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Abstract— Previous studies exploring driving drowsi-
ness utilized spectral power and functional connectivity
without considering between-frequency and more complex
synchronizations. To complement such lacks, we explored
inter-regional synchronizations based on the topograph-
ical and dynamic properties between frequency bands
using high-order functional connectivity (HOFC) and enve-
lope correlation. We proposed the dynamic interactions
of HOFC, associated-HOFC, and a global metric measur-
ing the aggregated effect of the functional connectivity.
The EEG dataset was collected from 30 healthy subjects,
undergoing two driving sessions. The two-session setting
was employed for evaluating the metric reliability across
sessions. Based on the results, we observed reliably sig-
nificant metric changes, mainly involving the alpha band.
In HOFCθα , HOFCαβ , associated-HOFCθα, and associated-
HOFCαβ , the connection-level metrics in frontal-central,
central-central,and central-parietal/occipitalareas were sig-
nificantly increased, indicating a dominance in the central
region. Similar results were also obtained in the HOFCθαβ

and aHOFCθαβ . For dynamic-low-order-FC and dynamic-
HOFC, the global metrics revealed a reliably significant
increment in the alpha, theta-alpha, and alpha-beta bands.
Modularity indexes of associated-HOFCα and associated-
HOFCθα also exhibited reliably significant differences.
This paper demonstrated that within-band and between-
frequency topographical and dynamic FC can provide com-
plementary information to the traditional individual-band
LOFC for assessing driving drowsiness.

Index Terms— High-order functional connectivity, supra-
adjacency matrix, dynamic connectivity,between-frequency
connectivity, driving drowsiness, EEG.
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I. INTRODUCTION

MENTAL fatigue is a cumulative process of vigilance
decrement and is associated with a disinclination to

any effort, leading to drowsiness and impaired performance
[1], [2]. Although mental fatigue can be induced by a
demanding cognitive activity [3], it can also be produced in
a prolonged monotonous task, especially during driving [4].
Drivers in drowsiness state usually experience vigilance and
performance decrements [2]. Accounting for 20% of all global
traffic accidents, driving drowsiness is one of the prominent
causes of traffic fatalities [5]. Due to the harmful repercus-
sions of driving drowsiness, studies have been conducted to
better understand its physiological process and to develop
an effective countermeasure [1]. Physiological signals from
brain (EEG), heart (ECG), and eye (EOG) have been utilized to
indicate driving drowsiness [6]–[8]. Among these signals, EEG
may be relatively reliable to indicate driving drowsiness since
it directly reflects the brain activity, containing informative
features associated with drowsiness [1], [9]–[11].

Previous studies have utilized spectral powers as indica-
tors of driving drowsiness and mental fatigue [2], [12]–[15].
Spectral powers in typical frequency bands (i.e., theta, alpha,
and beta) have been found to be closely related to driving
drowsiness. Spectral powers in alpha and theta bands increased
during heightened fatigue [2], [6], [8], [9], [13], [14].
In alpha band, almost all regions have been reported to
have relevance to the changes of fatigue level, consisting
of occipital [6], [8], [9], [13], [14], parietal [6], [9], [13],
central [6], [9], [13], and temporal [6], [13] areas.
Frontal [6], [13], [14], central and occipital [6], [13] regions
in theta band were also found to be related to fatigue. In con-
trast, beta band significantly decreased during the state of
driving drowsiness [6], [8], [9], which appeared in frontal [6],
central [6], [9], and temporal [6] regions. A study using
alpha spindle parameters also showed increases in spindle
rate, duration, and amplitude during the period of drowsi-
ness [12]. Spectral power ratio also showed significant differ-
ences between alertness and drowsiness. The ratios β/α and
(α + θ)/β decreased and increased respectively when becom-
ing drowsy [2]. Delta and gamma bands were also reported to
be associated with drowsiness [9], although they were much
less frequently utilized compared to the theta, alpha, and
beta bands in the published literature. The aforementioned
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studies demonstrated that driving drowsiness is related to
wide brain regions and particular frequency bands. These
characteristics require the exploration of driving drowsiness
from the perspective of inter-regional and between-frequency
interactions, rather than from individually isolated brain
regions.

In order to capture the inter-regional interactions, recent
studies have utilized functional connectivity and the cor-
responding graph metrics to assess driving drowsiness and
mental fatigue [16]–[24]. Significant increases of mean phase
coherence (MPC) in delta and alpha bands were observed
during the period of driving drowsiness and the number of
connective functional units (FUs) also increased [16]. Studies
using spectral coherence also showed similar results during
heightened fatigue [18], [19]. Significant increases of coher-
ence values were observed in delta, theta, alpha, and beta
bands [18] and the number of synchronized regions also
increased [19]. In a study using spectral coherence and phase
locking value (PLV), significant increases of PLV values in
theta band occurred after a prolonged cognitive task, while
PLV and spectral coherence values in beta band decreased sig-
nificantly [22]. Directed measures based on granger causality
have also been utilized as fatigue indicators. A study using
directed transfer function (DTF) revealed impaired parietal-
to-frontal coupling in alpha band and enhanced frontal-to-
center coupling in beta band in the left hemisphere [17].
Characteristic path length (L) and the normalized L computed
from partial directed coherence in lower alpha band (8-10 Hz)
increased significantly during fatigue, indicating an increasing
inefficiency of information processing [21]. Such inefficiency
during drowsiness was also observed in the delta and theta
bands [20]. In a study using ordinary coherence [23], increases
of the normalized clustering coefficient were observed in
theta, alpha, and beta bands. Normalized L in theta and beta
bands also increased under drowsiness [23]. As shown in the
above studies, the dominant frequency bands (i.e., theta, alpha,
and beta bands) involved in the connectivity were consistent
with the frequency bands found in the spectral-power-based
studies. Although these connectivity studies took inter-regional
interactions into consideration, between-frequency interactions
were neglected.

Since the brain functional connectivity in each frequency
band has distinct information related to drowsiness, analyzing
the connectivity between frequency bands may provide a more
comprehensive view of driving drowsiness. Multilayer network
has recently been developed to analyze multiple layers of brain
functional connectivity in different bands by extracting their
intralayer and interlayer interactions simultaneously [25]–[27].
In this study, we utilized the multilayer network which was
previously utilized for schizophrenia studies [26], [27]. The
networks within and between frequency bands were organized
in a supra-adjacency matrix, consisting of the diagonal blocks
representing the intralayer connectivity and the off-diagonal
blocks representing the interlayer connectivity. To construct
the supra-adjacency matrix, envelope correlation was utilized
to measure the intrinsic mode of functional coupling within
and between frequency bands [26], [27].

Although connectivity measures have been utilized as
driving drowsiness indicators, they were considered as
low-order functional connectivity (LOFC), ignoring the topo-
graphical and dynamic properties of the brain inter-regional
interactions [28]–[30]. Functional connectivity utilizing the
aforementioned properties may be more useful to assess
driving drowsiness, capturing more complex inter-regional
interactions. Recently, high-order functional connectivity
(HOFC) has been proposed for fMRI data to capture high-
order relationships between regions [28]–[32]. To capture the
functional connectivity based on the topographical profiles,
HOFC and associated HOFC (aHOFC) have been developed,
characterizing the high level and inter level inter-regional
synchronizations [32]. HOFC and aHOFC were collectively
called as topographical FC (tFC) in this study. HOFC measures
the similarity between pairs of LOFC profiles while aHOFC
quantifies the relationship between LOFC and HOFC profiles.
With the inspiration from the previous studies developing tem-
poral correlation of LOFC [29], [30], we proposed the dynamic
interactions of HOFC and aHOFC. This type of functional
connectivity utilized the dynamic property of the connections,
reflecting the adaptive and state-related temporary functional
architecture of low level (dynamic LOFC, dLOFC), high
level (dHOFC), and inter level (daHOFC) synchronizations
respectively [29]. LOFC, HOFC, and aHOFC were collectively
called as functional connectivity (FC) while dLOFC, dHOFC,
and daHOFC were collectively called as dynamic FC (dFC)
in this study.

In this paper, we proposed the use of topographical FC and
dLOFC to characterize the brain functional connectivity in
the alertness and drowsiness states. Based on the developed
dLOFC, we proposed dHOFC and daHOFC to characterize the
dynamic interactions of HOFC and aHOFC. We further pro-
posed a global metric to measure the overall synchronization
of FC and dFC during alertness and drowsiness. Connection-
level metric and modularity index were calculated from the
constructed FC and dFC, measuring inter-regional connections
and the community structure respectively.

II. METHODS

A. Experimental Protocol

All subjects, consisting of 30 healthy students, were
recruited from the National University of Singapore (18 males
and 12 females, age: 23.17 ± 2.72 years, mean ± standard
deviation). All of them reported normal or corrected-to-normal
vision. They had no history of substance addiction or men-
tal disorders. The subjects were required to obtain a full
night (>7 h) sleep before the day of the experiment and to
refrain from consuming caffeine or alcohol on the day of the
experiment. All subjects were trained to familiarize with the
driving equipment and gave informed consent before the start
of the experiment. The experiment was implemented with a
driving simulation using Logitech G27 Racing Wheel set and
Carnetsoft Driving Simulator (http://cs-driving-simulator.com)
software. The subjects were required to steer a car following
a guiding car, and to brake as soon as the red tail lights
of the guiding car lit. Each subject completed two identical



360 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 27, NO. 3, MARCH 2019

90-minute driving sessions, approximately one week apart.
The data from the two-session experiment were used for
investigating the reliability of the metrics.

B. Data Acquisition

The brain activity was measured using EEG. EEG signals
were recorded by the wireless dry 24-channel EEG system
(Cognionics, Inc., USA), sampled at 250 Hz. The impedances
of all EEG channels were maintained below 20 K� and
referenced to the left and right mastoids. To obtain clean
EEG epochs, several preprocessing steps were implemented.
The EEG signals from all channels were first re-referenced
using the common average reference. The signals from EEG
channels having poor contact with the scalp were removed
and interpolated using the ones from their adjacent channels.
The last 5-min portion of EEG was removed due to the
change of driving mode (i.e., free driving without the guiding
car). The EEG signals were band-pass filtered using the FIR
filter with 0.5 and 45 Hz cut-off frequencies. The filtered
signals were then segmented into 2-second time epochs. Epoch
rejection was performed using EEGLAB to remove abnormal
epochs with more than 5 times standard deviation from the
mean [33]. Due to an insufficient number of epochs after the
rejection step, four subjects in the first session and one subject
in the second session were excluded for further analysis.
For the remaining subjects, the resulting epochs were decom-
posed into signal components using Independent Component
Analysis (ICA). The components representing artifacts, such
as eye movements, muscular activities, etc., were removed
and the remaining components were used to reconstruct clean
EEG epochs. The resulting epochs during the first and the
last 5 minutes were considered as alertness (128.47 ± 21.44,
mean ± standard deviation) and drowsiness (116.71 ± 31.73)
samples, based on the self-reported confirmation from the
subjects after the experiment and the increased reaction time
at the end of the experiment relative to the beginning.

C. Low-Order FC by Envelope Correlation

The low-order FC was constructed by computing the enve-
lope correlation of EEG signals. The signals in each epoch
were band-pass filtered to theta (4-8 Hz), alpha (8-13 Hz),
and beta (13-30 Hz) bands, which were frequently reported in
the previous studies as relevant to drowsiness [17], [18], [20],
[21], [23]. The envelopes of the filtered signals were computed
using the Hilbert transform. The LOFC elements were then
obtained by calculating the absolute Pearson’s correlation of
the envelopes, both for within and between frequency bands.
The detailed steps for calculating the envelope correlation can
be found in [26] and [27].

In order to concurrently consider the information con-
tained in the individual frequency bands, supra-adjacency
matrix was constructed to combine the information within
and between frequency bands. In this study, individual-
band and between-frequency FC and dFC were computed
within and between theta, alpha, and beta bands. The between-
frequency connectivity among the three bands resulted in

theta-alpha, theta-beta, alpha-beta, and theta-alpha-beta matri-
ces. The individual-band matrices have the dimension of
24 × 24 while the supra-adjacency matrices have the sizes
of 48 × 48 (two bands) and 72 × 72 (three bands).

D. Topographical and Dynamic FC

Besides LOFC, we further extended our connectivity
analysis to topographical FC and dynamic FC, exploring the
inter-regional interactions based on different properties of syn-
chronizations. HOFC and aHOFC were utilized to measure the
topographical inter-regional synchronizations at high level and
inter level respectively. The HOFC matrix was generated by
computing the Pearson’s correlation between any two columns
of LOFC, each of which represents a region’s topographical
profile. Before performing the correlation, self-connections
were removed and the elements were z-transformed. For the
between-frequency HOFC, the resulting matrix consists of
intralayer and interlayer blocks, in which the nodes in band x
were denoted by intrax -HOFCxy and interx -HOFCxy for the
HOFC between band x and band y. Measuring the inter level
interactions, aHOFC was constructed by computing the Pear-
son’s correlation between the region’s low level and high level
topographical profiles. Since aHOFC contains elements of the
synchronization between LOFC and HOFC, the LOFC/HOFC
nodes in band x of the aHOFC between band x and
band y were denoted by LOFCx -aHOFCxy /HOFCx -aHOFCxy .
The steps for constructing topographical FC matrices were
depicted in the top panel of Fig. 1, where the correlation of
any two different columns (topographical profiles) resulted in
a similarity value.

To characterize the between-connection interactions,
dynamic FC was constructed, resulting in dLOFC, dHOFC,
and daHOFC. This connectivity method calculates the
Pearson’s correlation between any two time series of each
connection over the periods of alertness and drowsiness,
resulting in a connectivity with a higher number of elements
than the ones in the respective FC. The steps were depicted
in the bottom panel of Fig. 1, where the resulting elements
were computed from the correlation between the time series
of any two different FC elements.

In this study, FC and dFC were utilized to capture the inter-
regional interactions within and between theta, alpha, and beta
bands. The resulting individual-band HOFC and aHOFC have
the dimensions of 24 × 24, while the constructed between-
frequency HOFC and aHOFC have the sizes of 48 × 48
(two bands) and 72 × 72 (three bands). The individual-
band and between-frequency dLOFC and dHOFC have the
sizes of 276 × 276 (one band), 1128 × 1128 (two bands),
and 2556 × 2556 (three bands) while the sizes of daHOFC
are 576 × 576 (one band), 2304 × 2304 (two bands), and
5184 × 5184 (three bands).

E. Global, Connection-Level Metrics and Modularity

To measure the overall synchronization of a connectivity
matrix, we proposed a global metric which calculates the
average value of the absolute unique elements in FC and
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Fig. 1. An illustration of the construction of functional connectivity (FC) and dynamic FC (dFC) matrices. In the top panel, the elements of the HOFC
matrix were obtained from computing the correlations between any two columns of the z-transformed LOFC matrix, excluding the self-connections
shown in the white boxes. Similarly for aHOFC, the correlations were performed between the columns of LOFC and HOFC to calculate its elements.
In the bottom panel, the time series of any two elements from FC matrix were correlated to compute each element of the dFC matrix.

dFC matrices. For symmetrical matrices of LOFC, HOFC,
and dynamic FC, the global metric was calculated from the
upper triangular elements of the connectivity matrix. For
asymmetrical matrices of aHOFC, the global metric was
computed from all elements of the matrix. Each element of
the connectivity matrix was considered as the connection-level
metric, quantifying the inter-regional connections of FC and
dynamic FC. In addition to the global and connection-level
metrics, modularity index was calculated for FC and dFC
matrices to estimate the interconnection within communities
relative to the one between communities [34].

Statistical analysis across subjects, using paired t-test, was
performed on the global, connection-level metrics, and mod-
ularity indexes between the two states, separately for the first

session and the second session. To minimize the possibility for
the type I error of the connection-level metric, a false discov-
ery rate (FDR) correction based on the Benjamini-Hochberg
method was utilized. To focus on the reliable connection-level
metrics, only the connections which were significant in both
sessions after FDR correction were shown and discussed in
this study.

III. RESULTS

The overall synchronizations of LOFC during alertness and
drowsiness were shown in Table I. In the individual-band
and between-frequency LOFC, the overall synchronizations
increased significantly in both sessions. Statistical analyses
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TABLE I
THE GLOBAL METRICS OF LOFC DURING

ALERTNESS AND DROWSINESS

Fig. 2. Significant connection-level metrics of individual-band LOFC
(A), HOFC (B), and aHOFC (C). The term LOFCα-aHOFCα in this case
refers to the LOFC in alpha band which is part of aHOFCα.

of the connection-level metrics showed significant changes in
both sessions only for LOFCα , depicted in Fig. 2(A).

The global metrics of HOFC during the two states were
shown in Fig. 3. For individual-band HOFC, HOFCθ and
HOFCα revealed significant increases of overall synchroniza-
tion in both sessions, while a significant increase for HOFCβ

was found only in the first session. Observing the respective
connection-level metrics, only HOFCα and HOFCβ showed
significant changes in both sessions, depicted in Fig. 2(B). For
between-frequency HOFC, HOFCθα , HOFCθβ , and HOFCαβ

showed significant global metric increases during drowsiness
in both sessions. Significant connection-level metric increases
were found only for HOFCθα (Fig. 4(A)) and HOFCαβ

(Fig. 4(B)). Higher differences and number of significant
connections were found involving the intraα-HOFCθα and
intraα-HOFCαβ , represented in the matrix and connectivity
plots. Significant increases of interlayer connections were also
revealed, comprising notable frontal-central, central-central,
and central-parietal/occipital connections.

The global metrics of aHOFC during alertness and drowsi-
ness can be observed in Fig. 5. Significant increases in
both sessions were found for aHOFCθ , aHOFCα , aHOFCβ ,
aHOFCθα , and aHOFCαβ while aHOFCθβ showed a signifi-
cant increase only in the first session. Based on the correspond-
ing connection-level metrics, aHOFCα and aHOFCβ revealed

Fig. 3. Comparisons between alertness and drowsiness using the global
metrics of HOFC (*: p < 0.05; **: p < 0.01; ***: p < 0.001).

significant connections as depicted in Fig. 2(C). In Fig. 6,
the significant connection-level metrics of aHOFCθα and
aHOFCαβ were shown in the matrix and connectivity plots.
In the matrix representations of Fig. 6(A) and Fig. 6(B), the
significant connections, mainly involving LOFCα-aHOFCθα

and LOFCα-aHOFCαβ , were scattered in a row-shaped fash-
ion, indicating one low level topographical profile becom-
ing more similar to several high level topographical profiles
during drowsiness. Similar to the connection-level metrics
of HOFCθα and HOFCαβ , notable interlayer connections
mainly involving the central region were found for aHOFCθα

(Fig. 6(A)) and aHOFCαβ (Fig. 6(B)).
We further explored the degree of the significant connec-

tions, as shown in Fig. 4 and Fig. 6 (see Fig. 7). The degree
plots, depicting the regional centralities, provided complemen-
tary information to the previous connectivity plots. Fig. 7(A)
represented the degree plots of HOFCθα and aHOFCθα . For
HOFCθα , the nodes in the alpha band had higher degrees
compared to the ones in the theta band, especially in the
central region. For aHOFCθα , the nodes of the LOFCα-
aHOFCθα showed high degrees, mainly in the frontal-central
and central-parietal areas. Fig. 7(B) depicted the degree plots
of HOFCαβ and aHOFCαβ . For HOFCαβ , the nodes around
the central region had high degrees and the highest was
found in the central-parietal region. For aHOFCαβ , the same
nodes in the central-parietal region of LOFCα-aHOFCαβ and
LOFCβ -aHOFCαβ had high degrees, revealing a high number
of connections to/from that region.

The global metrics of dynamic FC were listed in Table II
(dLOFC), Table III (dHOFC), and Table IV (daHOFC).
In Table II, the global metrics of individual-band and between-
frequency dLOFC revealed significant differences between
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Fig. 4. Significant connection-level metrics of HOFCθα (A) and HOFCαβ (B) in the matrix and connectivity plot representations. In the top panel,
each colorbar represents the average value changes across the two sessions of the connection-level metrics during drowsiness relative to alertness.
In the bottom panel, the term intraθ /interθ -HOFCθα refers to the nodes from the intralayer/interlayer blocks in theta band of the HOFCθα matrix.

TABLE II
THE GLOBAL METRICS OF DLOFC DURING

ALERTNESS AND DROWSINESS

alertness and drowsiness in both sessions, except for the
second session of dLOFCθ and dLOFCθβ . In Table III,
significant increases were shown during drowsiness in both
sessions for dHOFCα, dHOFCθα , and dHOFCαβ . The first

TABLE III
THE GLOBAL METRICS OF DHOFC DURING

ALERTNESS AND DROWSINESS

session of dHOFCβ and dHOFCθβ showed significant changes
while there were no significant differences in both sessions
for dHOFCθ . Observing the overall synchronization changes
of daHOFC in Table IV, we found that only daHOFCθ ,
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Fig. 5. Comparisons between alertness and drowsiness using the global
metrics of aHOFC (*: p < 0.05; **: p < 0.01; ***: p < 0.001).

TABLE IV
THE GLOBAL METRICS OF DAHOFC DURING

ALERTNESS AND DROWSINESS

daHOFCα, daHOFCθα, and daHOFCαβ in the first session
revealed significant increases. After obtaining the connection-
level metrics of the individual-band and between-frequency
dynamic FC, we found no consistently significant changes.

The modularity indexes of FC and dynamic FC during
alertness and drowsiness were shown in Table V and VI
respectively. The modularity indexes of FC showed significant
changes in both sessions for aHOFCα and aHOFCθα . The
first session of LOFCβ , HOFCα , HOFCβ , and aHOFCβ also
showed significant differences, while a significant change was
found in the second session of HOFCθα . For the modularity
of dynamic FC, significant differences were found only for
dLOFCθβ in the second session and dHOFCα in the first
session.

Between-frequency FC and dFC in theta-alpha-beta were
also investigated, as shown in Table VII for the global metrics
and in Fig. 8 for the connection-level metrics. For the global
metrics, significant increases were found in both sessions,
except for daHOFCθαβ in the second session. Significant
changes in the connection-level metrics were observed for

TABLE V
THE MODULARITY OF FC DURING ALERTNESS AND DROWSINESS

HOFCθαβ and aHOFCθαβ (see Fig. 8), while none were found
for LOFCθαβ . Similar to the results in Fig. 7, the connections
mostly involved the central region in the alpha band. The
degree plots of HOFCθαβ and aHOFCθαβ were shown in the
supplementary materials.

For the readers who are interested in the individual-band
and between-frequency FC and dFC involving delta and
gamma, we explored the respective global and connection-
level metrics. In summary, we found similar results to the ones
within and between theta, alpha, beta. Observing the global
metrics of individual-band FC, we found reliably significant
increases for LOFCδ , LOFCγ , HOFCδ , and aHOFCδ . For
the between-frequency tFC, we observed the dominance of
the central region in alpha band for HOFCδα , HOFCαγ ,
and aHOFCαγ . Reliable global metrics of dynamic FC were
found for dLOFCγ , dLOFCδα, dLOFCαγ , and dHOFCαγ . The
dominant central regions in alpha band were also revealed in
the five-band FC. More details of the results were reported in
the supplementary materials.

IV. DISCUSSION

A. Increasing Synchronization During Drowsiness

Based on the results of the statistical analyses, the global
and connection-level metrics of FC and dynamic FC
were increased during driving drowsiness. For the overall
synchronization, reliable changes were found for within- and
between-frequency FC and dFC. Previous connectivity studies
also showed heightened synchronizations during drowsiness.
In terms of the overall connectivity changes, increases of the
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Fig. 6. Significant connection-level metrics of aHOFCθα (A) and aHOFCαβ (B) in matrix and connectivity plot representations. Each colorbar
represents the average value changes across the two sessions of the connection-level metrics during drowsiness relative to alertness. The term
LOFCθ/HOFCθ-aHOFCθα indicates the LOFCθ/HOFCθ nodes of the aHOFCθα matrix.

number of synchronized regions at higher level of drowsiness
were found in theta, alpha, and beta bands [16]. Observing
the connection-level metrics, we found consistently signif-
icant increases within and between-frequency HOFC and
aHOFC. Stronger interactions of the central-parietal/occipital
and frontal-central connections were found in HOFCθα ,
HOFCαβ , HOFCθαβ and aHOFCθα , aHOFCαβ , aHOFCθαβ .
In the previous connectivity studies, frontal-to-center DTF
connections enhanced in beta band [17], while higher spectral
granger causality values were observed in theta and alpha
bands [20]. Parietal-occipital connective FUs were also found
in theta, alpha, and beta bands during drowsiness period [16].
In conclusion, the results of the global and connection-level
metrics were in agreement with the findings in the previous
studies regarding the increasing inter-regional synchroniza-
tions during drowsiness. This observation might suggest that
similar increases of synchronization during drowsiness at
individual-band LOFC are also replicated at the individual-
band and between-frequency topographical and dynamic FC.

B. Alpha Band Dominance During Drowsiness

From the previously mentioned bands related to driving
drowsiness, the changes in alpha band were dominant in our
study compared to that in theta and beta bands. According to

the LOFC results, only LOFCα had consistently significant
differences of connection-level metrics, as shown in Fig. 2.
Based on the toporaphical FC results, HOFCα , HOFCθα ,
HOFCαβ , HOFCθαβ and aHOFCα , aHOFCθα , aHOFCαβ ,
aHOFCθαβ showed reliable changes of global and connection-
level metrics. In Fig. 4, the connections involving intraα-
HOFCθα and intraα-HOFCαβ had higher differences compared
to the other reliable connections. Similar results were observed
in aHOFC as shown in Fig. 6, mainly involving LOFCα-
aHOFCθα and LOFCα-aHOFCαβ . In the connection-level met-
rics of HOFCθαβ and aHOFCθαβ , the connections having
significant changes were found mostly involving the alpha
band (see Fig. 8). Based on the dynamic FC results, we found
reliably significant increases of the global metrics of dLOFCα,
dLOFCθα, dLOFCαβ , dLOFCθαβ and dHOFCα , dHOFCθα ,
dHOFCαβ , dHOFCθαβ . The modularity indexes of aHOFCα

and aHOFCθα also showed significant differences in both
sessions. The observation of dominant alpha band changes
during drowsiness was in concordance with the previous
results using spectral power [2], [6], [9], [13] and functional
connectivity [16]–[18], [20], [23]. Our findings in this study
support the hypothesis that alpha band is dominant during
relaxed conditions, decreased attention levels, and drowsy but
wakeful state [6], [8].
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TABLE VI
THE MODULARITY OF DFC DURING ALERTNESS AND DROWSINESS

Fig. 7. Significant connection-level metrics of HOFCθα, aHOFCθα
(A) and HOFCαβ , aHOFCαβ (B) in degree plot representation. The
colorbars represent the respective degree values of the nodes. For
HOFC, each headplot corresponds to the nodes from each band. For
aHOFC, each headplot refers to the LOFC/HOFC nodes of the aHOFC.

C. Reliable Connections of Between-Frequency tFC
Involving the Central Region

Most of the reliable connection-level metrics were found
by utilizing the inter level (aHOFC) and high level (HOFC)
topographical synchronizations. While only LOFCα showed

Fig. 8. Significant connection-level metrics of HOFCθαβ and
aHOFCθαβ .

TABLE VII
THE GLOBAL METRICS OF FC AND DFC IN THETA-ALPHA-BETA

DURING ALERTNESS AND DROWSINESS

consistently significant changes of the connection-level met-
rics (Fig. 2(A)), more reliable metrics were observed in
HOFC (Fig. 2(B)) and aHOFC (Fig. 2(C)). Further integrating
the inter-regional interactions in several frequency bands,
we found a higher number of reliable connection-level metrics
of HOFCθα , HOFCαβ and aHOFCθα , aHOFCαβ , as shown
in Fig. 4 and Fig. 6. Observing the parts of the two-band
HOFC, we found a high number of reliable connection-level
metrics in the respective interlayer blocks, comprising central-
central, frontal-central, and central-parietal/occipital connec-
tions. In two-band aHOFC, we also observed reliable changes
of connection-level metrics in similar regions to the ones of
HOFC. Central-central and frontal-central connections were
also found in HOFCθαβ and aHOFCθαβ . Previous LOFC
studies also revealed enhanced frontal-central [17], [22] and
central-central [22] connections during drowsiness. Further
analyzing the respective degree plots, we found that the reli-
able connections mainly involved the central region as depicted
in Fig. 7. Previous spectral power studies reported significant
changes in central regions in theta [13], alpha [9], [13], and
beta [9] bands during driving drowsiness. Similarly in the pre-
vious connectivity studies, higher mean MPC [16] and mean
coherence [23] in the central region were also reported. In this
study, between-frequency inter-regional connections, mainly
involving the central region, exhibited more reliable changes at
the inter level and high level synchronizations for drowsiness
assessment. In addition, between-frequency topographical FC
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may manifest the characteristics which cannot be captured by
the individual-band LOFC.

V. CONCLUSION

In this paper, we utilized FC and dLOFC and proposed
dHOFC and daHOFC within and between frequency bands
to assess driving drowsiness. In addition to the connection-
level metric and modularity, we proposed a global metric
to measure the aggregated effect of FC and dynamic FC
matrices. According to the LOFC results, the global metrics
showed consistently significant increases within and between
frequency bands while only LOFCα revealed reliable changes
of the connection-level metrics. By using between-frequency
topographical FC, most of the reliable connection-level met-
rics were found, mainly involving the central region in the
alpha band. Alpha band dominance was also observed in the
global metrics of dynamic FC and modularity indexes of FC.
In summary, the study suggested that between-frequency
tFC is more sensitive than traditional within-band LOFC
for assessing driving drowsiness. While the overall changes
of LOFC were consistently significant, the use of between-
frequency tFC could reveal reliably significant changes of
overall synchronizations and a higher number of inter-regional
connections. Reliable overall changes of individual-band and
between-frequency dLOFC and dHOFC were also observed.
All in all, individual-band and between-frequency tFC and
dFC can provide complementary information to the traditional
individual-band LOFC for assessing driving drowsiness.
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