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Abstract— This paper presents a new method for estimating
the average heart rate from a foot/ankle worn photoplethys-
mography (PPG) sensor during fast bike activity. Placing the
PPG sensor on the lower half of the body allows more energy
to be collected from energy harvesting in order to give a power
autonomous sensor node, but comes at the cost of introducing
significant motion interference into the PPG trace. We present
a normalised least mean square adaptive filter and short-time
Fourier transform based algorithm for estimating heart rat e
in the presence of this motion contamination. Results from 8
subjects show the new algorithm has an average error of 9
beats-per-minute when compared to an ECG gold standard.

I. INTRODUCTION

Recently highly portable non-obtrusive wearable heart rate
monitors have become readily available, and are now used in
a number of applications. These range from non-healthcare
situations, such as the heart rate monitoring of athletes during
training, to at-home rehabilitation, for example monitoring
the heart rate of rehabilitation subjects as they perform
different exercises [1]. In many of these emerging wearable
heart monitoring applications the devices are used out-of-
the-clinic, in uncontrolled environments, and the collected
signals are heavily contaminated by motion artifacts.

For measuring heart rate, electrocardiogram (ECG) sig-
nals from the chest have the maximum signal strength and
robust signal processing algorithms can be applied for the
reliable estimation of heart rate parameters during physical
exercise. However, as a recording modality it has a number
of limitations: ECG electrodes are relatively difficult fora
non-specialist to attach correctly and in the right place; the
presence of chest hair decreases the quality and longevity
of the electrode connection; and the chest is a relatively
intimate place in which to site a sensor. Many users prefer
non-invasive heart measurements to be performed from more
peripheral sites such as the wrist.

Peripheral wearable heart monitoring is possible by using
photoplethysmography (PPG) to measure changes in blood
flow by shining a light source into the body [2]. The method
can be used in many parts of the body, such as the forehead
[3] and ear [4], and is very popular in emerging smartwatch
devices placed on the wrist. However, the PPG recording
modality has two significant limitations: PPG signals are
highly corrupted by motion artifacts [5] which historically
have restricted its use to no-motion situations; and the

This work was supported by the Engineering and Physical Sciences
Research Council grant number EP/M009262/1.

D. Jarchi and A. J. Casson are with School of Electrical and
Electronic Engineering, University of Manchester, Manchester, UK.
{delaram.jarchi,alex.casson}@manchester.ac.uk

light source requires a large amount of power (typically
approximately 1 mW) limiting the operational life of highly
miniaturized wearables with small batteries.

To overcome the motion artifact challenge recently sev-
eral signal processing algorithms have been reported for
extracting the average heart rate from a motion contaminated
PPG signal collected under exercise. For example, pro-
posed methods are based on Empirical Mode Decomposition
(EMD) [6], Independent Component Analysis (ICA) [7],
Kalman filtering [8], adaptive filters [3], [9] and sparse signal
reconstruction [10]. These have shown to be to able to extract
the average heart rate from a motion contained PPG trace to
within (approximately)±5 beats-per-minute (bpm).

In this paper we use these advances in signal processing
to tackle the second challenge, that of power consumption.
Energy harvesting, where the batteries present are supple-
mented by collecting the intrinsic energy available in the
environment, is critical for use in future wearable devices
as it is the only method for creating sensors which are
truly power autonomous and can go beyond the limited
lifetimes provided by batteries. However extracting large
levels of power from miniature harvesters, sufficient to power
a wearable sensor, is very difficult.

Our new approach aims to overcome this by recognizing
that the largest amount of energy, by far, is available by
placing the harvester device on the lower half of the body
[11]. We thus propose to locate the wearable PPG sensor
on the foot/ankle periphery, rather than the wrist periphery,
where it can make use of this energy harvesting potential and
enable truly long-term and autonomous operation despite the
high power light source required. Doing this successfully first
requires removing motion interference from the foot/ankle
PPG trace. This is a substantially more challenging case than
the wrist PPG examples cited above due to the larger and
more impactful movements by the legs during exercise.

This paper presents a new artifact removal algorithm based
upon a normalised least mean square adaptive filter and
tracking method for estimating average heart rate from a
foot/ankle located PPG sensor while under motion. Subjects
were equipped with wrist and ankle worn sensors and
performed physical exercises such as walking/running on
a treadmill and cycling using an exercise bike to evaluate
the PPG signals, motion corruption, and performance of the
removal algorithm under situations where motion can heavily
influence the PPG signals collected. Section II describes the
experimental setup used and the algorithm proposed for the
estimation of average heart rate. Section III analyses and
discusses the performance of the algorithm.
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Fig. 1. Subject wearing the PPG sensor during: (a) walking, (b) cycling.

II. METHODS

A. Experimental setup

Eight healthy subjects aged 24–32 participated in an
experiment to collect ankle/foot PPG signals under motion,
having a groundtruth ECG signal collected from the chest.
All procedures in this study were reviewed and approved by
the University of Manchester Research Ethics Committee.

PPG and simultaneous three-axis accelerometer signals
were collected using Shimmer 3 [12] devices. In Fig. 1, one
subject wearing foot and wrist sensors during walking on the
treadmill and cycling on the bike is shown. A simultaneous
ECG trace was also collected using a CamnTech platform
[13]. Participants were asked to use a treadmill and exercise
bike at two self-selected speed of low and high. Each session
of slow/fast walking/biking lasted for a maximum of ten
minutes. After each session the subjects remained seated and
relaxed for 10 minutes in order for the heart rate to come
back to a normal rate for the rest state. The wrist/foot worn
PPG and accelerometer signals were recorded simultaneously
at 256 Hz and manually synchronized with the ECG signals.

B. Estimation of average heart rate

The heart rate extraction method in this paper is similar
to the recent proposed method in [9] for wrist PPG signals,
modified to remove the motion artifacts obtained at the
foot/ankle. Fig. 2 gives an overview of our method.

The raw PPG and co-located accelerometry signals are first
band-pass filtered (3rd order Butterworth, 0.5–20 Hz) and
down-sampled by a factorD (defaultD = 10), and passed
to three Normalised Least Mean Square (NLMS) adaptive
filters, one for each axis of acceleration data. The NLMS
adaptive filters are implemented such that the desired signal
is the PPG trace and the filter input is the accelerometer
trace. The objective is to adaptively estimate a motion-free
PPG signal by suppressing the signal components measured
by the accelerometers. To do this the measured PPG signal
p(n) is modeled by:

p(n) = p̃(n) +m(n) + v(n) (1)

where p̃(n) is the motion interference free PPG signal,
m(n) is the motion artifact andv(n) is the residual sensor

Fig. 2. Overview of artifact removal NLMS algorithm based on adaptive filters.

recording noise. The NLMS filter models the motion artifact
as a linear function of the accelerometer data

m(n) = h
T (n)a(n) (2)

whereh is an unknown transfer function. Therefore an error
signal is defined as:

e(n) = p(n)− h
T (n)a(n). (3)

and a linear update equation can be used to iteratively
estimateh from samples ofp(n) and a(n) by minimizing
e(n). This update procedure is formulated as:

h(n+ 1) = h(n) +
µ(n)

‖a(n)‖2
a(n)e(n) (4)

whereµ(n) is an update step size parameter. Herea(n) is
a vector of lengthL (filter order) of acceleration samples.
Knowing h an estimate of the motion interference in the
PPG trace,̂mx,y,z, can be generated and is subtracted from
the recorded PPG tracep(n). This procedure is applied
separately for the three acceleration axes, producing three
estimates of a motion-reduced PPG trace,ŝx,y,z.

Estimation of heart rate is then performed in the frequency
domain using the Short Time Fourier Transform (STFT) to
first extract the frequency components in each signalŝx,y,z.
To keep the dominant frequency components from each
motion-reduced PPG signal a single combined spectral signal
is obtained by multiplying the three individual spectrums,
and then taking a cube root:

S̃(n, f) = 3

√
Π3

i=1
Si(n, f). (5)

Si(n, f) is the estimated spectrum of the motion-reduced
PPG signal using a combination of each accelerometer axis
and the measured PPG signal, andS̃(n, f) is the final
estimated spectrum. Here the NLMS filter order is set to
9, the step-size ofµ has been set to 0.1 and the number of
FFT points for the STFT algorithm has been chosen as 4096.

The end estimate of the heart rate in beats-per-minute
(bpm) is taken as the highest power frequency inS̃(n, f),
with this frequency converted from Hz to bpm. To avoid
spurious peaks and infeasible step changes in heart rate esti-
mates between analysis windows an HR tracking algorithm
has been implemented which follows the frequency trace
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Fig. 3. Example PPG signals from the ankle/foot: (a) at rest, (b) while biking, (c)
while walking/running.

with maximum energy along the spectrum in each analysis
window. This limits the reported heart rate to a range of
60 bpm to 140 bpm with no jumps greater than 14 bpm
between consecutive time windows. In our current set up an
overlapping window of 6 second duration, updating every 2
seconds in 2 second steps, has been used.

C. Comparison method

The foot/ankle PPG heart rate values are compared to a
gold standardmeasurement from the chest ECG trace. By
estimating and locating the R-peaks in the ECG signals it is
possible to estimate the number of beats per minute. To have
a pairwise comparison we used the same method as in Fig.
2, without the adaptive filter part, to extract the heart rate
from the ECG trace. The raw ECG data is down-sampled
(D = 5) and the STFT and heart rate tracking algorithms
then operate as described above.

III. RESULTS AND DISCUSSION

A. Signals during rest

In Fig. 3, examples of foot/ankle PPG data are shown to
illustrate the typical signal morphologies in the no-motion
case and the typical motion artifacts that are encountered.
Fig. 3(a) shows a case of PPG signals collected when no
motion is present. A very clear signal is seen, with clear
peaks due to each heart beat. This makes it possible to extract
the heart rate without further sophisticated signal processing.
Such a case is shown in Fig. 4 which illustrates data for one
subject while in the rest period after walking on the treadmill.
The spectrum of the ECG signal is provided in Fig. 4(a), with
a segment of the raw time domain signal in Fig. 4(c). These
can be compared with Fig. 4(b) and (d) which show the
equivalent traces for the foot/ankle PPG recording. Note that
these figures are for the raw collected signal. During the rest
period there is little/no motion artifact affecting the signals
and the algorithm from Section II has not been applied. In
Fig. 4(e), the average heart rate in terms of bpm has been
shown, and demonstrates a good estimation of heart rate from

time [second]
1 120 240 360 480 400

fr
eq

ue
nc

y 
[H

z]

0

2

4

6

8

time [second]
1 120 240 360 480 600

B
P

M

40

60

80

100
foot PPG
ECG

time [second]
1 120 240 360 480 600

fr
eq

ue
nc

y 
[H

z]

0

2

4

6

8

time [second]
329 331 333 335 337 339

am
pl

itu
de

1200

1400

1600

1800

time [second] 
329 331 333 335 337 339

am
pl

itu
de

-1000

0

1000

(b)

(c)

(a)

(d)

(e)

Fig. 4. (a) Spectrum of ECG signal at rest. The estimated heart rate is shown in
red color. (b) Spectrum of the PPG signal at rest. It can be seen the spectrum is noisy
for the beginning and end of the data. This is due to slight motion and transition of
the subject from an activity to rest and vice versa. (c) A segmented ECG signal shows
clear motion free and regular heart beats. (d) The foot worn PPG signals. (e) Estimated
BPM from ECG signals and PPG signals for 10 minutes data at rest session.

PPG and ECG signals in the middle of rest period. A poor
agreement between the PPG and ECG estimated heart rates
is seen at the start and end of Fig. 4(e). This is due to the
presence of motion artifacts as subject goes from walking
on the treadmill into the seating position at the beginning of
rest period and preparing for a new session at the end of rest
period, and these artifacts have not been corrected for.

B. Signals during biking

Fig. 3(b) shows PPG signals affected by motion artifact
during fast bike riding exercise. Significant time domain
corruption of the signals is readily apparent, and it is not
feasible to extract the heart rate from the foot/ankle PPG
trace in the time domain, necessitating the new artifact
removal approach introduced in Section II.

The performance of this with one subject is illustrated
in Fig. 5 for the fast bike riding case. Fig. 5(a) shows
the frequency spectrum of the raw PPG, which contains a
large number of high frequency components which are not
of physiological origin. These are suppressed, although not
removed entirely, in Fig. 5(b) once the adaptive filtering
algorithm has been applied, and the heart rate can then be
tracked as shown in Fig. 5(d).

Fig. 5(g) shows the end comparison of heart rates esti-
mated from chest ECG and foot/ankle PPG for this example.
After approximately two minutes a good agreement between
the two measures is obtained. (This agreement will be
quantified in Section III-D.) The two minutes corresponds
to the convergence/run-in time of the adaptive filter, which
requires a number of PPG and accelerometer samples in
order to build an accurate model of the currenth transfer
function. This latency in producing an accurate heart rate
estimate is an inherent limitation of our current approach.

C. Signals during walking/running

Fig. 3(c) shows the signals from one subject during walk-
ing and running on a treadmill, with time domain corruption
introduced due to the presence of motion. Nevertheless Fig.6
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Fig. 5. (a) Spectrum of PPG signal corrupted by the motion artefact.(b) Re-
estimation of the PPG spectrum after applying adaptive filter and motion artefact
reduction where estimated heart rate is shown in red color in(d). (c) Spectrum of
ECG signal and the estimated heart rate in red color. A segmented ECG signal (e) and
foot PPG signal (f) during walking on the treadmill. (g) The estimated BPM from ECG
signals and PPG signals for about 5 minutes data during walking on the treadmill.
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Fig. 6. (a) Spectrum of PPG signal corrupted by the motion artefact.(b) Re-
estimation of the PPG spectrum after applying adaptive filters and motion artefact
reduction estimated heart rate in red color in (d). (c) Spectrum of ECG signal and
the estimated heart rate is in red color. A segmented ECG signal (e) and foot PPG
signal (f) during fast bike activity. (g) The estimated BPM from ECG signals and PPG
signals for 10 minutes data during fast bike exercise.

presents results for the algorithmic cleaning of the PPG trace
in order to produce a heart rate estimate which is comparable
to that from ECG, Fig. 6(g). The agreement in this case is
worse than that for the biking case in Fig. 5. It is apparent
that customized adaptive filters will be required for each
activity, and further work on the filter for the walking/running
case is required to obtain a satisfactory agreement between
the PPG and ECG cases.

D. Quantification of performance

For the 8 subjects studied, the PPG signals during fast
bike exercise are used to estimate the average heart rate, and
these are compared to the average heart rate from the ECG
signals, with the results given in Fig. 7. This shows the root-
mean-squared-errors between the beats-per-minute calculated
using the ECG and PPG input traces. The mean and standard
deviation of the root mean squared error has been obtained
as9.1± 3.1bpm, with the algorithm performing much better
in some subjects than others. The average of approximately
9 bpm is satisfactory as an initial algorithm development to
prove the concept of foot/ankle PPG, and we are confident
the error it can be reduced by improving the HR tracking
algorithm and adaptive setting of system parameters before
and after applying adaptive filters in future studies.
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Fig. 7. Root-mean-squared-error of average heart rate in terms of bpm between
estimations from the ECG and foot PPG sensors during fast bike activity.

IV. CONCLUSIONS

This paper has proposed a NLMS adaptive filter and
STFT based algorithm for estimating the average heart rate
from a PPG sensor placed on the foot/ankle during physical
exercise. Placing the sensor in this location could help power
the device by using energy harvesting, but it results in
significantly more motion artifacts in the collected PPG trace.
Our algorithm, assessed using data from 8 participants in a
fast biking situation, shows an average heart rate estimation
error of 9 bpm. At present this performance is limited by
particularly heavy motion artifacts which are seen in the PPG
signals of a few subjects, and by the convergence/run-in time
of the adaptive filter which increases the error when the algo-
rithm is first turned on. We expect to improve the algorithm
proposed in this study by modeling the motion artifact from
the acceleration signals using nonlinear techniques and also
to use an adaptive method to update the parameters of the
system for each subject separately.
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