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Abstract—Objective assessment of detailed gait patterns af- patients with Parkinson’s disease (PD) [20], [21]. Thus &arange

ter orthopaedic surgery is important for post-surgical follow-

of studies have been carried out by using different wearsdtesors

up and rehabilitation. The purpose of this paper is to assess for gait analysis. These are listed in Table | ( [5], [8], [2&4],

the use of a single ear-worn sensor for clinical gait analysi
A reliability measure is devised for indicating the confiderce

[16], [20]-[25]). For example, the ear-worn Activity Reaotion (e-
AR) sensor has been used in both experimental and clinitd@hge

level of the estimated gait events, allowing it to be used in [5], [12], [22]-{25]. The sensor includes an accelerometer and the

free-walking environment and facilitating clinical assesment
of orthopaedic patients after surgery. Patient groups prio to
or following anterior cruciate ligament (ACL) reconstruction

major advantage of the sensor is in its bio-inspired desigd a
ease of consistence sensor placematihough some other wearable
sensors such as Inertial Measurement Units (IMUs) can geowiore

and knee replacement were recruited to assess the proposedinformation such as an easier way of computing more gaitpeters

method. The ability of the sensor for detailed longitudinal
analysis is demonstrated with a group of patients after lowe
limb reconstruction by considering parameters such as temgral
and force-related gait asymmetry derived from gait eventsThe
results suggest that the ear-worn sensor can be used for olojave
gait assessments of orthopaedic patients without the requament
and expense of a formal gait analysis laboratory. It signifiantly
simplifies the monitoring protocol and opens the possibilies for
home-based remote patient-assessment.

Index Terms—gait, rehabilitation, Singular Spectrum Analysis
(SSA), e-AR (ear-worn activity recognition) sensor.

I. INTRODUCTION

(e.g. spatial gait parameters), here, we investigate tissilpitity of
using a single accelerometer based sensor for large scékntpa
populations and inside a clinical environment while logkimto
clinically relevant parameters. This will enable constiarc of a
reliable system in the future for continuous home-baseditoing

in which an accelerometer preferred over the use of gyrescape
to their unavoidable drift.

For pathological gait analysis, one major question is treu@cy
of the system outputs when there are large patient-spec#it g
variations. In previous analysis schemes, gait patterasnarmally
assessed in a controlled environment while patients watkedn
instrumented treadmill. This also simplifies the analys&arfework
as all movements are well controlled and repetitive. With ¢hrrent
drive in assessing free-walking gait patterns to betteecefl patient’s
quality of movement and subject specific recovery proceks,
analysis algorithms need to differentiate step-by-stejatians and

—

Gait analysis as a tool in orthopaedic surgery ranges froatapt to subject-specific changes. The purpose of this paptr

simple observation of gait in a clinical setting to soplaiated
tracking in dedicated gait laboratories. It has been usédtih preop-
erative and postoperative settings, playing an incresingportant
role in preoperative planning and objective assessmentraftional
outcomes [1] [2]. Quantitative gait analysis is now an indg
part of common surgical workflows including joint arthrogta

propose an adaptive method that is generalisable to differatient
groups and can improve the overall reliability of the gaitlgsis
system. This is practically important especially for patipopulations
walking in a free walking environment where the recordechaig
may not show proper periodicity and clear distinction ofitignd left
gait events is difficult. As an example, acceleration sigrfiadm two

correction osteotomiesndsurgeries for children with Cerebral Palsypatients with knee replacement walking on a treadmill andraador
(CP) [3] [4]. It has been used foevaluating recovery of patients are shown in Fig. 1. In situations such as gait assessmetsisi@the
following major lower limb trauma [5]and reducing the risk of gait laboratory, inherent reliability evaluation of thessgm outputs
injuries [6]. Advances in sensing technologies have also enabled iBeessential to the practical use of the system in clinictirms.
development of miniaturised sensors, either wearable eitipped

in the ambient environment, for providing real-time infation that 1
can be wirelessly interrogated [7]-[15]. One common apghtot

clinical gait analysis is to use multiple optical or ineltgensors A. Hardware Setup

affixed to the patient body for detailed bio-motion and gaialgsis. The e-AR sensor developed by Sensixa is used for this sttdy.
The complexity of sensor pla_cement and issues related tsisﬂen; ontains a 3D accelerometer (Analog Devices ADXL335), ah180
sensor placement have limited these methods only to dedlcagrocessor with a 2.4-GHz transceiver (Nordic nRF24E1)’ M-
laboratory settings, requiring the support of a highlyrteal technical £epRoM (Atmel AT45DB161), and a 55-mAhr LiPolymer [26]. The
team. The possibility of using a single sensor for detail@d g qonq0r is ergonomically designed and proven to be robustituting
assessment has mary advantages, particularly in tefm?m of gait related acceleration signals from either the left ghtiear
clinical adoption, patient compliance, and the possipitif remote [26], [27]. The sensor signal can be stored or wirelesslgriogated
monitoring o_f patignts in home enyironment. This has beeeduson éltablet. In this study, a dedicated software environnfB&N
for quantitative gait pattern analysis [16]-[19] and assemt of \navtics) running on Windows 8 has been used. It allows-real
time visualisation and processing of detailed gait signats well
as capturing individual patient information that can besifgtced to

. M ATERIALS AND METHODS
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College, London, UK (g.z.yang@imperial.ac.uk). is shown in Fig. 2.The designed algorithm for data analysis in this
research has been implemented in MATLAB (The Mathworks)Inc.
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for off-line data processing. However, the designed atboriis under
development to be integrated into the Tablet as an App fdrtirea
and online data processing.

For analysis of force-related gait asymmetry, a pair of sues
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temporal gait events.

The major gait events considered in Jarchi et al. [12], [22]ude
heel contact and toe-off events where toe-off events alenatstd
after detection of heel contacts by applying LCSS algoritArbetter

insoles (PAROTEC, Paromed, Germany) has been used to provilecision in detecting heel contacts leads to more accuestets for
reference data for validating the e-AR sensor and assdciatalysis estimation of toe-off events. Here, a reliability meassrantroduced,
algorithm. The PAROTEC system requires a controller thastnme which is based on evaluating the correctness of estimagdd and
placed around the waist [28] and each insole has a height mftableft heel contacts. It is obtained by post-processing okelration
3mm and contains 24 microsensors mounted under a constraidata and estimated heel contacts to find the cases where arere
hydrocell. Both insoles are connected to the controllengigivo over-estimated or under-estimated heel contact events.
cables. The PAROTEC system is used in this study to observel) Detection of over-estimated gait events: The Medio-lateral
left/right gait asymmetry from the e-AR sensor versus theugd (ML) axis corresponds to left-right acceleratioasd has been used
reaction forces (GRFs) given by the insoles. for left/right discrimination of gait events which are estited mainly
based on the peaks from the SI and AP axes [29]. Based on this,
. . using the characteristics of the ML axis and the prior knolgks it
B. Algorithm Design is possible to re-evaluate the correctness of the estinniaiedand left
The accuracies of gait events estimated from the e-AR senysor dait events and find situations where there are over-estihatder-
the proposed algorithms [12] [22] are assessed using aminshted €stimated gait events.
treadmill [12] and pressure insoles for walking in a corrif22]. For For detecting over-estimated gait events, the analysighisy,
initial detection of gait events, the method based on sarggpectrum performed using the ML axis of the e-AR sensor. By segmerttieg
analysis (SSA) and longest common subsequent algorithn8@)C accelerations from the ML axis, similar gait patterns cambserved
[12] with its extension [22] has been used. This gait eveteation from right heel contacts (RHCs) to the left heel contacts ¢)Hin

algorithm is mainly based on the SSA algorithm in which theehc
eration signals from different axes are converted into idarms
by using delayed versions of the input accelerations. Adglying
singular value decomposition (SVD) to the resulted masriselected
output subspaces from appropriate axes are used for vgriopsses
such as trend removal and extraction of dominant oscilatithen
using all information from all axes, and also applying the ST
algorithm, left and right temporal gait events are obtaifg], [22].
The algorithm for estimating gait events is described infttlewing

addition, similar gait patterns can be obtained by considethe ML
accelerations from LHCs to the RHCs. In Fig. 3, a sequenceaitf g
events is shown. The effect of asymmetrical walking paftetmat
occur with most orthopaedic patients before or after syrgan be
detected from the difference in signal amplitudes of the AR 8l
axes during the RHCs and LHCs. This also affects the peiitgdi¢
gait patterns. As long as asymmetrical walking is not caypivstural
instability, the ML axis can produce the same patterns farlesy
segmented from right-to-left heel contacts and also santerpa

separately for cycles segmented from left-to-right heeitacts. By
considering one full cycle of the gait using the ML axis fromeo
RHC to the next one (see Fig. 3), it is possible to detect wdrdtiere
are extra estimated heel contacts in between right heehctanthat

steps:
1) Set the embedding dimension las
s = [so, ..., Sn—1] «— acceleration signal,

A o lead to different segmentation results on the ML axis. Theiébr
2) Converts into trajectory matrixX = ) ) ) detection of extra estimated heel contacts is to constrpbhae space
: : : from right-to-left and also left-to-right heel contact segntations of

si_1 8y Sn—1 the ML axis. By simultaneously under-sampling and matcloihgach

wherek = n — [ + 1. two consecutive §egmented cycles from right-to_—left heatacts, we
3) Apply SVD onto the X to find elementary matrices €0 form a matrix of two vectors. One vector is the under-dachp
XZ(\/A_h u;, Vi)y

4) Select the indices af and group elementary matricgs, X; for
trend removal and extraction of dominant oscillation (freom of
anterior-posterior (AP) and super-inferior (Sl) axes),

5) Apply LCSS, SVD and peak detection techniques using akax
and the information from the previous steps to estimatealedt right

|-
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Fig. 1. (a) A patient with knee replacement walking on a tredid (b)
1l

Another patient with knee replacement walking in a corrideor walking
on a treadmill more distinctive signal patterns from the A#sare usually
obtained because the walking condition is well controlBg.examination of

Fig. 2. (a) A patient inside the clinic signing the consenhfdo participate
the right and left heel contacts (RHCs and LHCs), for a patiobl patient

in the e-AR experiment. (b) The e-AR sensor worn by a maleepati(c)

temporal and amplitude asymmetry of the gait signals canbserged from
the AP and Sl axes which affect the periodicity of the gainalg. A useful
axis which can provide supplementary information in thenestion of gait
events is the ML axis and used in this study for re-analysispast-processing
of the estimated gait events for their evaluation outside lghoratories.

The sensor and the tablet used for data collection. (d) Sgnided e-AR
accelerations and video frames given by the tablet's carfmra patient
walking in the corridor. The interface of the implementedtware to record
the e-AR accelerations integrated with video frames caBi&NAnalytics is
shown.
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cycle of the ML axis from the first right-to-left heel contadthe
other vector is negative of the corresponding under-sainpjele of
the ML axis for the next right-to-left contact (s@d; in Algorithm
1). Inclusion of the negative sign is helpful to analyse twpets of
segmentations (right-to-left and left-to-right) whichlMde shown in
the following. To perform under-sampling and point matchia delay

Pseudo-codeAlgorithm 1: Detection of over-estimated heel contacts

y « acceleration of the ML axis

(rhe, lne) < apply gait analysis algorithm [11,21] get right/left heelrtact
fori =1:q— 2, ¢ is the maximum number of right heel contacts

—p =min(lpe (i) — The(?), lhe (i + 1) — The(i + 1))

of 7 and7 are assigned by considering the maximum length of two—p1 = min(rrc(i + 1) = lhe (@), The (i 4+ 2) = lhe (i + 1))

consecutive gait cycles from right-to-left heel contaBased on this,
each two consecutive right-to-left heel contacts formXfie matrix.
All the matrices considering right-to-left segmentati@me combined
to form the M matrix. Then, Eigen-decomposition is appliedthe
covariance matrix of M. After representiniyl as a2 x 2 matrix
with two vectors constructing each row, its covariance wWikn be

a2 x 2 matrix that each of its diagonal elements is equal to 1 due" M=

to separate normalisation of each row of tN@ matrix. The sum
of eigenvalues will be equal to 2 (i.e. the trace of the carme

of M). In the case of perfect segmentation, the eigenvector with~ i:|:y(lhc(i+ D4+71) ylreli+1)+271) ...

the larger eigenvalue must b% j where its eigenvalue is

1
equal to 2 that make the other eigenvalue to be equal to 0. Yowe
considering the gait cycles, in reality reaching an eigkrvaf 2
is practically not possible. To obtain an accurate segnientathe
resulted eigenvector with larger eigenvalue must be in tteetion of

1 1
V(@) {—1
close to 2. In a similar manner, the ML axis is segmented fribfeft
to-right heel contacts (s@¥; andN matrices in Algorithm 1) and the
corresponding Eigen-decomposition is performed. A thokkitan
be used to assign a low/medium/high/very-high level of amfce
based on the direction of resulted eigenvectors and thgemealues
as explained above (sea, v, A1, v parameters in the algorithm in
Algorithm 1). The complete procedure for detection of ogstimated

and its eigenvalue should have a reasonably high value ON =

= Lnl;w(i)*mc(i)J?; _ Lnl;w(iJrl)*Thc(iJrl))J

p D
T}Lc<i+1)7Z}Lc(i)J T;w(i+2)*lhc(i+1)J
p1 p1

-1 = |m 1= |m

—k=|p/n], k1 = [p1/m]

[ Yne() +7) _ ylrae() +27) y(rhc<i>+kr>~]
—y(rne(i+ 1)+ ) —y(rne(i+1) +27) . —y(rae(i +1) + k%)

Y(lhe(?) +71) Y(lhe (i) +2711)

Y(lne (i) + k171) }
Y(lne(i +1) + k171)
M = [M;...M;...], representM asM = [m;m3]T

N = [N;...N;...], representN asN = [nin2]7

mean centering and normalization nf; , m2, n;, ny to the unit
vectorsmi, mg, ni, ng, then reconstrucM and N:

M = [mjmz]T

M) " N

[U, A] = eigdec(MMT), [U, \] = eigdec(NNT) eigendecomposition
to get eigenvectors with sorted eigenvalues in descendidgro

U = [ulug},k = ()\1,)\2), wherel; > A2, A1 + A2 =2

U= [ﬁlﬁg},;\ = (Xl,XQ), WhE‘I’EXl > XQ, ;\1 +X2 =2
v=uf[1/\/2) -1//@)"

7 =[al11/y/(2) 1/1/2)"]

-Estimate the reliability measure based ®nori, o

heel contacts and measuring a confidence level is shown in thehreshold on each of the resulted eigenvalue will detegniire

algorithm in Algorithm 1. In this algorithmy,. and 1. represent
indices for right and left heel contacts respectively. Theameters:
andm control under-sampling of the gait cycles. For this appi@a
we set these parameters to one. By increasingdm, fewer samples
are obtained for constructing the phase space. Regardfefiseo
obtained values for the eigenvalues if any of the resultgdreiector
is not in the expected directiow 1 or v < 1), the reliability will
be set to low. Then, in the case of having=£ 1 andv = 1),
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Fig. 3. (a) Raw accelerations and detected RHCs and LHCs @rvih

axis. (b) One segment of the data from (a) after trend remandldetection
of RHCs and LHCs. The blue arrows with labels of base and tesw ghe

parts of the signal (right-to-right heel contacts) useddetection of under-
estimated gait events (see Algorithm 2). (c) A sequence ibEgants matched
to the ML axis in (b). This plot shows how the vectorshi; andIN; matrices
are created to detect over-estimated gait events as sumtian Algorithm

1.

estimated reliability. The bigger the eigenvalues willdga a higher
accuracy. In practice, a low reliability value is mostlyateld to the
extra peaks detected using the dominant oscillation froenstim of
AP and Sl axes [12], [22]. Therefore, it is possible to didaaost or

all of extra peaks by using simple thresholding. All peakiedied on
dominant oscillation of AP [12] and sum of AP and Sl axes [2&hw
negative values (local minima with negative values) areciet as
potential heel contacts. Wrongly detected heel contadtschwoften

occur for pathological gaits, are local minima with negatixalues
that are close to zero. For removing those points, we setesltibtd

to be the average of all local minima.

2) Detection of under-estimated gait events: Detection of
under-estimated gait events is difficult due to variationgait speed
and cadence across subjects. For detection of under-éstingait
events, the gait cycles from the ML axis are first interpalate
a maximum length considering all the gait cycles. Then eamh g
cycle from one RHC to the next is separated and its trajectory
matrix is created to form a base trajectory matrix. Thisertry
matrix is constructed using the embedding dimension andetaydd
versions of the input segmented cycle of ML axis [30], [31heT
SVD is applied to the trajectory matrix of the base and the firs
columns of the U matrix are selected to form the subspace ef th
base. The next consecutive cycle from right heel contactssex
to create the trajectory matrix of the test. The trajectomtrin of
the test is projected to the subspace of the base. The distinc
columns of the trajectory matrix of the test to the subspgessed
by the base is calculated by the relevant projection (se®rilgn
2). The under-estimated gait events are detected in plabesevihe
estimated distance is bigger than a threshold. The basichdaind
the proposed algorithm is based on a general change-pdigttie
algorithm [32], [33] using SSA algorithm. The proposed aithon
for detection of segments related to under-estimated gainte is
provided in Algorithm 2. The objective is to detect variaoin
right-to-right heel contacts and detect fundamental charigtbm one
right-to-right heel contact to the next one. In the case décteng
such fundamental change, a segment of the data related tmetee-
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200 —,_| ML AP sI )_,_

Pseudo-codeAlgorithm 2: Detection of under-estimated heel contacts
p=__ maX (|7he(?) = (D] Mhe(d) — rre(i +1)]), =

i=1,..., n—1 Z150F 4
n = number of heel contacts g
cleary, setL as embedding dimension | Y MWWVWMW
for i=1im — 1 100 ‘ ‘
—s = y(rne(i) : lhe(d)) o] 500 1000 1(500 2000 2500
—v = interpolates to the lengthp 200 the )

=S =yY(lpe(d) : The(i + 1))

—v = interpolates to the lengthp g

- = [3,v. ] Zis0

—adjust the heel contact index after interpolatiop: (¢), rpe (¢ + 1) £
for :=1im — 2

SAT e

Pt

—b = y(rhe(?) : The(i + 1)) create base 100 ‘
—B = trajectory(b, L) create trajectory matrix of base 0 500 1000 1&30 2000 2500
7[U, S7 V] = SUd(B) 600 left GRFs LHC right GRFs > RHC
—U = [u1, uy, .., ug| selectk columns @
—t = y(rpe(i + 1) : rpe(i + 2)) create test 400
—T = trajectory(t, L) create trajectory matrix of base s T T ﬁ 7‘3 T
—calculate sum of the distance of columns of trajectory of Ezoo ( \ ihaliwl \ ; \ sl s ‘\ i }
test(T = [t1,t2,...t;,...]) to the subspace spanned by the base: \/Y\ l \ U \ \ V{\ m W\‘H{\‘V{\
d(i) = ;(t?tj — (£ U)UN)E)) 500 ‘ 1590 ~ 2000 2500
normalised 200 ‘ { L s AP T
-Detect under-estimated heel contacts that d value exdbadsa threshold
estimated gait events can be found. Then the estimation if g_150 L i
parameters will be performed separately for the segmenishwdo % oo
not contain under-estimated gait events. One interespiptication of it
the change-point detection algorithm using SSA will be tifexation 100 ‘ ‘ ‘ ‘ ‘
of freezing of the gait in PD patients which can be exploretutore 0 500 1000 150%) 2000 2500 3000

studies.

I1l. RESULTS

A. Validation of gait asymmetry using PAROTEC

For monitoring Orthopaedic patients, the gait asymmetrieims
of both timing and the amount of force is of great importariastop-
erative orthopaedic patients usually put more _force |n&)uh|_njured =00 1000 1500 2000 5500
foot. However, due to other factors, some patients (esleekerly [O)
patients and patients with bilateral knee replacement) emayt more rgworts 0 mwe [T
force into the injured foot. Therefore, discrimination dietamount EGOO I 1

of left or right forces exerted is an important measureménthe M H . A

left GRFs LHC

right and left heel contacts are estimated correctly, it assgble £
to find out the larger gait asymmetry towards left/right fodb  »200

demonstrate the ability of the proposed algorithm for gsjtnametry ) ‘
detection using the e-AR sensor, a healthy subject equipgtl o 500 1000, 1200 ple Aomber 2200 3000
e-AR and PAROTEC systems was asked to walk in a corrids ®

and exert a larger force towards the right foot. Another theal
subject was asked to walk and put more weight onto the left fod-ig. 4. (a) Raw e-AR accelerations for healthy subject 1 \étiger force
Manual synchronization of the e-AR and PAROTEC systems bag b towards right foot. (b) Trend removed accelerations aneatetl RHCs and
performed by two big heel contacts at the beginning and agigeof LHCs. (c) Sum of GRFs from six sensors at the heel side of tite and left
the experiment. Synchronized recordings of the presssalda and insoles. (d) Raw e-AR accelerations for health_y subject th warger force
e-AR accelerations were analysed to differentiate thedatt right towards left foot. (e) Trend removed accelerations andotiztleRHCs and

. Y ng LHCs. (f) Sum of GRFs from 24 sensors of the right and left leso
gait asymmetry level of the subjects. The results are shovwkig. 4
where both accelerations, left and right GRFs given by tlessure
sensors inside the left and right shoes are presented. Th#sréor
the first subject who exerted larger force towards the riglot fare for the PAROTEC system, it is the ratio of sum of right GRFs to
shown in Fig. 4 (a-c). It can be seen from e-AR acceleratibtias t the left GRFs following the touch of the foot by the ground.eTh
there is a larger peak at RHCs. Also, the sum of GRFs for the gigsults of gait asymmetry level for each gait cycle are showhig.
sensors at the heel side of the insoles is shown in Fig. 4 (&hwh 5. In the top and bottom rows, the asymmetry is evaluateddbase
shows larger forces for the right foot insole. The resultdfie second the Sl axis and a combination of the S| and AP axes respegtivel
subject are shown in Fig. 4(d-f). In Fig. 4(e) the gait asyrmpnas The mean square errors between estimated asymmetry froR e-A
the larger amplitudes for the LHCs can be seen from S| and A&B axand PAROTEC systems were calculated and less error is @userv
where the asymmetry seems to be more distinctive from thexdd? a by considering the asymmetry using the sum of the AP and 3.axe
Therefore, the gait asymmetry may not have effects only cax®. For the first subject, the mean square errors are 0.2766ddBlthxis
In addition, the gait asymmetry was visible for the secongjexst by and 0.1727 for the sum of AP and S| axes. For the second spbject
summation of all the pressure sensors as shown in Fig. 4f)le&ch the mean square errors are 0.1042 for the Sl axis and 0.083Mefo
gait cycle, we calculated the e-AR gait asymmetry level asréiiio sum of AP and Sl axes. The estimations seem to be slightlehett
of the acceleration magnitude at detected RHC to the LHC.|&Vhifor using both SI and AP axes.
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Asymmetry level based on Sl axis
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Fig. 5.

To evaluate the accuracy of the estimated asymmetry level &-
AR sensor using Parotec system as the reference platforiatjéhis
were recruited in the study. The patients were equipped oth e-
AR and Parotec systems and asked to walk along 10m long ooofd
the fracture clinic at Charing Cross Hospital. Each patparformed
the experiment in 2 trials. The results of the estimated asgtry
level (from sum of Sl and SP axes) in each gait cycle for a sadec
patient prior to his surgery for right knee are shown in FigT&e
results of estimation for all eight patients are plotted ig.H. In
Fig. 7(a) the Bland-Altman plot is shown for the estimatioonf
e-AR and Parotec systems. The mean difference of estinsat®n
obtained as -0.0195 and standard deviation as 0.3192. Tla me
absolute error is obtained as 0.2407 and the standard idevias
0.2093. The asymmetry level should be averaged for eaclerpati
to give an overall symmetry index. In Fig. 7(b,c) The average
the asymmetry level from e-AR and Parotec systems for eatiénpa
has been compared and shown. Based on the results, the er8& se
has been able to accurately discriminate the larger forcehfo left
and right foot for all the patient in which the mean squareibrer

Top row: Estimated asymmetry level using Sl axis for healthy?t 0-0446 has been obtained for all the subjects. By inongasie

subjects 1 and 2Bottom row: Estimated asymmetry level using both SI andlumber of trials we expect less error in the overall estiomatf

AP axes for healthy subjects 1 and 2.
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Fig. 8. Analysis of gait patterns from ML axis in a phase sp&tee and red colors are related to the right-to-left segate@ms (M matrix) and left-to-right
segmentationslY matrix) respectively. The straight lines (darker blue aedi lines) demonstrate the projected patterns on the direofiresulted eigenvectors
(with bigger eigenvalue for each decomposition i.e. righteft and left-to-right). For each plot the values of thergmeters\;,v,A1,v in Algorithm 1 are
shown. A value of the zero faF or v demonstrate the wrong partitioning of the phase space fidright segmentations (see (a) and (b)). (a) A reliabitiy
low is converted to high. (b)-(d) A reliability of low is coevted to medium. (e) The reliability of low has not been cteghfpr new estimated gait events.
This means the segment of the data should be changed or teeregpt must be repeated. (f) A reliability of very high wiishows large amount of the
variances along the desired directions. (f) A reliabilifyhigh has been obtained.

B. Assessment on patients with Anterior Cruciate Ligament
(ACL) reconstruction or knee replacement

Data from 23 ACL patients and 31 patients with unilaterdhteral

analysing the ML axis, respectively. In Fig. 10(a-d), ongrment
of the missing gait events is visible while the AP axis showssy
accelerations. After detecting under-estimated gait tsyethe gait
parameters will be estimated based on the parts of the aatieles

and total knee replacement was collected for analysis.e€Thasents \yhich do not contain missing gait events. In Fig. 11, theatslity
were assessed inside the fracture clinic of the Charinggdfiospital, estimates for a total of 54 ACL and knee replacement patiargs
London, UK. Based on the protocol, the patients while v_vearinghown. Based on the values af and \;, a rough partitioning of
only the e-AR sensor were asked to walk along two corridors ghe reliability estimates are performed. Based on this réfselts of
the clinic with a total of 40m length at their selected speé ihe estimations for 35 patients are found to be high. Amoregeh
have used mixture of patients having knee surgery eitheAOL  atients, one individual with a reliability of high had iwily a
reconstruction and knee replacement to enrich and enhaace gyiapility of low (see Fig. 8(a)). For 14 patients, the ability of
dataset_ containing accelerat_lon signals for monitoriregrtrecovery  medium is obtained and 5 of them had previously a reliabiftjow
and gait performance following the surgery. in estimations (3 patients’ gait patterns shown in phaseespay. 8(b-
1) Detection of over-estimated gait events: For 50 patients, d)). Finally for 5 subjects, a reliability of low has remaihenchanged
a window of fixed size of 10000 samples was selected for the gfdr the selected segment. By cross-examination of the spnised
analysis algorithm. For the remaining 4 patients smallerdaiv size videos for all the patients with reliability of high or vehigh, there
was selected in which the minimum segment size was 3000 88Mre accurate estimations for the right and left heel costadth no
due to a shorter walking time by these patients. The valueh®f apparent over-estimation or under-estimation problemTdhle II,
parameters\1, v, A1, v as the results of applying the algorithm inthe reliability measure with medium and low values are estaid

Algorithm 1, are shown for 7 selected patients in each pldtigf 8.
For 4 patients (Fig. 8 (a, b, c and d)), a reliability of low @neerted
to medium/high after setting the threshold for peak detecfrom
dominant oscillation to discard extra peaks. For one pat{Eig.
8(e)) the reliability of low is unchanged after trying to reme extra
peaks from dominant oscillation. A reliability of high anery high
is depicted in Fig. 8(f, g). It can be seen from these plots thand
A1 are relatively high and\; is very close to 2 for Fig. 8(f)). For
Fig. 8(a), the eigenvectors for both decompositions aréhéndame
directions, this means misplacement of a number of LHCs RHICs

in terms of final assessment of reliability measurementscait be
seen from Table Il that for all patients with a reliability ¢dw

converted to medium, there are no over-estimated gait gviemt
individual analysis of synchronised images and detectédegants
on the accelerations; however, there are under-estimati¢ceents
that were correctly detected by the algorithm in AlgorithmFar

subjects with reliability of low there are underestimatiproblems
detected accurately only for patient #19 (see Table Il). &lbthe

patients with medium reliability, there is no over-estiroatproblem.
However, for four of them, the under-estimation problem aers. In

or having extra RHCs between actual RHCs. As another exarmple addition, for all four patients with a borderline reliabjliof medium

Fig. 8(b), the directions of the resulted eigenvectors detrate the
misplacement of RHCs and LHCs.

2) Detection of under-estimated gait events. Examples for
detecting segments of the data related to missing gait ®eentnder-
estimated gait events using the proposed algorithm in Algor 2
are shown in Figs. (9-10). By analysing the described ditdise

close to high (see Fig. 11), there is no over-estimation afetn
estimation problem. As shown in Table I, 17 out of 25 caseth wi
under-estimation or over-estimation problem are coryed#tected
by the algorithm. Although quantification of detailed acmies of
gait events is not of interest in this study, overall, 68% iayement
is obtained for correctly locating the left and right heehtaxts from

threshold value on the vector d in algorithm in Algorithm 2swapatients’ populations for gait assessments in a clinicalrenment.
empirically set to 0.38. In Fig. 9(a) and Fig. 9(d), two andeth For 5 subjects with reliability of low, two of them (#19 and)#&ere
segments of the data related to missing gait events aretdgtby walking with a stick (both patients were pre-operative) e Tdéther
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o e ™™ Fig. 10. Example of one patient with only one segment regatm under-

estimated gait events which is detected accurately. (a) &aelerations of
the ML, AP and Sl axes. (b) Trend removed accelerations ofadls and
detected RHCs and LHCs. (c) Interpolated accelerationh@ML axis i.e.

same length for the cycles considering right-to-right hemitacts. (d) values

1 3 5 7 9 15 17 19 21

neet Ebniact e of the vector ofd in Algorithm 2 which shows one segment relating to under-

estimated gait events.

Fig. 9. Two examples for detection of under-estimated geénts. The
ML accelerations and the estimated gait events plus the esgtgrmelating to

missing gait events are shown in (a) aftf). The interpolated accelerations Reliabiliy estimates —
are shown in (b) ande). The values of the vector al in Algorithm 2 are 2 ° .Di,>mgh
shown in (c) and (f). The values i vector which exceeds than 0.38 for are [ °. ° ® ow
used to select segments of missing gait events. 18F . e o o .
© % [ °© ¢ veryhigh
° o o [ ]
16F W R oo’ o
) A L} L -
three patients are: Ll " .
- #14 an elderly walking with a low speed (having short stepih * %
a bilateral knee replacement 2 years post surgery. bl o0
- #34 an elderly 6-weeks post-operative. " *
- #42 a patient pre-operative of knee replacement surgery. 1 s s s s s s
1.2 1.3 14 15 1.6 1.7 1.8 19 2

It is very likely that walking with a stick and taking shortegs ' ' AL
(common among elderly population) increases the chancettihg
a reliability of low. More improvements on the analysis aljons Fig. 11. Rough Partitioning of the reliability estimates 4 ACL and
can be performed in future studies. knee replacement patients based bn and A; values (very highf; >
1.8 and A1 > 1.9), high (v > 1.5 and Ay > 1.5), mediumdy >
. . . . 1.3 and A1 > 1.3 and A1 + A1 > 2.7)). In the case of detecting over-
C. Monitoring patients with lower limb trauma estimation problem and then re-applying the gait analykifqgsm by setting
To assess the generalizability of the algorithm for lorgjital @ threshold on t_he peaks obtained from dqmingnt OSCi|_|a.t’iDﬁ: 1, and
analysis of patients over a long period of the recovery mscdata = ﬁ were °bta'|r|‘$d altfterl recall gtthe a}lgor'éhm |rlAIgor(|thnL ]he'gif%ros,
from 16 patients following lower limb reconstruction waedsThese  ° %zttli?:;?ésa have rolablite of hiats or ver: hidh Landv = 1.64.8%
data was acquired for one of our previous studies alreadiigelol v 9 y high-
in [5] for the purpose of psychometric evaluation of a sensor
based mobility scoreBased on the protocol the patients performed
a 6-Minute walk along the corridor, Timed Up & Go and Timed
Up & down stairs. In this study we have used the data regardiad different sessions considering gait segments are prdviid Table
walking along the corridorEight patients performed the experimentll. Entries with NaN values represent a missing sessioalole ll,
in the clinic for all sessions exactly at 3, 6, 9 and 12 montbstp for each subject, a decrease in gait parameters with areigeia time
operatively. The other eight patients attended one sessiotore, but after surgery is highlighted in blue colour. Consideringhtisubjects
not all required sessions. Three gait parameters inclugieg time who performed the whole experiment throughout the year &ed t
asymmetry (ratio of the right-to-left step time), amplitudsymmetry extracted features, separate clusters of patterns wered féor 3
(ratio of the magnitude of acceleration using sum of AP and @tonths and 1 year after surgery. However, there were oweftaghe
axes at RHC to the corresponding magnitude at LHC) and rigpétterns relating to 6 and 9 months post-operatively. Bggrating
stride time (timing from one RHC to the next one) were sekctemore features from various estimated gait parametersyatiqa of
to evaluate monitoring of these patients following surg&ince the all stages of the recovery can be investigated in futureiesudn
perfect symmetry is reflected as one, the asymmetry valugabite general, a decrease in right stride time (increase in speedlking),
Ill are expressed as the difference between one and thelaidu step time asymmetry and amplitude asymmetry are importamcal
asymmetry ratio. The values of these gait parameters fauallects features for observing recovery of the patients.
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TABLE |

A NUMBER OF STUDIES COVERING DIFFERENT WEARABLE SENSING PLAORMS AND PATIENT POPULATIONS

Reference Sensor Subjects Study protocol Clinical Application
Jarchi et al. - healthy subjects[12,22,23,24] ; ) - detection of gait asymmetry
[12,22] single - patients after hip or knee [:Ltgeggr;‘;l]l walking [22,24]
Atallah et al. -3D accelerometer worn | replacement surgery and patients| - w:allki’ng in a corridor - psychometric evaluation of a
[23,24] on the ear (e-AR) with knee Osteoarthritis (OA) [24] [5,22] sensor-based mobility score called
Kwasnicki et al. - patients following lower limb ! HMS [5]
[5] ] trauma reconstruction [5]

%Igplc?ual axis _ - walking at self-selected o '

Bamberget al. accelerometer - healthy subjects natural Pace expressed | validation of GaitShoe system
[8] - PD patients "free gait” outside using healthy and PD patients

- three gyroscopes placec
at the back of shoes

laboratory

Selleset al. [13]

multiple

- two uniaxial
accelerometers on the
shank

- healthy subjects
- unilateral transtibial amputees

- walking on straight
track with a Kistler force
platform

validation of gait parameters using
controls and transtibial amputees

Turcotet al. [14]

multiple

- two triaxial
accelerometer

- two triaxial gyroscope

- asymptomatic subjects
- patients with knee OA

- walking on straight
track with a Kistler force
platform

discrimination between
asymptomatic subjects and medial
knee OA patients

Yoneyamaet al.
[20,21]
Sejdicet al. [16]

single
- trunk mounted
accelerometer

- healthy subjects

- PD patients [20,21]

- PD and peripheral neuropathy
patients [16]

- walking on level ground
[20,21]
- treadmill walking [16]

- accelerometry-based evaluation
and assessment of daily gait
characteristics [20,21]

- comparison of accelerometer
features between healthy subjects
and patients groups [16]

Huisingaet
al.[25]

multiple
- 3D accelerometers on
lower and upper trunk

- healthy subjects
- patients with multiple sclerosis
(MS)

- walking on a foot
hallway

- evaluating gait variability
between MS patients and healthy
controls

IV. DISCUSSION ANDCONCLUSIONS

For developing a gait analysis platform to be used for ewsyyd
clinical utilisation, it is essential to give a confidencedeto the
output estimations. The presented work is the first studyefind a
direct reliability measure as a feedback for the gait amslggstem
based on prior knowledge of acceleration characteristigsetform
re-analysis of estimated gait events for the data recordedide
the gait laboratory. Such reliability measure can be usedonty
internally for improving the overall performance and irasing the
reliability of subsequently derived gait parameters, baan also give
the user a confidence level for the outputs, suggest a congaligx
repeating the experiment or changing the selected gait esigrin
practice, the gait segment often contains noisy acceteratata due
to a number of factors. Accurate gait event segmentationusial
to give clinicians and patients reliable information.

Clinically, some gait parameters can be very importantrdythe
recovery of orthopaedic patients. For example, the amofifvroe
exerted on each foot can be used by clinicians and physayitsts
to choose an appropriate treatment and walking aid for thiena.
As an example, when analysing the e-AR data of a female patien
this study with left unilateral knee replacement, the gaitrametry
was found to be as a greater towards the left foot. After veivig her
records with the clinician, it was found that the patient pagliously
right hip replacement. In some cases, the patients were areaof
the imbalance of the forces exerted on their feet. It has beserved
that some patients with a large temporal asymmetry in stee tere
likely to put more weight onto the injured foot.

For some patients, especially the older patients with sisgled
total knee replacement, there was a risk that the patiehtedome
a candidate for bilateral knee replacement due to excedsioe
exerted on the native knee. Therefore, it is important toeligy a
gait monitoring system with a focus on gait asymmetry patarse
ideally in free-living environment over a long period of #min
this research, subtle changes in e-AR accelerations weertdd
by employing appropriate signal processing technigdés main
advantage of e-AR sensor is in its bio-inspired designedsistent

sensor placement and patient compliance. For example,eé dot
matter whether the sensor has been worn on the left ear or righ
ear and head-movement artifacts can be easily removed Byiragpp
signal processing techniques. During the past decadeusmsensor
platforms such as force-plates, pressure insoles, cabzsed system
and body worn sensor such as inertial measurement unitsbesere
developed for gait analysis, the usage of the such systesigeithe
clinic have not yet been established. However, the use off-li
weight sensor with consistent sensor placement in thisyshab
shown the potential of the sensor and the analysis platfoamgdit
assessment inside the clinic and a large scale patient datgses.
In addition the memory storage and battery life of the semgtch
includes an accelerometer provides a good way of using thgeose
for continuous home-based monitoring that is preferablbecuse of
some wearable sensors such as gyroscopes which resulhificsigt
drift over an hour of measurements.

By validating the proposed algorithm in [22] on a large numbe
of datasets of orthopaedic patients’ data, it was found thate
are more cases with over-estimation problem (comparingntter
estimation problem) which can potentially be eliminatedapplying
the proposed algorithm. In this research, clinically refgvparame-
ters are investigated for 16 patients after lower limb retarction.
These parameters are directly related to heel contact své&ar
certain patient groups, toe-off events are also of greabrtapce.
Although the reliability evaluation proposed in this papebased on
considering heel contacts only, by having highly accuratirated
heel contacts more accurate estimates will be obtained der t
off events. By improving the gait analysis platform and praidg
reliable outputs, it is possible to use all derived gait peeters
such as swing, stance and single or double support for patent
applications in future studies.
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TABLE Il
CHANGES IN THREE DERIVED GAIT PARAMETERS OFL6 PATIENTS WITH INCREASE IN TIME AFTER SURGERY

right stride time (seconds) amplitude asymmetry step time asymmetry
months after surgery months after surgery months after surgery

3 6 9 12 3 6 9 12 3 6 9 12
1 1.4417 | 1.1025 | 1.1800 | 1.0827 | 0.3151 | 0.3208 0.2237 | 0.1376 | 0.5374 | 0.0596 | 0.0401 0.0299
2 1.3450 | 1.1217 1.0891 | 1.1300 | 0.1422 | 0.0906 | 0.0210 | 0.0637 | 0.1988 0.0472 | 0.0357 | 0.0539
3 1.4556 | 1.1900 | 1.2367 1.1460 | 0.3923 | 0.1978 0.3991 | 0.1693 | 0.1261 | 0.1252 0.0655 | 0.0294
4 1.2907 1.0713 1.0827 1.0627 0.1132 0.0486 0.2456 0.3218 0.3050 | 0.0865 0.0271 0.0758
5 1.2259 | 1.0344 | 1.0162 | 1.0180 | 0.1714 | 0.8340 | 0.1424 0.0897 | 0.0375 | 0.0117 0.0071 | 0.0052
6 1.2729 | 1.0420 | 1.0000 | 1.0688 | 0.0611 | 0.0064 | 0.0138 | 0.0185 0.1255 | 0.0195 | 0.0051 | 0.0071
7 1.3629 | 1.1230 | 1.1444 | 1.1356 | 0.2003 0.1993 | 0.0601 | 0.0332 | 0.2211 | 0.0128 | 0.0277 | 0.0070
8 1.1910 | 1.1440 | 1.1300 | 1.0350 | 0.2787 | 0.1600 | 0.3734 0.1715 | 0.0575 | 0.0391 | 0.0115 | 0.0425
9 1.2060 1.2478 1.2478 NaN 0.1259 0.1430 0.1430 NaN 0.1814 0.2782 0.2782 NaN
10 1.4367 1.2150 1.2900 NaN 0.1949 0.0459 0.1794 NaN 0.0236 0.0185 0.0305 NaN
11 1.3475 | 1.1400 | 1.0867 NaN 0.4297 0.2094 | 0.1639 NaN 0.0313 | 0.1048 | 0.0507 NaN
12 NaN 1.2915 | 1.4654 | 1.1563 NaN 0.0039 | 0.0060 | 0.0251 NaN 0.0264 | 0.1426 | 0.0696
13 NaN 15667 | 1.3275 | 1.2338 NaN 0.3890 | 0.0816 | 0.0997 NaN 0.0329 | 0.2792 0.2348
14 1.4360 1.2583 NaN NaN 2.0981 0.8789 NaN NaN 0.1957 0.0671 NaN NaN
15 1.4180 NaN 1.0614 NaN 0.3388 NaN 0.4824 NaN 0.0773 NaN 0.2949 NaN
16 1.0300 NaN NaN NaN 0.2591 NaN NaN NaN 0.1515 NaN NaN NaN

TABLE 1l

ANALYSIS OF ESTIMATIONS FOR RELIABILITY OF LOW AND MEDIUM. v/
MEANS THERE IS NOT ANY OVERESTIMATION OR UNDER-ESTIMATION

PROBLEM. X INDICATES AN UNSOLVED UNDER-ESTIMATION OR

OVER-ESTIMATION PROBLEM. X — v/ INDICATES ELIMINATION OF

UNDER-ESTIMATION OR OVER-ESTIMATION PROBLEM.

Subject ID Reliability Over-estimation | Under-estimation
#15 medium v v
#20 medium v v
#38 medium v v
#52 medium v v
#27 medium v X =V
#9 medium v X
#14 medium v X
#49 medium v X
#51 medium v X
#6 low—medium X = v X = v
#16 low—medium X =V X =V
#29 low—medium X =V X =V
#36 low—medium X =V X =V
#44 low—medium X =V X =V
#19 low—low X =V X =V
#2 low—low X =V X
#14 low—low X =V X
#34 low—low X =V X
#42 low—low X =V X

company from Imperial College London, for which GZY is a di.
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