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Abstract—Objective assessment of detailed gait patterns af-
ter orthopaedic surgery is important for post-surgical follow-
up and rehabilitation. The purpose of this paper is to assess
the use of a single ear-worn sensor for clinical gait analysis.
A reliability measure is devised for indicating the confidence
level of the estimated gait events, allowing it to be used in
free-walking environment and facilitating clinical assessment
of orthopaedic patients after surgery. Patient groups prior to
or following anterior cruciate ligament (ACL) reconstruct ion
and knee replacement were recruited to assess the proposed
method. The ability of the sensor for detailed longitudinal
analysis is demonstrated with a group of patients after lower
limb reconstruction by considering parameters such as temporal
and force-related gait asymmetry derived from gait events.The
results suggest that the ear-worn sensor can be used for objective
gait assessments of orthopaedic patients without the requirement
and expense of a formal gait analysis laboratory. It significantly
simplifies the monitoring protocol and opens the possibilities for
home-based remote patient-assessment.

Index Terms—gait, rehabilitation, Singular Spectrum Analysis
(SSA), e-AR (ear-worn activity recognition) sensor.

I. I NTRODUCTION

GGait analysis as a tool in orthopaedic surgery ranges from
simple observation of gait in a clinical setting to sophisticated

tracking in dedicated gait laboratories. It has been used inboth preop-
erative and postoperative settings, playing an increasingly important
role in preoperative planning and objective assessment of functional
outcomes [1] [2]. Quantitative gait analysis is now an integral
part of common surgical workflows including joint arthroplasty,
correction osteotomiesandsurgeries for children with Cerebral Palsy
(CP) [3] [4]. It has been used forevaluating recovery of patients
following major lower limb trauma [5]and reducing the risk of
injuries [6]. Advances in sensing technologies have also enabled the
development of miniaturised sensors, either wearable or positioned
in the ambient environment, for providing real-time information that
can be wirelessly interrogated [7]–[15]. One common approach to
clinical gait analysis is to use multiple optical or inertial sensors
affixed to the patient body for detailed bio-motion and gait analysis.
The complexity of sensor placement and issues related to consistent
sensor placement have limited these methods only to dedicated
laboratory settings, requiring the support of a highly trained technical
team. The possibility of using a single sensor for detailed gait
assessment has many advantages, particularly in terms of the ease of
clinical adoption, patient compliance, and the possibility of remote
monitoring of patients in home environment. This has been used
for quantitative gait pattern analysis [16]–[19] and assessment of

D. Jarchi and B. Lo are with the Hamlyn Center, Imperial College Lon-
don, London, UK (e-mail: d.jarchi@imperial.ac.uk, benny.lo@imperial.ac.uk).
E. Ieong and D. Nathwani are with Imperial College Healthcare
NHS Trust, London, United Kingdom, (e-mail: edieongortho@gmail.com,
d.nathwani@imperial.ac.uk). G-Z. Yang is with the Hamlyn Centre, Imperial
College, London, UK (g.z.yang@imperial.ac.uk).

patients with Parkinson’s disease (PD) [20], [21]. Thus far, a range
of studies have been carried out by using different wearablesensors
for gait analysis. These are listed in Table I ( [5], [8], [12]–[14],
[16], [20]–[25]). For example, the ear-worn Activity Recognition (e-
AR) sensor has been used in both experimental and clinical settings
[5], [12], [22]–[25]. The sensor includes an accelerometer and the
major advantage of the sensor is in its bio-inspired design and
ease of consistence sensor placement.Although some other wearable
sensors such as Inertial Measurement Units (IMUs) can provide more
information such as an easier way of computing more gait parameters
(e.g. spatial gait parameters), here, we investigate the possibility of
using a single accelerometer based sensor for large scale patient
populations and inside a clinical environment while looking into
clinically relevant parameters. This will enable construction of a
reliable system in the future for continuous home-based monitoring
in which an accelerometer preferred over the use of gyroscopes due
to their unavoidable drift.

For pathological gait analysis, one major question is the accuracy
of the system outputs when there are large patient-specific gait
variations. In previous analysis schemes, gait patterns are normally
assessed in a controlled environment while patients walkedon an
instrumented treadmill. This also simplifies the analysis framework
as all movements are well controlled and repetitive. With the current
drive in assessing free-walking gait patterns to better reflect a patient’s
quality of movement and subject specific recovery process, the
analysis algorithms need to differentiate step-by-step variations and
adapt to subject-specific changes. The purpose of this paperis to
propose an adaptive method that is generalisable to different patient
groups and can improve the overall reliability of the gait analysis
system. This is practically important especially for patient populations
walking in a free walking environment where the recorded signals
may not show proper periodicity and clear distinction of right and left
gait events is difficult. As an example, acceleration signals from two
patients with knee replacement walking on a treadmill and a corridor
are shown in Fig. 1. In situations such as gait assessments outside the
gait laboratory, inherent reliability evaluation of the system outputs
is essential to the practical use of the system in clinical settings.

II. M ATERIALS AND METHODS

A. Hardware Setup
The e-AR sensor developed by Sensixa is used for this study. It

contains a 3D accelerometer (Analog Devices ADXL335), an 8051
processor with a 2.4-GHz transceiver (Nordic nRF24E1), a 2-MB
EEPROM (Atmel AT45DB161), and a 55-mAhr LiPolymer [26]. The
sensor is ergonomically designed and proven to be robust in capturing
gait related acceleration signals from either the left or right ear
[26], [27]. The sensor signal can be stored or wirelessly interrogated
on a tablet. In this study, a dedicated software environment(BSN
Analytics) running on Windows 8 has been used. It allows real-
time visualisation and processing of detailed gait signals, as well
as capturing individual patient information that can be interfaced to
electronic medical records. The platform also permits synchronised
video recording that can be used as a reference or ground truth for
subsequent data analysis. The system setup of the hardware platform
is shown in Fig. 2.The designed algorithm for data analysis in this
research has been implemented in MATLAB (The Mathworks Inc.)
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for off-line data processing. However, the designed algorithm is under
development to be integrated into the Tablet as an App for real-time
and online data processing.

For analysis of force-related gait asymmetry, a pair of pressure
insoles (PAROTEC, Paromed, Germany) has been used to provide
reference data for validating the e-AR sensor and associated analysis
algorithm. The PAROTEC system requires a controller that must be
placed around the waist [28] and each insole has a height of about
3mm and contains 24 microsensors mounted under a constrained
hydrocell. Both insoles are connected to the controller using two
cables. The PAROTEC system is used in this study to observe
left/right gait asymmetry from the e-AR sensor versus the ground
reaction forces (GRFs) given by the insoles.

B. Algorithm Design

The accuracies of gait events estimated from the e-AR sensorby
the proposed algorithms [12] [22] are assessed using an instrumented
treadmill [12] and pressure insoles for walking in a corridor [22]. For
initial detection of gait events, the method based on singular spectrum
analysis (SSA) and longest common subsequent algorithm (LCSS)
[12] with its extension [22] has been used. This gait event detection
algorithm is mainly based on the SSA algorithm in which the accel-
eration signals from different axes are converted into matrix forms
by using delayed versions of the input accelerations. Afterapplying
singular value decomposition (SVD) to the resulted matrices, selected
output subspaces from appropriate axes are used for variouspurposes
such as trend removal and extraction of dominant oscillation. Then
using all information from all axes, and also applying the LCSS
algorithm, left and right temporal gait events are obtained[12], [22].
The algorithm for estimating gait events is described in thefollowing
steps:
1) Set the embedding dimension asl,
s = [s0, ..., sn−1]←− acceleration signal,

2) Converts into trajectory matrixX =




s0
s1
...

sl−1

s1
s2
...
sl

. . .

. . .

. . .

. . .
. . .

sk−1

sk
...

sn−1




wherek = n− l + 1.
3) Apply SVD onto the X to find elementary matrices
Xi(
√
λi,ui,vi),

4) Select the indices ofi and group elementary matrices
∑

i
Xi for

trend removal and extraction of dominant oscillation (fromsum of
anterior-posterior (AP) and super-inferior (SI) axes),
5) Apply LCSS, SVD and peak detection techniques using all axes
and the information from the previous steps to estimate leftand right
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Fig. 1. (a) A patient with knee replacement walking on a treadmill. (b)
Another patient with knee replacement walking in a corridor. For walking
on a treadmill more distinctive signal patterns from the AP axis are usually
obtained because the walking condition is well controlled.By examination of
the right and left heel contacts (RHCs and LHCs), for a pathological patient
temporal and amplitude asymmetry of the gait signals can be observed from
the AP and SI axes which affect the periodicity of the gait signals. A useful
axis which can provide supplementary information in the estimation of gait
events is the ML axis and used in this study for re-analysis and post-processing
of the estimated gait events for their evaluation outside gait laboratories.

temporal gait events.
The major gait events considered in Jarchi et al. [12], [22] include
heel contact and toe-off events where toe-off events are estimated
after detection of heel contacts by applying LCSS algorithm. A better
precision in detecting heel contacts leads to more accurateresults for
estimation of toe-off events. Here, a reliability measure is introduced,
which is based on evaluating the correctness of estimated right and
left heel contacts. It is obtained by post-processing of acceleration
data and estimated heel contacts to find the cases where thereare
over-estimated or under-estimated heel contact events.

1) Detection of over-estimated gait events: The Medio-lateral
(ML) axis corresponds to left-right accelerationsand has been used
for left/right discrimination of gait events which are estimated mainly
based on the peaks from the SI and AP axes [29]. Based on this,
using the characteristics of the ML axis and the prior knowledge, it
is possible to re-evaluate the correctness of the estimatedright and left
gait events and find situations where there are over-estimated/under-
estimated gait events.

For detecting over-estimated gait events, the analysis is,then,
performed using the ML axis of the e-AR sensor. By segmentingthe
accelerations from the ML axis, similar gait patterns can beobserved
from right heel contacts (RHCs) to the left heel contacts (LHC). In
addition, similar gait patterns can be obtained by considering the ML
accelerations from LHCs to the RHCs. In Fig. 3, a sequence of gait
events is shown. The effect of asymmetrical walking patterns that
occur with most orthopaedic patients before or after surgery can be
detected from the difference in signal amplitudes of the AP and SI
axes during the RHCs and LHCs. This also affects the periodicity of
gait patterns. As long as asymmetrical walking is not causing postural
instability, the ML axis can produce the same patterns for cycles
segmented from right-to-left heel contacts and also same patterns
separately for cycles segmented from left-to-right heel contacts. By
considering one full cycle of the gait using the ML axis from one
RHC to the next one (see Fig. 3), it is possible to detect whether there
are extra estimated heel contacts in between right heel contacts that
lead to different segmentation results on the ML axis. The idea for
detection of extra estimated heel contacts is to construct aphase space
from right-to-left and also left-to-right heel contact segmentations of
the ML axis. By simultaneously under-sampling and matchingof each
two consecutive segmented cycles from right-to-left heel contacts, we
can form a matrix of two vectors. One vector is the under-sampled

Fig. 2. (a) A patient inside the clinic signing the consent form to participate
in the e-AR experiment. (b) The e-AR sensor worn by a male patient. (c)
The sensor and the tablet used for data collection. (d) Synchronised e-AR
accelerations and video frames given by the tablet’s camerafor a patient
walking in the corridor. The interface of the implemented software to record
the e-AR accelerations integrated with video frames calledBSNAnalytics is
shown.
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cycle of the ML axis from the first right-to-left heel contact. The
other vector is negative of the corresponding under-sampled cycle of
the ML axis for the next right-to-left contact (seeMi in Algorithm
1). Inclusion of the negative sign is helpful to analyse two types of
segmentations (right-to-left and left-to-right) which will be shown in
the following. To perform under-sampling and point matching, a delay
of τ and τ̃ are assigned by considering the maximum length of two
consecutive gait cycles from right-to-left heel contacts.Based on this,
each two consecutive right-to-left heel contacts form theMi matrix.
All the matrices considering right-to-left segmentationsare combined
to form the M matrix. Then, Eigen-decomposition is applied to the
covariance matrix of M. After representingM as a2 × 2 matrix
with two vectors constructing each row, its covariance willthen be
a 2 × 2 matrix that each of its diagonal elements is equal to 1 due
to separate normalisation of each row of theM matrix. The sum
of eigenvalues will be equal to 2 (i.e. the trace of the covariance
of M). In the case of perfect segmentation, the eigenvector with

the larger eigenvalue must be1√
(2)

[
1
−1

]
where its eigenvalueλ is

equal to 2 that make the other eigenvalue to be equal to 0. However,
considering the gait cycles, in reality reaching an eigenvalue of 2
is practically not possible. To obtain an accurate segmentation, the
resulted eigenvector with larger eigenvalue must be in the direction of

1√
(2)

[
1
−1

]
and its eigenvalue should have a reasonably high value of

close to 2. In a similar manner, the ML axis is segmented from all left-
to-right heel contacts (seeNi andN matrices in Algorithm 1) and the
corresponding Eigen-decomposition is performed. A threshold can
be used to assign a low/medium/high/very-high level of confidence
based on the direction of resulted eigenvectors and their eigenvalues
as explained above (seeλ1, v, λ̃1, ṽ parameters in the algorithm in
Algorithm 1). The complete procedure for detection of over-estimated
heel contacts and measuring a confidence level is shown in the
algorithm in Algorithm 1. In this algorithm,rhc and lhc represent
indices for right and left heel contacts respectively. The parametersn
andm control under-sampling of the gait cycles. For this application
we set these parameters to one. By increasingn andm, fewer samples
are obtained for constructing the phase space. Regardless of the
obtained values for the eigenvalues if any of the resulted eigenvector
is not in the expected direction (ṽ < 1 or v < 1), the reliability will
be set to low. Then, in the case of having (ṽ = 1 andv = 1),
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Fig. 3. (a) Raw accelerations and detected RHCs and LHCs on the ML
axis. (b) One segment of the data from (a) after trend removaland detection
of RHCs and LHCs. The blue arrows with labels of base and test show the
parts of the signal (right-to-right heel contacts) used fordetection of under-
estimated gait events (see Algorithm 2). (c) A sequence of gait events matched
to the ML axis in (b). This plot shows how the vectors inMi andNi matrices
are created to detect over-estimated gait events as summarized in Algorithm
1.

Pseudo-codeAlgorithm 1: Detection of over-estimated heel contacts
y ← acceleration of the ML axis
(rhc, lhc)← apply gait analysis algorithm [11,21] get right/left heel-contact
for i = 1 : q − 2, q is the maximum number of right heel contacts
−p = min(lhc(i) − rhc(i), lhc(i + 1) − rhc(i + 1))

−p1 = min(rhc(i+ 1) − lhc(i), rhc(i+ 2) − lhc(i+ 1))

−τ = ⌊n lhc(i)−rhc(i)
p

⌋, τ̃ = ⌊n lhc(i+1)−rhc(i+1))
p

⌋

−τ1 = ⌊m
rhc(i+1)−lhc(i)

p1
⌋, τ̃1 = ⌊m

rhc(i+2)−lhc(i+1)
p1

⌋

−k = ⌊p/n⌋, k1 = ⌊p1/m⌋

−Mi=

[
y(rhc(i) + τ) y(rhc(i) + 2τ) ... y(rhc(i) + kτ)

−y(rhc(i + 1) + τ̃) −y(rhc(i+ 1) + 2τ̃) ... −y(rhc(i + 1) + kτ̃)

]

−Ni=

[
y(lhc(i) + τ1) y(lhc(i) + 2τ1) ... y(lhc(i) + k1τ1)

y(lhc(i+ 1) + τ̃1) y(lhc(i + 1) + 2τ̃1) ... y(lhc(i + 1) + k1 τ̃1)

]

M = [M1...Mi...], representM asM = [m1m2]T

N = [N1...Ni...], representN asN = [n1n2]T

mean centering and normalization ofm1,m2,n1,n2 to the unit
vectorsm̃1, m̃2, ñ1, ñ2, then reconstructM andN:
M = [m̃1m̃2]T

N = [ñ1ñ2]
T

[U, λ] = eigdec(MMT ), [Ũ, λ̃] = eigdec(NNT ) eigendecomposition
to get eigenvectors with sorted eigenvalues in descending order:
U = [u1u2], λ = (λ1, λ2), whereλ1 ≥ λ2, λ1 + λ2 = 2

Ũ = [ũ1ũ2], λ̃ = (λ̃1, λ̃2), whereλ̃1 ≥ λ̃2, λ̃1 + λ̃2 = 2

v = |uT
1 [1/

√
(2) − 1/

√
(2)]T |

ṽ = |ũT
1 [1/

√
(2) 1/

√
(2)]T |

-Estimate the reliability measure based onλ1,v,λ̃1,ṽ

a threshold on each of the resulted eigenvalue will determine the
estimated reliability. The bigger the eigenvalues will lead to a higher
accuracy. In practice, a low reliability value is mostly related to the
extra peaks detected using the dominant oscillation from the sum of
AP and SI axes [12], [22]. Therefore, it is possible to discard most or
all of extra peaks by using simple thresholding. All peaks detected on
dominant oscillation of AP [12] and sum of AP and SI axes [22] with
negative values (local minima with negative values) are selected as
potential heel contacts. Wrongly detected heel contacts, which often
occur for pathological gaits, are local minima with negative values
that are close to zero. For removing those points, we set a threshold
to be the average of all local minima.

2) Detection of under-estimated gait events: Detection of
under-estimated gait events is difficult due to variations in gait speed
and cadence across subjects. For detection of under-estimated gait
events, the gait cycles from the ML axis are first interpolated to
a maximum length considering all the gait cycles. Then each gait
cycle from one RHC to the next is separated and its trajectory
matrix is created to form a base trajectory matrix. This trajectory
matrix is constructed using the embedding dimension and by delayed
versions of the input segmented cycle of ML axis [30], [31]. The
SVD is applied to the trajectory matrix of the base and the first k
columns of the U matrix are selected to form the subspace of the
base. The next consecutive cycle from right heel contacts isused
to create the trajectory matrix of the test. The trajectory matrix of
the test is projected to the subspace of the base. The distance of
columns of the trajectory matrix of the test to the subspace spanned
by the base is calculated by the relevant projection (see Algorithm
2). The under-estimated gait events are detected in places where the
estimated distance is bigger than a threshold. The basic idea behind
the proposed algorithm is based on a general change-point detection
algorithm [32], [33] using SSA algorithm. The proposed algorithm
for detection of segments related to under-estimated gait events is
provided in Algorithm 2. The objective is to detect variations in
right-to-right heel contacts and detect fundamental changes from one
right-to-right heel contact to the next one. In the case of detecting
such fundamental change, a segment of the data related to theunder-
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Pseudo-codeAlgorithm 2: Detection of under-estimated heel contacts
p = max

i=1,...,n−1
(|rhc(i) − lhc(i)|, |lhc(i) − rhc(i+ 1)|),

n = number of heel contacts
clear ỹ, setL as embedding dimension
for i=1:n − 1
−s = y(rhc(i) : lhc(i))
−v = interpolates to the lengthp
−s̃ = y(lhc(i) : rhc(i+ 1))
−ṽ = interpolates̃ to the lengthp
−ỹ = [ỹ,v, ṽ]
−adjust the heel contact index after interpolation:lhc(i), rhc(i+ 1)

for i=1:n − 2
−b = ỹ(rhc(i) : rhc(i+ 1)) create base
−B = trajectory(b, L) create trajectory matrix of base
−[U,S,V] = svd(B)
−U = [u1,u2, ..,uk] selectk columns
−t = ỹ(rhc(i + 1) : rhc(i+ 2)) create test
−T = trajectory(t, L) create trajectory matrix of base
−calculate sum of the distance of columns of trajectory of
test (T = [t1, t2, ...tj, ...]) to the subspace spanned by the base:

d(i) =
∑
j

(tTj tj − ((tTj U)UT )tj)

normalised
-Detect under-estimated heel contacts that d value exceedsthan a threshold

estimated gait events can be found. Then the estimation of gait
parameters will be performed separately for the segments which do
not contain under-estimated gait events. One interesting application of
the change-point detection algorithm using SSA will be identification
of freezing of the gait in PD patients which can be explored infuture
studies.

III. R ESULTS

A. Validation of gait asymmetry using PAROTEC
For monitoring Orthopaedic patients, the gait asymmetry interms

of both timing and the amount of force is of great importance.Postop-
erative orthopaedic patients usually put more force into the uninjured
foot. However, due to other factors, some patients (especially elderly
patients and patients with bilateral knee replacement) mayexert more
force into the injured foot. Therefore, discrimination of the amount
of left or right forces exerted is an important measurement.If the
right and left heel contacts are estimated correctly, it is possible
to find out the larger gait asymmetry towards left/right foot. To
demonstrate the ability of the proposed algorithm for gait asymmetry
detection using the e-AR sensor, a healthy subject equippedwith
e-AR and PAROTEC systems was asked to walk in a corridor
and exert a larger force towards the right foot. Another healthy
subject was asked to walk and put more weight onto the left foot.
Manual synchronization of the e-AR and PAROTEC systems has been
performed by two big heel contacts at the beginning and at theend of
the experiment. Synchronized recordings of the pressure insoles and
e-AR accelerations were analysed to differentiate the leftand right
gait asymmetry level of the subjects. The results are shown in Fig. 4
where both accelerations, left and right GRFs given by the pressure
sensors inside the left and right shoes are presented. The results for
the first subject who exerted larger force towards the right foot are
shown in Fig. 4 (a-c). It can be seen from e-AR accelerations that
there is a larger peak at RHCs. Also, the sum of GRFs for the six
sensors at the heel side of the insoles is shown in Fig. 4 (c) which
shows larger forces for the right foot insole. The results for the second
subject are shown in Fig. 4(d-f). In Fig. 4(e) the gait asymmetry as
the larger amplitudes for the LHCs can be seen from SI and AP axes
where the asymmetry seems to be more distinctive from the AP axis.
Therefore, the gait asymmetry may not have effects only on SIaxis.
In addition, the gait asymmetry was visible for the second subject by
summation of all the pressure sensors as shown in Fig. 4(f). For each
gait cycle, we calculated the e-AR gait asymmetry level as the ratio
of the acceleration magnitude at detected RHC to the LHC. While
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Fig. 4. (a) Raw e-AR accelerations for healthy subject 1 withlarger force
towards right foot. (b) Trend removed accelerations and detected RHCs and
LHCs. (c) Sum of GRFs from six sensors at the heel side of the right and left
insoles. (d) Raw e-AR accelerations for healthy subject 2 with larger force
towards left foot. (e) Trend removed accelerations and detected RHCs and
LHCs. (f) Sum of GRFs from 24 sensors of the right and left insoles.

for the PAROTEC system, it is the ratio of sum of right GRFs to
the left GRFs following the touch of the foot by the ground. The
results of gait asymmetry level for each gait cycle are shownin Fig.
5. In the top and bottom rows, the asymmetry is evaluated based on
the SI axis and a combination of the SI and AP axes respectively.
The mean square errors between estimated asymmetry from e-AR
and PAROTEC systems were calculated and less error is observed
by considering the asymmetry using the sum of the AP and SI axes.
For the first subject, the mean square errors are 0.2766 for the SI axis
and 0.1727 for the sum of AP and SI axes. For the second subject,
the mean square errors are 0.1042 for the SI axis and 0.0837 for the
sum of AP and SI axes. The estimations seem to be slightly better
for using both SI and AP axes.
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Fig. 5. Top row: Estimated asymmetry level using SI axis for healthy
subjects 1 and 2.Bottom row: Estimated asymmetry level using both SI and
AP axes for healthy subjects 1 and 2.

Fig. 6. (a) Recorded raw acceleration for a patient prior to right knee surgery.
(b) Trend removed accelerations. (c) Detected RHCs and LHCsfor the first
trial. (d) Detected RHCs and LHCs for the second trial. (e) Sum of GRFs
from six sensor at the heel side of the left and right sensors for the first
trial. (f) Sum of GRFs from six sensor at the heel side of the left and right
sensors for the second trial. (g) The estimated asymmetry level from e-AR
and Parotec systems for each gait cycle. The first 9 cycles arerelated to the
first trial and the second 10 cycles are related to the second trial.

To evaluate the accuracy of the estimated asymmetry level from e-
AR sensor using Parotec system as the reference platform, 8 patients
were recruited in the study. The patients were equipped withboth e-
AR and Parotec systems and asked to walk along 10m long corridor of
the fracture clinic at Charing Cross Hospital. Each patientperformed
the experiment in 2 trials. The results of the estimated asymmetry
level (from sum of SI and SP axes) in each gait cycle for a selected
patient prior to his surgery for right knee are shown in Fig. 6. The
results of estimation for all eight patients are plotted in Fig. 7. In
Fig. 7(a) the Bland-Altman plot is shown for the estimation from
e-AR and Parotec systems. The mean difference of estimations is
obtained as -0.0195 and standard deviation as 0.3192. The mean
absolute error is obtained as 0.2407 and the standard deviation as
0.2093. The asymmetry level should be averaged for each patient
to give an overall symmetry index. In Fig. 7(b,c) The averageof
the asymmetry level from e-AR and Parotec systems for each patient
has been compared and shown. Based on the results, the e-AR sensor
has been able to accurately discriminate the larger force for the left
and right foot for all the patient in which the mean squared error
of 0.0446 has been obtained for all the subjects. By increasing the
number of trials we expect less error in the overall estimation of
asymmetry level using the e-AR sensor.
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Fig. 7. (a) Bland–Altman plot for the estimated asymmetry level at each
gait cycle from 8 orthopaedic patients using e-AR and Parotec systems. (b)
For each patient the estimated asymmetry levels for all gaitcycles using e-
AR sensor versus Parotec system are shown. The horizontal axis is related
to the index of each patient which is followed by (e) and (p) representing
the estimation from e-AR and Parotec systems respectively.The average
asymmetry level for all gait cycles is calculated for e-AR and Parotec systems
separately (redlines) and are shown in numbers for each patient. (c) The
average estimated asymmetry level for the patients from the(b) plot.
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Fig. 8. Analysis of gait patterns from ML axis in a phase space. Blue and red colors are related to the right-to-left segmentations (M matrix) and left-to-right
segmentations (N matrix) respectively. The straight lines (darker blue and red lines) demonstrate the projected patterns on the direction of resulted eigenvectors
(with bigger eigenvalue for each decomposition i.e. right-to-left and left-to-right). For each plot the values of the parametersλ1,v,λ̃1,ṽ in Algorithm 1 are
shown. A value of the zero for̃v or v demonstrate the wrong partitioning of the phase space for left/right segmentations (see (a) and (b)). (a) A reliabilityof
low is converted to high. (b)-(d) A reliability of low is converted to medium. (e) The reliability of low has not been changed for new estimated gait events.
This means the segment of the data should be changed or the experiment must be repeated. (f) A reliability of very high which shows large amount of the
variances along the desired directions. (f) A reliability of high has been obtained.

B. Assessment on patients with Anterior Cruciate Ligament
(ACL) reconstruction or knee replacement

Data from 23 ACL patients and 31 patients with unilateral, bilateral
and total knee replacement was collected for analysis. These patients
were assessed inside the fracture clinic of the Charing Cross Hospital,
London, UK. Based on the protocol, the patients while wearing
only the e-AR sensor were asked to walk along two corridors of
the clinic with a total of 40m length at their selected speed.We
have used mixture of patients having knee surgery either forACL
reconstruction and knee replacement to enrich and enhance our
dataset containing acceleration signals for monitoring their recovery
and gait performance following the surgery.

1) Detection of over-estimated gait events: For 50 patients,
a window of fixed size of 10000 samples was selected for the gait
analysis algorithm. For the remaining 4 patients smaller window size
was selected in which the minimum segment size was 3000 samples
due to a shorter walking time by these patients. The values ofthe
parametersλ1, v, λ̃1, ṽ as the results of applying the algorithm in
Algorithm 1, are shown for 7 selected patients in each plot ofFig. 8.
For 4 patients (Fig. 8 (a, b, c and d)), a reliability of low is converted
to medium/high after setting the threshold for peak detection from
dominant oscillation to discard extra peaks. For one patient (Fig.
8(e)) the reliability of low is unchanged after trying to remove extra
peaks from dominant oscillation. A reliability of high and very high
is depicted in Fig. 8(f, g). It can be seen from these plots that λ̃1 and
λ1 are relatively high andλ1 is very close to 2 for Fig. 8(f)). For
Fig. 8(a), the eigenvectors for both decompositions are in the same
directions, this means misplacement of a number of LHCs withRHCs
or having extra RHCs between actual RHCs. As another example, in
Fig. 8(b), the directions of the resulted eigenvectors demonstrate the
misplacement of RHCs and LHCs.

2) Detection of under-estimated gait events: Examples for
detecting segments of the data related to missing gait events or under-
estimated gait events using the proposed algorithm in Algorithm 2
are shown in Figs. (9-10). By analysing the described dataset, the
threshold value on the vector d in algorithm in Algorithm 2 was
empirically set to 0.38. In Fig. 9(a) and Fig. 9(d), two and three
segments of the data related to missing gait events are detected by

analysing the ML axis, respectively. In Fig. 10(a-d), one segment
of the missing gait events is visible while the AP axis shows noisy
accelerations. After detecting under-estimated gait events, the gait
parameters will be estimated based on the parts of the accelerations
which do not contain missing gait events. In Fig. 11, the reliability
estimates for a total of 54 ACL and knee replacement patientsare
shown. Based on the values ofλ1 and λ̃1, a rough partitioning of
the reliability estimates are performed. Based on this, theresults of
the estimations for 35 patients are found to be high. Among these
patients, one individual with a reliability of high had initially a
reliability of low (see Fig. 8(a)). For 14 patients, the reliability of
medium is obtained and 5 of them had previously a reliabilityof low
in estimations (3 patients’ gait patterns shown in phase space Fig. 8(b-
d)). Finally for 5 subjects, a reliability of low has remained unchanged
for the selected segment. By cross-examination of the synchronised
videos for all the patients with reliability of high or very-high, there
are accurate estimations for the right and left heel contacts with no
apparent over-estimation or under-estimation problem. InTable II,
the reliability measure with medium and low values are evaluated
in terms of final assessment of reliability measurements. Itcan be
seen from Table II that for all patients with a reliability oflow
converted to medium, there are no over-estimated gait events by
individual analysis of synchronised images and detected gait events
on the accelerations; however, there are under-estimated gait events
that were correctly detected by the algorithm in Algorithm 2. For
subjects with reliability of low there are underestimationproblems
detected accurately only for patient #19 (see Table II). Forall the
patients with medium reliability, there is no over-estimation problem.
However, for four of them, the under-estimation problem remains. In
addition, for all four patients with a borderline reliability of medium
close to high (see Fig. 11), there is no over-estimation or under-
estimation problem. As shown in Table II, 17 out of 25 cases with
under-estimation or over-estimation problem are correctly detected
by the algorithm. Although quantification of detailed accuracies of
gait events is not of interest in this study, overall, 68% improvement
is obtained for correctly locating the left and right heel contacts from
patients’ populations for gait assessments in a clinical environment.
For 5 subjects with reliability of low, two of them (#19 and #2) were
walking with a stick (both patients were pre-operative). The other
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Fig. 9. Two examples for detection of under-estimated gait events. The
ML accelerations and the estimated gait events plus the segments relating to
missing gait events are shown in (a) and(d). The interpolated accelerations
are shown in (b) and(e). The values of the vector ofd in Algorithm 2 are
shown in (c) and (f). The values ind vector which exceeds than 0.38 for are
used to select segments of missing gait events.

three patients are:
- #14 an elderly walking with a low speed (having short steps)with
a bilateral knee replacement 2 years post surgery.
- #34 an elderly 6-weeks post-operative.
- #42 a patient pre-operative of knee replacement surgery.
It is very likely that walking with a stick and taking short steps
(common among elderly population) increases the chance of getting
a reliability of low. More improvements on the analysis algorithms
can be performed in future studies.

C. Monitoring patients with lower limb trauma
To assess the generalizability of the algorithm for longitudinal

analysis of patients over a long period of the recovery process, data
from 16 patients following lower limb reconstruction was used. These
data was acquired for one of our previous studies already published
in [5] for the purpose of psychometric evaluation of a sensor-
based mobility score.Based on the protocol the patients performed
a 6-Minute walk along the corridor, Timed Up & Go and Timed
Up & down stairs. In this study we have used the data regarding
walking along the corridor.Eight patients performed the experiment
in the clinic for all sessions exactly at 3, 6, 9 and 12 months post-
operatively. The other eight patients attended one sessionor more, but
not all required sessions. Three gait parameters includingstep time
asymmetry (ratio of the right-to-left step time), amplitude asymmetry
(ratio of the magnitude of acceleration using sum of AP and SI
axes at RHC to the corresponding magnitude at LHC) and right
stride time (timing from one RHC to the next one) were selected
to evaluate monitoring of these patients following surgery. Since the
perfect symmetry is reflected as one, the asymmetry values inTable
III are expressed as the difference between one and the calculated
asymmetry ratio. The values of these gait parameters for allsubjects
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estimated gait events which is detected accurately. (a) Rawaccelerations of
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estimated gait events.
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Fig. 11. Rough Partitioning of the reliability estimates for 54 ACL and
knee replacement patients based onλ1 and λ̃1 values (very high(̃λ1 ≥
1.8 and λ1 ≥ 1.9), high (̃λ1 ≥ 1.5 and λ1 ≥ 1.5), medium(̃λ1 ≥
1.3 and λ1 ≥ 1.3 and λ̃1 + λ1 ≥ 2.7)). In the case of detecting over-
estimation problem and then re-applying the gait analysis platform by setting
a threshold on the peaks obtained from dominant oscillation, v = 1, and
v = 1 were obtained after recall of the algorithm in Algorithm 1. Therefore,
for all patients, all final valuesv and ṽ are found asv = 1 and ṽ = 1. 64.8%
of the estimates have reliability of high or very high.

at different sessions considering gait segments are provided in Table
III. Entries with NaN values represent a missing session. InTable III,
for each subject, a decrease in gait parameters with an increase in time
after surgery is highlighted in blue colour. Considering eight subjects
who performed the whole experiment throughout the year and the
extracted features, separate clusters of patterns were found for 3
months and 1 year after surgery. However, there were overlaps for the
patterns relating to 6 and 9 months post-operatively. By integrating
more features from various estimated gait parameters, separation of
all stages of the recovery can be investigated in future studies. In
general, a decrease in right stride time (increase in speed of walking),
step time asymmetry and amplitude asymmetry are important clinical
features for observing recovery of the patients.
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TABLE I
A NUMBER OF STUDIES COVERING DIFFERENT WEARABLE SENSING PLATFORMS AND PATIENT POPULATIONS

Reference Sensor Subjects Study protocol Clinical Application
Jarchi et al.
[12,22]
Atallah et al.
[23,24]
Kwasnicki et al.
[5]

single
-3D accelerometer worn
on the ear (e-AR)

- healthy subjects[12,22,23,24]
- patients after hip or knee
replacement surgery and patients
with knee Osteoarthritis (OA) [24]
- patients following lower limb
trauma reconstruction [5]

- treadmill walking
[12,23,24]
- walking in a corridor
[5,22]

- detection of gait asymmetry
[22,24]
- psychometric evaluation of a
sensor-based mobility score called
HMS [5]

Bamberget al.
[8]

multiple
- two dual axis
accelerometer
- three gyroscopes placed
at the back of shoes

- healthy subjects
- PD patients

- walking at self-selected
natural Pace expressed
”free gait” outside
laboratory

validation of GaitShoe system
using healthy and PD patients

Selleset al. [13]

multiple
- two uniaxial
accelerometers on the
shank

- healthy subjects
- unilateral transtibial amputees

- walking on straight
track with a Kistler force
platform

validation of gait parameters using
controls and transtibial amputees

Turcot et al. [14]

multiple
- two triaxial
accelerometer
- two triaxial gyroscope

- asymptomatic subjects
- patients with knee OA

- walking on straight
track with a Kistler force
platform

discrimination between
asymptomatic subjects and medial
knee OA patients

Yoneyamaet al.
[20,21]
Sejdic et al. [16]

single
- trunk mounted
accelerometer

- healthy subjects
- PD patients [20,21]
- PD and peripheral neuropathy
patients [16]

- walking on level ground
[20,21]
- treadmill walking [16]

- accelerometry-based evaluation
and assessment of daily gait
characteristics [20,21]
- comparison of accelerometer
features between healthy subjects
and patients groups [16]

Huisingaet
al.[25]

multiple
- 3D accelerometers on
lower and upper trunk

- healthy subjects
- patients with multiple sclerosis
(MS)

- walking on a foot
hallway

- evaluating gait variability
between MS patients and healthy
controls

IV. D ISCUSSION ANDCONCLUSIONS

For developing a gait analysis platform to be used for everyday
clinical utilisation, it is essential to give a confidence level to the
output estimations. The presented work is the first study to define a
direct reliability measure as a feedback for the gait analysis system
based on prior knowledge of acceleration characteristics to perform
re-analysis of estimated gait events for the data recorded outside
the gait laboratory. Such reliability measure can be used not only
internally for improving the overall performance and increasing the
reliability of subsequently derived gait parameters, but it can also give
the user a confidence level for the outputs, suggest a complexgait,
repeating the experiment or changing the selected gait segment. In
practice, the gait segment often contains noisy acceleration data due
to a number of factors. Accurate gait event segmentation is crucial
to give clinicians and patients reliable information.

Clinically, some gait parameters can be very important during the
recovery of orthopaedic patients. For example, the amount of force
exerted on each foot can be used by clinicians and physiotherapists
to choose an appropriate treatment and walking aid for the patients.
As an example, when analysing the e-AR data of a female patient in
this study with left unilateral knee replacement, the gait asymmetry
was found to be as a greater towards the left foot. After reviewing her
records with the clinician, it was found that the patient hadpreviously
right hip replacement. In some cases, the patients were unaware of
the imbalance of the forces exerted on their feet. It has beenobserved
that some patients with a large temporal asymmetry in step time were
likely to put more weight onto the injured foot.

For some patients, especially the older patients with single-sided
total knee replacement, there was a risk that the patient will become
a candidate for bilateral knee replacement due to excessiveforce
exerted on the native knee. Therefore, it is important to develop a
gait monitoring system with a focus on gait asymmetry parameters,
ideally in free-living environment over a long period of time. In
this research, subtle changes in e-AR accelerations were detected
by employing appropriate signal processing techniques.The main
advantage of e-AR sensor is in its bio-inspired designed, consistent

sensor placement and patient compliance. For example, it does not
matter whether the sensor has been worn on the left ear or right
ear and head-movement artifacts can be easily removed by applying
signal processing techniques. During the past decade, various sensor
platforms such as force-plates, pressure insoles, camera-based system
and body worn sensor such as inertial measurement units havebeen
developed for gait analysis, the usage of the such systems inside the
clinic have not yet been established. However, the use of a light-
weight sensor with consistent sensor placement in this study has
shown the potential of the sensor and the analysis platform for gait
assessment inside the clinic and a large scale patient data analysis.
In addition the memory storage and battery life of the sensorwhich
includes an accelerometer provides a good way of using the sensor
for continuous home-based monitoring that is preferable tothe use of
some wearable sensors such as gyroscopes which result in significant
drift over an hour of measurements.

By validating the proposed algorithm in [22] on a large number
of datasets of orthopaedic patients’ data, it was found thatthere
are more cases with over-estimation problem (comparing to under-
estimation problem) which can potentially be eliminated byapplying
the proposed algorithm. In this research, clinically relevant parame-
ters are investigated for 16 patients after lower limb reconstruction.
These parameters are directly related to heel contact events. For
certain patient groups, toe-off events are also of great importance.
Although the reliability evaluation proposed in this paperis based on
considering heel contacts only, by having highly accurate estimated
heel contacts more accurate estimates will be obtained for toe-
off events. By improving the gait analysis platform and producing
reliable outputs, it is possible to use all derived gait parameters
such as swing, stance and single or double support for potential
applications in future studies.
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TABLE III
CHANGES IN THREE DERIVED GAIT PARAMETERS OF16 PATIENTS WITH INCREASE IN TIME AFTER SURGERY

right stride time (seconds) amplitude asymmetry step time asymmetry
months after surgery months after surgery months after surgery

3 6 9 12 3 6 9 12 3 6 9 12
1 1.4417 1.1025 1.1800 1.0827 0.3151 0.3208 0.2237 0.1376 0.5374 0.0596 0.0401 0.0299
2 1.3450 1.1217 1.0891 1.1300 0.1422 0.0906 0.0210 0.0637 0.1988 0.0472 0.0357 0.0539
3 1.4556 1.1900 1.2367 1.1460 0.3923 0.1978 0.3991 0.1693 0.1261 0.1252 0.0655 0.0294
4 1.2907 1.0713 1.0827 1.0627 0.1132 0.0486 0.2456 0.3218 0.3050 0.0865 0.0271 0.0758
5 1.2259 1.0344 1.0162 1.0180 0.1714 0.8340 0.1424 0.0897 0.0375 0.0117 0.0071 0.0052
6 1.2729 1.0420 1.0000 1.0688 0.0611 0.0064 0.0138 0.0185 0.1255 0.0195 0.0051 0.0071
7 1.3629 1.1230 1.1444 1.1356 0.2003 0.1993 0.0601 0.0332 0.2211 0.0128 0.0277 0.0070
8 1.1910 1.1440 1.1300 1.0350 0.2787 0.1600 0.3734 0.1715 0.0575 0.0391 0.0115 0.0425
9 1.2060 1.2478 1.2478 NaN 0.1259 0.1430 0.1430 NaN 0.1814 0.2782 0.2782 NaN
10 1.4367 1.2150 1.2900 NaN 0.1949 0.0459 0.1794 NaN 0.0236 0.0185 0.0305 NaN
11 1.3475 1.1400 1.0867 NaN 0.4297 0.2094 0.1639 NaN 0.0313 0.1048 0.0507 NaN
12 NaN 1.2915 1.4654 1.1563 NaN 0.0039 0.0060 0.0251 NaN 0.0264 0.1426 0.0696
13 NaN 1.5667 1.3275 1.2338 NaN 0.3890 0.0816 0.0997 NaN 0.0329 0.2792 0.2348
14 1.4360 1.2583 NaN NaN 2.0981 0.8789 NaN NaN 0.1957 0.0671 NaN NaN
15 1.4180 NaN 1.0614 NaN 0.3388 NaN 0.4824 NaN 0.0773 NaN 0.2949 NaN
16 1.0300 NaN NaN NaN 0.2591 NaN NaN NaN 0.1515 NaN NaN NaN

TABLE II
ANALYSIS OF ESTIMATIONS FOR RELIABILITY OF LOW AND MEDIUM. X
MEANS THERE IS NOT ANY OVER-ESTIMATION OR UNDER-ESTIMATION

PROBLEM. X INDICATES AN UNSOLVED UNDER-ESTIMATION OR
OVER-ESTIMATION PROBLEM.X −→ X INDICATES ELIMINATION OF

UNDER-ESTIMATION OR OVER-ESTIMATION PROBLEM.

Subject ID Reliability Over-estimation Under-estimation
#15 medium X X

#20 medium X X

#38 medium X X

#52 medium X X

#27 medium X X → X

#9 medium X X

#14 medium X X

#49 medium X X

#51 medium X X

#6 low→medium X → X X → X

#16 low→medium X → X X → X

#29 low→medium X → X X → X

#36 low→medium X → X X → X

#44 low→medium X → X X → X

#19 low→low X → X X → X

#2 low→low X → X X

#14 low→low X → X X

#34 low→low X → X X

#42 low→low X → X X
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