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Abstract

Fossil cold-water corals can be used to reconspiugsical, chemical, and biological changes
in the ocean because their skeleton often presamégent seawater signatures. Furthermore,
patterns in the geographic and temporal extenbtlofwater corals have changed through
time in response to environmental conditions. Heggresent taxonomic and dating results

from a new collection of subfossil cold-water caregdcovered from seamounts of the
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Southwest Indian Ocean Ridge. The area is a dynlaydi®graphic region characterised by
eastward flow of the Agulhas Return Current andniythernmost fronts of the Antarctic
Circumpolar Current. In total, 122 solitary sclenai@n corals and 27 samples of colonial
scleractinian material were collected from watgstts between 172 and 1395 m,
corresponding to subtropical waters, Antarctic imediate Water (AAIW), and Upper
Circumpolar Deep Water (UCDW). Fifteen species weeatified, including eight species
new to the region. The assemblage reflects thaiposf the seamounts in a transition zone
between Indo-Pacific and Subantarctic biogeograpbines. Morphological variation in
caryophyllids and the restriction of dendrophy#ii the southern seamounts could result
from genetic isolation or reflect environmental ditions. Uranium-series dating using both
rapid laser ablation and precise isotope dilutiaihuds reveals their temporal distribution
from the Last Glacial Maximum to the present dagly®ne specimen of glacial age was
found, while peaks in abundance occur around Hghir8tadial 1 and the Younger Dryas,
times at which ocean chemistry and food supply Wkedy to have presented optimal
conditions for cold-water corals. A widespread oegil preference of cold-water corals for
UCDW over AAIW depths during the deglacial, theerse of the modern situation, could be
explained by higher dissolved oxygen concentrataomsa temperature inversion that

persisted into the early Holocene.

1. Introduction

1.1 Cold-water corals

Cold-water corals (henceforth CWCs) comprise nanisgtic (azooxanthellate) cnidarian
species of the orders Scleractinia, OctocoralligaSteridae, and Antipatharia (Roberts et al.,
2009). About half of all species of scleractiniamads are azooxanthellate, some of which
can build structural habitats that provide refugrerhany other species, although the majority

are solitary or free-living (Roberts et al., 2009pst species of scleractinian CWCs are
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found in ocean temperatures that range from 1 t€ Z8tanley and Cairns, 1988) at shallow

to lower bathyal depths, with occasional recorddeep as 6328 m (Keller, 1976).

Cold-water corals are particularly useful for ureimg changes in ocean biogeochemistry
and circulation in the past (Robinson et al., 20T4gy are found in abundance in the
Southern Ocean, where other proxy archives sutbrasninifera are sparse, and they can be
preserved on the seafloor or within sedimentsHousands of years (e.g. Burke et al. 2010;
Margolin et al. 2014; Thiagarajan et al. 2013). if depth range often covers intermediate
and deep water masses, complementing and exteratiagds from abyssal sediment cores.
A record of seawater chemistry throughout thegtirhe can be preserved in their carbonate
skeleton (Robinson et al., 2014), and their higinium content allows for application of
precise uranium-thorium dating methods (Cheng.e@00a; Douville et al., 2010;

Lomitschka and Mangini, 1999; Montero-Serrano gt2§113; Shen et al., 2012, 2008).

The physiology of CWCs and their response to emvrental stressors is understudied in
comparison to their shallow-water counterparts. ey, research volume has grown in
recent years, in part because of concerns abouttbect of human activity on CWC
ecosystems (Guinotte et al., 2006). Water temperagithought to be one of the most
important controls on their range at a global s¢@kvies and Guinotte, 2011), but responses
to thermal stress have been shown to vary by spéeig. Blscher et al., 2017; Gori et al.,
2016). Cold-water corals rely on a food supply @baankton, algal material and particulate
organic matter (Duineveld et al., 2007). Hydrograplays an important role in controlling
supply of this nutrition, as well as in the dis@tef larvae (Dullo et al., 2008; Miller et al.,
2010). Although dissolved oxygen is crucial foralerto maintain aerobic function, the limit
of tolerance is unknown, with colonies of the c@atsmophyllum pertusum (formerly known
asLophelia pertusa) being found to survive at dissolved oxygen coicgions well below
the limit suggested in laboratory experiments (Boetal., 2007). The extent to which

carbonate ion concentration controls CWC rangésis @disputed. Although 95% of
3
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branching CWCs are found above the aragonite satnraorizon (ASH; Guinotte et al.,
2006), recent expeditions have also recoveredastiarans from undersaturated waters (e.g.
Baco et al., 2017; Thresher et al., 2011). Regifineluations in seawater chemistry,
productivity, and water mass structure at timeth@past are therefore all likely to have

exerted some control on regional habitat suitabibt CWCs.

1.2 Thedeglacial Southern Ocean

In this study, we characterise and date a colleaifcsubfossil CWCs from the southern
Indian Ocean for the first time and explore theiemmental controls on their distribution
since the Last Glacial Maximum (LGM; ~23-19 ka).thAis time, atmospheric GO
concentrations were 80-90 ppm lower than preindlstalues (Monnin et al., 2001).
Enhanced carbon storage in the deep ocean resudiech more effective biological pump
(e.g. Wang et al., 2017) and reduced ventilationtdusea ice-induced stratification and/or
equatorward wind shifts (Ferrari et al., 2014; Katifand Chase, 2017; Stephens and
Keeling, 2000). During the subsequent deglaciati@gassing of C&rom the deep ocean is
thought to have been responsible for the co-vanat atmospheric Cand Antarctic
temperature change (Parrenin et al., 2013), charaet by two ‘pulses’ of CQrelease
separated by a cooling and stabilisation of atmesplCG during the Antarctic Cold
Reversal (ACR; 14.5-12.7 ka; Stenni et al., 20RBdiocarbon records indicate intervals of
breakdown in the deep vertical stratification (Baidnd Robinson, 2012; Chen et al., 2015a;
Siani et al., 2013), while changes in pH conditicgffecting outgassing of G&ourced from
deep waters have been reconstructed using bortmpes(Martinez-Boti et al., 2015; Rae et

al., 2018).

The Indian sector of the Southern Ocean is an itapbtocation in which to study deglacial
ocean biogeochemistry. Frontal movements in tiggoremay have led to changes in the

‘leakage’ of warm, salty eddies from the Agulhasatection into the Atlantic Ocean, with
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implications for Atlantic overturning circulatioe.g. Bard and Rickaby, 2009; Beal et al.,
2011; Franzese et al., 2006). In addition, a ldg/een atmospheric cooling over Antarctica
during the ACR (Stenni et al., 2001) and sea sarfamperature decline in the southern
Indian Ocean (Labracherie et al., 1989) has ybettully explained. To date, our
understanding of these changes and their globaifisignce has been limited by sparse proxy
records from this region, motivating efforts to Exp CWCs as a palaeoceanographic
archive. By taxonomically cataloguing and datingesv regional sample of intermediate-

water CWCs, this study provides a first step towandestigating these processes.

2. Materials and methods

2.1 Sampling location and regional hydrography

Subfossil corals were collected from four seamoaltdsg the Southwest Indian Ocean Ridge
(SWIOR), which were surveyed in 2011 during expeditlC066 of thé&kV James Cook.

From south to north these were: Coral Seamoun@23” S, 42°50°31” E); Melville Bank
(38°31'56” S, 46°45’'74” E); Middle of What Seamouhenceforth ‘MoW Seamount’;

37°56'76” S, 50°22’16” E); and Atlantis Bank (32°@2” S, 57°17°'26" E; Fig. 1A; Table 1).

The modern Southwest Indian Ocean (SWIO) is dorathby two major hydrographic
features, the Antarctic Circumpolar Current (AC@gl dhe Agulhas Current system. The
Subantarctic Front (SAF), the northernmost fronthef ACC, is strongly steered by
bathymetry in the SWIO (e.g. Pollard et al., 200&$ulting in a latitude range of 48-43°S
(Sokolov and Rintoul, 2009a; Fig. 1A). Further hod 4°C increase in temperature and a
sharp increase in salinity (Fig. 1B) marks the pasiof the Subtropical Front (STF), the
boundary between subantarctic and subtropical seisaaters, at around 40°S (Read and
Pollard, 2017). The eastward flowing Agulhas Ref@Qumrent (ARC), which results from
overshoot and retroflection of the Agulhas Curmith of the African continent, is found in

close proximity to the STF in the SWIO (Belkin aBdrdon, 1996; Lutjeharms and Van
5
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Ballegooyen, 1988; Read and Pollard, 20Eiy. 1B). Peak chlorophyll concentrations are
found at the ARC/STF, but the highest surface paldie organic carbon concentrations and
microorganism abundances are found between théronts, in the Subantarctic zone (SAZ,

Djurhuus et al., 2017b).

Density surfaces rise upwards to the south, intgeaisic balance with the eastward flow of
the ACC, affecting the depth at which specific watesses are present across the SWIO
transect (Fig. 1B, C). The subsurface salinity mimin of Antarctic Intermediate Water
(AAIW) is found between 500m (Coral) and 1500m éhtiis) in the southern Indian Ocean
and was sampled at all seamounts (Fig. 1B, C). Uppeumpolar Deep Water (UCDW), a
high-nutrient water mass consisting of a combimatibindian and Pacific deep waters, with
its upper bound defined by the 27.5 kg meutral density surface (Plancherel, 2012),
intersected with sampling at Coral (~900 m) and ME\O50 m) seamounts. Lower
Circumpolar Deep Water is found in the SWIO at tdepif 2 to 3 km (van Aken et al., 2004;

Fig. 1C), but such depths were not sampled duhiggstudy.

Sampling was opportunistic and not all fossil CW&&sn were collected. All but three of the
specimens described here were collected during dif’éheKiel 6000 Remotely Operated
Vehicle (ROV), using manipulator arms, a suctiomgker, nets and mini-box corers (Rogers
and Taylor, 2011). The remaining specimens weraetdd from a megacore sample
(JC066_1116), a boxcore sample (JC066_115), akegiap on a dive of the HYBIS towed
camera system (JC066_4309). On each seamount, R@¥were made along deep to
shallow transects to analyse the depth and spatiedtion of benthic communities. Five
ROV dives took place at Coral Seamount, four atiiflelBank, two at MoW Seamount, and
three at Atlantis Bank. The 149 scleractinian s@&sph the collection, of which 122 were

solitary, cover a depth range of 172 to 1395 m.
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Figure 1: Modern day hydrography proximal to santptstions on the Southwest Indian Ocean
Ridge (SWIOR). A, bathymetric map of the sampliagion in the Southwest Indian Ocean with
positions of fronts marked from north to south: Sofical Front (STF), Subantarctic Front (SAF),
Polar Front, (PF), Southern Antarctic Circumpolarf@nt Front (green), from Sokolov and Rintoul,
(2009). Sample locations are shown with black datsl, the red box highlights the transect along
which sections are plotted. B, vertical sectionghwampling locations shown with black dots. CTD
data accessed from the World Ocean Database,ploite Ocean Data View (Schlitzer, 2017). From
top to bottom are plotted oxygen, labelled withnrseant names; temperature, labelled with water
masses Subantarctic Mode Water (SAMW), Antarctierinediate Water (AAIW) and Upper
Circumpolar Deep Water (UCDW); and salinity, labdlwith the three regional fronts. The path of
the Agulhas Return Current (ARC) combines with$ié- as it crosses the SWIOR. Contours of
neutral density surfaces (kg3ncorresponding to water mass boundaries are sbovatl three
sections. C, schematic section of present-day leition and positions of frontal jets of the Antacct
Circumpolar Current in the Indian sector of the tBetn Ocean. Water masses depicted in addition to
SAMW, AAIW and UCDW are subtropical surface waté€33 SW); Lower Circumpolar Deep Water

(LCDW) and Antarctic Bottom Water (AABW).
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2.2 Taxonomy

Taxonomic identifications of the scleractinian d@pecimens were based on monographs
which represent the most recent, extensive, anidbbl@documents on azooxanthellate
Scleractinia. These include Cairns (1982; Antaratid Subantarctic), Cairns and Keller
(1993; SWIO), Cairns (1995; New Zealand), Cairng Aitbrowius (1997; Indonesia), Cairns

(2000; Caribbean), Kitahara et al. (2010) and Gaérmd Polonio (2013; Indonesia).

Discrepancies in the boundaries and number of biggghical realms exist between studies
of azooxanthellate Scleractinia (see Cairns, 2@@d)more recent classifications using
benthic marine species and oceanographic proxiest(racently Watling et al., 2013). For

the purposes of this study, we use a combinatigheofwo. Atlantis Bank, Melville Bank
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and MoW Seamount fall within the Indian Lower BahiProvince proposed by Watling et
al. (2013) and the South-West Indian Ocean (SWéQjon following the terminology of
Cairns (Cairns, 2007). The STF is designated aadh&ern boundary for the Subantarctic
realm in Cairns (Cairns, 2007), whereas Watlingl e{2013) use the Polar Front. Therefore,
Coral Seamount is located in the Subantarctic aaegrto Cairns (Cairns, 2007), but in the
Indian Province following Watling et al. (2013). @oknowledge this difference, along with
the likelihood that the boundary is transitiona¢ place Coral Seamount in the ‘Subantarctic

Transition Zone'.

During taxonomic analysis, specimens were evalufatepreservation of aragonite (1 —
highly degraded to 5 — intact) and the relativeuanglation of authigenic coating (0 — no
coating to 3 — fully coated). These qualitative mestwere combined into a ‘preservation

factor’, by subtracting coating from aragonite greation (see Appendix 4).

2.3 Laser ablation U-seriesdating

A total of 122 solitary scleractinian samples werepared for laser ablation uranium-series
age screening in the Bristol Isotope Group (BIG@)lfiges, following the method developed
by Chen et al. (2015) and Spooner et al. (2016kntyrone specimens, predominantly of the
genusBalanophyllia, were too delicate, small, or poorly preservedrtxped with laser
ablation dating. Coral samples of a minimum siz2 » 1.5 mm were cut using a Dremel®
tool with a diamond blade, polished flat on onessigding four increasingly fine grades of
sandpaper, and rinsed with deionised water (182 &m). Visibly altered or discoloured
sections of aragonite were avoided. The samples then mounted in batches of ~50 into

trough-shaped sample holders.

Auto-focussed and pre-programmed 1.1 mm line seme ablated automatically using
‘Chromium 2.1’ software linked to the Photon Maasmnalyte G2 193 nm laser, which

was coupled to a Thermo Finnigan Neptune MC-ICP-W& low abundance isotop&Th

9



202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

was measured in sequence on a central ion cowvitar’>®U measured simultaneously using
Faraday cups (Spooner et al., 2016). Tuning wasgedaout using NIST 610 glass in order to
maximise**°Th signal intensity. An aragonite vein standararfrihe Salt Wash Graben,
Green River, Utah (VS001/1-A) was used to bracketyethree samples. Measurements
consisted of 50 cycles for samples and bracketemdsrds, and background intensities were
measured for 25 cycles following each standard areagent. Anomalous signal spikes in
23%Th were removed before calculation of mean isotof@nsities, subtraction of the
background intensity, and calculation of the isetogtios; however, such spikes were rarely
observed. Corrections for instrumental, elemeiaiad, isotopic fractionation were applied
using bracketing standards. Ratios were used tordete sample age by iteratively solving
the age equation using the Newton-Raphson methadf(ikan and Broecker, 1965). Closed
system behaviour was assumed, and the known medamateb>*U; value of 147 + 7 %o
(Reimer et al., 2009) was used in the calculatfvevious data indicates age corrections for
initial 2°Th based 0/*?Th fall within the usual age uncertainties for thisthod (Robinson

et al., 2014; Spooner et al., 2016), and thereaforeorrection was made for detrital or
seawater Th contribution. Standard errors on thasomed ratios, the background
measurements, and the errors on the isotope dilMiG-ICPMS isotope ratios of the
standards were combined and propagated throughseagh of standard corrections
(Spooner et al., 2016). Final propagation of ertbreugh the age equation was carried out
using a Monte Carlo technique, whereby random Gasistributions for each ratio are
generated and used to calculate a distributioros$iple ages from which the final sample
ages and errors are determined. For deglacial @gésdhese errors range between 500 and
1500 years. The background level was typically int@er second, with deglacial corals

recording 10-20 cps.
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2.4 | sotope dilution U-series dating

Fifty-two subsamples including two full procedudaiplicates for combined U, Th, Nd
chemistry (~ 0.6 to 5 g) were taken for preciséae dilution U-series analysis. Physical
and chemical cleaning procedures followed the agreent and assessment of methods
performed before in the MAGIC group at Imperial lge on cold-water corals (Crocket et
al., 2014; van de Flierdt et al., 2010), buildingroethods developed by Cheng et al. (2000),
Lomitschka and Mangini (1999) and Shen and Boy888). All samples were rigorously
physically cleaned with a Dremel tool, before ungbéng a two-day oxidative-reductive
chemical cleaning process. In the BIG laboratogylitees at the University of Bristol,
cleaned coral fragments (~0.04 to 1.9g) were thigsotved and spiked with?d°U-?*°Th
mixed spike calibrated to a 4.1%wo{incertainty, described further by Burke and Rebm
(2012). An iron co-precipitation procedure wasisiitl to separate trace metals from the
carbonate matrix, before U and Th fractions wepagsted and purified using anion
exchange chromatography using columns filled witleachrom pre-filter resin and 2 mL

Biorad analytical grade anion exchange resin 12{200 mesh).

Uranium and Th isotopes were measured on a Nep@CP-MS in the BIG laboratories.
Bracketing standards were used: for U, an intesnatistandard U112a, and for Th an in-
house standard ‘SGS’. A 45ppb Ul12a standard solutas used to tune the Neptune prior
to U measurement, such that sensitivity’f was ~ 250 V/ppm with a variation of < 2%,
and between 5 and 95% peak height measured 0. balass. To correct for mass bias,
Ul12a and SGS were used to bracket U and Th samggesctively. Using these bracketing
standards, the activity ratié®U/2U, 22Th/2°Th, 22Th/”°Th, and®*°Th/”?°Th were
corrected for each sample. The isotopdd, 2% and***U were analysed in Faraday
collectors, and*U on an ion-counter, in measurements of 100 cydles.low concentration
22Th and®*°Th isotopes were analysed on the secondary elestuttiplier (SEM) by peak

jumping in measurements of 50 cycl&8U, added as a spike to the Th cut, was measured
11
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concurrently on a faraday cup. The latter was tisemrmalise thé*°Th/”°Th ratio for

signal instability, by measurirfg®Th/”*®U and®?*Th/**®U (Burke and Robinson, 2012; Chen
et al., 2015b). The wash solution (i.e. blank) waalysed before every sample run in 10
cycles and subtracted from all absolute valuesrbeafalculating isotope ratios. Machine
accuracy was monitored by measuring Hu84.5 (U)Tdr#l (Th) standards before each
session and every 3-4 samples. An HU84.5 standasdwocessed with each batch of
column chemistry and yielded a long-term exteraptoducibility for F>°Th/”%U] of 0.997 +
0.002, and forf*Th/~*®U] of 1.0007 + 0.0008, within error of secular diurium (n=50).
Errors including machine uncertainties and procaidoianks were propagated into the
isotope ratios of**U/%%U, 2%U/%%%U and®**Th/”*°Th. A Monte Carlo technique was used to

propagate the errors of isotope ratios into thal fiaported uncertainties.

The isotop&3*Th was measured in addition48Th in order to correct for non-radiogenic
sources. Assuming any initial Th incorporated olgiieation had &3°Th/***Th ratio
equivalent to local modern-day seawater, the mea$tiTh can be used to estimate initial
23%Th. An initial atomic®Th/”*°Th ratio of 12,500 + 12,500 ¢} was assumed,
corresponding to modern subtropical Atlantic intediate waters (Chen et al., 2015). This
calculation dominates the final error for ageshwiteasuredTh correlating with the
sample age error due to the greater uncertainityitafl 2°Th activity. Measured?Th
ranged from 50 to 3806 ppt, and was the main fatgtgrmining the age errors, which

ranged from 68 to 985 years for deglacial age soral

The values®**U; is the deviation (%o) from secular equilibrium b&t**U/?%%U activity ratio
and is used to test for closed-system behaviothetorals. Thé**“U; of the SWIO corals
ranged from 145.2 to 157.5 %o.. Two of the 50 coaalalysed exhibited open-system
behaviour with5***U; outside of the modern-day ocean (147 + 7 %o; Reighet., 2009).

Ages of the full procedural duplicates were witaimnor.

12



277 3. Results

278 3.1 Taxonomy

279 Material from colonial species accounts for 27haf 149 scleractinian samples, including
280 Solenosmilia variabilis, Madrepora oculata, Goniocorella dumosa, andEnallopsammia

281 rostrata. Solenosmilia variabilis appears to be the most common species represantat
282 the colonial specimens. However, it is difficultesaluate the relative abundance of these
283 species as the number of samples cannot be coadickpresentative of the communities

284 found at each seamount.

285 Of the 122 solitary specimens, the majority repnetige family Caryophylliidae, which

286 includesDesmophyllum dianthus (n = 36), andCaryophyllia diomedeae (n = 32).

287 Dendrophylliids are also common, includiBglanophyllia gigas, Balanophyllia

288 malouinensis, andLeptopsammia stokesiana (n = 31). The remaining solitary specimens
289 comprise 13 flabellidsHlabellum flexuosum andJavania antarctica), two attached

290 Trochocyathus gordoni, and free-living specimens bBieltocyathus sp. andDasmosmilia

291 lymani. Five solitary and four colonial samples wereidentified to genus level due to poor

292 preservation.

293 An annotated list detailing the 15 scleractiniatateepresented within the new collection is

294 presented below (with further metadata in Apperigdix

295 3.1.1 SpeciesList

296 Order SCLERACTINIA
297 Family OCULINIDAE Gray, 1847
298 1. Madrepora oculata Linnaeus, 1758. Four fragments of this coloniahto

299 characterised by sympodial budding and anastomasedthes, were collected from patches
300 of coral rubble at Melville Bank and MoW Seamount.

13



301 Family CARYOPHYLLIIDAE Dana, 1846

302 2. Caryophyllia diomedeae Marenzeller, 1904. Thirty specimens found at Coral
303 Seamount, MoOW Seamount and Atlantis Bank sharezkarheral S1=S2>$%4 septal

304 pattern, low, evenly spaced costae, sinuous padi3yrand a columella formed of fascicular
305 elements (Cairns, 1995; Cairns and Zibrowius, 189&hara et al., 2010). Two specimens
306 displayed an irregular septal pattern, with 43 4hdepta in total; similar variations have
307 been described previously from the Atlantic (Zibnasy 1980) and New Zealand (Cairns,
308 1995). At least eight specimens had fewer tharethodumella elements. A few specimens
309 from Atlantis Bank and one from MoW Seamount hawghly exert S1-2, up to 5mm (Fig.
310 2A); however, in most specimens from Coral SeamaundtMelville Bank S1-2 were only
311 moderately exert (Fig. 2B). This character arguaitdges the latter group closer to the range
312 of Caryophyllia laevigata, a species described by Kitahara et al. (201Qhigncase, the

313 differences amongst specimens was not consistengarto identify them as separate

314 species, rather than considering a wide range ophatogical variation o€C. diomedeae.

315 Another diagnostic feature, colour banding, wasaldy expressed and did not necessarily
316 correlate with septal exertness. Finally, it is thanentioning that most of the Atlantis Bank

317 specimens exhibit fused costal granules near etz margin.

318 3. Caryophyllia profunda Moseley, 1881. One specimen of this taxa was ceite
319 from Melville Bank (Appendix 5). Unlike specimenssttribed by Cairns (1995, 1982), all

320 septal edges are straight.

321 4. Trochocyathus (T.) cf. gordoni Cairns, 1995. One specimen composed of two
322 budded coralla found at Coral Seamount was assignecf. gordoni, although poor
323 preservation, especially of the pali, hampers amiee identification (Appendix 5). As in the

324 New Zealand specimens (Cairns, 1995), deep intiicstsiae are present near calicular
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edge, becoming less defined towards the pedic¢h mecimens have an irregular septal

arrangement approaching decameral.

5. Solenosmilia variabilis Duncan, 1873. Fragments @&fvariabilis were collected

from Coral Seamount and Melville Bank.

6. Goniocorella dumosa (Alcock, 1902). Fragments were found at Coral Smarh
only. Specimens display straight, cylindrical bia@s and right-angled budding as described

in Cairns (1982).

7. Dasmosmilia lymani (Pourtalés, 1871). One specimen was found at Coral
Seamount, having fewer columella components thaordeed in Cairns (1995), but a similar

septal arrangement, budding pattern, and serratellea edge.

8. Desmophyllum dianthus (Esper, 1794). The most common species with &ab6
specimens collected from Coral Seamount, Melvibalg and Atlantis Bank. They exhibit a
wide range of variation within the species, fromafijuvenile to large adult specimens,
straight to slightly bent corallum, and low to higlexert septa. A few specimens from
Atlantis Bank are distinct in that they most clgdyear the characteristic featuredof
dianthus: clear, ridged costae; highly exert, flared setd finely granular theca (Fig. 2C;

Cairns, 1982).

FamilyDELTOCYATHIDAE Kitahara et al., 2012

9. Deltocyathus sp. Milne Edwards and Haime, 1848. A single, smallefliging
specimen was found at Melville Bank. The specimdnlets diagnostic characters of the
genusDeltocyathus, having pali before septa of all but first cychedaaxial edges of higher
septa (S4) joining to faces of adjacent septa (3@\vever, the poor preservation of the
specimen hampers its identification to specieslleve

Family FLABELLIDAE Bourne, 1905
15
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10. Flabellum flexuosum Cairns, 1982. Three specimens were collected &l Co
Seamount. They exhibit a thin, porcellaneous thaed,sinuous, wrinkled edges of the inner

septa (Cairns, 1982, Appendix 5). However, noneslzafifth septal cycle.

11.Javania antarctica (Gravier, 1914). Seven specimens from Coral Seatrend
one from Melville Bank were collected. Although damn in morphology td-. flexuosum,
these specimens were distinguished by their distemchevron growth lines peaking at
intersections with ‘costae’, as described in Ca{i®#32; Appendix 5). Only one specimen

displayed a rudimentary fifth septal cycle.

Family DENDROPHYLLIIDAE Gray, 1847

12.Balanophyllia gigas Moseley, 1881. Twenty-one specimens represernttisg t
species were found at Coral Seamount. It is likiest all specimens are juvenile, as none
express a full Pourtalés plan septal arrangemehthay are much smaller than specimens
described from New Zealand (Cairns, 1995). Thegres of banded epitheca above the
synapticulotheca (Cairns and Zibrowius, 1997) isalde. They all have in common a deep,

narrow fossa and relatively narrow septa (Appemgix

13. Balanophyllia malouinensis Squires, 1961. A total of five specimens were
recovered from Coral Seamount and Melville Bankeyltvere distinguished from. gigas
by having a thick, spinose synapticulotheca andei®ver fossa with a larger columella
(Cairns, 1982; Appendix 5). Like thg gigas specimens, the septa are arranged only in a

rudimentary Pourtalées plan.

14. Leptopsammia stokesiana Milne Edwards and Haime, 1848. Five specimens were
found at Coral Seamount. Although similar in sinel amorphology to the other solitary
dendrophylliids in the collection, these do notéavPourtales plan septal arrangement

(Cairns and Zibrowius, 1997).

16



373 15. Enallopsammia rostrata (Pourtalés, 1878). In total four fragments of tiobust,

374 uniplanar colonial coral were found at Melville Baand Atlantis Bank.
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Figure 2: Morphological variability of CWCs acrassamount transect. Calice and corallum of
Caryophyllia diomedeae from A, Atlantis Bank (JC066_3741) and B, Corah®eunt (JC066_122);

and calice and corallum &fesmophyllum dianthus from C, Atlantis Bank (JC066_3718) and D,

Coral Seamount (JC066_127).

3.1.2 Taxonomic distribution

All solitary CWCs except th€. profunda, which was collected at the summit of Melville

Bank at 172 m water depth, were found between 6001400 m (Figs. 1, 3), covering
18
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398

modern SAMW, AAIW, and UCDW depths, although thiéedawas only represented by
specimens from Coral Seamount. This depth rangepart constrained by the position of
the seamount summits, particularly at MoW Seam@Lit®0 m) and Atlantis Bank (750 m),

and the maximum depth of the ROV surveys (see Thhled Fig. 3).

Table 1: Location, bathymetry, and number of specdsirom SWIO seamounts

Seamount Latitude (°S) Longitude  Summit Max Solitary CwcC
(°E) (m) survey CWC  specimens
depth specimens dated

(m)

Coral 41°21'23"S 42°50°31" E 175 1395 89 72
Melville 38°31'56" S 46°45'74" E 91 1276 9 5
MoW 37°56'76" S 50°22’16" E 876 1414 7
Atlantis 32°42°01"S 57°17'26” E 690 1117 17 17

At Coral Seamount, the greatest numlver 89) and diversity of CWCs was found, with 9
out of 11 solitary species represented (Fig. 3n@as were collected between 624 and 1395
m, intersecting the boundary between AAIW and UCBWW900 m. Most corals of this
collection were recovered at ~700 m, where 27 ef3d Dendrophylliidae specimens are

found, and ~1200 m, dominated by Caryophylliidae.

At Melville Bank and MoW Seamount, solitary CWC speens were found near to the
modern-day SAMW/AAIW and AAIW/UCDW boundaries, respively (Fig.1B). Nine
specimens from Melville Bank represent a minimunfivad species (Fig. 3). All seven CWCs
from MoW Seamount ar€. diomedeae. At both seamounts the ROV transect extended a few

hundred metres below where the deepest CWCs wenel fo
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The 17 CWC specimens from Atlantis Bank span tlhiel&pth range surveyed from 700 to
1100 m.Desmophyllum dianthus andC. diomedeae were the only solitary species collected

in this locality (Fig. 3).

A range of preservation of the skeletal aragon#s wbserved, from near-perfect to heavily
bored and/or dissolved. Corals were often foundezbwith grey-brown authigenic deposits.
No significant correlation was found between walepth and individual coral mass or
preservation factor (Fig. 4A). On the whole, cogtievels and aragonite degradation appear
to be positively correlated, i.e. poor aragonitesgrvation was linked to high coating levels

(see Appendix 4).
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Figure 3: Depth distribution of subfossil CWCs atle seamount, colour coded by species. Seamount

summits and the deepest vertical extent of ROVesting are represented by dashed grey lines.

Modern day water mass boundaries between Subaatsiotle Water (SAMW), Antarctic

Intermediate Water (AAIW) and Upper Circumpolar pe&ater (UCDW) are defined using the

depths of neutral density for AAIW (27.3s< 27.5; Plancherel, 2012) at each seamount, fromd/\o

Ocean Database CTD data.
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3.2 Ages

The 101 dated CWCs range in age from the LGM tortbdern day (Fig. 6), except for a
single 140 ka specimen from Melville Bank. Isotaliletion U-series dating of 50 of the
samples demonstrated the accuracy of the lasdarabtachnique, with a close correlation
and 33 samples giving ages within error of therlabéation dates (Fig. 5). Only late
Holocene CWCs were found at Atlantis Bank, whelezh Holocene and deglacial
specimens were found at Coral Seamount, MelvillekBand MoW Seamount. There are
relatively few samples from the mid-Holocene (~% &ad the Last Glacial Maximum (19 —
25 ka). The most well preserved and largest CW@s fdam periods of greatest abundance,
whilst the few corals found during the LGM and gatb mid-Holocene are poorly preserved

(Fig. 4B).
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Figure 4: Relationship of caryophylliid mass andgarvation factor to A, depth and B, age, at all

seamounts for the two most prevalent species (colmded). Preservation factor is a qualitative

metric that takes into account the amount of femganese coating and aragonite dissolution, and

ranges from -2 (least well preserved) to 5 (intact)
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4. Discussion

4.1 Taxonomy

4.1.1 Range extensions

Previous surveys of CWC diversity in the regionude the works of Cairns and Keller
(1993) for southern Africa and Madagascar, andr@git982) for the Antarctic and
Subantarctic. In the former, the scleractinian taisndescribed as having influence from
Pacific, and to a lesser extent, Atlantic faunasddition to species endemic to the Indian
Ocean. The distribution of the species in thisemiibn and their proposed extensions are
shown in Table 2. Of the 15 scleractinian deep-iateal species found in this study, six
have already been recorded from the SWIO and/oa@alctic regions: the cosmopolitan
specie<LC. profunda, D. dianthus, M. oculata, E. rostrata andS. variabilis, in addition toG.

dumosa, which is Indo-West Pacific (Cairns and Keller989Cairns, 1982). The genus
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Deltocyathus is also widely distributed in all oceans; althowghwe were not able to identify
the specimen to species level, future exploratamscollection of well-preserved specimens
from these localities will be needed to allow aéeknowledge of this genus in the region.
The remaining eight species represent extensiotigetopreviously documented ranges
(Table 2), increasing the known scleractinian diitgrof the SWIO and Subantarctic
Transition Zone. Surprisingly, none of the Dendrglidae or Flabellidae species described

previously from the SWIO (Cairns and Keller, 199&)e observed in this collection.

The connectivity of Indian and Pacific surface wat&rough the Indonesian throughflow led
Cairns and Keller (1993) to predict that represoreof the ‘Indo-West Pacific’ fauna

would increase with further exploration in the SWTe first record of thregpecies in the
Indian Ocean supports that predictidngordoni (known only from the Kermadec Islands,
New Zealand / Kerguelen province; Cairns, 1986pigas (West Pacific and New Zealand /
Kerguelen; Cairns and Zibrowius, 1997), ahdymani (warm temperate Pacific and
Atlantic; Cairns, 2000). Connectivity of the South®©cean through the ACC could also
have contributed to the spread of these speciéshrdke species were found at depths (700-

1200 m) which extend their bathymetric distributtordeeper waters (Table 2).

The seamounts cover a transitional biogeograpme between the Indian and Subantarctic
regions, which is reflected both by the extensibsp&cies from the south into the Indian
province, and from temperate regions into the Stavetic. Known previously only from the
Antarctic continent (Cairns, 1982, flexuosum was found north of the SAF at Coral
Seamount. There is evidence that genetic dispef$ZWCs follows ocean density gradients
and is less likely to occur vertically (Dullo et,&008; Miller et al., 2011). It is possible that
F. flexuosum extend their distribution up to the SWIO thanksitothwards transport via
intermediate waters, as it is found below its ppasly known depth range between 700 and
1200 m.Javania antarctica andBalanophyllia malouinensis, whose ranges were recently

extended from the Antarctic / Subantarctic (Caift®#82) to the southwest Atlantic (Cairns
25
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and Polonio, 2013), were also found at Coral Seatnasiwell as Melville Bank. Water
temperature at Atlantis Bank may be above thedalss of these Antarctic species. It is also
possible that the ARC acts as a dispersal bagitret Indian Ocean for CWC larvae, in a
similar manner to the ACC (e.g. Duenias et al., 20dléhough to our knowledge this has not

yet been modelled or evaluated.

NeitherC. diomedeae nor L. stokesiana were listed in Cairns and Keller’'s (1993) SWIO
monograph, but both have been found previouslfienihdian and West Pacific provinces
(Cairns and Zibrowius, 1997; Kitahara et al., 2023 they were collected from Coral
Seamount, their ranges are extended into the SarcéintTransition Zone. This find also

extends the range af stokesiana from shallow to bathyal waters.
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Table 2: Distribution of subtropical and Subantar@ransition Zone (TZ) south-west Indian Ocean (8\Vand Indian Ocean (I0) Bathyal Province azooaltdte Scleractinia
discussed in this study. Depth range in bold siggif proposed bathymetric extension. MoW: Middlg/bat seamount.

TZ SWIO _ New record
(O]
>
g SWIO (@) Subantarctic
w X sensu  Bathyal Transition
3 =) » 5 Cairns Province Zone
. 9 = B = T - Depth (m)
Species 5 5 8 £ & 2 £ 3 2 (worldwide) (1982) sensu
g © 2 [ s 3 o3 Watling
3 E © 2 o g O LN £ 2 etal
s 8 8 > E 5 8 3 E -
EEEEEEEE NN (2013
< ®» O = = £ 0 £ =2 z < O
Madrepora oculata X X X X X X X X 55-1950
Caryophyllia diomedeae X X X X X X X 225-2200 X X
Caryophyllia profunda X X X X X X X 35-1116
Trochocyathus (T).
gordoni X X 398-732 X X X
Solenosmilia variabilis X X X X X X X X X 220-2165
Goniocorella dumosa X X X X X X 88-1488
Dasmosmylia lymani X X X X 37-1207 X X X
Desmophyllumdianthus X x X X X X X X X X X 8-2460
Deltocyathus sp. X X X X 44-5080
Flabellum flexuosum X X 101-1207 X X X
Javania antarctica X X X X 53-1280 X X X
Balanophyllia gigas X X X 90-1200 X X X
Balanophyllia
malouinensis X ooxooXxo X X 75-1207 X
Leptopsammia X x X 46-710 X X
stokesiana
Enallopsammia rostrata X X X X X X X 110-2165
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4.1.2 Satial variability

The seamounts in the SWIO form a transect acrassasting hydrographic and productivity
regimes, with peak chlorophyll concentrations ngai@ the ARC/STF frontal zone (Melville
and MoW seamounts; Read et al., 2000). During @868 cruise, surface nutrient and
particulate organic carbon (POC) concentrationsevi@und to be highest at Coral Seamount
(Djurhuus et al., 2017b), as was microorganism dhanoe (Djurhuus et al., 2017a). These
features, along with the systematic variabilitynicrobial community structure, led Djurhuus
et al. (2017a) to separate the region into thregdmgraphic zones — south (Coral Seamount),
convergence zone (Melville Bank and MoW Seamowamtg, north (Atlantis Bank). At depth,
water masses were considered more influential, swthlar taxa occurring below 200 m
across the seamounts (Djurhuus et al., 2017a)lifited sample size and opportunistic
nature of the sampling in this study makes a qtaite assessment of spatial variability
patterns in CWCs difficult. Because of the diffgrigseamount heights, the maximum depth of
the ROV, and cruise time constraints (i.e. oppoastimsampling of subfossil CWCs), the full
depth range of CWCs may not have been surveyedgTabNevertheless, notable variations

in coral diversity are present in the dataset aadrant exploration.

Firstly, a larger number of samples and greatecispaliversity in subfossil Scleractinia was
found at Coral Seamount relative to the other sesmsoFig. 3). This could be explained by
sampling bias, as ROV bottom time was approxima&8iyours at Coral, longer than at
Melville (~ 29 hrs), Atlantis (~ 26 hrs) and MoWI1(* hrs); at MoW sampling was severely
hampered by turbulent conditions. However, a widkeety of habitats was noted from video
footage at Coral Seamount (Rogers and Taylor, 2@hi) video surveys suggest it hosts the
greatest diversity and number of species for caatssponges (Frinault, 2017). It was also
found to host the largest microbial community (Dyws et al., 2017a) and the highest
surface chlorophyll concentrations of the four seants (Djurhuus et al., 2017b). There are

several factors which could contribute to the faatility of Coral Seamount as a habitat for
28
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CWoCs. As a result of its position south of the SWkter temperatures at Coral were ~ 3°C to
5°C at the depths of coral collection (~ 600 — 14Q0~ig. 1B). In contrast, at the three more
northerly seamounts, temperatures above 12°C afmun to ~ 600 m and only fall below
5°C at ~ 1100 m. As scleractinian CWCs are mostreony found in waters of 4-12°C
(Roberts et al., 2006), Coral Seamount may promdee suitable thermal conditions over a
wider depth range. The location of Coral Seamoauthsof the STF, in the transition
between two biogeographic provinces, could alsdridmrte to its high diversity. In contrast,
at the subtropical site of Atlantis Bank no flaimdlor dendrophylliids were collected. The
temperature profile at Atlantis Bank below 200 rsiisilar to Melville Bank, where
dendrophylliids were present, but additional fagteuch as low POC concentration could
reduce the viability of certain species at Atlafenk, even those known from temperate

locations such aB. gigas andL. stokesiana (Cairns, 1995; Cairns and Zibrowius, 1997).

We also find some evidence of within-species vt between the four seamounts. A
‘robust’ morph ofC. diomedeae, with exert, transversally ridged and laterallgtpuding

septa was dominant at Atlantis Bank (Fig. 2A), véasrmost specimens at Coral Seamount
had less exert septa (Fig. 2B). It is worth notimgf the Atlantis specimens are dated to the
late Holocene, whereas &l diomedeae from Coral Seamount are deglacial in age. A few
specimens at Melville Bank and MoW Seamount shem&ufes of these two end members.
To some extent a similar pattern is seeBidianthus; three specimens at Atlantis Bank
have particularly flared septa and well-definedtaegFig. 2C), whilst specimens to the south
display a smoother corallum with less exert sepig. D). These discrepancies exist
between specimens of the same age at Atlantis BadlCoral Seamount. Wide intraspecific
variability is a characteristic of both of thesesjes (Addamo et al., 2015; Kitahara et al.,
2010), and could be due to phenotypic flexibilitydifferent environmental conditions, or
genetic isolation and divergence (Miller et al.12) Either explanation could apply here, but
since the variation could best be described agetgpn across the seamounts, it seems more
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likely to be a response to environmental conditisush as temperature and/or food

availability.

Overall, the variations in the subfossil CWC cdil@c north and south of the STF give some
support to the idea of biogeographic zonation.tBate are also similarities in the species
found, which may result from the water mass conwiggtat depth. Without surveys and
phylogenetic analyses on modern CWCs, the impoetahthese two factors cannot be
guantified. The rarity of expeditions to the ared ¢he disturbance of organisms and
substrate because of trawling in the SWIO (RogedsTaylor, 2011) are likely to inhibit

these more robust investigations.

4.2 Temporal shiftsin CWC populations

Uranium-series dating of the SWIO collection regeadriability in the distribution and
diversity of CWCs over the past 25,000 years. heraliscuss patterns of coral abundance in

relation to deglacial climate and regional oceaapfic changes (Figs. 6-8).
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Figure 6: Depths and ages of subfossil CWCs atthanfis Bank; B, Melville Bank (triangles) and
Middle of What Seamount (dots) and C, Coral Seamaahoured coded by taxonomic category.
Precise ages are given for samples which undenaetoipe dilution U-series dating, and laser
ablation ages are used for all other samples (pperdices 1-3). Grey and white bars indicate the
timings of the Holocene, Younger Dryas (YD), Antar€old Reversal (ACR), Heinrich Stadial 1
(HS1), and the Last Glacial Maximum (LGM). The depbf boundaries between Subantarctic Mode
Water (SAMW), Antarctic Intermediate Water (AAIWN@& Upper Circumpolar Deep Water

(UCDW) at each seamount are indicated by blaclsline
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4.2.1 The Last Glacial Maximum

One of the most notable aspects of the SWIO cerard is the absence, bar dhedianthus
specimen, of samples dating to the LGM (Figs. 5P8@servation bias cannot be ruled out,
though an older specimen, dated from MIS 6 (142Za)3was found, and much older
dianthus specimens from the subpolar region have previdousgn recorded (Burke and
Robinson, 2012). It is unlikely that food supplysatamiting; opal and organic carbon flux
increases point to higher export production in3A& of both the Atlantic (Martinez-Garcia
et al., 2014) and Indian oceans (Dezileau et @D32during the glacial. In general, coral
recruitment will not occur unless there is a camsissupply of larvae to the region in
guestion. Hence, the LGM absence of CWCs coulctatdithe existence of a barrier to
larval dispersal into the SWIO at that time, foample, the ACC. In the Drake Passage,
glacial age CWCs were found almost exclusivelyhim Antarctic Zone, leading Margolin et
al. (2014) to suggest that the Polar Front podear@aer to larval transport further north. As
samples south of the Polar Front were not sampldgei SWIO, it is difficult to make direct
comparisons. If larval dispersal to the SWIO seam®from south of the ACC was inhibited
during the glacial, a subsequent expansion of CW@sd require either a weakening of the
ACC flow, or a northward shift of the Southern Otdants. Reconstructions of glacial flow
speeds suggest a similar current speed (Masturhatq 2001; McCave et al., 2014) or
lower flow speed (Roberts et al., 2017) comparettiéad-Holocene. In terms of frontal
position, it is likely that the Polar Front occugiés most northerly position during the LGM,
moving poleward during the early deglacial (Barkeal., 2009; De Deckker et al., 2012).
Therefore, evidence for the Polar Front and ACQrapa greater barrier to CWC
distribution in the Subantarctic and Subtropicalithern Ocean during the LGM is
unconvincing. If the deglacial appearance of CW&3siited from enhanced larval transport
from lower latitudes, we would perhaps expect ®earlier occurrences at Atlantis Bank.

The circumpolar transport of the ACC, the influenf¢he ARC, and the overturning
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circulation (Henry et al., 2014) could all have yaded routes for widespread larval dispersal

throughout the glacial and in the modern day.

Given the likelihood of an adequate food supply apéen routes for larval dispersal
northwards, we suggest that environmental boundanditions limited CWC growth in the
SWIO during the LGM. A broad consensus exists ghiarge proportion of glacial GQvas
stored in the deep ocean as a result of a moretietebiological pump and reduced deep
ocean ventilation (Kohfeld and Chase, 2017). Tiselteng decrease in carbonate ion
concentration and shoaling of the ASH (Sigman e®28l10; Yu et al., 2010) may therefore
have reduced the ability of CWCs to calcify, espkbgin deep waters. This environment
may also have caused dissolution of existing s@if@VCs, explaining the absence, bar
one, of corals dating to earlier periods of moretaable climate conditions. Trace metal
evidence also suggests intermediate waters wetetddpn dissolved oxygen (Durand et al.,
2018; Jaccard et al., 2016), likely resulting fretratification and increased isolation from
the atmosphere (Burke et al., 2015). In additiemgeratures in intermediate waters are
estimated to have been 3-5°C lower at this timepaoed to the Holocene, and deep waters
~3°C cooler than the deglacial maxima (Fig. 7E; &leret al., 2015; Roberts et al., 2016).
We therefore suggest that a shoaled ASH and ceokydienated intermediate waters
contributed to unfavourable conditions for CWC gtiowwuring the glacial, outcompeting any
possible benefits of enhanced food supply. Glaiafossil coral abundance is also low
south of Tasmania (Fig. 7B; Thiagarajan et al.,3@hd in the subantarctic Drake Passage
(Fig. 7C; Margolin et al., 2014), supporting a dstemnt circumpolar response of CWCs to

the glacial boundary conditions.

4.2.2 The early deglacial, Heinrich Sadial 1

The early deglacial appearance of CWCs at the $gamounts south of the STF (Coral,

Melville and MoW; Fig. 6) is concurrent with the s®t of Antarctic warming and Heinrich

34



126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Stadial 1 (HS1; 18-14.7 ka; Fig. 7A) ~18 ka agoribgithis time interval, release of a deep
inorganic carbon pool through processes in thel®ontOcean is thought to have contributed
to the atmospheric CQise (Marcott et al., 2014). Increases in benthi€ (Ninnemann and
Charles, 2002; Roberts et al., 2016), reductiortesp water ventilation age (Burke and
Robinson, 2012; Skinner et al., 2010), and increasabyssal carbonate ion concentrations
(Yu et al., 2010) all support the deep ocean vaindih hypothesis. These processes may have
resulted in a deepening of the ASH and improvedlitmms for CWC calcification.

However, such changes in the deep and abyssalooesnnot have reached depths less than
1400 m at which CWCs were found; on the contragpletions in intermediate water
radiocarbon have been reported (Bryan et al., 2Bbfnahn et al., 2014), likely reflecting
transient transport of the deep stored carbonshédlower levels before its release to the

atmosphere.

During HS1, increased oxygenation is recorded énddep Southern Ocean (Jaccard et al.,
2016) and the intermediate northern Indian Oceacc@rd and Galbraith, 2012), which
would have contributed to improving conditions €WC growth. It is also possible that
coral population growth was boosted by increased &upply in the form of sinking
particulate organic matter, given the increasepal flux in the Pacific and Atlantic sectors
of the Southern Ocean at this time (Anderson eR8D9; Fig. 7D). We therefore suggest that
the simultaneous appearance of subfossil cordleisWIO, Tasmania (Thiagarajan et al.,
2013), and the subantarctic Drake Passage (Margbhh, 2014) during HS1 could have
been facilitated by increasing oxygen concentratiammd food supply, but was still limited by
carbonate chemistry at mid-depths, particularlihm Indian and Pacific sectors of the
Southern Ocean. Cold-water coral growth also sderhave been enhanced off the coast of
Brazil during this time, potentially as a resultinéreased upwelling and food supply

(Mangini et al., 2010).
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4.2.3 The late deglacial

The greatest abundance of subfossil CWCs in theds¥¢turs in the late deglacial (33
specimens; Figs. 6, 7A), predominantly within theuviger Dryas (YD), between 13.5 and
11.5 ka. During this period, Coral Seamount suggubéat diverse community of at least seven
solitary scleractinian species includi@gdiomedeae, F. flexuosum andJ. antarctica.

Notably, this peak in abundance is located at UC@Bpths (~ 900-1400 m at Coral
Seamount), with only four specimens found at modkzy AAIW depths. Late deglacial
abundance peaks also occur at modern UCDW depthse ifasmanian (Fig. 7B) and Drake

Passage collections (Fig. 7C).

As AAIW depths appear to be preferable for CWCtinlate Holocene, it is tempting to
explain their presence deeper in the water coluanimg the deglaciation by a deepening of
AAIW and displacement of the lower-oxygen UCDW. \&fathass boundaries will have
occupied deeper positions in the water columnrasat of lower sea level; however this
effect can only account for ~60 m displacement betwthe YD and Holocene, rather than
the observed 200 — 500 m depth shift observed &l G@amount. Because of the sloping
isopycnals in this region (Fig. 1), a more southedsition of the SAF would effectively
deepen AAIW at the SWIO and seamounts and arousthdiaia. However, reconstructions
suggest the SAF occupied a similar position toptlesent day during the late deglacial (De
Deckker et al., 2012; Roberts et al., 2017). A eéeapg of AAIW would also not explain the
relative lack of corals from < 900 m. Hence, wesidar other possible controls on the CWC

distribution.

Oxygen concentrations below ~145 pumol/kg have lséemn to limit respiration of certain
D. pertusum (=L. pertusa) specimens in laboratory experiments (Dodds ¢2807). An
early- to mid-Holocene decline of CWC populationghe Mediterranean has been linked to

a fall in oxygenation below ~180 pmol/kg (Fink &t 2012), and low oxygen also appears to
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affect the distribution of CWCs in the late Holoeesouth of Tasmania (Thiagarajan et al.,
2013). Elevated oxygen concentrations recordedanrtermediate northern Indian Ocean
(Jaccard and Galbraith, 2012) and the deep Sou®ezan (Jaccard et al., 2016) during the
period of relative CWC abundance in the SWIO, ssggelausible role for oxygenation.
Intermediate water pH in the Drake Passage alskepleduring this time (Rae et al., 2018).
Although these ocean chemistry reconstructionsrcdeesity intervals below the corals in

this collection, chemical changes could feasiblyehlbeen communicated to UCDW depths.

Increased food availability is also an importanveir of CWC fitness (Naumann et al.,
2011), and for cold water corals this consistsantipulate organic carbon and
microorganisms (Roberts et al., 2009). There iarabwidence for higher export production in
the Antarctic Zone of the Atlantic Southern Oceah311.5 ka, coeval with the CWC
abundance peak (Anderson et al., 2009; Fig. 7D)akoed export production could have
resulted in higher POC concentrations at depthplgumy CWCs with nutrition in the SAZ.
However, the most likely path for northward trangmd this food supply would be in surface
currents and AAIW via Ekman pumping (Marshall aqpe@&r, 2012). In the SWIO, UCDW
flows northward above 1500 m (McCave et al., 2086)¢ould also have advected POC
northwards towards Coral Seamount, but it seemkeiplthat it would have been the main
conduit. Productivity peaks and an associated as&én food availability may explain the
overall increase in abundance of CWCs during tteedaglacial period, but do not explain

the apparent preference for UCDW depths.

Global scale modelling of CWC distribution showsti@ng correlation with temperature
(Davies and Guinotte, 2011), and although a loweit has not been tested in laboratory
experiments (to our knowledge), CWCs are rarelynébbelow temperatures of 1°C (Stanley
and Cairns, 1988pPesmophyllum dianthus has been found in waters as cold as 1°C in the
Drake Passage (Margolin et al., 2014), and indteHolocene SWIO we find specimens at

depths corresponding to modern temperatures ofidegt ~16°C and 3°C. In the subantarctic
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South Atlantic, Mg/Ca-derived temperature recortions suggest that intermediate waters
were colder than deep waters for much of the deglaxterval, initially at -1 to -2°C and
remaining below 1°C until the early Holocene (Rabet al., 2016; Fig.7E). Deep waters
were warmer at around 0-2 °C during the early degland reached a peak of 4°C between
13 and 11ka, with a stable vertical density siictfon being conserved because of higher
salinities at depth (Adkins et al., 2002; Robettalg 2016). Therefore, we propose that low
temperatures may have been an important facttreimelative paucity of CWCs from AAIW
depths during the deglacial. In addition, we nbt tdeep waters in the Indian, Pacific, and
Atlantic oceans reached a peak in carbonate ionerdration between 15 and 10 ka (Yu et
al., 2010). Such globally enhanced carbonate ioceatrations would have deepened the
ASH, and possibly enabled the expansion of CWGs@RW, which by that time had

reached a warmer and more optimal temperature.

In summary, we propose that increased oxygenadioieepened ASH, warmer temperatures,
and a peak in regional food supply created suitadhelitions for CWC growth in UCDW
depths during the YD. In contrast, CWCs may hawwnheable to survive at AAIW depths
until the salinity-controlled stratification broklwn and temperatures increased in the

Holocene.
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Figure 7: Number of cold-water corals (CWCs) peb@§ear age bin at three Southern Ocean
locations, coded by water mass, with Antarcticrimiediate Water (AAIW) in blue and Upper
Circumpolar Deep Water (UCDW) in purple. Precisesagre given for samples which underwent
isotope dilution U-series dating, and laser abfatiges are used for all other samples (see Appendic
1-3). A, SW Indian CWCs (this study), overlain witie West Antarctic Ice Sheet (WAIS) Divide
Cored™0 record and 11-point moving average (WAIS Dividej&ct Members, 2015), and
composite C@record with 5-point moving averages from WDC (@@nMarcott et al., 2014) and
EPICA (red, Monnin et al., 2001). B, Tasmaniardianthus abundances (Thiagarajan et al, 2013),
assigned to water mass following Hines et al. (2@8W 500-1500m). C, Drake PassaQe

dianthus abundances, using water mass designations frogdiiaret al. (2014). D, Opal flux record
from South Atlantic core TN057-13-4PC (53.1728°32%5°E, 2848m; Anderson et al., 2009). E,
Mg/Ca-derived benthic temperatures for intermedi@€528, 598m; blue) and deep waters (MDO7-

3076, 3770m; black) from the subantarctic Soutlaritit (Roberts et al., 2016).
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424 TheHolocene

Specimens from the early- to mid-Holocene are dgtatarce in the SWIO collection, with
only seven specimens dating to between 5 and 18llkagllected from south of the STF
(Figs. 5, 6A). Those that were found are poorlyspreed (Fig. 4), possibly indicating greater
susceptibility to degradation. During this timeeinial, deep water carbonate ion
concentrations reached their lowest values (Yu.e2@10). It is possible that a shoaled ASH
reduced the suitability of UCDW, whilst the tempara of AAIW was still sub-optimal for
coral growth (Fig. 7E; Roberts et al., 2016). Cowrrde present throughout this period in the
Tasmanian and Drake Passage collections (Fig. ;Bau€at much lower abundances than

during the ACR (Margolin et al., 2014; Thiagaragral., 2013).

After this decrease in abundance, the number of Gp&Cimens increases at Coral and
Atlantis (Fig. 6). Late Holocene CWC specimensfaumd at shallower depths compared to
the deglacial period, with 95 % of CWC dated to katbeing found in SAMW or AAIW

(Fig. 7A). Only two specimens dated to < 6 ka awnftl below 750 m at Coral Seamount,
within UCDW depths, and no live corals were sedow&00 m during ROV surveys
(Rogers and Taylor, 2011). In the southeast Pafape Horn) and Drake Passage
(Burdwood Bank), Late Holocene corals are also moramon above 1000 m (Margolin et
al., 2014; Fig. 7C). South of Tasmania, the CWQs$eugo a depth expansion from 2000 to
2400 m in CDW depths, with abundant corals alsshatlower AAIW depths, but with a
‘hiatus’ at depths of 1500-1800 m influenced by éowlissolved oxygen values (170-180

umol/kg; (Thiagarajan et al., 2013).

In the modern subantarctic SWIO, 900-1000 m mdrkupper boundary of UCDW, a water
mass which brings in old, nutrient-rich deep watesm the northern Indian Ocean and

which is associated with a similar dissolved oxygenimum (< 18Qumol O,/kg from 1000
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— 1500 m; Figs. 1B, 7) to the Tasmanian coral ki&ftniagarajan et al., 2013). The depth of
the ASH, controlled mainly by temperature and pressis also approximately coincident
with UCDW in the region of Coral Seamount (~ 1400Sabine et al., 2002; Fig. 8). Because
sampling did not take place below the ASH or oxygenimum, it is difficult to evaluate

their relative influence. However, the coincidentenost late Holocene CWCs between 600

and 800 m with the oxygen peak within AAIW (~22@o0l/kg) is striking.

The absence of CWCs from Atlantis Bank before &te Holocene (Fig. 6A) is difficult to
explain in terms of any of the above discussedrenuiental factors, and may instead be an
artefact of the limited depth survey performed ¢hdioday, surface waters at Atlantis Bank
have the lowest chlorophyll fluorescence of the fs@amounts (Djurhuus et al., 2017b),
indicating low productivity and a limited food saer although modern corals there may
benefit from organic matter export via SAMW. If dinipng, food supply at Atlantis Bank is
likely to have been higher in the past as a reduticreased iron fertilisation (Kohfeld et al.,
2005) and a northward-shifted STF (De Deckker .e28l12; Sikes et al., 2009), making food
supply an unlikely factor in controlling their aloee. Similarly, temperatures were likely no
warmer and oxygen concentrations similar throughieeitHolocene at these depths.
However, it could perhaps be the case that favdeicdicification conditions arose only in
the late Holocene, because the ASH shoals to ttik imothe modern day SWIO (Sabine et
al., 2002), making this location particularly sémnsi to changes in ocean carbonate

chemistry.
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Figure 8: Depths and ages (lower axis) of Lateoel@he corals at Coral Seamount, colour coded by
taxonomic grouping where red dots are Dendroplagéi and purple dots abesmophyllum dianthus.
Precise ages are given for samples which undenseataipe dilution U-series dating, and laser
ablation ages are used for all other samples (pperdices 1-3). Blue curves show seawater oxygen
concentration from CTD data at Coral Seamount (upgis) and the approximate depth of the
aragonite saturation horizon (ASH; Sabine et 802} is indicated in orange. Modern day boundaries
between Subantarctic Mode Water (SAMW), Antaratiieimediate Water (AAIW) and Upper

Circumpolar Deep Water (UCDW) are indicated witadi lines.
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5. Conclusions

The species assemblage of subfossil scleractimigiscrecovered from SWIO seamounts
indicates influences from the Indian, Pacific, @&wdarctic biogeographic zones. Particular
diversity and abundance of CWCs at Coral Seamoathe a result of its location in the
SAZ, between the Antarctic and Indian biogeogragbites, and higher food availability.
We also find indications of biogeographic contrmsmorphology across the seamount
transect, with a more robudt dianthus andC. diomedeae morphology occurring more
commonly north of the STF, compared to specimems intermediate and deep waters in

the SAZ.

Striking similarities in the temporal distributiaf CWCs from the SWIO with other
Southern Ocean CWC collections hint at widespregzhcts on coral habitats from deglacial
changes in ocean stratification and biogeochemisisyobserved elsewhere in the subpolar
Southern Ocean, solitary coral growth seems to baee limited during the LGM.
Unfavourable carbonate, temperature, and oxygedittons may have outweighed higher
productivity in the SAZ. Although CWCs begin to aap during HS1, we argue that
carbonate and oxygen conditions did not becomenaptuntil the late deglacial (14 -11.5
ka), when a peak in abundance is seen in solits#{Cecords from the SWIO, Tasmania,
and the Drake Passage. This abundance peak isdemhavith increased productivity in the
Antarctic Zone, which could have provided enharsgaply of POC to the SAZ sites via
advection. Water temperatures within AAIW may haeen below the habitable range, a
possible explanation for the relative lack of ot CWCs at intermediate depths at this time.
In contrast, warmer temperatures within UCDW, camehiwith greater oxygenation, higher
deep-water carbonate ion concentrations and a d@&&¢ than during the LGM, could have

facilitated colonisation at UCDW depths.
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In the late Holocene SAZ, the mid-depth oxygen munin associated with the inflow of old
deep waters from the Indian and Pacific Oceansapye have been a less favourable
habitat for solitary CWCs in the SWIO and Tasmdhan well-oxygenated AAIW depths.
This observation suggests that their survival lnegeiires higher oxygen concentrations than
cold-water coral reefs elsewhere. Future investigaton larger numbers of CWCs, collected
in a systematic survey of this region, combinedwiigreater understanding of the responses
of solitary CWC to environmental conditions, wolileely provide stronger constraints on

the patterns we describe, and on future resporige@¥/&€s to environmental change.
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