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Supporting Information: Proofs. Proof of Observation 19

Assume that m = 1, n = 4 and
i xi yi

1 0 0
2 1 0
3 3 1
4 4 1

In this example observations 1, 2 are closer to each other than each is to any of observations 3, 4 and vice versa. (That is,10

|xi − xj | = 1 for i = 1, j = 2 as well as for i = 3, j = 4, but |xi − xj | ≥ 2 for i ≤ 2 < j.) Moreover the values of y are the same11

for the “close” observations and different for “distant” ones. (That is, yi = yj for i = 1, j = 2 as well as for i = 3, j = 4, but12

|yi − yj | = 1 for i ≤ 2 < j.) If we choose a finite w, the estimated value for each i, ȳsw
i , is a weighted average of the two distant13

observations and the single close one. In particular, for every w <∞ we have MSE (w) > 0.14

Observe that w = w1 = ∞ doesn’t provide a perfect fit either: if we set w = w1 = ∞, each observation i is considered15

to be dissimilar to any other, and its y value is estimated to be the default value, ȳsw
i = y0. Regardless of the (arbitrary)16

choice of y0, the MSE is bounded below by that obtained for y = 0.5 (which is the average y in the entire database). Thus,17

MSE (∞) ≥ 0.25.18

Thus, MSE (w) > 0 for all w ∈ [0,∞]. However, as w →∞ (but w <∞), for each i the weight of the observation that is19

closest to i converges to 1 (and the weights of the distant ones – to zero), so that ȳsw
i → yi. Hence, MSE (w)→w→∞ 0. We20

thus conclude that infw∈[0,∞] MSE (w) = 0 but that there is no w that minimizes the MSE.21

The same argument applied to the AMSE (w, c) for any c < c0 if we set c0 = 0.25. �
22

Proof of Proposition 123

We first wish to show that arbitrarily low values of the MSE can be obtained with probability that is arbitrarily close to 1,
provided the weights wj are all large enough. Let there be given ν > 0 and ξ > 0. We wish to find N and W such that for
every n ≥ N , and every vector w such that wj ≥W but wj <∞ (∀j ≤ m) we have

P (MSE (w) < ν) ≥ 1− ξ.

Observe that a single j for which wj =∞ suffices to set the MSE at least as high as the variance of (yi), as, with probability24

1, each observation will be the unique one with the specific value of xj .25

We now define “proximity” of the x values that would guarantee “proximity” of the y values. Suppose that the latter26

is defined by ν/2. As the function f is continuous on a compact set, it is uniformly continuous. Hence, there exists θ > 027

such that, for any x, x′ that satisfy ‖x− x′‖ < θ we have [f (x)− f (x′)]2 < ν/2. Let us divide the set X into
(
4K
√
m/θ

)m
28

equi-volume cubes, each with an edge of length θ
2
√
m
. Two points x, x′ that belong to the same cube differ by at most θ

2
√
m

in29

each coordinate and thus satisfy ‖x− x′‖ < θ/2. Let us now choose N1 such that, with probability of at least (1− ξ/2), each30

such cube contains at least two observations xi (i ≤ N1). This guarantees that, when observation i is taken out of the sample,31

there is another observation i′ (in the same cube), with [yi′ − f (xi)]2 < ν/2.32

Next, we wish to bound the probability mass of each cube (defined by g). The volume of a cube is
(

θ
2
√
m

)m
and the density33

function is bounded from below by η. Thus, the proportion of observations in the cube (out of all the n observations) converges34

(as n→∞) to a number that is bounded from below by ζ ≡ η
(

θ
2
√
m

)m
> 0. Choose N ≥ N1 such that, with probability of35

at least (1− ξ/2), for each n ≥ N the proportion of the observations in the cube is at least ζ/2. Note that this is a positive36

number which is independent of n.37

We can now turn to choose W . For each i, the proportion of observations xk with [f (xi)− f (xk)]2 > ν is bounded above
by (1− ζ). Choose w such that wj = W . Observe that, as W →∞,∑

k 6=i,[f(xi)−f(xk)]2>ν s(xi, xk)∑
k 6=i,[f(xi)−f(xk)]2≤ν s(xi, xk)

→ 0

and this convergence is uniform in n (as the definition of ζ is independent of n). Thus a sufficiently high W can be found so38

that, for all n ≥ N , MSE (w0) < ν with probability (1− ξ) or higher.39

Next we prove the second part of the proposition. Assume that xj is informative, so that there exist x, x′ such that xl = x′l40

for all l 6= j but f (x)− f (x′) = δ > 0. Assume that, for some W <∞, wj ≤W . Similar arguments to those above yield an41

lower bound ν > 0 such that, for large n, with very high probability, MSE (w) > ν: points around x will have estimated y42

values that are affected by points around x′, and the weight of these will not converge to zero (it is bounded from below by43

e−W ).44

Finally, we wish to show that one can have a low enough cost c0 such that all the vectors in ε-arg minAMSE would use the45

informative variables, as well as a low enough ε so that they would not use the uninformative variables. This would mean that46

for appropriately chosen c0 and ε, the supports of all vectors in ε-arg minAMSE have to coincide with I(f). Let there be given47

ξ > 0. For each j ∈ I(f) we can use the second part of the proposition (corresponding to W = 0) to find νj > 0 and Nj such48

that, for every n ≥ Nj , with probability of at least (1− ξ/2m), wj = 0 implies MSE (w) > νj . Define Nj = 0 for j /∈ I(f) .49

Choose c0 = minj(νj)/2(m+ 1) and let c < c0. Using the first part of the proposition, let N0 and W0 be such that, for all50

n ≥ N0, with probability of at least (1− ξ/2), MSE (w0) < c for w0 defined by wl0 = W0 for all l. Consider N = max(Nl)l≥0.51
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For every n ≥ N , with probability of at least (1− ξ) we have that (i) there are w with MSE (w) < c ; (ii) for these w’s,52

AMSE(w) < (m + 1)c; (iii) for any vector w whose support does not include j ∈ I(f), AMSE(w) > νj > (m + 1)c. This53

means that for every w with AMSE(w) < (m+ 1)c, we must have I(f) ⊂ supp(w) . Thus, considering near-minimizers of54

the AMSE we will only find vectors that use all the informative variables. On the other hand, we wish to show that in the55

(high-probability) event considered above, variables that are not informative will not be used. Observe that ε < c/2 is small56

enough so that for every w ∈ ε-arg minAMSE, wj = 0 for every j /∈ I(f) (as the inclusion of such a variable in the support of57

w would incur a cost that is by itself enough to make the AMSE of the vector larger than the argmin by more than ε < c/2).58

�
59

Proof of Proposition 2:60

Non-uniqueness is obtained by showing that, with a high probability there will be two variables, each of which can provide61

an almost perfect fit on its own. To this end, we first need to make sure that each observation yi has a close enough yk. For62

this reason the result only holds for a relatively large n (making sure that, with a high probability, no yi is “isolated”), and63

then, given such an n, for a large enough number of predictors, M (n), so that we should think of this case as m >> n >> 1.64

We now turn to prove the result formally. Let there be given c > 0. Choose ε̄ = c/3. We wish it to be the case65

that if MSE (w) ≤ ε with #supp(w) = 1, then w ∈ ε-arg minAMSE, but for no w ∈ ε-arg minAMSE is it the case that66

#supp(w) > 1. Clearly, the choice ε̄ = c/3 guarantees that for every ε ∈ (0, ε̄), the second part of the claim holds: if a vector67

w satisfies MSE (w) ≤ ε, no further reduction in the MSE can justify the cost of additional variables, which is at least c.68

Conversely, because c < v/2 (the variance of y), a single variable j that obtains a near-zero MSE would have a lower AMSE69

than the empty set.70

Let there now be given ε ∈ (0, ε̄) and every δ > 0. We need to find N and, for every n ≥ N , M (n), such that for every
n ≥ N and m ≥M (n),

P (supp(ε- arg minAMSE) is not closed under union) ≥ 1− δ.
Let N be large enough so that, with probability (1− δ/2), for all n ≥ N ,

max
i

min
k 6=i

[yi − yj ] < ε/2.

(To see that such an n can be found, one may divide the [−K,K] interval of values to intervals of length ε/2 and choose N to71

be large enough so that, with the desired probability, there are at least two observations in each such interval.)72

Given such n ≥ N and the realizations of (yi)i≤n, consider the realizations of xj . Assume that, for some j, it so happens73

that
∣∣xji − yi∣∣ < ε/4 for all i ≤ n. In this case, by setting wj to be sufficiently high, and wl = 0 for l 6= j, one would obtain74

MSE (w) ≤ ε and AMSE (w, c) ≤ ε+ c.1 For each j, however, the probability that this will be the case is bounded below by75

some ξ > 0, independent of n and j. Let M1 (n) be a number such that, for any m ≥M1 (n), the probability that at least one76

such j satisfies
∣∣xji − yi∣∣ < ε/4 is (1− δ/4), and let M (n) > M1 (n) be a number such that, for any m ≥M (n), the probability77

that at least one more such j′ > j satisfies
∣∣∣xj′i − yi∣∣∣ < ε/4 is (1− δ/8).78

Thus, for every n ≥ N , and every m ≥M (n), with probability 1− δ there are two vectors, wj with support {j} and wj
′

79

with support {j′}, each of which obtaining MSE (w) ≤ ε and thus, both belonging to ε-arg minAMSE. To see that in this80

case the supp(ε-arg minAMSE) is not closed under union, it suffices to note that no w with support greater than a singleton,81

nor a w with an empty support (that is, w ≡ 0) can be in the ε-arg minAMSE. �
82

Proof of Theorem 183

We first verify that the problem is in NP. Given a database and a vector of extended rational weights wj ∈ [0,∞], the84

calculation of the AMSE takes O
(
n2m

)
steps. Specifically, the calculation of the similarity function s (x, x′) is done by first85

checking whether there exists a j such that wj =∞ and xj 6= x′j (in which case s (x, x′) is set to 0), and, if not – by ignoring86

the j’s for which wj =∞.87

The proof is by reduction of the SET-COVER problem to EMPIRICAL-SIMILARITY. The former, which is known to be88

NPC (see (1)), is defined as89

Problem 1 SET-COVER: Given a set P , r ≥ 1 subsets thereof, T1, ..., Tr ⊆ P , and an integer k (1 ≤ k ≤ r), are there k of90

the subsets that cover P? (That is, are there indices 1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ r such that ∪j≤kTij = P?)91

Given an instance of SET-COVER, we construct, in polynomial time, an instance of EMPIRICAL-SIMILARITY such that92

the former has a set cover iff the latter has a similarity function that obtains the desired AMSE. Let there be given P , r ≥ 193

subsets thereof, T1, ..., Tr ⊆ P , and an integer k. Assume without loss of generality that P = {1, ..., p}, that ∪i≤rTi = P , and94

that zuv ∈ {0, 1} is the incidence matrix of the subsets, that is, that for u ≤ p and v ≤ r, zuv = 1 iff u ∈ Tv.95

Let n = 2 (p+ 1) and m = r. Define the database B = ((xi, yi))i≤n as follows. (In the database each observation is repeated96

twice to avoid bins of size 1.)97

For u ≤ p define two observations, i = 2u− 1, 2u by

xji = zuj yi = 1
1The fact that xj

i
is close to yi is immaterial, of course, as the variables xj

i
are not used to predict yi directly, but only to identify the yk that would. If xj

i
is close to some monotone function of yi the

same argument would apply.
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and add two more observations, i = 2p+ 1, 2p+ 2 defined by

xji = 0 yi = 0.

Next, choose c to be such that 0 < c < 1
mn3 , say, c =

(
mn3)−1

/2 and R = kc.2 This construction can obviously be done in98

polynomial time.99

We claim that there exists a vector w with AMSE(w, c) ≤ R iff a cover of size k exists for the given instance of SET-COVER.3
For the “if” part, assume that such a cover exists, corresponding to J ⊆M . Setting the weights

wj =
{
∞ j ∈ J
0 j /∈ J

one obtains AMSE(w, c) ≤ R.100

Conversely, for the “only if” part, assume that a vector of rational weights w =
(
wj
)
j
(wj ∈ [0,∞]) obtains AMSE(w, c) ≤ R.101

Let J ⊆M be the set of indices of predictors that have a positive wj (∞ included). By the definition of R (as equal to ck), it102

has to be the case that |J | ≤ k. We argue that J defines a cover (that is, that {Tv}v∈J is a cover of P ).103

Observe that, if we knew that |J | = k, the inequality

AMSE(w, c) = MSE (w) + c |J | ≤ R = ck

could only hold if MSE (w) = 0, from which it would follow that w provides a perfect fit. In particular, for every i ≤ 2p there104

exists j ∈ J such that xji 6= xj2p+1 that is, xji = 1, and J defines a cover of P .105

However, it is still possible that |J | < k and 0 < MSE (w) ≤ c (k − |J |). Yet, even in this case, J defines a cover. To see this,106

assume that this is not the case. Then there exists i ≤ 2p such that for all j, either wj = 0 (j /∈ J) or xji = 0 = xj2p+1. This means107

that s (xi, x2p+1) = s (xi, x2p+2) = 1. In particular, y2p+1 = y2p+2 = 0 take part (with positive weights) in the computation of108

ysw
i and we have ysw

i < 1 = yi. The cases 2p+1, 2p+2 obtain maximal similarity to i (s (xi, x2p+1) = s (xi, x2p+2) = 1), because109

xj2p+1 = xj2p+2 = xji (= 0) for all j with wj > 0. (It is possible that for other observations l ≤ 2p we have s (xi, x2p+1) ∈ (0, 1),but110

the weights of these observations are evidently smaller than that of 2p+ 1, 2p+ 2.) Thus we obtain that the error |ysw
i − yi|111

must be at least 1
n
, from which SSE (w) ≥ 1

n2 and MSE (w) ≥ 1
n3 follow. This implies AMSE(w, c) > R and concludes the112

proof. �
113
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2As will be clarified shortly, the power of n in the constant c reflects the choice of the quadratic loss function. Different loss functions would require a corresponding cost c. For example, for an absolute

value c =
(
mn2
)−1

/2 would suffice.
3This proof uses values of x and of y that are in {0, 1}. However, if we consider the same problem in which the input is restricted to be positive-length ranges of the variables, one can prove a similar

result with sufficiently small ranges and a value ofR that is accordingly adjusted.
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