
For Peer Review
The moderating role of recovery durations in high intensity 

interval training protocols

Journal: International Journal of Sports Physiology and Performance

Manuscript ID IJSPP.2018-0876.R1

Manuscript Type: Invited Commentary

Date Submitted by the 

Author:
01-Mar-2019

Complete List of Authors: Schoenmakers, Patrick; University of Essex, School of Sport, 

Rehabilitation and Exercise Sciences 

Hettinga, Florentina; Northumbria University

Reed, Kate; University of Essex, School of Sport, Rehabilitation and 

Exercise Sciences 

Keywords: HIIT, protocol optimization, rest intervals, work: rest ratio

 

Human Kinetics, 1607 N Market St, Champaign, IL 61825

International Journal of Sports Physiology and Performance



For Peer Review

Title page

Title of the article: The moderating role of recovery durations in high intensity interval 

training protocols

Submission type: Invited Commentary

Full names of the authors and institutional/corporate affiliations: Patrick P.J.M. 

Schoenmakers, Florentina J. Hettinga, Kate E. Reed, 

Author’s affiliation: 

School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, 

United Kingdom, CO4 3SQ.

Contact details for the corresponding author: 

Dr Katharine Reed, 

Email : reedk@essex.ac.uk, 

Phone: +44 (0) 1206 873326

Preferred running Head: Recovery Duration in Interval Training

Abstract word count: 242

Text-only word count: 1916

Number of figures (2) and tables (1)

Page 1 of 17

Human Kinetics, 1607 N Market St, Champaign, IL 61825

International Journal of Sports Physiology and Performance



For Peer Review

1

1 Abstract:

2 Purpose: Over recent years, multiple studies have tried to optimize the exercise intensity and 
3 duration of work intervals in high intensity interval training (HIIT) protocols. Whilst an 
4 optimum work interval is of major importance to facilitate training adaptations, an optimum 
5 HIIT protocol can only be achieved with an adequate recovery interval separating work 
6 bouts. Surprisingly little research has focussed on the acute responses and long term impact 
7 of manipulating recovery intervals in HIIT sessions. This invited commentary therefore aims 
8 to review and discuss the current literature and increase the understanding of the moderating 
9 role of recovery durations in HIIT protocols. 
10 Conclusion: The acute responses to manipulations in recovery durations in repeated sprint 
11 training (RST), sprint interval training (SIT) and aerobic interval training (AIT) protocols 
12 have recently begun to receive scientific interest. However, limited studies have manipulated 
13 only the recovery duration in RST, SIT or AIT protocols to analyze the role of recovery 
14 durations on long term training adaptations. In RST and SIT, longer recovery intervals (≥ 80 
15 sec) facilitate higher workloads in subsequent work intervals (compared with short recovery 
16 intervals), whilst potentially lowering the aerobic stimulus of the training session. In AIT, the 
17 total physiological strain endured per training protocol appears not to be moderated by the 
18 recovery intervals, unless the recovery duration is too short. This invited commentary 
19 highlights that further empirical evidence on a variety of RST, SIT and AIT protocols and in 
20 other exercise modalities than cycling is needed.
21

22 KEYWORDS: HIIT, protocol optimization, rest intervals, work: rest ratio
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23 Introduction:

24 High intensity interval training (HIIT) is regarded a highly effective training modality to 
25 improve cardiorespiratory and metabolic functioning, and is common practice in training 
26 regimes of many athletes, particularly those involved in endurance events. 1 In HIIT, repeated 
27 periods of vigorous exercise (work interval) are interspersed with recovery periods, and a 
28 complex interplay between the number of intervals, the exercise intensities and the duration 
29 of both the work and recovery intervals determine the workload of a HIIT session. 2,3 Based 
30 on the duration and exercise intensities of work intervals, HIIT can be divided into multiple 
31 training forms, for which many terms exist. In this invited commentary we will use and 
32 discuss the terms repeated sprint training (RST), sprint interval training (SIT) and aerobic 
33 interval training (AIT) as the three main subcategories of HIIT, each targeting different 
34 physiological, neuromuscular and mechanical adaptations. 1 In recent years, many studies 
35 have tried to optimize the work intervals of HIIT protocols. A demanding ‘work interval’ is 
36 needed to facilitate training adaptations, with adaptations determined at a cellular level by 
37 heat shock proteins, PCG1a and other components 4, but a successful HIIT protocol can only 
38 be achieved when work bouts are separated by an adequate recovery. Surprisingly little 
39 research has explored the overall impact of recovery intervals, and a better understanding of 
40 optimum exercise intensities and recovery durations in HIIT protocols is therefore timely. 
41 This invited commentary will 1) review the current knowledge of the moderating role of 
42 recovery duration on high intensity protocols, and 2) form a basis from which coaches and 
43 sports scientists can optimise HIIT protocols according to their specific targets. 
44 Characteristics of all reviewed studies are summarized in Supplementary material Table S1

45 Recovery Intervals in HIIT: How are recovery intervals usually determined?

46 A multitude of approaches are available for the prescription of recovery intervals in HIIT. 
47 The most common approach is the use of a fixed work:recovery ratio (i.e., W:R = 2:1, 1:1, 
48 1:8). A fixed W:R ratio separates work intervals by an a priori set recovery duration, for 
49 instance, when W:R = 1:2, the recovery duration is twice the duration of the work interval. In 
50 an attempt to individualize recovery intervals, the return of heart rate (HR) to a set threshold 
51 value or to a percentage of maximum heart rate (HRmax) is used. However, the present 
52 understandings of the determinants of HR recovery suggest that this practice is not 
53 appropriate in the prescription of recovery durations. This was for instance evidenced by 
54 Edwards et al., 5 who reported decreases up to ~10-15 sec for each 1000m running effort in a 
55 5*1000m sequence when recovery intervals where based on HR return, compared to a W:R = 
56 1:1 protocol, of which the latter resulted in ~80 sec extra recovery time between repetitions. 
57 Lastly, a number of studies have used self-selected (SS) recovery durations in HIIT protocols, 
58 in which athletes started subsequent work intervals when they felt ‘adequately recovered to 
59 exercise at the required intensity’. 5–10 While a considerable amount of variation was evident 
60 in SS recovery durations across different HIIT protocols, and SS recovery time is potentially 
61 dependent on maturation status 7,10 (see figure 1), the current understanding is that athletes 
62 can adequately select recovery durations to achieve the required exercise intensities in 
63 subsequent work intervals in both RST and SIT (see figure 1) and AIT (see figure 2). 
64 Athletes new to the use of SS recovery intervals will likely choose a ‘shorter than optimal’ 
65 recovery time, as common HIIT protocols typically incorporate ‘short’ recovery durations 
66 (e.g. 1000m work : 200m recovery), which potentially compromises training effects. 

67 >> figure 1 and figure 2 around here <<

68 Physiological basis of recovery. 
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69 The main metabolic processes that take place during recovery from intense exercise bouts are 
70 the repletion of phosphocreatine stores (PCr), the removal of hydrogen ions (H+) and 
71 restitution of the acid-base balance of the exercising muscles. 1,11,12 These processes proceed 
72 at different rates, with PCr having a much faster half-life (~30 sec) and achieving complete 
73 restoration (~3 min), 11 compared with blood lactate [BLa] and pH recovery (6 - 10 min). 12 In 
74 order to work at the required exercise intensity during subsequent intervals, recovery 
75 intervals need to be long enough to accomodate the return to metabolic homeostasis. An 
76 imbalance between the demands of the work intervals and the recovery potential of the 
77 recovery intervals can lead to premature fatigue, which potentially reduces the number of 
78 planned intervals, or lowers the work intensity during subsequent intervals. An example of an 
79 inadequate W:R is seen in the study by Laursen et al., 13 who reported that two groups of well 
80 trained cyclists completed only 64% of the total prescribed number of work bouts over a 4 
81 week training cycle. Participants were ‘pushed to exhaustion’ in each session, as inadequate 
82 recovery had been prescribed given the intensity of the work interval, resulting in failure to 
83 complete the session. While the training intervention still improved time trial performance, 
84 peak power output (POpeak) and the maximum oxygen uptake (V̇O2max), 13 a protocol 
85 involving a longer recovery interval may have evoked even greater improvements.

86 The recovery duration during RST & SIT

87 Repeated all-out (or sometimes labelled ‘supramaximal’ 4) sprint training has received a 
88 growing research interest, as it replicates the demands of maximal-intensity sprint efforts 
89 typically performed in field-based team sports and endurance sports. In practical terms, based 
90 on the duration of the sprints and the subsequent recovery duration, sprint training can be 
91 divided into either short (3–10 sec; RST) or long (15–30 sec; SIT) sprints. 

92 In RST, a positive effect on performance in subsequent 4 – 8 sec supramaximal sprints in 
93 cycling power 14–17 and running speed 18,19 has been reported when longer recovery durations 
94 were employed. Longer recovery intervals resulted in a lower average HR and oxygen uptake 
95 (V̇O2) over the training session. 14,15,17,20 Further, the fatigue index (percentage decline 
96 between POpeak first and last sprint), [BLa] and ratings of perceived exertion (RPE) were 
97 lower when sprints were interspersed with longer recovery intervals, 15,19 which was 
98 accompanied by a greater muscular re-oxygenation. 20 

99 In SIT protocols similar beneficial performance outcomes were reported across a multitude of 
100 exercise modalities when recovery duration was increased between work intervals. 8,21–23 
101 McEwan et al., 8 compared the acute physiological responses and running performance in 
102 12 × 30 sec sprints, wherein the recovery duration was either fixed (30 sec) or self-selected 
103 (SS). SS recovery time increased over the protocol (see figure 1) and averaged 51±15 sec. 
104 The longer recovery intervals in SS resulted in a reduced time ≥ 90% HRmax, but facilitated 
105 the attainment of significantly higher running speeds. In agreement with these findings, 
106 Gosselin et al., 24 reported a decrease in mean and peak V̇O2 and mean HR in a SIT protocol 
107 alternating 60 sec work intervals with 60 sec recovery, compared with 30 sec recovery 
108 intervals. Less than 30 sec recovery between ‘all out’ sprints seems to have a detrimental 
109 effect on power production in subsequent cycling sprints, whereas the aerobic demand in 
110 sprints separated by 120 sec recovery are too low to induce endurance adaptations. 22–24 
111 Kavaliauskas et al., 23 therefore suggested 80 sec recovery intervals between sprints are 
112 optimal when targeting both power and endurance adaptations. 

113 The recovery duration during ‘aerobic’ interval training
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114 HIIT incorporating long work intervals (up to 16 min) is typically described as ‘aerobic 
115 interval training’ (AIT), as work intensities are undeniably high - but ultimately submaximal. 
116 It was suggested by Thevenet et al., 25  that the time athletes spend in their ‘red zone’ per AIT 
117 could serve as a good criterion to judge the effectiveness of a protocol. The ‘red zone’ refers 
118 to the intensity domain close to V̇O2max (≥ 90% V̇O2max) in which the oxygen delivery and 
119 utilization systems are maximally stressed. 1 Previous research showed that trained runners 
120 reach a steady state of around 90 - 95% V̇O2max / HRmax across repeated 4 min work 
121 intervals, independent of an increased recovery duration between bouts. 6,9,26,27 Both Smilios 
122 et al., 27 and Schoenmakers 9 reported changes in the O2 and HR kinetics when recovery 
123 durations increased (more so, mean response time was faster when intervals started from a 
124 lower metabolic rate),  resulting in similar time spent ≥ 90% and 95% V̇O2max and HRmax 
125 between the different recovery durations, suggesting a comparable physiological load of the 
126 AIT protocol. 9,27 Increasing the recovery duration from 1 to 4 min did not significantly affect 
127 [BLa] responses following each 4 min work intervals in runners, suggesting a balance 
128 between lactate production and lactate buffering capacity. 6,26 In a study where participants 
129 were working at a greater intensity, a greater [Bla] was evident when 6 x 2 min cycling 
130 intervals were separated by either 1 (AIT1) or 3 min (AIT3) passive recovery intervals. 28 The 
131 shorter recovery intervals in AIT1 induced a lower post exercise PCr content compared with 
132 AIT3, however, these larger perturbations in muscle metabolites did not result in greater 
133 training adaptations in AIT1 compared with AIT3. 28

134 Using self-paced AIT protocols, in which work intensities were not predefined but rather 
135 determined by the integrative outcome of feedback from external and internal receptors, 
136 multiple research groups 5,6,9,26,29 have evaluated running performance across work intervals. 
137 In highly trained runners, increasing the recovery duration in a 10*400m set speed sequence 
138 (60 vs. 120 vs. 180 sec) resulted in a lower RPE. 29 Trained male 6, and recreational active 
139 male and female runners 26 were able to increase their mean running speed in 6 × 4 min 
140 intervals when the recovery duration was increased from 1 min to 2 min. A further increase in 
141 recovery duration (4 min) did not provide extra performance benefits for the trained runners. 
142

6 Conversely, Laurent et al., 26 reported an additional increase in running speed when extra 
143 recovery time was available. Schoenmakers et al., 9 reported the highest mean running speed 
144 when 6 × 4 min intervals (ran on a curved non-motorized treadmill) were separated by 3 min, 
145 compared to 1 min, 2 min or a SS recovery interval. These results overall indicate that 
146 adequate recovery will result in the attainment of the desired work intensity within the limits 
147 and requirements of a specific protocol, however, the ‘optimum’ recovery duration, most 
148 likely is highly individual and depending on training status.  

149 Practical Applications

150 In RST and SIT protocols, longer recovery intervals (≥ 80 sec) facilitate higher work 
151 intensities in subsequent sprints and lower the fatigue index, whereas a shorter recovery 
152 duration in these protocols increases the overall physiological demands of a training session. 
153

22,23 Long recovery intervals in AIT protocols allow athletes to attain higher workloads (speed 
154 or power) in successive work bouts when exercise intensities are not fixed, without 
155 compromising the overall physiological stimulus of a training session. 6,9,26 When work 
156 intensities are fixed in AIT protocols, the same training sessions is typically completed with a 
157 lower RPE when longer recovery intervals are available, again, without compromising in the 
158 physiological stimulus. 27–29  Ultimately, depending on the exercise intensities of work 
159 intervals, a recovery interval of 3 min is expected to be sufficient to avoid premature fatigue 
160 in AIT protocols. 
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161 Conclusion

162 The acute responses to manipulations in recovery durations in RST, SIT and AIT protocols 
163 are receiving increasing scientific interest. The manipulation of recovery durations in RST 
164 and SIT protocols results in different acute physiological and perceptual responses, and most 
165 likely in different training adaptations. The current understanding is that training at higher 
166 workloads in RST and SIT protocols elicit greater adaptations in POpeak and V̇O2max, 
167 however, this has only been evidenced in cycling protocols. In AIT, the physiological strain 
168 endured per training protocol appears not to be moderated by the recovery intervals, unless 
169 the recovery interval is too short and causes premature fatigue. When adequate recovery 
170 intervals are available in AIT protocols, a further increase in recovery duration is not 
171 expected to provide greater physiological and/or performance adaptations when exercise 
172 intensities are fixed. However, when work intensities are not predefined, longer recovery 
173 durations may facilitate a higher external training load, and may therefore allow for greater 
174 training adaptations. Further empirical evidence on a variety of RST, SIT and AIT protocols 
175 in exercise modalities other than cycling are needed to fully determine the moderating effects 
176 of recovery duration in HIIT sessions.
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281 Figure captions:

282 Figure 1: Mean±SD self-selected recovery duration between 12 x 30 sec 8 , or 12 x 30m 7,10 
283 intervals

284 Figure 2: Mean±SD self-selected recovery duration between 6 x 4 min 6,9 , or 5 x 1000m 5 
285 intervals
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Figure 1: Mean±SD self-selected recovery duration between 12 x 30 sec 8 , or 12 x 30m 7,10 intervals 
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Figure 2: Mean±SD self-selected recovery duration between 6 x 4 min 6,9 , or 5 x 1000m 5 intervals 
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Table 1: Summary of participant and training characteristics of reviewed studies

Study Sample Size, Age Modality High Intensity Interval Training Protocol Recovery Duration Key Findings

Repeated Sprint Training

Baker et al. (2007) 15 n = 8, 26.6 ± 7.8 Cycling Participants performed 8 × 6 sec sprint on a cycling 

ergometer against 0.75 g.kg-1 FFM or TBM

30 sec, 1MIN AR: Peak power output was higher in both the FFM and TBM 

conditions in 1MIN vs 30 sec, accompanied by a significantly lower 

fatigue index. HR was higher in both 30 sec protocols, with no 

differences in RPE and end [Bla] measures evident.

Brownstein et al. (2018) 10 pre-PHV, n = 14, 12 

± 0.4

AR: Recovery duration in SS significantly shorter (~12 sec). Mean 

sprint time faster in 30 sec, accompanied by smaller performance 

decrement. Mean and peakHR higher in SS.

Post-PHV, n = 14, 

14 ± 0.5

Running Participants performed a repeated sprint sequence twice, 

comprising 10 × 30 m efforts (~5 sec)

30 sec, SS

AR: Recovery duration in SS significantly shorter (~8 sec). Mean 

sprint time faster in 30 sec, accompanied by smaller performance 

decrement. Mean and peakHR higher in SS.

Gibson et al. (2017) 7 n = 11, 14 ± 1 Running Participants performed two repeated sprint assessment of 

10 × 30 m sprint efforts (~5 sec)

30 sec, SS AR: Training sequence shorter in SS, as SS recovery duration is 

significantly shorter (~10 sec). Mean sprint time significantly faster 

in 30 sec. No differences in peakHR, [Bla] and RPE.

Glaister et al. (2005) 14 n = 25, 20.6 ± 1.5 Cycling Participants completed 20 × 5 sec maximal sprints on a 

friction-braked cycle ergometer

10 sec, 30 sec AR: Peak (~4%) and mean (~26%) power output higher in 30 sec, 

with lower measures of fatigue, RPE and end [Bla]. Contrary, VO2, 

RER and HR measures were higher in 10 sec in both the work and 

recovery intervals.

Lee et al. (2011) 16 n = 14, 18.7 ± 0.8 Cycling Participants completed two intermittent sprint cycling tests 

(ISCTs), which were composed of 12 × 4 sec sprints. 

Tests were separated by 4 min active recovery

20 sec, 90 sec AR: Peak and mean sprint power in both ISCTs higher in 90 sec vs 

20 sec, with a lower fatigue index and RPE score. End [Bla] higher 

in 20 sec.

Ohya et al. (2013) 20 n = 8, 25.5 ± 2.6 Cycling Participants performed 10 maximal 5 sec sprints 

interspersed with either active recovery (ACT, cycling at 

40% VO2max) or passive recovery (PAS, sitting)

25 sec, 50 sec, 

100 sec

AR: Mean and peak power decrement over sprints was lowest in 100 

sec and, independent of ACT/PAS, inversely related to recovery 

time. Mean VO2 and [Bla] were higher in 25 sec > 50 sec > 100 sec, 

whilst muscular reoxygenation was lower in 25 sec.

Padulo et al. (2015) 19 n =17, 16 ± 0 Running Participants completed three testing sessions, in which 

they performed six maximal 40 m shuttle sprints (20+20 

m with a 180º change of direction, ~6 sec)

15 sec, 20 sec,   

25sec

AR: Total sprint time was ~3% faster in 25 sec compared to 15 sec, 

and ~1.3% compared to 20 sec. [Bla] and fatigue index were highest 

in 15 sec, followed by 20 sec, and lowest in 25 sec.

Shi et al. (2018) 17 n = 13, 26.2 ± 6.2 Cycling Participants finished three RST protocols, consisting of 40 

x 6 sec all-out sprints on a cycling ergometer (with 

resistance equating 7.5% body mass)

15 sec, 30 sec, 1MIN AR: Peak and mean power output was higher in 1MIN compared to 

15 sec and 30 sec, with a notable lower RPE. Accumulated time ≥ 

80% and 90% V̇O2max increased as recovery time decreased, 

however, for HR this was only evident in time ≥ 95% HRmax.

Sprint Interval Training

Gosselin et al. (2012) 24 n = 8, 23.1 ± 2.1 Running Participants performed 2 different training protocols , in 

which they exercised at a workload corresponding to 90% 

V̇O2max for 60 sec

30 sec, 1MIN AR: Mean and peak VO2 and HR significantly higher in 30 sec 

compared to 1MIN, with no differences in RPE. Both protocols 

failed to achieve 90% V̇O2max.
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Table 2: Continued

Study Sample Size, Age Modality High Intensity Interval Training Protocol Recovery Duration Key Findings

Hazell et al. (2010) 22 n = 48, 24 ± 3.2 Cycling Participants completed 2 weeks of SIT (3 sessions a 

week), in which they performed 4-6 ‘all out’ sprint of 

either 30 sec (G1) or 10 sec (G2 & G3), against 100 g.kg-1. 

CON did not receive SIT

G1: 4MIN,          

G2: 4MIN,

        G3: 2MIN

AR: Peak and mean power output in sprints higher in G2 & G3, 

whilst G1 performed more total work. TA:  Improvements in 5 km 

TT were similar between groups, whereas the increase in VO2max 

and mean and peak Wingate power output were higher in G1 & G2 

compared to G3 and CON.

Iaia et al. (2015) 18 n = 13, 18.5 ± 1 Running Participants completed nine SIT sessions, which focussed 

on speed endurance production (SEP; n = 6) or speed 

endurance maintenance (SEM; n = 7). Both SEP and SEM 

consisted of 6–8 reps of 20 sec all-out sprints

SEP: 2MIN,

SEM: 40 sec

AR: Mean running speed were higher in SEP sprints compared to 

SEM, with a lower decrement in speed across subsequent sprints. 

TA: SEM improved their 200-m sprint time, distance covered in Yo-

Yo test increased 10.1% after SEP and 3.8% after SEM.

Kavaliauskas et al. (2015) 23 G1, n = 8, 41± 12

G2, n = 8, 38 ± 7

G3, n = 8, 42 ± 6

Cycling Participants completed a total of six SIT sessions over a 

two week period. The SIT protocol consisted of six 10-

second “all-out” cycling efforts against a resistance 

equalling 7.5% of body weight. CON received no SIT

 G1: 30 sec,              

G2: 80 sec,            

G3: 2MIN

AR: Average HR was greater in G1 compared with G3 for all 

training sessions, and was greater in G2 compared with G3 for 

training sessions 1 and 2. TA: All three training groups increased 

3km TT to a similar extent.  V̇O2max increased in G1 & G2, but not 

in G3. Mean and peak Wingate power output increased after G2, 

whereas G3 only increased their mean power output.

McEwan et al. (2018) 8 N = 14, 30 ± 7 Running Participants performed 12 × 30 sec running intervals at a 

target intensity of 105% MAS.

30 sec, SS AR: Mean recovery duration longer in SS (~21 sec). Relative time ≥ 

105% MAS and mean running speed greater in SS, whereas time ≥ 

90% HRmax was higher in 30 sec compared to SS . No differences 

in end [Bla] or RPE.

Toubekis et al. (2005) 21 N = 16, 21.2 ± 0.6 Swimming Participants completed eight repetitions of 25-m sprints 

(~15 sec), followed by a 50-m sprint test 6 min later. 

Recovery was either ACT or PAS.

45 sec, 2MIN AR: Mean swimming velocity faster in PAS for both recovery 

durations, and faster in 2MIN compared to 45 sec with no 

differences in end [Bla]. 50-m sprint times were 2.4% faster in both 

ACT and PAS 2MIN conditions vs 45 sec.

Aerobic Interval Training

Edge et al. (2013) 28 N = 5, 21 ± 2 Cycling Participants completed 6 × 120 sec intervals, on a power 

output corresponding to 92% V̇O2max

1MIN, 3MIN AR: Average HR in intervals higher in 1MIN vs 3MIN. 1MIN 

induced a greater end [Bla], H+ and MLa content than 3MIN, while 

muscle PCr content was less after 1MIN.

Edge et al. (2013) 28 G1, n = 6, 19 ± 1

G2, n = 6

Cycling Participants performed a total 15 HIIT sessions over a 5 

week period, consisting of 6 – 10 × 120 sec intervals at a 

workload of 92%-111% power output at V̇O2max

G1: 1MIN,           

G2: 3MIN

TA: Significant increase in V̇O2max, PPO and power output at 

lactate threshold, to a similar extent in both G1 and G2. 

Improvements in repeated sprint performance were similar.

Edwards et al. (2011) 5 N = 11, 26 ± 7 Running Participants completed a series of four (5 × 1000 m) track 

running sessions, each at the standardized perceived 

exertion of RPE 17.

SS_PR1, SS_PR2, 

HR130, W:R = 1

AR: Recovery significantly shorter in HR130, accompanied by a 

significant lower mean running velocity and greater fatigue index. 

Similar HR and end [Bla] between all experimental conditions.
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Laurent et al. (2014) 26 G1, n = 8, 20.8 ± 2.1

G2, n = 8, 21.9 ± 3.6

Running Trained male (G1) and female (G2) runners completed 

three isoeffort (maximum sustainable intensity) training 

sessions, each comprising six 4 min interval

1MIN, 2MIN,   

4MIN

AR: SS running velocity increased in both groups when longer 

recovery was available. Independent of recovery duration, mean 

VO2, HR, [Bla] and RPE were similar across conditions in both G1 

& G2. Relative exercise HR and VO2 was higher in G2.

Laursen et al. (2002) 13 G1, n = 8, 26 ± 6

G2, n = 9, 24 ± 7

Cycling Participants performed eight AIT sessions over a 4 week 

period, comprising 8 intervals at Pmax for the duration of 

60% Tlim

G1: W:R = 0.5,

G2: 65HRmax

AR: G1 had a significantly greater total mean recovery time (~110 

sec) between bouts compared with G2. Both groups completed 

~64% of prescribed interval bouts. TA: Improvements in V̇O2max, 

PPO, and 40 km TT were similar between groups.

Seiler & Hetlelid (2005) 6 n = 9, 30 ± 4 Running Participants performed three isoeffort (maximum 

sustainable intensity) training sessions, each comprising 

six 4 min intervals at a constant 5% treadmill incline.

1MIN, 2MIN, 

4MIN, SS

AR: Higher running velocity in 2MIN (85% vV̇O2max) and 4MIN 

(84% vV̇O2max) vs 1MIN (83% vV̇O2max). Higher mean VO2 in 

2MIN and 4MIN vs 1MIN. No differences in end [Bla], HR, or 

RPE.

Schoenmakers & Reed (2018) 9 N =12, 34 ± 11 Running Participants performed four isoeffort (maximum 

sustainable intensity) training sessions, each comprising 

six 4 min interval on a non-motorized treadmill

1MIN, 2MIN, 

3MIN, SS_PR1

AR: Running velocity significantly higher in 3MIN compared to all 

other protocols, and higher in ssMIN vs 2MIN. No significant 

differences in RPE responses, time ≥ 90% and 95% V̇O2max, or ≥ 

90% and 95% HRmax

Smilioset al. (2018) 27 N = 11, 22.1±1 Running Participants executed, on three separate sessions, 4×4 min 

runs at 90% of MAS

2MIN, 3MIN,  

4MIN

AR: Time ≥ 80 and 90% HRmax was higher in 2MIN and 3MIN 

compared to 4MIN, but did not differ for VO2 measures. Peak HR 

and VO2 were similar between conditions. RPE were higher in 

2MIN and 3MIN vs 4MIN, as was 2MIN end [Bla]

Zavorsky et al. (1998) 29 N = 12, 24.8 ± 5.1 Running Participants performed three interval running workouts of 

10 x 400 m on a predefined running speed

1MIN, 2MIN,  

3MIN

AR: Mean HR significantly higher in 1MIN, but no differences in 

peakHR between conditions. RPE increased with decrease in 

recovery time.

Age is presented mean ± standard deviation 

Note: 1MIN; 1 min recovery; 2MIN; 2 min recovery; 3MIN; 3 min recovery; 4MIN: 4 min recovery; ACT: active recovery; AIT: aerobic interval training; AR: Acute responses; [Bla]: blood 

lactate concentration; CON: control group; FFM: fat-free body mass; H+: Hydrogen; HR: heart rate; HR130: recovery duration based on HR return to 130 bpm; HRmax: maximum heart rate; 

ISCTs: intermittent sprint cycling tests; MAS: maximal aerobic speed; MLa: muscle lactate; PAS: passive recovery; PCr: phosphocreatine; peakHR: peak heart rate; Pmax: minimal power 

output to elicit V̇O2max; post-PHV: post peak height velocity; PPO: peak power output; pre-PHV: pre peak height velocity; RER: respiratory exchange ratio; RPE: ratings of perceived exertion; 

RST: repeated sprint training SIT: sprint interval training; SS: self-selected recovery duration; SS_PR1 & SS_PR2: self-selected recovery duration based on perceived readiness scale; SEM: 

speed endurance maintenance; SEP: speed endurance production; TA: Adaptations to a period of training; TBM: total body mass; Tlim: time to exhaustion at Pmax; TT: time trial; VO2: oxygen 

consumption; V̇O2max: maximum oxygen consumption  vV̇O2max: minimum running velocity to elicit V̇O2max; W:R = 1: recovery duration equal to work interval duration
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