
Accepted Manuscript

Addiction beyond pharmacological effects: The role of environment
complexity and bounded rationality

Dimitri Ognibene, Vincenzo G. Fiore, Xiaosi Gu

PII: S0893-6080(19)30128-5
DOI: https://doi.org/10.1016/j.neunet.2019.04.022
Reference: NN 4152

To appear in: Neural Networks

Received date : 7 November 2018
Revised date : 6 April 2019
Accepted date : 25 April 2019

Please cite this article as: D. Ognibene, V.G. Fiore and X. Gu, Addiction beyond pharmacological
effects: The role of environment complexity and bounded rationality. Neural Networks (2019),
https://doi.org/10.1016/j.neunet.2019.04.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.neunet.2019.04.022


Addiction beyond pharmacological effects: the role of
environment complexity and bounded rationality

Dimitri Ognibene1,2

1School of Computer Science and Electronic Engineering, University of Essex, Colchester,
UK

2ETIC, Universitat Pompeu Fabra, Barcelona, Spain

Vincenzo G. Fiore

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Xiaosi Gua,b,c

aDepartment of Psychiatry, b Nash Family Department of Neuroscience, Icahn School of
Medicine at Mount Sinai, New York, NY, USA.

cThe Mental Illness Research, Education, and Clinical Center (MIRECC VISN 2) at the
James J. Peter Veterans Affairs Medical Center, Bronx, NY

Abstract

Several decision-making vulnerabilities have been identified as underlying causes
for addictive behaviours, or the repeated execution of stereotyped actions de-
spite their adverse consequences. These vulnerabilities are mostly associated
with brain alterations caused by the consumption of substances of abuse. How-
ever, addiction can also happen in the absence of a pharmacological component,
such as seen in pathological gambling and videogaming. We use a new reinforce-
ment learning model to highlight a previously neglected vulnerability that we
suggest interacts with those already identified, whilst playing a prominent role
in non-pharmacological forms of addiction. Specifically, we show that a dual-
learning system (i.e. combining model-based and model-free) can be vulnerable
to highly rewarding, but suboptimal actions, that are followed by a complex
ramification of stochastic adverse effects. This phenomenon is caused by the
overload of the capabilities of an agent, as time and cognitive resources re-
quired for exploration, deliberation, situation recognition, and habit formation,
all increase as a function of the depth and richness of detail of an environment.
Furthermore, the cognitive overload can be aggravated due to alterations (e.g.
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caused by stress) in the bounded rationality, i.e. the limited amount of resources
available for the model-based component, in turn increasing the agent’s chances
to develop or maintain addictive behaviours. Our study demonstrates that,
independent of drug consumption, addictive behaviours can arise in the interac-
tion between the environmental complexity and the biologically finite resources
available to explore and represent it.

Keywords: addiction, reinforcement learning, computational psychiatry,
gambling, internet gaming, bounded rationality, exploration-exploitation;

Introduction

Addiction is marked by the compulsive execution of stereotyped actions de-
spite their adverse consequences [1, 2, 3, 4, 5]. This maladaptive form of decision
making is typically associated with the consumption of substances of abuse, such
as alcohol, tobacco, illicit and prescription drugs [3, 6, 7]. More recently, the def-5

inition has been also used to describe gambling [8, 9] and other putative forms of
behavioural addictions, such as internet gaming [10]. Importantly, these latter
forms of addiction lack the neuro-pharmacological effects of a consumed drug,
and yet are characterised by a striking similar symptomatology.

Several theories and computational models have been proposed to explain10

the repetition of suboptimal decisions typical of addiction [9, 3, 6, 7]. These the-
ories assume decision making results from the interaction of multiple systems,
e.g. habitual, deliberative, Pavlovian, motivational, situation identification, etc.
which rely on different learning and computing principles. This composed struc-
ture is associated with several vulnerabilities to the pharmacological effects of15

drugs of abuse, each of which can result in the expression of compulsive repeti-
tion of drug intake [3, 11, 12, 13, 14, 15].

In particular, Reinforcement Learning (RL) models of addiction frequently
assume that aberrant drug-seeking habits come to dominate behaviour in addic-
tion due to drug induced bio-chemical hijacking of the dopaminergic prediction20

error signal [7, 16, 3, 17, 18, 19, 20]. The hypothesis of the dominance of the ha-
bitual system nicely accounts for aspects of addiction such as inelastic behaviour
in the face of changes in the environment or even in presence of punishing out-
comes following drug consumption [16, 21]. However, several other behaviours
associated with addiction are left unaccounted for [18, 3]. First, one of the25

defining characteristics of substance abuse according to the DSM-5 is “A great
deal of time is spent in activities necessary to obtain the substance (e.g., visit-
ing multiple doctors or driving long distances)” [22]. Such temporally extended
activities are often novel, complex and context-dependent [23, 18, 3, 24], and
therefore are not driven by habitual processes or stimulus-response condition-30

ing. Second, phenomena such as craving can occur even without exposure to
conditioned stimuli (but see [25, 26]). Finally, gambling [8, 2, 1] and internet
gaming [10], which are also considered part of the addictive behaviours, lack the
pharmacological interference that is considered essential to drive the aberrant
habit formation [9].35
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These issues have been partially addressed by hypothesising the presence of
vulnerabilities affecting the deliberative system [3]. In particular, it has been
suggested that non-habitual forms of addictive behaviours may be caused by er-
rors of interpretation, where either the outcome of an action (drug consumption,
gambling etc.) is over-evaluated as beneficial or useful or the long term conse-40

quences of these actions are under-evaluated in their negative effects. However,
the computational mechanisms by which both drug-related and non drug-related
addiction can induce these effects on the deliberative/planning system are not
well understood [11, 27, 28].

Other models [9] have posed that addiction can emerge in environments45

characterised by incomplete or inaccessible information. Under these conditions,
the underestimation of the negative consequences or the over-evaluation of the
positive ones is simply caused by a lack of information. However, this hypothesis
does not seem to match with clinical evidence, as once the required information
is made readily available to addicted individuals, motivating their abstinence,50

relapse should not occur.
We propose a solution can be found in the analysis of the discrepancy be-

tween the resources available to an agent and those required to explore, repre-
sent or compute the environment it operates in. Most computational models
of addiction have so far focused on environments characterised by the presence55

of easy to compute outcomes, where the number of actions available and their
ramifications were limited. This simplification has distanced the computational
analysis from the clinical practice, which has long considered a wide range of
environmental factors, and social interactions in particular, to have a strong
impact on addiction development and maintenance [29, 30, 31].60

Environment complexity and exploration are well recognised factors in the
fields of Artificial Intelligence (AI) [32, 33], as well as developmental and com-
putational neuroscience, in particular when considering the problem of the
exploration-exploitation trade-off [34, 35, 36, 37, 38]. As the amount of ex-
perience required by an agent to achieve a specific behavioural performance65

grows faster than the product of the number of available states and actions
[39, Chapter 8], exploration and training in complex environments can easily
result in incomplete or incorrect representations of action-outcome ramifications
[37, 40, 41]. Furthermore, if a complex environment is correctly represented in
the agent’s internal model, e.g. after a prolonged exploration, the stored action-70

outcome ramifications might still overload the agent’s capacity to internally
assess its available options. This inherent inadequacy of resources can be also
aggravated by temporary forms of cognitive impairments which would dynami-
cally increase the chances to trigger suboptimal planning. Interestingly, anxiety
or stress are good examples of dynamic processes associated with temporary75

cognitive impairments and represent known triggers in addiction disorders and
relapse after treatment [42, 43, 44, 45].

Our simulations show that the development of addictive behaviours may be
supported by the interaction between specific features of the environment and
both habitual and deliberative processes [37, 40, 46, 47]. We propose this vul-80

nerability complements and interacts with previously described ones, capturing
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the emergence of addiction in the absence of pharmacological factors.

Materials and Methods

Agent. The behaviour of our simulated agents (Fig 1) is controlled by a hybrid
(or dual) RL model system [48, 18, 49, 50, 51]. This algorithm maximises85

expected cumulative rewards by simultaneously learning, through a model-free
(MF) component, and computing, through a model-based (MB) component, an
optimal action strategy, or policy π.

The MF component is implemented as a standard tabular Q-learning algo-
rithm [52]. MF algorithms such as Q-Learning and actor-critic architectures [53]90

are usually employed to model habitual behaviours [54, 55, 3, 48, 56, 57] and
therefore are tipically associated with the dorsal cortico-striatal neural circuit
[49, 58]. These algorithms are characterised by limited flexibility but computa-
tional efficiency as they require limited resources to slowly update associations
between state-action pairs and values Q̃MF (s, a), depending on experience. The95

MB algorithm is employed to implement planning processes [11, 27, 26, 41] on
the basis of an explicit representation, in an internal model, of action-state re-
lationships and associated rewards, as experienced in the environment. Due to
the similarity with goal-oriented processes, the MB component is often associ-
ated with the ventral cortico-striatal circuit [49, 58]. Where the MF component100

simply selects the best action among those available in its current state, the
internal model of action-state sequences allows the MB component to evalu-
ate entire policies, as if navigating decision trees with their ramifications and
consequences, before making any decision. Such a process of evaluation is de-
manding in terms of computational resources and time, but allows a high degree105

of flexibility.
Most dual models assume an ideal MB process [50, 59], characterised by a

complete knowledge of the environment and unlimited computational resources,
which therefore always leads towards optimal choices. However, biological MB
system are constrained, or bounded, by their limited resources [60, 61, 62, 63, 64,110

65, 66, 67]. Thus, to model biologically plausible healthy and dysfunctional be-
haviours (as e.g. in addiction [18, 3]), in our simulations we have employed a MB
component that represents only direct experience, and that relies on bounded
computational resources [60, 61] to navigate its internal model. Importantly, our
MB component generates a new value estimation at each step by applying the115

Bellman Equation a limited number of times to states sampled stochastically,
following an early-interrupted variation of the Prioritized Sweeping algorithm
[68], with stochastic selection of the states to update (see Algorithm 1). This is
similar to what is regularly done in the Monte-Carlo Tree Search family of al-
gorithms [69], which is commonly adopted in Artificial Intelligence for complex120

environments models where estimations over simulations are easier than com-
plete bellman backups. However, the Early Interrupted Stochastic Prioritized
Sweeping algorithm employed here is computationally more efficient for small
environments [70], so to provide stable results with a limited number of updates.
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Result: Q values
initialization;
∀s H(s) = 0, V (s) = 0;
steps=0 ;
while steps < Nps do

steps=steps+1;

s̃ ∼ η exp(H(s)
TMB

)// sample state to update with softmax of H;

∀a Q(s̃, a) =
∑

s′ p(s
′|s̃, a) [R(s̃, a, s′) + V (s′)];

M = maxaQ(s̃, a);
∆ = |V (s̃)−M |;
V (s̃) = M ;
∀s h(s) = ∆×maxa P (s̃|s, a);
H(s̃) = h(s̃);
∀s 6= s̃ H(s) = max (h(s), H(s));

end

Algorithm 1: Early Interrupted Stochastic Prioritized Sweeping pseu-
docode

125

In keeping with existing literature [11], we assumed that the MB and MF
components do not share a common representations, and they do not interact
during the computation of the respective state action values. However, a hybrid
value function QMX is computed by balancing MF (QMF (s, a)) and MB (QMB)130

estimates depending on a parameter, β, as follows:

QMX(s, a) = βQMB(s, a) + (1− β)QMF (s, a) (1)

Similar to a previous study [58], six values (1, 0.8, 0.6, 0.4, 0.2, 0) have been
used for this parameter to simulate different behavioural phenotypes, along
a spectrum between purely model-based (β=1) and purely model-free (β=0)
reinforcement learning. In terms of neural implementation, these phenotypes135

loosely match the neural systems dominated by either a ventral or a dorsal
cortico-striatal circuit, with the strength of the directed connectivity between
these circuits as the analogue of the beta values in the algorithmic model.

Finally, the agents selected the actions that were expected to maximize the
future utility (QMX) in 90% of their selections. For the remaining 10% of140

selections, the agents would perform a random action, in a standard strategy
meant to preserve exploration for all stages of the simulations, termed stochastic
ε-greedy persistent exploration [71].

Environment. We tested our hypothesis that suboptimal, addiction-like, be-
haviours can emerge without pharmacological interference or MB-MF malfunc-145

tion, in an environment (Fig 2) that allows long action-sequences characterised
by deep ramifications. In comparison with simpler environments, characterised
by limited interactions or depth of action sequences (e.g. an operant condition-
ing chamber), environments simulating open space navigations require larger
amount of resources invested in the exploration and computation of the action-150
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outcome contingencies. Thus, the agents struggle to find and pursue those poli-
cies that lead to reward maximization (i.e. optimal behaviours) and to avoid
those policies that lead overall losses (i.e. suboptimal behaviours).

Importantly, we could not investigate the same phenomena by including, for
instance, a high discount factor in a simplified environment, as there are funda-155

mental differences between disregarding temporally distant events and failing in
exploring, representing and evaluating them. In fact, with a high discount, an
addictive behaviour that disregards long term negative effects would be formally
optimal and therefore it would not induce that sense of inability to stop [19]
that often characterizes addiction.160

The simulated agents operated under two different configurations of the en-
vironment or phases (Fig 2). Under the initial safe phase (dinit = 50 steps),
the agents could only experience a moderate reward (termed healthy reward,
Rg = 1) if they accessed the relative state. Once the healthy reward state was
reached, an agent would be brought back to the initial state and could pursue165

the reward again. No other reward or punishment was available in any other
part of the environment. Under the second addiction phase (ddrug = 1000 steps)
the agent was still rewarded by accessing the healthy reward state, but it could
also access a state characterised by a high reward (termed addictive reward,
Rd = 10). This state was inescapably followed by a more unpredictable and170

mixed-in-value negative after-effect segment of the environment, which ideally
simulated the multifaceted effects addictive behaviour has on the social life and
health of the addicted individual. At the end of this after-effect segment, the
agent would be again brought back to the initial state. Table 1 shows the num-
ber of updates that the original Prioritized Sweeping algorithm would have used175

to find the optimal policy in each phase. These are two orders of magnitude
larger than the updates allowed by the adopted bounded MB.

Finally, to test the ability of the agents to adapt to changes, we modified
the environment structure in a separate set of simulations. This modified envi-
ronment included three arms in a Y shape, adding a segment to the two already180

described. This third segment -termed neutral - was kept empty, and reaching
its end did not send the agent back to the starting position (as for the healthy
reward state) or have it enter an after-effect segment (as for the addictive reward
state), but it allowed the agent to freely move to the adjacent neutral states.
After the time step 2500, the healthy reward (and its associated rule of sending185

back the agent to the origin point) was moved from its initial position to the
end of the neutral segment. At the same time, the healthy reward segment be-
came neutral (i.e. deprived of any reward), also inheriting the rule of free state
transitions among neutral states instead of leading back to the initial state.

Phase Number of Updates
Init 4,712

Addictive Reward 5,005

Table 1: Number of updates necessary to Prioritized Sweeping to find the value
function for each phase
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Dual	Learning	Agent

Model	Free
System

Model	
Based	
System

Environment
State	&	
Reward

QMF Action	
Values

QMX

Action	Selector	
(b phenotype)

Action

Environment	
Model

Planner QMB Action	
Values

Figure 1: Dual Learning Agent. The decision making architecture includes: (i) a model
free component (MF), which updates action values using value prediction error computations;
and (ii) a model based component (MB), which generates an internal model of the environ-
ment, based on experienced action-outcomes and bounded computations. Action-outcome
estimations derived from the two components are combined linearly according to a balance
parameter, β, to drive action selection.

Table 2: Environment Model Parameters
Name Description Value
NT Number of states 22
NG Number Goal States 1
ND Number Addictive Area

States
15

Nn Number Neutral States 6
Na Number of actions 9
S0 Starting state 4
Rp Punishment end of Addic-

tive Area
-4

Rc Punishment in Addictive
Area

-1.2

Rdd Reward at entering Addic-
tive reward state

10

Rg Reward when entering
healthy reward state

1

dinit Duration safe phase 50
ddrug1 Duration addictive phase 1000
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54321 6 7

Healthy  
Target Neutral

8

r=1 20

15

12r=10

r=-4

Addictive 
Reward

r=-1.2

r=-1.2

r=-4

as2-7 ag aw ad P=1 P<1 P<<1

r=-4

Aftereffects

Figure 2: Illustrative representation of the environment. The states are disposed in
a linear arrangement: on the left (number 1) a state associated with a healthy reward, on
the right (number 8) a state associated with an addictive non-drug reward (e.g. gambling),
separated by 6 neutral states that can be freely traversed. Entering the healthy reward state
results in a moderate reward (Rg = 1), after which the agent returns to the central neutral
state (number 4). Entering the addictive state provides an immediate high reward (Rd = 10),
followed by a further segment of 14 states that are associated with negative outcomes (−1.2)
or punishments. Within this segment of after-effects, action results are stochastic, making
it difficult for the agent to find a way out of this part of the environment, and resulting in
an average overall punishment that makes the selection of the addictive reward suboptimal.
In this illustrative representation, few key transitions are reported, with detailed descriptions
for the states 1,4,15 and 20 for which line width represents transition probabilities and colour
represents the action class (as, ag , aw, ad). Neutral states can be crossed by selecting actions
as2−7, which are deterministic for adjacent state while have high chance of failing for distant
states. Agents can reach the healthy reward state by executing action ag whilst in state 2,
and the addictive reward state, by executing action ad whilst in state 7. In the after-effect
segment, actions results are less predictable and only action aw at state 15 has a high chance
of leaving the addictive area, with a cost of −4. All details about the environment are reported
in table 2.

Table 3: Agent Model Parameters

Name Description Value
α MF learning factor 0.05
γ Discount factor 0.9

dMB MB decay factor 0.01
MBUS Number of MB updates 50
TMB Temperature for stochas-

tic state update selection
1

ε Exploration Factor 0.1

Results190

Independent of differences in the parametrisations regulating MB/MF bal-
ance, agents seem to rapidly acquire a stable behaviour, marked by the near-
exclusive preference for either the healthy or the addictive state (Fig 3). This
bifurcation into either an optimal (healthy) or a suboptimal (addictive) be-
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Figure 3: Behavioural trajectories illustrating the ratio of healthy vs addictive
reward state selections for addicted and healthy subjects. The six panels highlight
different behavioural trajectories, depending on β values, which represent MB/MF balance
per population. Addicted agents are defined as those visiting the addictive reward state
(number 8) more often than the healthy reward state for the whole experiment duration
(0:1000 steps). Healthy subjects are defined by subtraction. Each of the six configurations
of β values was tested with a total of 900 agents (healthy+addicted). Each data point in the
chart reports mean and standard deviation for the number of visits to either the addictive of
the healthy reward state, over the sum of the total visits to either state, across the 900 agents.
A bifurcation in choice preferences clearly emerges between addicted and healthy agents, for
all parametrizations.

haviour trajectories is determined by few initial choices. The healthy behaviour195

is reached after less than 300 steps, across populations, and it is maintained
for the entire time-length of the experiment. Conversely, the addiction trajec-
tory is characterised by long-lasting, albeit transient, choice preferences, which
are reached after less than 100 steps. Long simulations employing agents con-
trolled uniquely by the MF component have proven the length of this transient200

stability is significant. These agents converge to optimum after around 100k
steps (Fig 4), in comparison with the 300 steps required by the healthy agents,
with identical parametrization, to engage in the optimal behaviour (cf. [52]). It
must be noted that the MF component is a standard Q-Learning agent which
has been formally proved to converge and which can be easily used to reproduce205

previous findings related to addiction, once the algorithm is used in association
with easy to explore and compute environments [16].

In a previous study (cf. [58]), we demonstrated across algorithmic and neural
implementation that the balance between MB and MF components significantly
affected the chances to develop addictive behaviours, as higher resistance to210

addiction was found in populations characterised by intermediate values of β
(Fig 5).
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Figure 4: Long runs with logarithmic time scale. Behaviour expressed by purely MF
agents (β = 0) was recorded and averaged over 100 runs, separating the addicted agents (high
preference for the addictive reward state in the first 10,000 steps) from the healthy ones (the
remaining agents, which showed the opposite preference within the same time period). A
clear bifurcation emerged in the behaviour of the agents (cf. panel A with Fig. 3). Most
of the addicted subjects changed their policy towards a healthy behaviour within a time of
200K steps. Histograms in panels B and C also illustrate the behavioural bifurcation, as the
behaviour falls either in the interval with the lowest drug intake preference (0-0.125) or in the
interval of the highest intake (0.875-1).

We further investigated these changes in the addiction development proba-
bilities, using the amount of the available cognitive resources as a new indepen-
dent dimension. The amount of these resources directly determines the depth215

of navigation in the internal model and, indirectly, how accurately such model
is generated. Therefore, limited resources result in incorrect representation and
action-sequence assessments, leading to suboptimal choices. To converge to op-
timum, when the model of the environment is known, the prioritized sweeping
algorithm used in the MB requires above 4K updates of the value function. Note220

that, for these internal iterations steps, the value of reaching a state is estimated
using the internal model (fixed) without any actual interaction with the world
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Figure 5: Percentage and confidence intervals of addicted subjects per population,
varying β. Different β values controlling the balance between MF and MB components were
used for distinct populations of 900 simulated subjects. Addicted agents are those that during
the observation period, 1000 time steps, acquire the addictive reward more often than healthy
reward. The percentage of addicted agents per population varied as a function of β values,
where intermediate values showed a lower percentage of addicted agents (cf. [58]). Confidence
interval were estimated assuming two-tail distribution and 95% confidence.

(Table1). Fig 6 shows that the chances to pursue suboptimal behaviours, i.e.
seeking the addictive reward state, are inversely correlated with the resources
available for the MB component (which we tested in a range well below the225

4K updates necessary for optimal estimation). For instance, the population
bounded by 50 Model Based Updates per Step (MBUS) resulted in 50% of sub-
jects expressing addiction-like behaviours after 1K time steps, rising up to 90%
of the subjects, after 10K time steps. At the opposite side of the spectrum,
populations characterised by high computational resources (e.g. the tested 500230

MBUS population) resulted in up to 20% of addicted subjects at 1K time steps,
but this percentage falls to 0%, after 10K time steps, showing the agents had
developed a correct model of the environment by that moment in the simula-
tion. Contrarily to the MB-MF balance dimension, the behavioural trajectories
caused by changes in the available cognitive resources are meaningful only when235

considered jointly, or in interaction, with the environment complexity. Any in-
crease in the degree of complexity for the environment results in an increased
demand of resources, to keep constant the likelihood of convergence to optimum.
Ecological environments, however, are not limited by the artificial constraints of
a laboratory or simulation set-up, so that they may require prohibitive and bio-240

logically implausible amounts of resources and exploration to replicate a result
close to the described 500 MBUS population trajectory (see [39, Chapter 8] for

11



Figure 6: Preference ratios and confidence intervals of agents expressing addiction-
like behaviour within each parametrization of cognitive resource bounds (Model
Based Updates per Step [MBUS]) and MB/MF balance factor β. Initial performance
(panel A, analysis on the behaviours in the interval 900 to 1000 timesteps) shows a significant
preference for the selection of the addictive reward state, across all values of β and most
bounds for cognitive resource, with a low for very high resources (500MBUS), in association
with β = 1. Towards the end of the simulation (panel B, interval 9900 to 10000 timesteps), we
found that the populations diverge depending on the amount of cognitive resources available,
as preference for the addictive state disappeared in the population characterised by very
high resources and β = 1. Balanced MB-MF parametrizations (intermediate β values) were
found generally more resistant to addiction, across values of cognitive bounds. A comparison
between panels A and B illustrates the effects of exploration across all the parametrizations.
Low values of β, dominated by the MF component, slightly reduce the number of addicted
subjects after the first 10K steps, for all levels of cognitive resources, as the number of addicted
agents remains above one third of the entire population. Exploration and experience with
high values of β has opposite results, depending on the available cognitive resources. High
cognitive resources, jointly with long exploration, lead to a strong reduction of addicted agents,
suggesting a correct internal model of the environment is achieved through experience. With
low cognitive resources, jointly with a strong MB component (high β), experience brings a
substantial increase in the number of addicted agents. This result is due to a combination of
poor environment representations and limited planning capabilities. Confidence intervals were
estimated assuming a two-tail distribution and 95% confidence, with 100 simulated subjects
per β value.

related theoretical proofs and [72] for experimental results with state-of-the-art
supercomputers over more complex but still simplified environments).

We hypothesised that the observed behavioural bifurcation, i.e. the diverging245

behaviours displayed by two identical simulated agents placed in the same en-
vironment, was caused by the stochastic nature of the initial exploration phase.
We assumed that during this phase, limited knowledge of the environment for
both MF and MB components led to non-informative Q-values (i.e. the action-
outcome estimations) and therefore to the execution of stochastic action selec-250

tions. In turn, these initial choices determined which part of the environment
would be explored and which would be neglected, shaping the value estimations
and further biasing future exploration (cf. [9]).

To test this hypothesis we exposed our agents to the preliminary suboptimal-
reward-free simplified environment for a longer time, thus granting early acqui-255
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Figure 7: Changes in behavioural trajectories as a function of pre-training time
(PTT, timesteps in safe phase) and β parameter (MB/MF balance). Exposure to
the environment before the introduction of the addictive reward decreased the probability
of addiction across all sets of parameters or populations. Extreme values for the parameter
regulating MB/MF balance (i.e. β ∈ {0, 1}) resulted in a residual tendency to addiction even
with long exposure. The chart reports confidence intervals for populations tested for 10K
steps and composed by 100 agents under each condition, with an evaluation of the behavioural
choice selections on the last 1K steps. Confidence intervals were estimated assuming a two-tail
distribution and 95% confidence.

sition of an healthy action policy (Fig 7). Under this condition, the agents
explored the environment before the introduction of the addictive reward, for
a pre-training time (PTT), which lasted a variable number of time steps (50,
200 and 1000). Higher PTT were associated with a better representation of the
policy required to reach the healthy state. However, the use of a constant ex-260

ploration (ε-greedy) forced the agents to occasionally reach the addictive state
reward, after it was introduced in the environment. Despite these exposures to
the addictive reward, the chances to develop addiction after a PTT substantially
decreased (Fig 7)across values of the parameter β, whilst confirming the general
resistance to addiction of the balanced MB-MF systems (intermediate values of265

β).
Finally, we tested whether sudden environment changes could ignite addic-

tion in agents that had developed the optimal healthy strategy [45, 42]. Our sim-
ulations in a Y-maze environment, characterised by the described healthy and
addictive reward plus a neutral segment, allowed to test changes in behavioural270

trajectories after a sudden swap of reward and associated rules between the
healthy reward and the neutral segment. This alteration in the environment,
taking place after time step 2.5k, when a behavioural policy is consolidated,
required the agents to rely again on exploration and learn a new goal directed
strategy. The results showed that after this change in the environment, a sig-275
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Figure 8: Effects of environment change on healthy subjects This figure illustrates the
effects on behavioural trajectories caused by a change affecting the position of the healthy
reward state, depending on the parameter β regulating MB-MF balance. The change takes
place at time step 2500, when neutral and healthy reward segments are swapped while the
addictive segment maintains its configuration. Purely model based agents (β = 1) switch
rapidly to the addictive behaviour after the change, whereas agents with a non zero MF
component gradually unlearn the acquired healthy policy to switch towards either the selection
of the addictive state or the re-positioned healthy state. The increased number of visits
for the first healthy reward position (panel B) is due to the sudden disappearance of the
rewarded action that from this state used to lead (before the swap with the neutral segment)
to the starting state (see Fig 2). Without this transition towards the starting state of the
environment, the agent expresses cyclic exploratory behaviours, as it can re-enter the now
neutral state as soon as it steps outside of it.

nificant portion of agents previously following a healthy policy developed a sub-
optimal addiction behaviour (Fig 8). Importantly, this test proved behavioural
shifts to suboptimal behaviour could be induced by changes in the environment,
in the absence of malfunctions of the decision components or any pharmacolog-
ical interference.280
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Discussion

As formalised in a seminal work by Redish [16], the RL approach to addic-
tion is based on the hypothesis that drug values are always underestimated by
the MF learning system of a biological agent. This phenomenon is mediated
by hyper-physiologic phasic responses of dopamine to drug consumption, which285

deceive the individual consuming the substance of abuse into perceiving the sub-
stance itself as always more rewarding than expected (i.e. a non-compensable
positive prediction error). In turn, this mismatch between expected and per-
ceived outcomes results in an unlimited growth of the perceived value of drug
related actions and aberrant reinforcement, causing habitual decision making,290

compulsive responses to drug-related stimuli and inelastic behaviour in the face
adverse consequences [73, 74, 75, 12].

Despite significant advances in capturing important and complex features of
addiction behaviour [19, 18, 11], this model remains primarily an expression of
a malfunction of the MF component and therefore it leaves important questions295

unanswered [76, 20]. In particular, the role of the MB component in addiction is
still unclear. First, even though interactions of deliberative computations with
dopamine have been described [48], the effects of drug consumption on the gen-
eration and assessment of the internal representations of the environment have
not been clarified. Second, phenomena such as craving, addiction behaviours300

which do not rely on stimulus-response habits (e.g. prolonged research for the
preferred substance of abuse in novel environments), or non-pharmacological
forms of addiction, all seem to suggest that the MB component plays a signifi-
cant role in driving addiction-like suboptimal behaviours [11].

In this study, we have proposed that addiction-like behaviours can emerge305

in complex environments, if the dual-learning agent fails to correctly represent
and compute action-outcomes associations, due to limited cognitive resources
and exploration. In our simulations, a segment of the environment was designed
so that an immediate high reward would be followed by multiple, inescapable
and heavily stochastic, negative outcomes. We then tested different populations310

differing in the amount of available cognitive resources and found this variable
was inversely correlated with the percentage of agents pursuing the addictive
(sub-optimal) reward. Thus, stereotyped inelastic behaviours emerged in a fully
accessible and explorable environment, despite the absence of a classic form of
drug-induced aberrant prediction error signal or an otherwise malfunctioning315

MF system. This finding is consistent with previous studies indicating reduced
contribution of the MB component may be a risk factor for addiction [77] and
we argue it indicates a key computational process underlying those forms of
addiction that are not based on the consumption of substances of abuse (e.g.
gambling or videogaming).320

Beyond the limitations of any experimental settings, the exponential growth
of complexity that is associated with ecological environments could easily out-
match the equivalent growth of computational resources in a biologically plausi-
ble MB component. Furthermore, our results show that even purely deliberative
agents with high cognitive capabilities can still be susceptible to addiction due325

15



to dynamic fluctuations in the exploration costs (i.e. sudden changes in the en-
vironment), or in the availability of computational resources (e.g. due to stress,
a known trigger for addiction [78, 43, 66, 65, 79, 80, 61]). This ambivalency of
the MB component in either protecting from or fosetering addiction, depending
on the amount of reseources it relies on, is consistent with multiple studies that330

have highlighted both decreased and increased neural responses in those brain
areas associated with MB decision making, in addict individuals in comparison
with controls. and depending on task and context [81, 82, 83, 84, 85].

This MB vulnerability can interact with previously described ones [3]. In
forms of addiction dominated by the non-compensable prediction errors and335

hyper-physiologic DA responses, erroneous representations and assessments of
the environment can aggravate the behavioural symptoms associated with the
classic MF malfunction. This interaction can account for those complex non-
habitual drug-seeking behaviours that are not triggered by the presence of drug-
related stimuli [23, 18, 3, 24]. Importantly, a resource bounded MB component340

may fail in evaluating long term action effects even after extensive exploration,
so that even after the MF component has eventually converged towards an
optimal behaviour (e.g. after a successful treatment), the MB component may
keep pursuing sub-optimal policies, contributing to both craving and relapse
[86]. Furthermore, by over-selecting the addictive reward early on in the task,345

exploration and representation of alternative routes in addicted agents remain
limited, so that the stronger the addiction, the more compromised the model of
the environment. This phenomenon, jointly with the fluctuations of long term
outcome estimations under conditions of low MB resources [39, Sections 2.4-
5], results in lowering the chances to disengage from pursuing the suboptimal350

policy at each step taken in the direction of the addictive reward, putatively
simulating a context-related sense of inability to stop [19].

Finally, the vulnerability we have described can be seen as ideally contiguous
with those associated with state identification errors [9, 87, 88, 89, 90]. Under
conditions of the environment in which information about the states is either355

incomplete or inaccessible, the resulting interaction between state identification
and value estimation can cause the creation of fictitious internal states, where
addictive behaviours would always be considered as highly rewarding [9]. This
hypothesis was originally proposed as a cause of context-driven addiction and
has been used to describe gambling [9]. Under the conditions we have proposed,360

information exceeding an agent cognitive capabilities would be essentially lost
to an agent, however the two vulnerabilities remain significantly different under
many other aspects. The vulnerability we have described is not restricted to
the opacity of a specific environment, and the dynamic interplay between ex-
ploration demands and availability of resources allowed us to account for the365

presence of different behavioural trajectories or phenotypes. We have observed
that behavioural differences can arise from any change (either temporary or
permanent) in the key parameter of the available cognitive resources, as well
as unexpected changes in the environment structure or simply due to less than
few hundreds initial stochastic exploration steps. These differentiations and370

behavioural trajectories took place despite the presence of a converging MF
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algorithm (as demonstrated in the long run tests) and it was neither caused
by a disruption of the classical TD-MF learning mechanism [16, 19], nor by
incomplete access to information concerning rewards and punishments in the
environment [9].375

Our findings have interesting implications for treatment development. A
crucial problem is that the MB component is unlikely to increase its computa-
tional power with training, so that even if a correct model is formed, the agent
might still pursue addictive behaviours, initiating relapse, due to difficulties
in assessing complex ramifications associated with apparently rewarding initial380

choices. Thus, we hypothesise a treatment could aim at simplifying or mak-
ing more explicit and accessible the structure of the environment. In doing so,
normally occurring negative outcomes associated with the addictive behaviour
would be easier to be taken into consideration and -importantly- courses of
action leading to healthy policies would become competitive in the MB compo-385

nent. Unfortunately, there is the possibility that, independent of treatment, the
MB component might keep associating a high reward to the addictive behaviour
due to a stochastic representation of past experienced rewards, possibly modu-
lated by reward intensity and distance in time. We hypothesise these conditions
could be ameliorated by a conflict between MF and MB component, where390

addiction-avoiding habits could be developed during treatment, as suggested by
our pre-training tests (Fig 7).

In conclusion, several studies focus on the effects that different sources of
complexity (most prominently, social factors [91, 92] and stress [93, 45]) may
have on addiction, however current computational modelling literature has often395

neglected these aspects [29, 31]. In this work we have proposed a step forward
in the direction of more ecologically plausible simulations of healthy and dys-
functional behaviours, as we highlighted the interaction between limited MB
resources and overwhelming representation requirements.
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