to as filter approach, is to detect noisy instances and eliminate them before
the data set is used for learning. In this paper, we are particularly interested in the
filter approach, albeit somewhat modified. Specifically, instead of simply detecting
and removing noisy instances, we are going to detect and correct them.

We have opted to develop a filter approach to address label noise before the learn-
ing stage. Therefore, there are no restrictions on classification algorithms to be ap-
plied at a later stage.

2.2 K-Means Clustering

The k-means algorithm (MacQueen 1967; Ball and Hall 1967) is arguably the most
popular clustering algorithm (Jain 2010; Mirkin 2016; Steinley 2006; Bock 2008). It
aims to partition the n given entities from X intoK disjoint clusters S = {S1, S2, ..., SK}
by alternatingly minimising the following quadratic objective function:

W (S,C) =

K∑
k=1

∑
i∈Sk

m∑
v=1

(xiv − ckv)2, (1)

where each cluster Sk ∈ S is represented by a centroid ck ∈ Rm. Equation (1) ap-
plies the squared Euclidean distance, so that the optimal ck are within-cluster means,
ckv = |Sk|−1

∑
i∈Sk

xiv for v = 1, 2, ...,m, k = 1, 2, ,K. The method iteratively
minimises (1) by following three simple steps: (i) select at randomK entities from X
and assign them to the centroids c1, c2, ..., cK ; (ii) assign xi to the cluster Sk repre-
sented by the nearest centroid ck, for i = 1, 2, ..., n; (iii) update each centroid ck ∈ C
as the centre of Sk. Repeat steps (ii) and (iii) until convergence.

Various implementations of this algorithm can be found in many popular software
packages, such as MATLAB (MATLAB 2013), R (R Core Team 2014), Scipy (Jones,
Oliphant, and Peterson 2001), Clustan (Wishart 1998), etc. However, the conventional
k-means algorithm has the following properties:

Core clustering as a tool for tackling noise in cluster labels 5

1. The final clustering S is highly dependent on the initial centroids;
2. The number of clusters, K, needs to be known in advance;
3. Each feature has the same contribution to the clustering criterion, regardless of its

actual degree of relevance;
4. Using the squared Euclidean distance biases the results towards clusters of spher-

ical shape, regardless of the data distribution.

In order to address some of the above weaknesses, we have previously introduced
the intelligent Minkowski weighted k-means algorithm (imwk-means) (De Amorim
and Mirkin 2011). It uses the weighted Minkowski distance:

dp(xi, ck) =

m∑
v=1

wp
kv|xiv − ckv|

p, (2)

and minimises the following objective function:

W (S,C,w) =

K∑
k=1

∑
i∈Sk

m∑
v=1

wp
kv|xiv − ckv|

p, (3)

where p is a user-defined parameter representing the Minkowski exponent, and wkv

is the weight of feature v at cluster Sk. Our algorithm measures the dispersion of v
at cluster Sk, Dkv =

∑
i∈Sk
|xiv − ckv|p, and sets the weights wkv to be inversely

proportional to Dkv:

wkv =

[
m∑

u=1

[Dkv/Dku]
1/(p−1)

]−1
. (4)

This is subject to weights being non-negative and totalling to 1,
∑K

k=1 wkv = 1, for
v = 1, 2, ...,m, as well as clusters being crisp, i.e., Sj ∩ St = ∅ for j 6= t. Note that
if Dkv1

< Dkv2
, then wkv1

> wkv2
. The above is rather intuitive. It implies that any

feature v may have different degrees of relevance in different clusters of S.
We first describe the Minkowski weighted k-means (mwk-means) as follows.

1. Initial setting. Set K and p to their user-defined values. Set S ← ∅, and wkv =
1/m for k = 1, 2, ...,K and v = 1, 2, ...,m.

2. Getting the initial centroids. SelectK entities from X at random, and assign their
values to the centroids c1, c2, ..., cK .

3. Cluster update. Assign each entity x1, x2, ..., xn to the cluster S∗k represented by
the nearest ck following (2). This generates the clustering S∗ = {S∗1 , S∗2 , ..., S∗K}.
If S = S∗ go to Step 6.

4. Centroid update. Update each ck ∈ C to the component-wise Minkowski centre
of xi ∈ Sk.

5. Weight update. Update each wkv following Equation (4). Set S ← S∗, then go to
Step 3.

6. Output. Output S = {S1, S2, ..., SK}, C = {c1, c2, ..., cK}, and w.

6 Renato Cordeiro de Amorim et al.

For a given value of the exponent p, the (mwk-means) algorithm should be carried
out a number of times with random initializations and that resulting clustering that
minimises the objective function (3) should be selected. The imwk-means algorithm
applies the concept of anomalous pattern (Mirkin 2016) to find good initial centroids
and weights, and thus reduce the time complexity of (mwk-means), as described as
below:

1. Initial setting. Set K and p to their user-defined values. Set cc to the component-
wise Minkowski centre of x1, x2, ..., xn. Set Ct ← ∅, and each wkv = 1/m.

2. Get a tentative centroid. Find the entity in X which is the farthest from cc, as per
(2), and assign its component-wise values to the tentative centroid ct.

3. Cluster. Apply mwk-means using two centroids, ct and cc, generating the clus-
tering S = {St, Sc}. During this clustering do not allow cc to move during the
centroid update.

4. Remove cluster. Add ct to Ct and respective weights to w. Remove each xi ∈ St

from X.
5. If n > 0, go to Step 2.
6. Remove from Ct and w all entries other than those related to the K clusters with

the highest cardinality.
7. Run mwk-means initialised with the centroids in Ct and weights in w.

The algorithms above require the calculation of the component-wise Minkowski cen-
tre. Let r be a column vector of the data matrix formed by xi ∈ Sk. The Minkowski
centre of r is the value µ minimising γr(µ) =

∑
j |rj − µ|p. Since we only consider

p > 1, γr is a U-shaped curve with a minimum in the interval [min(r),max(r)]
(De Amorim and Mirkin 2011). We can find µ using standard methods for convex
optimisation. Here, we initialise µ to the mean of r and improve it stepwise. At each
step we move µ by a fixed step of, say, 0.001, to the side in which γr decreases. No
special method is needed if p is equal to one or two. In these cases the Minkowski
centre is equal to the median and the mean of r, respectively.

In fact, the choice of a clustering algorithm is not important in our context, as
described in Section 3. We use the two algorithms described above because our ex-
periments proved to be superior versions of the popular k-means algorithm. We direct
interested readers to the numerous sources in the field, such as (Jain 2010; Kaufman
and Rousseeuw 1990; De Amorim and Makarenkov 2016; Mirkin 2016) and refer-
ences therein.

3 Method for Core Clustering

Consider a data matrix X ∈ Rnm and respective labels y = (y1, y2, ..., yn) con-
taining a proportion ρ of mislabelled entities. Our main aim is to develop a method
capable of reducing ρ. Since the exact value of ρ is unknown, we should not design a
method based on the supervised learning framework. A method using the supervised
learning framework would be unlikely to work if ρ was over 50%, precisely when we
need to reduce ρ the most.

A clustering-based method will not be affected by a very high ρ. Clustering al-
gorithms, such as those described in Section 2.2, are data-centric and can generate

Core clustering as a tool for tackling noise in cluster labels 7

a clustering S = {S1, S2, ..., SK} without requiring labelled entities. If we could
generate a perfect clustering S, then {xi, xj} ⊆ Sk would mean that yi = yj . Unfor-
tunately, there is no clustering algorithm that can find a perfect S in all cases. We can,
however, produce a partial clustering S′ = {S′1, S′2, ..., S′K} referring to only such
entities xi ∈ Sk that are clustered most reliably. In our method, S′k ⊆ Sk is a core
cluster. In this case, S′k ⊆ Sk for k = 1, 2, ...,K, leading to |

⋃K
k=1 S

′
k| ≤ n.

The key, as one would expect, is to define a rule to decide whether an entity
xi ∈ Sk should or should not be assigned to S′k. Here, we introduce such a rule based
on both cluster cohesion and separation.

Cohesion measures the homogeneity of entities within a cluster. Any k-means-
based algorithm improves this measure by minimising the within-cluster distance
between entities in some way. The criteria (1) and (3) are examples of that. Sepa-
ration measures how distinct clusters are far away from each other. This measure is
not directly improved by k-means, and there is a room for argument about whether
improving cohesion will always lead to an improved separation.

Let us define first a(xi) = (|Sk| − 1)−1
∑

j∈{Sk\i} d(xi, xj). This is the average
distance between xi and all xj ∈ Sk, i 6= j, measuring the cluster cohesion. Second,
we define b(xi) = min{ut | ut =

∑
j∈St
|St|−1d(xi, xj),∀St ∈ S \ Sk}. The

cluster separation b(xi) is the lowest average distance of xi ∈ Sk to the entities of
any other cluster.

Ideally, xi ∈ Sk will have a low value of a(xi), meaning that xi is well matched
to Sk, and a high value of b(xi), meaning that xi is badly matched to any other cluster.
We can now define as follows the Silhouette width index (Kaufman and Rousseeuw
1990):

sil(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
. (5)

Note that−1 ≤ sil(xi) ≤ 1; sil(xi) equal to−1 implies a(xi) >> b(xi), suggesting
that xi should be assigned to a different cluster, whereas sil(xi) = 1 implies exactly
the opposite. In our method, xi ∈ Sk is assigned to S′k iff sil(xi) ≥ θ, where θ is a
pre-selected threshold.

Algorithm for core clustering and relabelling

1. Obtain a clustering S = {S1, S2, ..., SK} and respective centroidsC = {c1, c2, ..., cK}
by applying a clustering algorithm. Here we experiment with k-means and imwk-
means.

2. Set the threshold parameter θ = 0.5 and α = 0.05.
3. For each entity xi ∈ Sk, assign xi to S′k iff sil(xi) ≥ θ, k = 1, 2, ...,K.
4. If |S| 6= |S′|, set θ = θ − α · n−1

∑n
i=1 |sil(xi)| and go to Step 3.

5. Map each core S′k ∈ S′ to one of the original labels in y using a confusion matrix,
for k = 1, 2, ...,K.

6. Relabel all labels according to this mapping.

The Silhouette width index (5) is a cluster validity index that tends to perform well
in comparative studies (see for instance Arbelaitz et al. 2013 and references therein).
However, there is no index that is clearly superior to all others in all cases. For exam-
ple, the total sum of the within cluster distances between entities and centroids, given

8 Renato Cordeiro de Amorim et al.

by (1) in the case of k-means, can be also used to select clustering solutions. With
this in mind, we also experimented with the two other rules described as follows.

Distance to the centre
Each cluster Sk ∈ S is represented by a centroid ck ∈ C. An entity xi is assigned

to the cluster Sk whose centroid ck is the nearest. One could claim that the closer
xi ∈ Sk to ck, the stronger the membership of xi to Sk is. Under this principle if
{xi, xj} ⊆ Sk and d(xi, ck) < d(xj , ck), we can say the degree of membership of xi
to Sk is higher than that of xj for a distance function d. We can then assign a given
entity xi ∈ Sk to S′k iff d(xi, ck) ≤ n−1

∑K
k=1

∑
i∈Sk

d(xi, ck). Unfortunately, this
rule produced results below our expectations so we do not report them here.

Quartile rule
The distribution of distances between the entities and their respective cluster cen-

troids may be the reason why the previous rule failed. This is likely to be the case if
such a distribution is skewed. With this in mind, we decided to assign xi ∈ Sk to S′k
iff d(xi, ck) was in the first quartile of this distribution. This rule is less sensitive to
wide variations in the distances, but more restrictive as in the best case scenario the
method corrects a maximum of 0.25 · n labels. Nevertheless, this rule also failed to
produce decent classification results, so we do not report them here either.

It is worth noting that these two rules are based solely on cluster cohesion. This
is very much the case of k-means itself, making us wonder if the fast and popular
approach of minimising (1) hoping that it also increases (5) is the best way to cluster
a data set.

4 Setting of experiments

We studied the effectiveness of our method using synthetic and real-world data sets.
Each cluster of the synthetic data sets originates from a Gaussian distribution whose
covariance matrix is a diagonal matrix with the same random diagonal value σ2 in
the interval [0.5, 1.5]. The cardinality of each cluster is selected from a uniform dis-
tribution, with the constraint that no cluster could have less than 20 entities. Thus, our
synthetic data sets correspond to the sets of spherical clusters with different cardinal-
ities and spreads. Each of the centres components is generated independently using
the standard normal distribution N(0, 1).

We generated 50 data sets for each of the following parameter configurations: (i)
1000x6-3, 1000 entities over six features partitioned into three clusters; (ii) 1000x12-
6, 1000 entities over twelve features partitioned into six clusters; (iii) 1000x20-10,
1000 entities over twenty features partitioned into ten clusters.

We also experimented with eight popular data sets from the UCI machine learning
repository (Lichman 2013) (see Table 1). If a data set contains categorical features,
we replace them by dummy zero-one features corresponding to individual categories.
For a given categorical feature v only one of the generated L binary features has
the value of one, i.e., that representing the original category of v. Afterwards, we
standardize each dummy feature like any quantitiative feature (see formula 6 further
on), by subtracting its average over the whole data set, that is, the relative frequency

Core clustering as a tool for tackling noise in cluster labels 9

of the corresponding category. With this, frequent categories will have a lower value,
and contribution to the clustering, than those that are infrequent.

The method of enveloping the categories of categorical features clearly affects the
dimensionality of data sets containing such features, as clearly demonstrated in Table
1.

Table 1 Real-world data sets tested in our simulations. These data sets were obtained from the UCI ma-
chine learning repository (Lichman 2013)

Data set Number of features (m) Number of labels (clusters)
Before After

standardisation standardisation
Australian credit approval 14 42 2
Breast Cancer 9 9 2
Heart 13 25 2
Iris 4 4 3
Pima 8 8 2
Soya 35 58 4
Wine 13 13 3
Zoo 16 16 7

We have standardised the numerical features as follows:

xiv =
xiv − xv

max(xv)−min(xv)
, (6)

where xv = n−1
∑n

i=1 xiv , the grand mean. We chose to use (6) rather than the
popular z-scoring because the latter standardisation favours unimodal distributions.

Unimodal features tend to have lower standard deviations than those that are mul-
timodal. This leads the former to have a higher z-score, and contribution to the clus-
tering, than the latter. For clustering this is counter-intuitive as we are usually inter-
ested in the information contained in multimodal features.

In this paper we conduct three sets of experiments, one for each of three values
of the percentage of perturbed labels: 2.5, 5, and 10%. For each of these perturbation
percentages we consider the original set of labels and change that percentage of la-
bels, rounded towards positive infinity, to an incorrect value. This incorrect value is
chosen, uniformly random, from the existing set of labels for a given data set.

We do the above once for each of the synthetic data sets, and 20 times for each of
the eight real-world data sets in Table 1. This leads to a total of 150 synthetic data sets
and 160 real-world data sets, per percentage of perturbed labels, in our experiments.

We have run k-means 100 times and selected the final clustering as that minimis-
ing the objective function (1). In the case of imwk-means, we experimented with the
values of p ranging from 1.1 to 5.0 with the step of 0.1, selecting the final clustering
as that with the highest average Silhouette over all entities in X.

For comparison, we have also run the popular k-nearest neighbours (k-NN) (Fried-
man, Bentley, and Finkel 1977) algorithm for supervised learning. It assigns to yi the
mode of the labels of the k nearest entities to xi. We carried out this algorithm for
i = 1, 2, ..., n and k ∈ {5, 10, 15}.

10 Renato Cordeiro de Amorim et al.

5 Results and discussion

In our experiments there are in fact three label vectors y for a given data matrix
X. First, we have the correct labels y such that yi represents the true label of xi
for i = 1, 2, ..., n. Second, we have the corrupted y containing a proportion ρ of
mislabelled entities, so that there is a probability ρ for yi to represent a wrong label
for xi, i = 1, 2, ..., n. Third, we have the updated y so that yi was obtained by our
core clustering method described in Section 4, fed in with X and the corrupted labels.

We are interested in measuring the similarity between the correct and corrupted
labels, as well as between the correct and updated labels. We aim to see whether
the similarity given by the latter pair is higher than that given by the former pair.
We measure the similarity using the adjusted Rand index (ARI) (Hubert and Arabie
1985), a popular choice for comparing partitions.

ARI =

∑
ij

(
nij

2

)
− [
∑

i

(
ai

2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [
∑

i

(
ai

2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai

2

)∑
j

(
bj
2

)
]/
(
n
2

) , (7)

where nij = |Si ∩ Sj |, ai =
∑K

j=1 |Si ∩ Sj | and bj =
∑K

i=1 |Si ∩ Sj |.
Let us analyse first the results obtained when experimenting with the synthetic

data. Table 2 presents the average values of ARI, and the corresponding standard de-
viations, between the corrupted and correct labels. These values represent our base-
line that needs to be improved.

Table 2 Average baseline ARI, and its standard deviation, between the corrupted labels and the correct
labels for synthetic data sets.

ρ=2.5% ρ=5% ρ=10%
ARI std ARI std ARI std

1000x6-3 0.9246 0.008 0.8511 0.014 0.7173 0.022
1000x12-6 0.9467 0.004 0.8938 0.005 0.7920 0.008
1000x20-10 0.9522 0.004 0.9054 0.006 0.8137 0.010

Table 3 reports the average change in ARI, and the standard deviation of this
change, between the updated and correct labels. A positive value means an improve-
ment on the baseline, whereas a negative value means the opposite. At ρ=2.5% we
can see that k-NN produces very poor results, in some cases reducing the average
baseline ARI by 0.2 or more. In this scenario, the improvement generated by our
method is modest, reaching an average value of 0.0175 in the data sets with the high-
est number of features, when the clustering is done with imwk-means. At ρ=5% the
average change in ARI produced by k-NN is still negative for all data sets, meaning
this method tends to be less satisfactory at increased ρ. In contrast, our core cluster-
ing method leads to positive changes in ARI in all the cases. In the data sets with
the highest number of features this average improvement reaches 0.0422 when using
imwk-means for clustering, resulting in a total average ARI of 0.9476 (after adding
the values of Table 3 to those of Table 2). At ρ=10% the k-NN algorithm delivers

Core clustering as a tool for tackling noise in cluster labels 11

a considerable improvement in two data set configurations, but this improvement is
much lower than the improvement provided by our core clustering method.

Table 3 Average change in ARI between the updated labels and correct labels, as well as the standard
deviation of ARI values. A positive value indicates an improvement on the baseline, while a negative value
indicates the opposite.

ρ=2.5% ρ=5% ρ=10%
ARI std ARI std ARI std

k-NN
k=5
1000x6-3 -0.2190 0.155 -0.1536 0.157 -0.0433 0.158
1000x12-6 -0.1343 0.096 -0.0856 0.096 0.0049 0.099
1000x20-10 -0.0667 0.049 -0.0223 0.048 0.0632 0.050
k=10
1000x6-3 -0.2056 0.144 -0.1346 0.146 -0.0116 0.151
1000x12-6 -0.1284 0.090 -0.0763 0.090 0.0217 0.093
1000x20-10 -0.0647 0.049 -0.0200 0.048 0.0718 0.049
k=15
1000x6-3 -0.2007 0.143 -0.1301 0.144 -0.0012 0.146
1000x12-6 -0.1290 0.091 -0.0763 0.092 0.0213 0.094
1000x20-10 -0.0692 0.052 -0.0227 0.050 0.0681 0.051

Our method
k-means
1000x6-3 0.0041 0.024 0.0240 0.034 0.0549 0.058
1000x12-6 0.0091 0.014 0.0247 0.023 0.0556 0.041
1000x20-10 0.0168 0.013 0.0397 0.018 0.0841 0.035
imwk-means
1000x6-3 0.0047 0.025 0.0260 0.035 0.0595 0.059
1000x12-6 0.0015 0.034 0.0214 0.039 0.0591 0.052
1000x20-10 0.0175 0.014 0.0422 0.019 0.0941 0.034

Table 4 presents the average ARI, and standard deviation, between the corrupted
and correct labels for the real-world data sets. The low values of the standard de-
viation were expected here. We corrupt the proportion ρ of labels 20 times, so the
standard deviation of ARI is proportional to the number of labels in each data set. If
the data set has only two labels the standard deviation is zero.

Table 5 shows the average change in ARI, as well as the standard deviation of this
change, for the real-world data sets. At ρ=2.5% we can see that the k-NN method fails
to improve the average ARI in six to seven of the eight data sets (depending on the
value of k). Our method produces better results, failing to produce improvements in
only three data sets. More importantly, the worst case scenario for our core clustering
method produces an average reduction in ARI of 0.2088 (for Pima Indians data set,
clustered with k-means), while the worst case scenario for k-NN produces a reduction
of 0.7062 for the same data set (at k = 10).

At ρ=5% the k-NN method fails to improve the average ARI in three to four of
the eight data sets (depending on the value of k). Again our method produces better
results, failing to produce improvements in two to three data sets (depending on the
clustering algorithm). The worst case scenario for both methods was again the Pima

12 Renato Cordeiro de Amorim et al.

Table 4 Average ARI and standard deviation between the corrupted labels and the correct labels on real-
world data sets. A positive value indicates an improvement on the baseline, while a negative value indicates
the opposite.

ρ=2.5% ρ=5% ρ=10%
ARI std ARI std ARI std

AustraCC 0.8982 0.000 0.8071 0.000 0.6395 0.000
BreastCancer 0.8987 0.000 0.8081 0.000 0.6370 0.000
Heart 0.8986 0.000 0.8026 0.000 0.6386 0.000
Iris 0.9210 0.000 0.8449 0.001 0.7204 0.002
Pima 0.8977 0.000 0.8056 0.000 0.6368 0.000
Soya 0.8860 0.011 0.8391 0.016 0.7370 0.021
Wine 0.9168 0.003 0.8540 0.004 0.7189 0.005
Zoo 0.9403 0.019 0.8818 0.018 0.7986 0.033

Indians data set. While k-NN produced an average reduction in ARI from 0.5808 to
0.6196 (depending on the value of k), our method produced an average reduction
from 0.1626 to 0.1681 (depending on the clustering algorithm), only. At ρ=10%,
again, the core clustering method was capable of improving the average ARI in more
data sets than k-NN. Even when our method does fail to produce an improvement, its
worst case scenario is not as poor as that of k-NN.

The numerous experiments in this section do show that our core clustering method
clearly outperforms the popular k-NN algorithm, especially when using imwk-means.
Of course, there are some reasons for this rather positive performance. The k-NN
algorithm assigns to xi the label of the majority of its k neighbours, which takes
solely (Euclidean) cohesion into account. Our core clustering method makes use of
the Silhouette width index (SW), with a suggested threshold of 0.5. Given an entity
xi ∈ Sk the SW measures how similar xi is to all other entities in Sk compared
to the entities in other clusters. Hence, taking cohesion and separation into account.
Also, our suggested threshold value ensures the clustering has a reasonable structure
(Struyf, Hubert, and Rousseeuw 1997). This becomes somewhat clearer when one
notices that the SW index (Equation (5)) is only strictly positive if b(xi) > a(xi), so
that

b(xi)− a(xi)
max{a(xi), b(xi)}

≥ 0.5

implies max{a(xi), b(xi)} = b(xi), leading to

a(xi) ≤
1

2
b(xi).

The average distance between xi over all entities in its cluster, is at most half of the
lowest average distance between xi to the entities in any other cluster.

The use of imwk-means has two important implications. First, it removes the re-
strictive bias towards Gaussian clusters (or in the case of k-NN, Gaussian neigh-
bours). Second, imwk-means (and by consequence our core clustering method) takes
into account that even among relevant features there may be different degrees of rele-
vance, which may be cluster-dependent. The superiority granted by feature weighting
in clustering has already been extensively demonstrated in the literature (for details
see the recent survey (De Amorim 2016), and references therein).

Core clustering as a tool for tackling noise in cluster labels 13

Table 5 Average change in ARI between the updated labels and correct labels, as well as the standard
deviation.

ρ=2.5% ρ=5% ρ=10%
ARI std ARI std ARI std

k-NN
k=5
AustraCC -0.3830 0.014 -0.2907 0.020 -0.1680 0.029
BreastCancer -0.0169 0.010 0.0644 0.012 0.1965 0.028
Heart -0.5407 0.021 -0.4573 0.028 -0.3232 0.031
Iris -0.0563 0.012 0.0196 0.015 0.1254 0.041
Pima -0.6857 0.011 -0.5973 0.013 -0.4582 0.015
Soya 0.1140 0.011 0.1565 0.028 0.2485 0.041
Wine -0.0653 0.014 -0.0087 0.019 0.1187 0.034
Zoo 0.0112 0.020 0.0685 0.021 0.1460 0.041
k=10
AustraCC -0.3599 0.008 -0.2747 0.016 -0.1339 0.024
BreastCancer -0.0281 0.005 0.0565 0.008 0.2137 0.019
Heart -0.4945 0.015 -0.3946 0.020 -0.2498 0.027
Iris -0.0476 0.012 0.0286 0.019 0.1478 0.014
Pima -0.7062 0.009 -0.6196 0.013 -0.4617 0.018
Soya 0.1140 0.011 0.1609 0.016 0.2584 0.030
Wine -0.0278 0.014 0.0329 0.016 0.1552 0.023
Zoo -0.0130 0.021 0.0436 0.022 0.1210 0.042
k=15
AustraCC -0.3702 0.010 -0.2780 0.012 -0.1223 0.019
BreastCancer -0.0281 0.005 0.0563 0.011 0.2263 0.010
Heart -0.5118 0.011 -0.4190 0.017 -0.2636 0.025
Iris -0.0326 0.009 0.0509 0.017 0.1726 0.012
Pima -0.6753 0.009 -0.5808 0.013 -0.4248 0.015
Soya 0.0986 0.044 0.1375 0.059 0.2135 0.092
Wine -0.0003 0.016 0.0680 0.020 0.1792 0.029
Zoo -0.0450 0.016 0.0092 0.028 0.0941 0.046

Our method
k-means
AustraCC -0.0162 0.006 -0.0047 0.010 0.0110 0.009
BreastCancer 0.0065 0.008 0.0850 0.012 0.2196 0.013
Heart 0.0043 0.015 0.0189 0.020 0.0241 0.015
Iris 0.0115 0.012 0.0668 0.015 0.1705 0.025
Pima -0.2088 0.010 -0.1681 0.015 -0.0891 0.012
Soya 0.0550 0.042 0.0963 0.042 0.1579 0.052
Wine 0.0404 0.020 0.0911 0.024 0.1490 0.023
Zoo -0.1672 0.061 -0.1141 0.056 -0.0755 0.052
imwk-means
AustraCC -0.0162 0.006 -0.0047 0.010 0.0110 0.009
BreastCancer 0.0068 0.008 0.0839 0.013 0.2201 0.013
Heart 0.0170 0.010 0.0310 0.019 0.0314 0.017
Iris 0.0276 0.012 0.0825 0.012 0.1824 0.031
Pima -0.1978 0.011 -0.1626 0.014 -0.0892 0.015
Soya 0.0550 0.042 0.0963 0.042 0.1579 0.052
Wine 0.0396 0.020 0.0896 0.023 0.1459 0.024
Zoo -0.0051 0.019 0.0490 0.017 0.1355 0.033

14 Renato Cordeiro de Amorim et al.

Our core clustering method should produce positive results in data sets containing
incorrect labels, and for which SW is a sound clustering validity index (CVI). A
recent and comprehensive study (Arbelaitz et al. 2013) demonstrated there is no CVI
having a clear advantage over all others in all scenarios, however, SW obtained the
best results in many of them.

6 Conclusion

Supervised machine learning algorithms infer a function from data to respective la-
bels. They then use this function to map labels to unlabelled entities. By consequence,
the accuracy of such algorithms on unlabelled data depends heavily on the availability
and correctness of labels.

Labelling entities manually is a laborious task. This is particularly true nowa-
days as the availability of data for most real-world problems has grown considerably.
Humans do not always excel at repetitive tasks so such labelling is prone to errors.
Disagreements are another source of mislabelling.

In this paper we introduce a method capable of reducing the proportion of misla-
belled entities. Our core clustering method builds upon the assumption that given a
perfect clustering, two entities assigned to the same cluster should have the same la-
bel. Unfortunately, producing such a clustering is a non-trivial task in itself, one that
has been subject to intensive research for many decades. Instead of trying to produce
a full clustering in which each entity belongs to a cluster, our method produces a par-
tial clustering of cluster cores. These cluster cores contain only the entities that have
the most potential to be labelled correctly. We then use them to correct mislabelled
entities.

We have run a number of computational experiments to validate our method em-
pirically. These experiments include both synthetic and real-world data with differ-
ent proportions of mislabelled entities. The obtained results suggest that our method
does indeed reduce the proportion of mislabelled entities in data sets and thus could
be used as a pre-processing data correction step of a supervised machine learning
algorithm.

References

Angluin, D. and Laird, P. (1988). “Learning from noisy examples”. Machine Learn-
ing 2.4, pp. 343–370.

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., and Perona, I. (2013). “An
extensive comparative study of cluster validity indices”. Pattern Recognition 46.1,
pp. 243–256.

Ball, G. H. and Hall, D. J. (1967). “A clustering technique for summarizing multi-
variate data”. Behavioral Science 12.2, pp. 153–155.

Bock, H-H (2008). “Origins and extensions of the k-means algorithm in cluster anal-
ysis”. Journal Electronique d’Histoire des Probabilités et de la Statistique (Elec-
tronic Journal for History of Probability and Statistics) 4.2.

Core clustering as a tool for tackling noise in cluster labels 15

Bouveyron, C. and Girard, S. (2009). “Robust supervised classification with mixture
models: Learning from data with uncertain labels”. Pattern Recognition 42.11,
pp. 2649–2658.

De Amorim, R. C. (2016). “A survey on feature weighting based K-Means algo-
rithms”. Journal of Classification 33.2, pp. 210–242. DOI: 10.1007/s00357-
016-9208-4.

De Amorim, R. C. and Makarenkov, V. (2016). “Applying subclustering and Lp dis-
tance in Weighted K-Means with distributed centroids”. Neurocomputing 173,
pp. 700–707.

De Amorim, R. C. and Mirkin, B. (2011). “Minkowski Metric, Feature Weighting
and Anomalous Cluster Initializing in K-Means Clustering”. Pattern Recognition
45.3.

Frénay, B. and Verleysen, M. (2014). “Classification in the presence of label noise:
a survey”. IEEE Transactions on Neural Networks and Learning Systems 25.5,
pp. 845–869.

Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977). “An algorithm for finding
best matches in logarithmic expected time”. ACM Transactions on Mathematical
Software (TOMS) 3.3, pp. 209–226.

Grira, N., Crucianu, M., and Boujemaa, N. (2004). “Unsupervised and semi-supervised
clustering: a brief survey”. A review of machine learning techniques for process-
ing multimedia content, Report of the MUSCLE European Network of Excellence
(FP6), pp. 1001–1030.

Guyon, I. and Elisseeff, A. (2003). “An introduction to variable and feature selec-
tion”. Journal of Machine Learning Research 3.Mar, pp. 1157–1182.

Hickey, R. J. (1996). “Noise modelling and evaluating learning from examples”. Ar-
tificial Intelligence 82.1, pp. 157–179.

Hubert, L. and Arabie, P. (1985). “Comparing Partitions”. Journal of Classification
2.2, pp. 193–218.

Hughes, N. P., Roberts, S. J., and Tarassenko, L. (2004). “Semi-supervised learning
of probabilistic models for ECG segmentation”. In: Engineering in Medicine and
Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the
IEEE. Vol. 1. IEEE, pp. 434–437.

Jain, A., Jin, R., and Chitta, R. (2014). “Semi-supervised clustering”. Handbook of
Cluster Analysis, pp. 1–35.

Jain, A. K. (2010). “Data clustering: 50 years beyond K-means”. Pattern Recognition
Letters 31.8, pp. 651–666.

Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific tools
for Python. [Online; accessed 2016-11-28]. URL: http://www.scipy.org/.

Kaufman, L. and Rousseeuw, P. J. (1990). Finding groups in data: an introduction to
cluster analysis. Vol. 39. Wiley Online Library.

Lichman, M. (2013). UCI Machine Learning Repository. URL: http://archive.
ics.uci.edu/ml.

MacQueen, J. et al. (1967). “Some methods for classification and analysis of multi-
variate observations”. In: Proceedings of the fifth Berkeley symposium on mathe-
matical statistics and probability. Vol. 1. 281-297. California, USA, p. 14.

16 Renato Cordeiro de Amorim et al.

Maletic, J. I. and Marcus, A. (2000). “Data Cleansing: Beyond Integrity Analysis.”
In: IQ. Citeseer, pp. 200–209.

MATLAB (2013). version 8.10.0 (R2013a). Natick, Massachusetts: The MathWorks
Inc.

Mirkin, B. G. (2016). Clustering for data mining: a data recovery approach. Vol. 3.
CRC Press.

Orr, K. (1998). “Data quality and systems theory”. Communications of the ACM 41.2,
pp. 66–71.

Pechenizkiy, M., Tsymbal, A., Puuronen, S., and Pechenizkiy, O. (2006). “Class noise
and supervised learning in medical domains: The effect of feature extraction”. In:
19th IEEE Symposium on Computer-Based Medical Systems (CBMS’06). IEEE,
pp. 708–713.

Quinlan, J. R. (1986). “Induction of decision trees”. Machine Learning 1.1, pp. 81–
106.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria. URL: http://www.R-
project.org.

Redman, T. C. (1998). “The impact of poor data quality on the typical enterprise”.
Communications of the ACM 41.2, pp. 79–82.

Saeys, Y., Inza, I., and Larrañaga, P. (2007). “A review of feature selection techniques
in bioinformatics”. Bioinformatics 23.19, pp. 2507–2517.

Sáez, J. A., Galar, M., Luengo, J., and Herrera, F. (2014). “Analyzing the presence
of noise in multi-class problems: alleviating its influence with the One-vs-One
decomposition”. Knowledge and Information Systems 38.1, pp. 179–206.

Settles, B. (2009). Active Learning Literature Survey. Computer Sciences Technical
Report 1648. University of Wisconsin–Madison.

Steinley, D. (2006). “K-means clustering: a half-century synthesis”. British Journal
of Mathematical and Statistical Psychology 59.1, pp. 1–34.

Struyf, A., Hubert, M., Rousseeuw, P., et al. (1997). “Clustering in an object-oriented
environment”. Journal of Statistical Software 1.4, pp. 1–30.

Wishart, D. (1998). Clustan. URL: http://www.clustan.com/ (visited on 11/28/2016).
Zhu, X. (2006). “Semi-supervised learning literature survey”. Computer Science,

University of Wisconsin-Madison 2.3, p. 4.
Zhu, X. and Wu, X. (2004). “Class noise vs. attribute noise: A quantitative study”.

Artificial Intelligence Review 22.3, pp. 177–210.

