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Abstract

Several decision-making vulnerabiliv. < have been identified as underlying causes
for addictive behaviours, or the repeated execution of stereotyped actions de-
spite their adverse consequ .ce.  These vulnerabilities are mostly associated
with brain alterations caus :d by th consumption of substances of abuse. How-
ever, addiction can also happ. ~ in ne absence of a pharmacological component,
such as seen in patholor .cal ;ambiung and videogaming. We use a new reinforce-
ment learning model ~ h*zhlis it a previously neglected vulnerability that we
suggest interacts wi n tho. -~ # ready identified, whilst playing a prominent role
in non-pharmacolr 5" ~al forms of addiction. Specifically, we show that a dual-
learning system (i.e. con.“ining model-based and model-free) can be vulnerable
to highly rewa  un. -, but suboptimal actions, that are followed by a complex
ramification ¢ stc hastic adverse effects. This phenomenon is caused by the
overload of the . mabilities of an agent, as time and cognitive resources re-
quired for xpl ration, deliberation, situation recognition, and habit formation,
all increa. ~ as a fv «ction of the depth and richness of detail of an environment.
Further~ore, “¢ cognitive overload can be aggravated due to alterations (e.g.
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caused by stress) in the bounded rationality, i.e. the limited amount f re ources
available for the model-based component, in turn increasing the a~ent’s “ances
to develop or maintain addictive behaviours. Our study demonst.. *es that,
independent of drug consumption, addictive behaviours can ar’,e 1. the interac-
tion between the environmental complexity and the biologice tv fi .ite 1esources
available to explore and represent it.

Keywords: addiction, reinforcement learning, computat >nal ps, “hiatry,
gambling, internet gaming, bounded rationality, explorat. ‘n-exp’ yitation;

Introduction

Addiction is marked by the compulsive execution o. ztereotyped actions de-
spite their adverse consequences [1, 2, 3, 4, 5]. 1. ‘< malac aptive form of decision
making is typically associated with the consumn., *ion . _abstances of abuse, such
as alcohol, tobacco, illicit and prescription drugs |5, = 7]. More recently, the def-
inition has been also used to describe gamb.. ~2 |8, 9] and other putative forms of
behavioural addictions, such as internet gaming "0]. Importantly, these latter
forms of addiction lack the neuro-phar. ‘acv .. al effects of a consumed drug,
and yet are characterised by a striking sii. * ar symptomatology.

Several theories and computatio. ». moc Is have been proposed to explain
the repetition of suboptimal decisions t, »ic. of addiction [9, 3, 6, 7]. These the-
ories assume decision making re. “rv, 2~ the interaction of multiple systems,
e.g. habitual, deliberative, Pavlovian, ~otivational, situation identification, etc.
which rely on different learnine and computing principles. This composed struc-
ture is associated with sevr cal vu nerabilities to the pharmacological effects of
drugs of abuse, each of wl. ~h can 1 :sult in the expression of compulsive repeti-
tion of drug intake [3, 17, 12, .~ 4, 15].

In particular, Rein’orce aent Learning (RL) models of addiction frequently
assume that aberrant . * -see! ing habits come to dominate behaviour in addic-
tion due to drug in- .uced bic chemical hijacking of the dopaminergic prediction
error signal [7, 16 3, .7 18,19, 20]. The hypothesis of the dominance of the ha-
bitual system nicely accou.ts for aspects of addiction such as inelastic behaviour
in the face of ¢ 1ang 3s in the environment or even in presence of punishing out-
comes followi.. - d" ag consumption [16, 21]. However, several other behaviours
associated vith ad 'iction are left unaccounted for [18, 3]. First, one of the
defining ¢ .ara- ceristics of substance abuse according to the DSM-5 is “A great
deal of tin.. "5 sprat in activities necessary to obtain the substance (e.g., visit-
ing mr’..ple doc ors or driving long distances)” [22]. Such temporally extended
activ’ ies are >ften novel, complex and context-dependent [23, 18, 3, 24], and
theret. »e are 10t driven by habitual processes or stimulus-response condition-
ir ;. Secouu, phenomena such as craving can occur even without exposure to
oonditior »d stimuli (but see [25, 26]). Finally, gambling [8, 2, 1] and internet
g. ming I 0], which are also considered part of the addictive behaviours, lack the
nharmacological interference that is considered essential to drive the aberrant
hr o1t formation [9].
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These issues have been partially addressed by hypothesising the »res nce of
vulnerabilities affecting the deliberative system [3]. In particula~ it 1. ~ been
suggested that non-habitual forms of addictive behaviours may be caw. ~d by er-
rors of interpretation, where either the outcome of an action (d- ug « »msumption,
gambling etc.) is over-evaluated as beneficial or useful or tb  lon | terin conse-
quences of these actions are under-evaluated in their negative ew.. ~ts. However,
the computational mechanisms by which both drug-relatec and n~u drug-related
addiction can induce these effects on the deliberative/pl nning s stem are not
well understood [11, 27, 28].

Other models [9] have posed that addiction ca'. em~ -e in environments
characterised by incomplete or inaccessible informatic » Unde - these conditions,
the underestimation of the negative consequences = the ~ _r-evaluation of the
positive ones is simply caused by a lack of information. . owever, this hypothesis
does not seem to match with clinical evidence, «. once t} 2 required information
is made readily available to addicted individ. s, n._l.vating their abstinence,
relapse should not occur.

We propose a solution can be found i “he analysis of the discrepancy be-
tween the resources available to an agent and v. ~se required to explore, repre-
sent or compute the environment it op raw . = . Most computational models
of addiction have so far focused on enviro. -.aents characterised by the presence
of easy to compute outcomes, where . ~ nu. ‘ber of actions available and their
ramifications were limited. This simpli.’~av.on has distanced the computational
analysis from the clinical practic * .~ has long considered a wide range of
environmental factors, and social in. “actions in particular, to have a strong
impact on addiction development and maintenance [29, 30, 31].

Environment complexit- and . xploration are well recognised factors in the
fields of Artificial Intellige. ~e (AI) 32, 33], as well as developmental and com-
putational neuroscience in p. *i_ular when considering the problem of the
exploration-exploitatic « tre de-off [34, 35, 36, 37, 38]. As the amount of ex-
perience required bv w. .gen* to achieve a specific behavioural performance
grows faster than ‘ae proa. .t of the number of available states and actions
[39, Chapter 8], ¢ <p:. "ation and training in complex environments can easily
result in incomplete or incorrect representations of action-outcome ramifications
[37, 40, 41]. F» cthe 'more, if a complex environment is correctly represented in
the agent’s in, *n7. model, e.g. after a prolonged exploration, the stored action-
outcome re nificar. ns might still overload the agent’s capacity to internally
assess its avai’ uble options. This inherent inadequacy of resources can be also
aggravateu '~ ter porary forms of cognitive impairments which would dynami-
cally ir . case ti. chances to trigger suboptimal planning. Interestingly, anxiety
or st 2ss are "ood examples of dynamic processes associated with temporary
cognit. e imp .rments and represent known triggers in addiction disorders and
re’Lpse atwer treatment [42, 43, 44, 45].

Our s mulations show that the development of addictive behaviours may be
st oorte « by the interaction between specific features of the environment and
hoth nabitual and deliberative processes [37, 40, 46, 47]. We propose this vul-
ne -ability complements and interacts with previously described ones, capturing




85

90

95

100

105

110

115

120

the emergence of addiction in the absence of pharmacological factc <.

Materials and Methods

Agent. The behaviour of our simulated agents (Fig 1) is con. ~lr A by a hybrid
(or dual) RL model system [48, 18, 49, 50, 51]. This al=orit.. ~ maximises
expected cumulative rewards by simultaneously learning throug™ a model-free
(MF) component, and computing, through a model-basec (MB) ¢ ymponent, an
optimal action strategy, or policy .

The MF component is implemented as a standa’ d ta* ... v Q-learning algo-
rithm [52]. MF algorithms such as Q-Learning and ac. -critj architectures [53]
are usually employed to model habitual behaviow. 54, Z., 3, 48, 56, 57] and
therefore are tipically associated with the dorsal cortic. -striatal neural circuit
[49, 58]. These algorithms are characterised by 1. ~ited f exibility but computa-
tional efficiency as they require limited resourc. - to siowly update associations
between state-action pairs and values QM¥ (< o) e« snding on experience. The
MB algorithm is employed to implement pi. “ning processes [11, 27, 26, 41] on
the basis of an explicit representation, in an inic nal model, of action-state re-
lationships and associated rewards, as €. ner cuced in the environment. Due to
the similarity with goal-oriented prc-esses the MB component is often associ-
ated with the ventral cortico-striatal <11 *it | :9, 58]. Where the MF component
simply selects the best action among hose available in its current state, the
internal model of action-state se. ence. allows the MB component to evalu-
ate entire policies, as if navigating de.'sion trees with their ramifications and
consequences, before making ~~v decision. Such a process of evaluation is de-
manding in terms of compt ationa. resources and time, but allows a high degree
of flexibility.

Most dual models a sume a.. deal MB process [50, 59], characterised by a
complete knowledge of che nvironment and unlimited computational resources,
which therefore alweys .. ds t ,wards optimal choices. However, biological MB
system are constra’ «ed, or bounded, by their limited resources [60, 61, 62, 63, 64,
65, 66, 67]. Thus to 1. el biologically plausible healthy and dysfunctional be-
haviours (as e.g "~ addiction [18, 3]), in our simulations we have employed a MB
component th .t re resents only direct experience, and that relies on bounded
computational . *< urces [60, 61] to navigate its internal model. Importantly, our
MB compc ent gen. "ates a new value estimation at each step by applying the
Bellman ".que 1on @ limited number of times to states sampled stochastically,
following aiw. carlr -interrupted variation of the Prioritized Sweeping algorithm
[68], v .ch stochastic selection of the states to update (see Algorithm 1). This is
simil: r to wh. t is regularly done in the Monte-Carlo Tree Search family of al-
gorithi. ~ [69' which is commonly adopted in Artificial Intelligence for complex
e .vironments models where estimations over simulations are easier than com-
1 lete bel, nan backups. However, the Early Interrupted Stochastic Prioritized
Sv, ~enir | algorithm employed here is computationally more efficient for small

~vironments [70], so to provide stable results with a limited number of updates.




125

130

135

140

145

150

Result: Q values
initialization;

Vs H(s)=0,V(s)=0;
steps=0 ;

while steps < N, do
steps=steps+1;
§~nexp(g({‘2)// sample state to update wi‘h soft. ax of H;
Va Q(5,a) =3, p(s'[5,a) [R(5,a,5) + V(s')];

M = max, Q(8,a);

A =|V(s) - M|,

V(3) = M;

Vs h(s) = A x max, P(§|s,a);

H(3) = h(3);

Vs # 5§ H(s) = max (h(s), H(s));
end

Algorithm 1: Early Interrupted Stoch. “tic Prioritized Sweeping pseu-
docode

In keeping with existing literature [.1], ve assumed that the MB and MF
components do not share a commor repre. *ntations, and they do not interact
during the computation of the respeci.’ ve “tave action values. However, a hybrid
value function QX is computed by balc ncing MF (QM¥ (s,a)) and MB (Q™B)
estimates depending on a parame. *. p, «s follows:

QM (s,a) = ROMP(s,a) + (1 - B)QM"(s,a) (1)

Similar to a previous stuc. - [58], s ¢ values (1, 0.8, 0.6, 0.4, 0.2, 0) have been
used for this paramete’ to sin. " ate different behavioural phenotypes, along
a spectrum between 1 urelr model-based (5=1) and purely model-free (5=0)
reinforcement learning. 7. ter as of neural implementation, these phenotypes
loosely match the .eural 5, ¢ems dominated by either a ventral or a dorsal
cortico-striatal ci> suu. with the strength of the directed connectivity between
these circuits as the analcgue of the beta values in the algorithmic model.

Finally, the age ts selected the actions that were expected to maximize the
future utility ‘9" %) in 90% of their selections. For the remaining 10% of
selections, ‘e age. *s would perform a random action, in a standard strategy
meant to ' rese ve exploration for all stages of the simulations, termed stochastic
e-greedy pc - sten exploration [71].

Envin onment. We tested our hypothesis that suboptimal, addiction-like, be-
havio. vs can + merge without pharmacological interference or MB-MF malfunc-
tic  in a. cuvironment (Fig 2) that allows long action-sequences characterised
Iy deep = amifications. In comparison with simpler environments, characterised
b, limite . interactions or depth of action sequences (e.g. an operant condition-
ing wuamber), environments simulating open space navigations require larger
ar ou.dt of resources invested in the exploration and computation of the action-




155

160

165

170

175

180

185

outcome contingencies. Thus, the agents struggle to find and pursu the e poli-
cies that lead to reward maximization (i.e. optimal behaviours) and . avoid
those policies that lead overall losses (i.e. suboptimal behaviours).

Importantly, we could not investigate the same phenomena oy . 1rluding, for
instance, a high discount factor in a simplified environment, - < th’ re are funda-
mental differences between disregarding temporally distant even.. and failing in
exploring, representing and evaluating them. In fact, wit 1 a hich discount, an
addictive behaviour that disregards long term negative efl 'cts wou d be formally
optimal and therefore it would not induce that sense of .. ~hil",y to stop [19]
that often characterizes addiction.

The simulated agents operated under two differe. * - unfig rations of the en-
vironment or phases (Fig 2). Under the initial s. ‘ pheos (dinie = 50 steps),
the agents could only experience a moderate reward | ermed healthy reward,
R, =1) if they accessed the relative state. Onc  the he Jthy reward state was
reached, an agent would be brought back to . e ini. .. state and could pursue
the reward again. No other reward or punishmern. was available in any other
part of the environment. Under the second . “diction phase (dgryug = 1000 steps)
the agent was still rewarded by accessing the he. 'thy reward state, but it could
also access a state characterised by a 1gu . ard (termed addictive reward,
R4; = 10). This state was inescapably t¢? swed by a more unpredictable and
mixed-in-value negative after-effect . =, meni of the environment, which ideally
simulated the multifaceted effects addic ‘ive behaviour has on the social life and
health of the addicted individua. .. *»- end of this after-effect segment, the
agent would be again brought back t. “he initial state. Table 1 shows the num-
ber of updates that the original Prioritized Sweeping algorithm would have used
to find the optimal policy a eac. phase. These are two orders of magnitude
larger than the updates ai. ~wed by the adopted bounded MB.

Finally, to test the - bility . ¢ ne agents to adapt to changes, we modified
the environment struc’ are “1 a separate set of simulations. This modified envi-
ronment included threc v nsir a Y shape, adding a segment to the two already
described. This thi d segm. ¢ -termed neutral- was kept empty, and reaching
its end did not se.d .= agent back to the starting position (as for the healthy
reward state) or have it en.er an after-effect segment (as for the addictive reward
state), but it - dow d the agent to freely move to the adjacent neutral states.
After the time ~te, 2500, the healthy reward (and its associated rule of sending
back the ar ont to “e origin point) was moved from its initial position to the
end of the nev ral segment. At the same time, the healthy reward segment be-
came neut. ' (i.e. deprived of any reward), also inheriting the rule of free state
transit’..s amo. g neutral states instead of leading back to the initial state.

Phase Number of Updates
Init 4,712
Addictive Reward 5,005

Tabic . Number of updates necessary to Prioritized Sweeping to find the value
1. '‘~n for each phase
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Figure 1: Dual Learning Agent. The decision maki. - architecture includes: (i) a model

free component (MF), which updates action ve e

-~ value prediction error computations;

and (ii) a model based component (MB), whicl. e erates an internal model of the environ-
ment, based on experienced action-outco’ s anu bounded computations. Action-outcome
estimations derived from the two compone. ts “re ¢ mbined linearly according to a balance
parameter, 3, to drive action selection.

Table 2: Environment Model Parameters

Name | Description [ Value
Nr Number of states 22
Ng Number Goal St ates 1
Np Number Add’_tive Area 15
States

Ny, Number Nr atral Sv ' s 6

N, Number ¢. ac ‘ons 9

So Starting <tate 4

R, Punist men  end of Addic- -4
tive A. "9

R, Pu ashmern. in Addictive | -1.2
A ea

Ryq Re. rda’ entering Addic- 10

, wve rewurd state

R, | Rewa 1 when entering 1
healt’.y reward state

d nit | Duration safe phase 50

I d ~ugl | L uration addictive phase 1000




r=1 T
r=-
Healthy Addict. ~
Target Neutral R :war' | Aftereffects
as27— a9 — av — ad — P=1 — P<1 -P<<,

Figure 2: Illustrative representation of the environmenu. The states are disposed in
a linear arrangement: on the left (number 1) a state . <ociated vith a healthy reward, on
the right (number 8) a state associated with an add ~tive .. -7 ag reward (e.g. gambling),
separated by 6 neutral states that can be freely traverse. Entering the healthy reward state
results in a moderate reward (Rgy = 1), after which the ~e~  returns to the central neutral
state (number 4). Entering the addictive state prov 'es an immediate high reward (R4 = 10),
followed by a further segment of 14 states that are assc ‘ated with negative outcomes (—1.2)
or punishments. Within this segment of afte . ~*< action results are stochastic, making
it difficult for the agent to find a way out of t. s v urt of the environment, and resulting in
an average overall punishment that makes the se. tion of the addictive reward suboptimal.
In this illustrative representation, few key . =. “ition. are reported, with detailed descriptions
for the states 1,4,15 and 20 for which line wia h rc, “esents transition probabilities and colour
represents the action class (as, ag, aw ' Neu'ral states can be crossed by selecting actions
as2—7, which are deterministic for adjace * stave while have high chance of failing for distant
states. Agents can reach the healthy rewar. +*ate by executing action agy whilst in state 2,
and the addictive reward state, by executing action ag whilst in state 7. In the after-effect
segment, actions results are less cedic. ble and only action a,, at state 15 has a high chance
of leaving the addictive area, w n a cost ¢ ' —4. All details about the environment are reported
in table 2.

Tal e 3: igent Model Parameters

190

Name | Description Value
a MF learni . factor 0.05

~y Discount factor 0.9
dyvB MB de .ay ‘actor 0.01

MBUS | Num’ er o° MB updates 50

Tus Tertperai re for stochas- 1

ti- sta’e upaate selection
€ L.l ratic a Factor 0.1
Resu ts

Inde, endent of differences in the parametrisations regulating MB/MF bal-
¢ 1ce, age 1ts seem to rapidly acquire a stable behaviour, marked by the near-
exc. o preference for either the healthy or the addictive state (Fig 3). This
L., ~otion into either an optimal (healthy) or a suboptimal (addictive) be-
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Figure 3: Behavioural trajectories illust -*ing the ratio of healthy vs addictive
reward state selections for addicted ana “ea' ny subjects. The six panels highlight
different behavioural trajectories, depending on > values, which represent MB/MF balance
per population. Addicted agents are de. . 1 as . ose visiting the addictive reward state
(number 8) more often than the healthy r. wva. * state for the whole experiment duration
(0:1000 steps). Healthy subjects are defined L - subtraction. Each of the six configurations
of 8 values was tested with a total of v« ™ age...  healthy+addicted). Each data point in the
chart reports mean and standard deviation . » the number of visits to either the addictive of
the healthy reward state, over the sum of the total visits to either state, across the 900 agents.
A bifurcation in choice preferenc . c.. rly emerges between addicted and healthy agents, for
all parametrizations.

haviour trajectories is .ete’ .mined by few initial choices. The healthy behaviour
is reached after less t.. » 300 steps, across populations, and it is maintained
for the entire time-"ength " he experiment. Conversely, the addiction trajec-
tory is characteris :a ~ 7 long-lasting, albeit transient, choice preferences, which
are reached after less tha. 100 steps. Long simulations employing agents con-
trolled uniquel’ by “he MF component have proven the length of this transient
stability is sig ~ifir ant. These agents converge to optimum after around 100k
steps (Fig 4, in ¢ »varison with the 300 steps required by the healthy agents,
with ident cal - arametrization, to engage in the optimal behaviour (cf. [52]). It
must be < 4 th ¢ the MF component is a standard Q-Learning agent which
has bes . ‘lorma.”  proved to converge and which can be easily used to reproduce
previ us find. 'gs related to addiction, once the algorithm is used in association
with ¢ sy to ¢ xplore and compute environments [16].

w.1aprevious study (cf. [58]), we demonstrated across algorithmic and neural
i npleme, tation that the balance between MB and MF components significantly
a."»cted he chances to develop addictive behaviours, as higher resistance to
addicuon was found in populations characterised by intermediate values of 3
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Figure 4: Long runs with log -ithm’: time scale. Behaviour expressed by purely MF
agents (8 = 0) was recorded .nd ave.. = d over 100 runs, separating the addicted agents (high
preference for the addictiv rew: .d state in the first 10,000 steps) from the healthy ones (the
remaining agents, which . “ow d th- opposite preference within the same time period). A
clear bifurcation emerg d in . » b naviour of the agents (cf. panel A with Fig. 3). Most
of the addicted subjer s changed .heir policy towards a healthy behaviour within a time of
200K steps. Histogrs ns .. nanels B and C also illustrate the behavioural bifurcation, as the
behaviour falls either in the 1. .rval with the lowest drug intake preference (0-0.125) or in the
interval of the hig .es. ntake (0.875-1).

We furt ier inves ‘gated these changes in the addiction development proba-
bilities, v g " ae a aount of the available cognitive resources as a new indepen-
dent dimens. m. "“he amount of these resources directly determines the depth
of nav'gatior in che internal model and, indirectly, how accurately such model
is ger >rated. “herefore, limited resources result in incorrect representation and
action-. ~auer ce assessments, leading to suboptimal choices. To converge to op-
t* .aum, when the model of the environment is known, the prioritized sweeping
¢ 'gorithn used in the MB requires above 4K updates of the value function. Note
the ¢ for chese internal iterations steps, the value of reaching a state is estimated

“mo the internal model (fixed) without any actual interaction with the world

10
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Figure 5: Percentage and confidence inter als « . .. "dicted subjects per population,

varying (. Different 8 values controlling the ba. v e between MF and MB components were
used for distinct populations of 900 simula. ' subje ‘s. Addicted agents are those that during
the observation period, 1000 time steps, acqu re “e addictive reward more often than healthy
reward. The percentage of addicted agents pe  population varied as a function of 8 values,
where intermediate values showed a lov. ~ po.. = ge of addicted agents (cf. [58]). Confidence
interval were estimated assuming two-tail «. “tribution and 95% confidence.

(Tablel). Fig 6 shows the. the cL nces to pursue suboptimal behaviours, i.e.
seeking the addictive rewair. state are inversely correlated with the resources
available for the MB ¢ mponen. (which we tested in a range well below the
4K updates necessary for opti-ial estimation). For instance, the population
bounded by 50 Mod 1 Ba. *1 T pdates per Step (MBUS) resulted in 50% of sub-
jects expressing ad ‘ction-like behaviours after 1K time steps, rising up to 90%
of the subjects, .rter . K time steps. At the opposite side of the spectrum,
populations che .. ‘erised by high computational resources (e.g. the tested 500
MBUS popule .ion) resulted in up to 20% of addicted subjects at 1K time steps,
but this percen. e falls to 0%, after 10K time steps, showing the agents had
developed . correct .nodel of the environment by that moment in the simula-
tion. Cor rar’ y to she MB-MF balance dimension, the behavioural trajectories
caused bv chic ~oe in the available cognitive resources are meaningful only when
consic ¢red joiutly, or in interaction, with the environment complexity. Any in-
creas. in the egree of complexity for the environment results in an increased
demand ~f r~ ources, to keep constant the likelihood of convergence to optimum.
F cologic 1 environments, however, are not limited by the artificial constraints of
¢ laborat ry or simulation set-up, so that they may require prohibitive and bio-
log. ~"'- 1mplausible amounts of resources and exploration to replicate a result
<.~ *o the described 500 MBUS population trajectory (see [39, Chapter 8] for
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Figure 6: Preference ratios and confidence intervals of age.. ‘s expressing addiction-
like behaviour within each parametrization of cc_nitive r source bounds (Model
Based Updates per Step [MBUS]) and MB/MI halai. -~ © .ctor . Initial performance
(panel A, analysis on the behaviours in the interval 900 tc 000 timesteps) shows a significant
preference for the selection of the addictive rew»»? ~*-*-  ross all values of 8 and most
bounds for cognitive resource, with a low for very ..’~h resources (500MBUS), in association
with 8 = 1. Towards the end of the simulation (panel b, ~terval 9900 to 10000 timesteps), we
found that the populations diverge depending . . ~™ount of cognitive resources available,
as preference for the addictive state disappea. 4 a the population characterised by very
high resources and 8 = 1. Balanced MB-"F par. netrizations (intermediate 3 values) were
found generally more resistant to addiction, a. ~ss v lues of cognitive bounds. A comparison
between panels A and B illustrates the effect. of e. ploration across all the parametrizations.
Low values of 8, dominated by the M = ~~mno. =nt, slightly reduce the number of addicted
subjects after the first 10K steps, for all le. s ot cognitive resources, as the number of addicted
agents remains above one third of the entire >opulation. Exploration and experience with
high values of 3 has opposite results. depending on the available cognitive resources. High
cognitive resources, jointly with ! .ng ex, "oration, lead to a strong reduction of addicted agents,
suggesting a correct internal v .del of the environment is achieved through experience. With
low cognitive resources, jointly v “h a s rong MB component (high §), experience brings a
substantial increase in the r tmber o1 . dicted agents. This result is due to a combination of
poor environment represer atior > and limited planning capabilities. Confidence intervals were
estimated assuming a two il distriution and 95% confidence, with 100 simulated subjects
per B value.

related theoretic-' oroofs und [72] for experimental results with state-of-the-art
supercompute s ov r more complex but still simplified environments).

We hypothe. ‘< .d that the observed behavioural bifurcation, i.e. the diverging
behaviours displaye. by two identical simulated agents placed in the same en-
vironmen , we , cavsed by the stochastic nature of the initial exploration phase.
We assumew. -hat during this phase, limited knowledge of the environment for
both *.r and M.3 components led to non-informative Q-values (i.e. the action-
outcc ne estin ations) and therefore to the execution of stochastic action selec-
tions. "~ tur ., these initial choices determined which part of the environment
v uld be explored and which would be neglected, shaping the value estimations
¢ nd furtl >r biasing future exploration (cf. [9]).

To tr t this hypothesis we exposed our agents to the preliminary suboptimal-
~ward-free simplified environment for a longer time, thus granting early acqui-
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Figure 7: Changes in behavioural trajectories « a function of pre-training time
(PTT, timesteps in safe phase) and S p ~meter \MB/MF balance). Exposure to
the environment before the introduction of ti. ads «cu.e reward decreased the probability
of addiction across all sets of parameters or pop. ' .tions. Extreme values for the parameter
regulating MB/MF balance (i.e. 8 € {0,1; . <ulted in a residual tendency to addiction even
with long exposure. The chart reports con.’de.. ~ intervals for populations tested for 10K
steps and composed by 100 agents under each c. ndition, with an evaluation of the behavioural
choice selections on the last 1K steps. U. ~hac.. .ntervals were estimated assuming a two-tail
distribution and 95% confidence.

sition of an healthy actio . policy (Fig 7). Under this condition, the agents
explored the environment L. “we t ie introduction of the addictive reward, for
a pre-training time (P7 I'), whic.. lasted a variable number of time steps (50,
200 and 1000). Highe: PT"_ we ¢ associated with a better representation of the
policy required to 17 ach . = I salthy state. However, the use of a constant ex-
ploration (e-greeds , forced tuhe agents to occasionally reach the addictive state
reward, after it was inu. duced in the environment. Despite these exposures to
the addictive re ... 1, the chances to develop addiction after a PTT substantially
decreased (Fic 7)ar -oss values of the parameter 3, whilst confirming the general
resistance to aa.” tion of the balanced MB-MF systems (intermediate values of
8).

Final’ - wr test .d whether sudden environment changes could ignite addic-
tion in acents "he had developed the optimal healthy strategy [45, 42]. Our sim-
ulatic «s in a Y-maze environment, characterised by the described healthy and
addic ive rew: -d plus a neutral segment, allowed to test changes in behavioural
traiecte."~e rter a sudden swap of reward and associated rules between the
I :althy -eward and the neutral segment. This alteration in the environment,
t king pl) «ce after time step 2.5k, when a behavioural policy is consolidated,
reg. " the agents to rely again on exploration and learn a new goal directed
ov- "y, The results showed that after this change in the environment, a sig-
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Figure 8: Effects of envir onm nt change on healthy subjects This figure illustrates the
effects on behavioural tri_~ctc tes ¢ ased by a change affecting the position of the healthy
reward state, dependinc on v. va ameter 8 regulating MB-MF balance. The change takes
place at time step 25 1, when necutral and healthy reward segments are swapped while the
addictive segment 1 .nuw s its configuration. Purely model based agents (8 = 1) switch
rapidly to the addictive ben. iour after the change, whereas agents with a non zero MF
component gradus .y . 1learn the acquired healthy policy to switch towards either the selection
of the addictive state or the re-positioned healthy state. The increased number of visits
for the first heai..” v .eward position (panel B) is due to the sudden disappearance of the
rewarded act’ n that . ~m this state used to lead (before the swap with the neutral segment)
to the start’ag st .te (see Fig 2). Without this transition towards the starting state of the
environme. = th . age ¢ expresses cyclic exploratory behaviours, as it can re-enter the now
neutral state a. "0or as it steps outside of it.

nificar * portir a of agents previously following a healthy policy developed a sub-
or _..aal auulction behaviour (Fig 8). Importantly, this test proved behavioural
s 1ifts to . 1boptimal behaviour could be induced by changes in the environment,
ir. the ab ence of malfunctions of the decision components or any pharmacolog-
ical merference.
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Discussion

As formalised in a seminal work by Redish [16], the RL approa.’ to audic-
tion is based on the hypothesis that drug values are always ur ic. stima.ed by
the MF learning system of a biological agent. This phenor cnor 1s . .ediated
by hyper-physiologic phasic responses of dopamine to drug con. nption, which
deceive the individual consuming the substance of abuse ir' v perceiv.ag the sub-
stance itself as always more rewarding than expected (i.:. a nor compensable
positive prediction error). In turn, this mismatch betwed ~ exp’ cted and per-
ceived outcomes results in an unlimited growth of t! ¢ perceived value of drug
related actions and aberrant reinforcement, causing ha'.cua decision making,
compulsive responses to drug-related stimuli and i~elastic b- aaviour in the face
adverse consequences [73, 74, 75, 12].

Despite significant advances in capturing i ~ortant ¢ 1d complex features of
addiction behaviour [19, 18, 11], this model 1 mai.. ~ marily an expression of
a malfunction of the MF component and thereforc *+ leaves important questions
unanswered [76, 20]. In particular, the role - vue v component in addiction is
still unclear. First, even though interactions o. deliberative computations with
dopamine have been described [48], the -.. '~ ~f drug consumption on the gen-
eration and assessment of the internal re, v¢ sentations of the environment have
not been clarified. Second, phenon. . ~ suc™ as craving, addiction behaviours
which do not rely on stimulus-respons * h.its (e.g. prolonged research for the
preferred substance of abuse in ..-~! e, vironments), or non-pharmacological
forms of addiction, all seem to sugg. *+ that the MB component plays a signifi-
cant role in driving addiction-like suboptimal behaviours [11].

In this study, we have r opo. °d that addiction-like behaviours can emerge
in complex environments, f the du Jl-learning agent fails to correctly represent
and compute action-out~ome. =ss ,ciations, due to limited cognitive resources
and exploration. In ou sim" lations, a segment of the environment was designed
so that an immediate “ie’. rev ard would be followed by multiple, inescapable
and heavily stochas’.c, neg. “i" e outcomes. We then tested different populations
differing in the ar . ~t, of available cognitive resources and found this variable
was inversely correlatea -ith the percentage of agents pursuing the addictive
(sub-optimal) r :wa d. Thus, stereotyped inelastic behaviours emerged in a fully
accessible anc exp’orable environment, despite the absence of a classic form of
drug-induced abe. "ant prediction error signal or an otherwise malfunctioning
MF syster .. T? is finding is consistent with previous studies indicating reduced
contribut, » f th- MB component may be a risk factor for addiction [77] and
we argr~ it 1. ates a key computational process underlying those forms of
addic 1on the - are not based on the consumption of substances of abuse (e.g.
gamb. ng or v deogaming).

Teayownl e limitations of any experimental settings, the exponential growth
¢ . comp, xity that is associated with ecological environments could easily out-
1. atch th . equivalent growth of computational resources in a biologically plausi-
ble w.. component. Furthermore, our results show that even purely deliberative
ag ... with high cognitive capabilities can still be susceptible to addiction due
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to dynamic fluctuations in the exploration costs (i.e. sudden chang - in he en-
vironment), or in the availability of computational resources (e.g. due v stress,
a known trigger for addiction [78, 43, 66, 65, 79, 80, 61]). This amb. ~lency of
the MB component in either protecting from or fosetering add’ :tio 1 depending
on the amount of reseources it relies on, is consistent with m- tipl . stuuies that
have highlighted both decreased and increased neural responses * those brain
areas associated with MB decision making, in addict indi 1duals in comparison
with controls. and depending on task and context [81, 8. 83, 84 85].

This MB vulnerability can interact with previouslv de. ~vit d ones [3]. In
forms of addiction dominated by the non-compens .nle » ~diction errors and
hyper-physiologic DA responses, erroneous represen =+’ ,ns ¢ 1d assessments of
the environment can aggravate the behavioural s, ~otor- .ssociated with the
classic MF malfunction. This interaction can accounv ‘or those complex non-
habitual drug-seeking behaviours that are not t._~oered I y the presence of drug-
related stimuli [23, 18, 3, 24]. Importantly, a . =ourc. sounded MB component
may fail in evaluating long term action effects eve.. ~fter extensive exploration,
so that even after the MF component h. eventually converged towards an
optimal behaviour (e.g. after a successful treav.. »nt), the MB component may
keep pursuing sub-optimal policies, co. triu: .o 7 to both craving and relapse
[86]. Furthermore, by over-selecting the « ! iictive reward early on in the task,
exploration and representation of al. - ~ativ. routes in addicted agents remain
limited, so that the stronger the addict. n, .he more compromised the model of
the environment. This phenome. ., |~ ly with the fluctuations of long term
outcome estimations under condition. of low MB resources [39, Sections 2.4-
5], results in lowering the chances to disengage from pursuing the suboptimal
policy at each step taken ( the ‘irection of the addictive reward, putatively
simulating a context-relat. ! sense « f inability to stop [19].

Finally, the vulnerablity we ¢ ve described can be seen as ideally contiguous
with those associated - /ith state identification errors [9, 87, 88, 89, 90]. Under
conditions of the envu. ~ aent m which information about the states is either
incomplete or inacc ssible, v. : resulting interaction between state identification
and value estimat on an cause the creation of fictitious internal states, where
addictive behavionrs wou.d always be considered as highly rewarding [9]. This
hypothesis was oriy inally proposed as a cause of context-driven addiction and
has been used '~ ¢ :scribe gambling [9]. Under the conditions we have proposed,
informatior excee.' g an agent cognitive capabilities would be essentially lost
to an ager ., he wever the two vulnerabilities remain significantly different under
many othe. “spec.s. The vulnerability we have described is not restricted to
the op ..y of « specific environment, and the dynamic interplay between ex-
plora ion den ands and availability of resources allowed us to account for the
presew e of d* ferent behavioural trajectories or phenotypes. We have observed
th .o behavioural differences can arise from any change (either temporary or
] ermane. t) in the key parameter of the available cognitive resources, as well
a. nexr :cted changes in the environment structure or simply due to less than
few nundreds initial stochastic exploration steps. These differentiations and
be aavioural trajectories took place despite the presence of a converging MF
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algorithm (as demonstrated in the long run tests) and it was ne’ her -aused
by a disruption of the classical TD-MF learning mechanism [1f 19|, ~or by
incomplete access to information concerning rewards and punishme. *s in the
environment [9].

Our findings have interesting implications for treatmen’ dev :lopient. A
crucial problem is that the MB component is unlikely to increa. its computa-
tional power with training, so that even if a correct modr . is formea, the agent
might still pursue addictive behaviours, initiating relaj se, due ;o difficulties
in assessing complex ramifications associated with apparew. v » wvarding initial
choices. Thus, we hypothesise a treatment could a'm at “mplifying or mak-
ing more explicit and accessible the structure of the ~ ironient. In doing so,
normally occurring negative outcomes associated  #th th~ .ddictive behaviour
would be easier to be taken into consideration and - mportantly- courses of
action leading to healthy policies would become ~ompeti ive in the MB compo-
nent. Unfortunately, there is the possibility ti..* inu.,_endent of treatment, the
MB component might keep associating a high rewa. ' to the addictive behaviour
due to a stochastic representation of past « merienced rewards, possibly modu-
lated by reward intensity and distance in time. "= hypothesise these conditions
could be ameliorated by a conflict be. vec, 2™ and MB component, where
addiction-avoiding habits could be develoy ~ « during treatment, as suggested by
our pre-training tests (Fig 7).

In conclusion, several studies focus on _he effects that different sources of
complexity (most prominently, . ~w: “ ors [91, 92] and stress [93, 45]) may
have on addiction, however current co. ‘nutational modelling literature has often
neglected these aspects [29, 311. In this work we have proposed a step forward
in the direction of more ec /1ogic.™'y plausible simulations of healthy and dys-
functional behaviours, as e high] ghted the interaction between limited MB
resources and overwhelr ing re, e entation requirements.
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