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Abstract: Wearable heart rate sensors such as those found in smartwatches are commonly based
upon Photoplethysmography (PPG) which shines a light into the wrist and measures the amount of
light reflected back. This method works well for stationary subjects, but in exercise situations, PPG
signals are heavily corrupted by motion artifacts. The presence of these artifacts necessitates the
creation of signal processing algorithms for removing the motion interference and allowing the true
heart related information to be extracted from the PPG trace during exercise. Here, we describe
a new publicly available database of PPG signals collected during exercise for the creation and
validation of signal processing algorithms extracting heart rate and heart rate variability from PPG
signals. PPG signals from the wrist are recorded together with chest electrocardiography (ECG)
to allow a reference/comparison heart rate to be found, and the temporal alignment between the
two signal sets is estimated from the signal timestamps. The new database differs from previously
available public databases because it includes wrist PPG recorded during walking, running, easy
bike riding and hard bike riding. It also provides estimates of the wrist movement recorded using
a 3-axis low-noise accelerometer, a 3-axis wide-range accelerometer, and a 3-axis gyroscope. The
inclusion of gyroscopic information allows, for the first time, separation of acceleration due to
gravity and acceleration due to true motion of the sensor. The hypothesis is that the improved
motion information provided could assist in the development of algorithms with better PPG motion
artifact removal performance.

Data Set: Wrist photoplethysmography (PPG) during exercise, https://physionet.org/works/
WristPPGduringexercise/.

Data Set License: Open Data Commons (ODC) Public Domain Dedication and License v1.0.

Keywords: photoplethysmography (PPG); electrocardiography (ECG); heart rate monitoring;
physical exercise

1. Summary

Photoplethysmography (PPG) is a well-known noninvasive method for monitoring the heart.
It operates by shining a light into the body and measuring the amount of light that is reflected back,
or the amount of light that is transmitted through an appendage such as the finger, both of which vary
with the amount of blood flow present [1]. Unlike the electrocardiogram (ECG) which places sticky
metal electrodes on the chest in order to monitor electrical activity from the heart, PPG monitoring
can be performed at peripheral sites on the body and does not need a conductive gel in order to make
a good body contact. As a result, PPG sensors are finding substantial new applications in wearable
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devices and smartwatches, see [2] as just one example, as the preferred modality for everyday heart
monitoring by non-specialist users.

However, raw PPG signals are severely corrupted by motion artifacts, Figure 1. These arise
from a number of sources, principally a relative movement between the PPG light source/detector
and the skin of the user during motion [3]. These artifacts obscure the heart related information and
historically have limited the use of PPG to relatively motion free clinical situations [4]. Very recently,
a number of signal processing techniques have been proposed for separating true PPG components
from motion artifact components in order to allow PPG-based heart monitoring during physical
exercise for the first time. See [3,5–12] as a small number of example algorithms.
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Figure 1. Examples of wrist photoplethysmography (PPG) signals. (Top) An example with no motion
present shows clear peaks for each heart beat, here for a participant with a low resting heart rate
of 42 beats per minute. Low-frequency baseline wander is seen but no other interference is present.
(Bottom) An example taken during running shows many spurious peaks due to motion interference.
Note that the two PPG traces are presented in arbitrary units and are not on the same y-scale.

Here, we describe and provide a new dataset of publicly available PPG recordings to help in the
design and verification of new PPG signal processing algorithms for the extraction of heart rate during
physical exercise. PPG signals recorded from the wrist are provided, together with measurements of
the motion of the wrist and an ECG recording from the chest. This ECG recording allows a gold
standard calculation of the heart rate to be found, within the bounds of how accurately the signals
recorded from the different battery powered sensors with different clock drift rates are aligned in
time. (This is discussed fully in Section 4.)

Our new database complements the well-known 2015 IEEE Signal Processing Cup database [13]
of PPG signals which were collected from 23 subjects during running and arm intensive exercises
such as boxing. Our data allows out-of-sample testing of algorithms developed using the existing
database, and our database has two further new contributions compared to this and other previously
available PPG databases.

Firstly, PPG signals are recorded in four different exercise conditions:

• While walking on a treadmill.
• While running on a treadmill.
• While using an exercise bike set to a low resistance (giving high cycling speeds).
• While using an exercise bike set to a high resistance (giving low cycling speeds).
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Our database can be used for the development of PPG heart rate algorithms for a wider range of
health, sports, and exercise applications, and for the further validation and out-of-sample testing of
existing methods.

Secondly, we provide multiple measurements of the motion of the wrist during the exercise. To
date, most algorithms using PPG data during exercise have been based upon Adaptive Filtering [14],
using a reference signal of the recorded motion to subtract the motion interference from the PPG
spectrum, allowing the heart rate signal components to be seen. This motion estimate has been based
upon using only one 3-axis accelerometer co-located with the PPG sensor. We have recorded an
estimate of the PPG motion interferer signal using:

• A ±2 g low-noise 3-axis accelerometer.
• A wide-range 3-axis accelerometer, up to ±16 g.
• A 3-axis gyroscope with 0.0481 degrees per second (dps) noise floor.

The use of a gyroscope allows the angular rotation and orientation of the PPG sensor to be
captured in addition to acceleration data, for the first time. From this, it is possible to separate
acceleration components due to gravity and acceleration components due to true motion of the
sensor [15]. (The mathematics required for using the gyroscope data to remove the effects of gravity
from the accelerometer data are given in the Appendix here.) Examples of such processing are given
in [16–18] as is commonly done for activity tracking, and using such approaches allows a better
estimate of the true motion present compared to using accelerometer information alone. This could
be used to develop bespoke gyroscope driven algorithms for removing motion interference from PPG
signals, or could potentially be used with existing algorithms, providing them with a more accurate
motion estimation input (as illustrated in the Appendix). To our knowledge, due to a lack of data sets
that contain both accelerometer and gyroscope data, there are no current algorithms using gyroscope
information to help remove motion interference from PPG signals and the ability to develop these
this is a major contribution of the new dataset.

The use of multiple accelerometers is helpful for when working with a wide range of
exercise situations, allowing both large accelerations and low-noise measurements to be captured
simultaneously. The ±2 g accelerometer has a lower noise floor than the ±16 g accelerometer and so
can accurately measure smaller motion components without them being corrupted by noise. In turn,
the ±16 g allows motion to still be measured in cases where the ±2 g accelerometer saturates.

This article provides an overview of the new PPG database which will be of use for the
development of new heart rate and heart rate variability algorithms using ECG and PPG data during
exercise. Section 2 describes how the data is stored and accessed. Section 3 describes the experimental
methodology and data collection procedure. Finally, Section 4 gives important notes on how the data
is optimally used, particularly with regards to the synchronization between the PPG and motion data
and the reference ECG signal.

2. Data Description

The database consists of multiple data records, one per participant and exercise activity, as
described in Section 3. Within each data record, thirteen signals are present and the given name,
unit, and description are defined in Table 1.
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Table 1. Name, unit, and description of each signal in every file of the database.

Signal Name Unit Signal Description

Electrocardiography (ECG) mV The ECG signal recorded from the chest which can be
used as a gold standard comparison for determining
the heart rate.

PPG mV The reflective PPG signal recorded from the wrist.
Gyro 1 deg/s Gyroscope data recorded on first axis.
Gyro 2 deg/s Gyroscope data recorded on second axis.
Gyro 3 deg/s Gyroscope data recorded on third axis.
Low noise accelerometer 1 m/s2 ±2 g accelerometer data recorded on first axis.
Low noise accelerometer 2 m/s2 ±2 g accelerometer data recorded on second axis.
Low noise accelerometer 3 m/s2 ±2 g accelerometer data recorded on third axis.
Wide range accelerometer 1 m/s2 ±16 g accelerometer data recorded on first axis.
Wide range accelerometer 2 m/s2 ±16 g accelerometer data recorded on second axis.
Wide range accelerometer 3 m/s2 ±16 g accelerometer data recorded on third axis.
Sample times for all signals apart from ECG s Sample times to help with data synchronization as

discussed in Section 4. These values wrap 0–60 s.
R peak times s Times of ECG R peaks identified by hand, referenced

to time 0 s at the start of the record.

The data is stored in Physionet WaveForm DataBase (WFDB) format [19] such that each record
consists of two files, one with a .hea extension and one with a .dat extension. The .hea file provides
header information, including the signal names and units as given in Table 1, and parameters required
to load the data values which are stored in the associated .dat file. These values are automatically
handled by the Physionet toolkit software as discussed below. The first line in the .hea file also
contains the sampling frequency (256 Hz for all signals) and the number of samples in the record.

A large number of tools are available for loading and processing WFDB format files. We
recommend using the functions provided by the Physionet Toolkit [19] (https://physionet.org/
physiotools/) which are available in C, C++, MATLAB, Python and other languages. The signals
can be loaded using the rdsamp function. In MATLAB this is simply:

[tm, signals] = rdsamp(‘filename’)

where tm gives the sample number or time in the record, and signals is an M× 13 matrix with one
column for each signal with M time samples. For example, after running the rdsamp command, the
ECG trace can be plotted as:

plot(signals(:,1))

filename is the name of the data file to load. These are given in the format sX_activity where
X is a unique identification number of each participant and activity is a description of the exercise
being performed in the data record.

An example of the signals collected during walking is shown in Figure 2. An example of the
signals collected during low-resistance biking is shown in Figure 3. If desired, users can generate
further example plots by running the commands given above.

https://physionet.org/physiotools/
https://physionet.org/physiotools/
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Figure 2. Examples of the 12 collected signals collected during walking. ECG R peak times are also
included in the database. Seventy seconds of data from record s1_walk. Zoomed-in time domain
information for the ECG and PPG traces between times 67 s and 69 s is also shown.
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Figure 3. Examples of the 12 collected signals collected during low-resistance biking. ECG
R peak times are also included in the database. Seventy seconds of data from record
s6_low_resistance_bike. Zoomed-in time domain information for the ECG and PPG traces between
times 10 s and 12 s is also shown.
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3. Methods

Measurements were taken using an ECG unit placed on the chest together with a PPG and an
Inertial Measurement Unit placed on the left wrist while participants used an indoor treadmill and
exercise bike.

Single-channel, two-electrode, ECG recordings were taken using an Actiwave (CamNtech,
Cambridge, UK) recorder [20] and pre-gelled self-adhesive Silver-Silver Chloride (Ag/AgCl)
electrodes, as are standard for ECG monitoring. These were placed on the upper chest with one
electrode on either side of the heart. The 4 mm snap connector electrodes were connected to the 1 mm
non-touchproof connector on the Actiwave using 15 mm converter cables provided by CamNtech.
Movement of these cables introduces artifacts into the recorded ECG trace, essentially standard
ECG cable artifacts [21]. To minimize such movements, the cables were taped to the skin using
a micro-porous surgical tape. A typical set-up for the ECG unit is shown in Figure 4. R peaks
in this ECG trace were identified by hand and these times are included in the database to allow a
gold standard reference heart rate comparison. These R peak times are referenced assuming the first
sample in the ECG trace occurs at time 0 s.

Figure 4. Actiwave unit used for recording the single-channel, two-electrode, ECG.

PPG and motion data were recorded using a Shimmer 3 GSR+ unit (Shimmer Sensing, Dublin,
Ireland) [22]. This contains a gyroscope, a low-noise accelerometer and a wide-range accelerometer
integrated into a single package. (Integrated magnetometer and pressure sensors are also present
but were not used.) A reflective mode PPG sensor with a 510 nm green LED was connected to the
main Shimmer unit using the 3.5 mm headphone port. This PPG sensor was then glued to the main
Shimmer unit as shown in Figure 5 (top) in order to give a rigid connection and allow the movement
sensors inside the main Shimmer unit to accurately record the movement of the PPG sensor. The
combined unit was then placed on the left wrist as shown in Figure 5 (bottom), in approximately the
position of a standard watch. Care was taken to ensure that the PPG light source was pointing into
the skin with minimal light leakage between the sensor surface and the skin which would also let
ambient light into the PPG light detector.

Participants were then asked to perform one or more different types of exercise. Four options
were available: walking on a treadmill at a normal pace for up to 10 min; light jog/run on a treadmill,
at a pace set by the participant, for up to 10 min; pedal on an exercise bike set at a low resistance for
up to 10 min; pedal on an exercise bike set at a higher resistance for up to 10 min. The objective was
to introduce a range of representative motion artifacts into the collected heart signals, not to carry out
a set exercise routine. As such, each participant was free to set the pace of the treadmill and pedal
rate on the bike so they were comfortable and also to change these settings or stop the exercise at any
time. Most participants spent between 4 and 6 min on each activity, and the duration of each data
record is given in Table 2. All signals were sampled at 256 Hz and the start and stop time of each
activity recorded. Records from eight participants are present (three male, five female), aged 22–32
(mean 26.5).
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Figure 5. Shimmer 3 unit used for recording the PPG, low-noise acceleration, wide-range acceleration,
and gyroscope data. (Top) The PPG sensor is glued to the main Shimmer unit to give a rigid
connection and allow the motion recorded by the main Shimmer unit to to accurately record the
movement of the PPG sensor. (Bottom) Placement of the PPG sensor on the left wrist in approximately
the position of a standard watch.

Table 2. Duration of each data record to the nearest second/MM:SS. “–” indicates that the database
does not contain this activity for this participant.

Subject ID Walk Run Exercise Activity
Low-Resistance Bike High-Resistance Bike

1 9:48 – 9:39 9:48
2 6:39 – 5:41 6:54
3 4:47 5:07 4:54 4:41
4 – 4:52 – –
5 – 5:08 4:40 –
6 5:36 5:02 4:40 –
8 6:42 4:47 – –
9 3:40 – – –

In all cases, the subject was starting from rest and so in each record the heart rate should begin
at a low resting value, and then increase during the activity. For participants where data records
are present for more than one type of exercise, these were done as a single recording with a break
of at least 10 min present between each activity. The data was then segmented offline into the
portions corresponding to different activities. (See notes in Section 4.) All procedures were approved
by the University of Manchester Research Ethics Committee and written consent obtained from all
participants. This written consent included the option to not have the recorded data publicly shared,
and the database only contains signals from participants who agreed to data sharing.

For the walking and running records, the database contains the raw PPG and motion signals
present after segmentation into the appropriate activity. No filtering is applied, beyond that built
in to the Shimmer hardware. For the cycling records, large amounts of high-frequency noise were
present in the PPG traces. Prior to conversion to WFDB format, the cycling PPG traces were low-pass
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filtered using a second order IIR Butterworth digital filter with 15 Hz cut-off and zero group delay
with the MATLAB filtfilt command. All ECG records have a 50 Hz notch filter applied as part of
the Actiwave control software to remove mains interference.

4. Usage Notes

The data is freely available from the Physionet website, https://physionet.org/works/
WristPPGduringexercise/, with the dataset name Wrist PPG during exercise. Nineteen records are
available in total, with a mixture from the same person doing different activities and from different
people doing different activities. This allows a standard leave-one-out cross validation approach to
be used when finding the parameters of developed heart rate detection algorithms, where all but one
of the records are used as training sets to search potential parameter values, and the last record used
to assess performance. All possible combinations of test records are then used and such approaches
have been shown to get very good generalisability [23].

For using the data, it is important to note that the Shimmer device was connected to the wrist
using a continuously adjustable strap, rather than a watch type band with discrete notches. Both
connection methods are available in commercial wrist PPG devices, see for example the Scosche
Rhythm+ [24], however our connection method may not be the same as that used in the IEEE Signal
Processing Cup database data [13]. Care should be taken when directly comparing the two signal sets
as any strap related artifacts may manifest differently. Our new data set should be seen as a stand
alone complement, now also providing signals during biking and from gyroscopes.

Beyond this, the principal challenge in collecting and using the data is the synchronization
between the different signals collected by different devices. Signals 2–12, that is everything apart
from the ECG trace and R peak times, were collected using a single Shimmer 3 device and so all of the
signals are sampled simultaneously and are intrinsically aligned. The ECG trace is collected using a
separate Actiwave device and so this trace must be aligned in time to the Shimmer data in order to
use it as a comparison case.
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Figure 6. Instaneous sampling rate of the Shimmer found from the sample time stamps provided. The
average rate is very close to 256 Hz. Low values, <50 Hz occur approximately once per minute.

The Actiwave does not provide precise timing information for every sample taken. It natively
stores its data in EDF format [25] which only provides the time of the first sample. After this, it
is assumed that samples are taken correctly, on average, every 39 ms (corresponding to a 256 Hz
sampling rate). In contrast, the Shimmer device records the time at which each sample is taken in
Unix time format and although set to a 256 Hz sampling frequency, these samples are not uniformly
spaced at 39 ms as would be ideal. Figure 6 illustrates an example of the actual effective sampling rate,

https://physionet.org/works/WristPPGduringexercise/
https://physionet.org/works/WristPPGduringexercise/
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which is on average very close to 256 Hz but has a slight variance around this over time. Across all
records, the average actual sampling rate of the Shimmer device is 255.69 Hz. In any one experiment
run, the signals collected by the Shimmer device therefore consistently have fewer samples than those
provided by the Actiwave. This error will accumulate through the record, being worse at the end.

The final database files only have data from during exercise periods, the data from set-up periods
and rest periods is not included. The recorded start and stop times of each activity were used to extract
the appropriate segments of data. Actiwave data is extracted taking the 256 Hz sampling rate and
finding the samples between the start and stop times. For example, if the ECG recording started at
10:40:00, and the walking activity started at 10:42:12 and finished at 10:46:48, the ECG samples in this
segment are extracted from the full trace as

ECG segment = ECG raw trace(132×256:408×256)

where 132 is the number of seconds between the start of the ECG recording and the start of the activity
and 408 is the number of seconds between the start of the ECG recording and the end of the activity.
In contrast, the Shimmer data is extracted by finding the sample numbers corresponding to the start
and stop time stamps provided for each sample. For example, for the PPG trace:

PPG segment = PPG raw trace(find(sample with time stamp(10:42:12)) :

find(sample with time stamp(10:46:48))

As the Shimmer device has an average sampling rate slightly below 256 Hz, this process results
in signals 2–12 having fewer samples than the ECG signal from the Actiwave. To store the data in
WFDB format, where all traces must have the same number of samples, NaNs have been added in to
the end of each signal to equalize the length.

The differences in the durations of the Actiwave and Shimmer records are given in Table 3.
In the worst case, a 1.21 s difference is present. Within any one record, we do not believe that a
mis-alignment of a maximum 1.21 s, and often substantially less, should lead to a substantial error
when comparing the reported heart rates. Most current PPG heart rate algorithms operate on data
in overlapping 8 second windows giving a temporal blurring of the information and removing the
need for an extremely precise alignment between the PPG and ECG signals. For handling this timing
mis-alignment, we suggest that the simplest procedure is simply to ignore it and treat the signals as
if they were the same duration with the same number of samples.

Table 3. Difference between the number of samples provided by the Actiwave (ECG signal) and
Shimmer (all other signals) in seconds. In all cases, the Actiwave has more samples and the Shimmer
data is padded with NaNs at the end of the record to equalize the lengths.

Subject ID Walk Run Exercise Activity
Low Resistance Bike High Resistance Bike

1 0.91 – 0.56 0.32
2 1.21 – 0.34 0.19
3 0.59 0.14 0.12 0.19
4 – 0.14 – –
5 – 0.96 0.63 –
6 0.16 0.20 0.20 –
8 0.65 0.56 – –
9 0.10 – – –

Nevertheless, if more precise alignment of the signals is required, signal 12 in each record gives
the time in seconds of each sample taken by the Shimmer device. This wraps from 0 to 60, and is the
absolute time of the sample but with the day, hour, and minute information removed. If desired, this
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timing information could be used to resample one of the time series, either to downsample the ECG
so it has samples at the same times as the Shimmer sample points, or to upsample the Shimmer data
so that it has the same number of samples as the ECG trace.

Finally, our segmentation procedure takes the Actiwave ECG data as the baseline and assumes
that it is correctly sampled at 256 Hz after the given start time. Multiple activities done by the
same person were done sequentially in a fixed order: walking, running, low-resistance biking,
high-resistance biking. Thus, if the Actiwave clock drifts significantly from 256 Hz, it is possible that
the reported synchronization errors will be larger than those reported in Table 3 for the recordings
that were taken later as the drift in the Shimmer clock will have been accounted for, but any drift in
the Actiwave clock has not been accounted for. As no timing information is provided in the Actiwave
output, it is not possible to check this issue further and provide a quantified estimate of this effect.
As far as possible, given the PPG artifacts present during motion, we have checked by eye that the
PPG and ECG traces in these later activities are correctly aligned, and we do not believe this to be
a significant issue. We mention it here for completeness, and to help with the understanding of the
generation of the database and its limitations when interpreting results based upon it.
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Appendix Combining Accelerometer and Gyroscope Data to Estimate Motion

A key benefit of the new database is that it includes both accelerometer and gyroscope
measurements of motion recorded from the wrist, allowing the actual motion present to be estimated
more accurately. A number of methods for doing this exist, for example rotation-based [26] and
quaternion model-based [27]. This appendix overviews one potential method to clearly illustrate the
benefit of the new signals in our database.

Following the rotation-based procedure in [26], let Sx be an arbitrary 3 × 1 vector which is
orientated relative to the sensor, with this orientation moving with the sensor motion and hence wrist.
Vector x can also be measured with respect to a local fixed frame (called an inertial frame) pointing
East, North, and Up and denoted by Ix. The two different frames of reference for measurement Sx
and Ix are related by a 3× 3 rotation matrix I

SR:

I
SR =

 cos(α) cos(β) cos(α) sin(β) sin(γ)− sin(α) cos(γ) cos(α) sin(β) cos(γ) + sin(α) sin(γ)
sin(α) cos(β) sin(α) sin(β) sin(γ) + cos(α) cos(γ) sin(α) sin(β) cos(γ)− cos(α) sin(γ)
− sin(β) cos(β) sin(γ) cos(β) cos(γ)

 (A1)

where α, β and γ are the rotation angles from the Z, Y and X axes, that is, the yaw, pitch and roll
respectively.

Gravity g = 9.8 ms-2 is in the fixed inertial frame denoted Ig. This can be mapped to the sensor
frame Sg by

Sg = g× SZ (A2)

where SZ is the bottom row of (A1). That is,

SZ =
[
− sin(β) cos(β) sin(γ) cos(β) cos(γ)

]
. (A3)
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Acceleration measured in the sensor frame using the accelerometers can thus be corrected to
remove the acceleration component due to gravity as

S̃a = Sa− Sg (A4)

with the required angles to calculate SZ derived from the gyroscope measurements. The gyroscopes
measure the rate of change of angular position, and so the numerical integration of these gives the
angles. Typically, this integration is combined with Kalman filtering to minimize the effects of sensor
drift and measurement noise on the estimation of SZ [26,28,29].

To illustrate the application of this improved motion estimate, subtracting the effects of gravity,
we illustrate the application of an adaptive filter to remove motion artifacts from the PPG trace. (See
for example [30], and note that many other approaches are also available.) The adaptive filtering
objective is to adaptively estimate a motion-free PPG signal by suppressing the signal components
measured by the accelerometers and gyroscopes. To do this, the measured PPG signal p(n) at time
point n is modeled by:

p(n) = p̃(n) + m(n) + v(n) (A5)

where p̃(n) is the motion interference free PPG signal, m(n) is the motion artifact and v(n) is the
residual sensor recording noise. In approaches where no gyroscope information is available, the
motion artifact is modeled as a linear function of the acceleration data, using only the raw signals
from the accelerometers

m(n) = hT(n)Sa(n) (A6)

where h is an unknown transfer function. Therefore an error signal is defined as:

e(n) = p(n)− hT(n)Sa(n). (A7)

and a linear update equation can be used to iteratively estimate h from samples of p(n) and Sa(n) by
minimizing e(n). This update procedure is formulated as:

h(n + 1) = h(n) +
µ(n)
‖Sa(n)‖2

Sa(n)e(n) (A8)

where µ(n) is an update step-size parameter.
With gyroscope sensors also available, this process can now be changed to use the gravity

corrected acceleration signals S̃a, giving a better estimation of the motion present as it is not corrupted
by incorrect measurements of acceleration due to gravity.
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