
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 1

Predictive Thermal Management for
Energy-efficient Execution of Concurrent

Applications on Heterogeneous Multi-cores
Eduardo Weber Wächter, Cédric de Bellefroid, Karunakar Reddy Basireddy, Amit Kumar Singh, Member, IEEE

Bashir Al-Hashimi, Fellow, IEEE and Geoff Merrett, Member, IEEE

Abstract—Current multi-core platforms contain different types
of cores, organized in clusters (e.g., ARM’s big.LITTLE). These
platforms deal with concurrently executing applications, having
varying workload profiles and performance requirements. Run-
time management is imperative for adapting to such performance
requirements, workload variabilities, and to increase energy and
temperature efficiency. Temperature has also become a critical
parameter since it affects reliability, power consumption and
performance, and hence must be managed. This paper proposes
an accurate temperature prediction scheme coupled with a run-
time energy management approach to proactively avoid exceeding
temperature thresholds while maintaining performance targets.
Experiments show up to 20% energy savings while maintaining
high temperature averages and peaks below the threshold. When
compared to state-of-the-art temperature predictors, the present
work predicts 35 % faster and reduces the mean absolute error
from 3.25 ◦C to 1.15 ◦C for the evaluated applications scenarios.

Index Terms—Runtime Management, Thermal Prediction,
Multi-Cores.

I. INTRODUCTION

Multi-core platforms that contain different types of cores,
organised in clusters, are emerging; e.g. ARM‘s big.LITTLE
architecture. These platforms often need to deal with variable
workloads, generated by concurrently executing applications,
having different performance requirements. Run-time manage-
ment is imperative for adapting to such performance require-
ments and workload variabilities, and to increase energy and
temperature efficiency [1]. Moreover, management becomes
challenging when applications are multi-threaded and hetero-
geneity of the processing cores needs to be exploited (i.e.
identifying the most appropriate cluster(s) for each applica-
tion). The existing run-time management approaches exploit
cores situated in different clusters simultaneously (referred
to as inter-cluster exploitation) and Dynamic Voltage and
Frequency Scaling (DVFS) potential of cores [1], [2], [3].
However, these approaches lack in providing an accurate

Manuscript received August 24, 2018; revised November 3, 2018; ac-
cepted January 10, 2019. This work is supported in parts by the EP-
SRC Grant EP/L000563/1 and the PRiME Programme Grant EP/K034448/1
(www.prime-project.org). Experimental data used in this paper can be found
at DOI:10.5258/SOTON/D0793 (https://doi.org/10.5258/SOTON/D0793).

E. W. Wachter, C. de Bellefroid, K. Basireddy, B. Al-Hashimi and
G. Merrett are with the School of Electronics and Computer Sci-
ence, University of Southampton, Southampton, UK (e-mail: e.weber-
wachter@soton.ac.uk; cedb1g16@ecs.soton.ac.uk; kr.basireddy@soton.ac.uk;
bmah@ecs.soton.ac.uk; gvm@ecs.soton.ac.uk)

A. K. Singh is with the University of Essex, Colchester, UK (e-mail:
a.k.singh@essex.ac.uk)

temperature estimator. We postulate that such exploitation may
help to satisfy performance requirements while simultaneously
achieving energy savings and avoiding thermal peaks.

System on chip thermal management has become a critical
subject. Its effect may vary from transient faults to long-
term defects of the chip. To mitigate such effects, thermal
hotspots, thermal gradients and thermal cycling need to be
well managed. Thermal hotspots are high-temperatures at
particular spatial locations on the chip. CPU or cache units
are usual hotspots in a chip die hotspots. Thermal hotspots
induce failures such as electromigration, stress migration
and dielectric breakdown hybrid. Thermal gradients are the
spatial variations of temperature across the die. As the die
size of multi-core processors gets larger, thermal gradients
increase the interconnect delays and consequently, inducing
larger clock skews [4]. Communication between cores is
thus negatively affected. Thermal cycling represents repeated
temperature temporal variations in the die and reduces lifetime
reliability [5].

To mitigate thermal hotspots, gradient and cycling issues,
appropriate thermal management actions are needed to im-
prove the performance of the system while reducing the power
consumption and protecting the chip from damage. Most
thermal management techniques focus on short-term perfor-
mance, limiting the influence of temperature on the system
performance. Performance should, however, be kept at an
acceptable level for the running applications. Aforementioned
thermal issues are faced using different techniques. Clock-
gating, a reactive dynamic power and temperature manage-
ment technique, reduces the power consumption and thus the
temperature of the chip by shutting down parts of the circuit
when the chip temperature is too high. DVFS can be used as a
proactive or reactive technique, adapts the frequency to obtain
the desired performance, limiting the power consumption as
well as the temperature. Reactive DVFS reduces the frequency
whenever the die temperature rises above a certain defined
threshold. A task migration process moves tasks from hot
cores to cool cores to avoid high-temperature peaks or thermal
gradients across the die.

In this paper, we propose a run-time management approach
coupled with an accurate temperature prediction scheme to
comply with energy-performance requirements while keeping
the temperature below a threshold. This way we focus on the
long-term reliability while avoiding thermal hotspots and ther-
mal cycling. We combine a power management algorithm with

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 2

a temperature prediction algorithm developed for heteroge-
neous architectures. The accurate temperature predictor helps
to avoid high-temperature averages and peaks. To address the
aforementioned challenges, this paper makes the following
major contributions:

1) An accurate temperature prediction algorithm that can
work for any frequency setting of the system.

2) A Runtime manager that proactively controls the fre-
quency setting to keep the temperature below a config-
urable threshold value.

II. EXPERIMENTAL DESIGN

This paper evaluates existing and the proposed methods on
the heterogeneous MPSoC platform Odroid-XU3, composed
of the Samsung Exynos 5422 SoC [6]. It contains four ARM
Cortex-A15 (big) CPUs, four ARM Cortex-A7 (LITTLE)
CPUs and six ARM Mali-T628 GPU cores. Such an archi-
tecture provides opportunities to exploit different designs as
low power processing (LITTLE cores) and high-performance
processing (big cores). The platform contains five temperature
sensors enabling management decisions based on the current
thermal state of the chip. The GPU and each one of the four
big cores have temperature sensors.

The MPSoC provides DVFS at a per-cluster granularity. For
the Cortex-A15 cluster, the frequency can be varied between
200 MHz and 2000MHz with a 100 MHz step, whereas for
the Cortex-A7 cluster, it can be varied between 200 MHz and
1400 MHz with a step of 100 MHz. The frequency of the GPU
cluster can be set at 177 MHz, 266 MHz, 350 MHz, 420 MHz,
480 MHz, 543 MHz and 600 MHz. It should be noted that we
vary only frequency, but the firmware automatically adjusts
the voltage based on preset pairs of voltage-frequency values.
The SoC also has 2 GB LPDDR3 RAM, operating at 933
MHz. Memory system is not considered in the design space
exploration while building the temperature predictor, as it only
two levels of DVFS [7]: 400 and 800 MHz, which would affect
severely the performance for the evaluated applications.

The Odroid-XU3 board allows hardware measurement of
power consumption. It contains four real time current/voltage
sensors for four separate power domains: big (A15) CPU
cores, LITTLE (A7) CPU cores, GPU cores and DRAM. A
power measurement circuit estimates the power as the product
of voltage and current, i.e. P = I.V. The energy consumption
is measured as the product of average power consumption and
execution time. Since power is considered for all the domains,
the energy consumption of all the software components (e.g.,
proposed predictor, OS, runtime manager, applications, etc.)
executing within the chip are included.

III. MOTIVATIONAL EXAMPLE

Current state-of-the-art runtime management approaches
present a way of dynamically changing voltage and frequency
(DVFS) to avoid power consumption or temperature from
surpassing a given requirement. Some of these proposals
present throttling on frequency [8] while trying to comply
with these requirements. Runtime management (RTM) nor-
mally takes into account only performance and energy. In

[9], the authors propose a RTM approach that first selects
thread-to-core mapping based on performance requirements
and resource availability. Then it classifies the workload using
the metric Memory Reads Per Instruction (MRPI). Finally, it
decides the appropriate V-f pair for the predicted workload.
This approach does not take into account the temperature,
leading to temperature violations and performance losses due
to frequency throttling by the linux kernel. In this paper,
the approach in [9] is used as a study of a state-of-the art
RTM approach to include the temperature predictor and avoid
temperature going beyond the threshold.

Figure 1 presents frequency and temperature measurements
for the big core when the Linux Ondemand governor is con-
trolling the execution of blackscholes application from
the PARSEC benchmark [10]. The application was run by
allocating all cores (big and LITTLE) available on the Odroid-
XU3. It is shown that multiple times after 100 seconds,
Linux needs to reduce the frequency after the temperature
has reached above 95 ◦C. These variations in the frequency
may lead to thermal cycling. In [11], the authors evaluate
the thermal behaviour for mobile gaming devices. It shows
that the GPU frequency is reduced but is not coordinated
with the CPU frequency adjustment. The net effect is that
the temperature continues to rise even after throttling CPU
frequency due to thermal inertia. This phenomenon occurs
because the temperature of a device is influenced by its current
frequency and its past frequency values.

 0

 20

 40

 60

 80

 100

 80 100 120 140 160 180 200

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

Temperature

Frequency

T
e

m
p

e
ra

tu
re

 (
°
C

)

F
re

q
u

e
n

c
y
 (

G
H

z
)

Time (s)

Fig. 1: Linux ondemand governor Frequency setting over time.
Even RTM which provide better energy-performance trade-

offs presents the same behaviour. Figure 2 presents the same
scenario but with a state-of-the-art RTM [8] controlling the
system. This RTM does not take into account the temperature,
which also leads to Linux overriding operation to throttle the
frequency when the temperature exceeds the 95 ◦C threshold.

 0

 20

 40

 60

 80

 100

 80 100 120 140 160 180 200

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

Temperature

Frequency

T
e

m
p

e
ra

tu
re

 (
°
C

)

F
re

q
u

e
n

c
y
 (

G
H

z
)

Time (s)

Fig. 2: Frequency over time with a State-of-the-art RTM.
This throttling could be avoided using less abrupt changes to

current frequency changing algorithms. One possible solution
is shown in Figure 3 where the performance requirements
are met, but there is less changing of frequency and no
throttling. This can be achieved by employing proactive man-
agement where a temperature predictor can be used to set

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 3

the frequencies while staying below thermal threshold. With
less frequency throttling, we aim to also reduce the average
temperature of the chip and increase performance as well.

 0

 20

 40

 60

 80

 100

 80 100 120 140 160 180 200

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

Temperature

Frequency

T
e

m
p

e
ra

tu
re

 (
°
C

)

F
re

q
u

e
n

c
y
 (

G
H

z
)

Time (s)

Fig. 3: Frequency setting over time by avoiding throttling.

IV. STATE-OF-THE-ART

A. Temperature prediction

Firstly we introduce the reactive and the proactive ap-
proaches used for temperature management. Reactive methods
focus on reducing the die temperatures based on the current
temperatures. Most of those techniques involve shutting down
or slowing down cores after the die temperature rises above a
defined threshold. The time between two temperature checks is
usually short to avoid to temperature exceeding the limit. Some
examples of reactive approaches are implemented in the Linux
kernel. If the CPU temperature goes above the threshold, Linux
will throttle the frequency, as demonstrated in the previous
section, largely impacting application performance. On the
other hand, proactive methods usually involve the prediction
of future die/core temperatures to adjust the workloads or
frequencies before exceeding a defined threshold. The compu-
tation of the predicted temperature increases the performance
overhead of proactive methods when comparing to reactive
ones. However, they run less frequently than reactive methods.

In [12], Coskun et al. propose an example of proactive
methods using an auto-regressive moving average (ARMA)
model to predict future temperatures. This ARMA model is
one example of regression models employed to temperature
prediction. The Authors in [13] extend an ARMA model
considering with exogenous inputs (ARMAX model). The
exogenous inputs are, in this case, the average power trend
of the running applications. In [14], Ge et al. claim that
their neural network approach to predict future temperature
performs, on average, 79% better than the ARMAX model
while limiting the maximum prediction error to 2.5◦C. This
maximum prediction error is however difficult to compare with
the ARMA model as this model takes some time to adapt
to the changing environments (ambient temperature, running
applications etc.).

Prakash et al. [11] estimate the temperature of the CPU
and GPU separately for cooperative CPU-GPU thermal man-
agement on chip. Their estimator uses the actual temperature
sensors of both the CPU and GPU as well as the cores
utilisation to set the frequency setting for the next time
interval. Sigla et al. present a predictor using power sensors
to predict the next power consumption based on the following
frequency setting is developed in [15]. Their technique uses
a leakage power model of the ARM big.LITTLE architecture
on Odroid-XU3 to test its predictor and Dynamic Power and

Frequency Management technique. An Extension of this work
has also been published in [16].

In [17] the Authors propose a power management strat-
egy for mobile games. The approach saves 1.9% of energy
compared to the Android default governor for the evaluated
scenarios in the Odroid XU3 board. The work uses the frame
rate as a metric to evaluate the workload predictors and
applying a thread to core mapping. The power management is
employed to minimize the operating frequency while keeping
the frames-per-second (FPS) constraint.

Two works [18], [19] also propose power-temperature anal-
ysis for many- and multiprocessor systems. Pagani et al.
[18] presents power budget concept, called Thermal Safe
Power (TSP), which is an abstraction that provides power
constraints as a function of the number of simultaneously
active cores. Executing cores at any power consumption below
TSP ensures that thermal management actions are not trig-
gered. The Authors shows simulations for platform models
with 72 heterogeneous cores which provides offline and online
TSP computation for a particular mapping of active cores
and ambient temperature. The simulations allows to obtain
safe power and power density constraints for the worst cases,
allowing system designers to estimate mapping decisions and
the amount of dark silicon.

[19] presents a power-temperature stability and safety anal-
ysis technique. The approach is based on a formula to compute
the stable fixed point and thermally-safe power consumption
at runtime. Hardware measurements on a XU3 board with
Android OS show that can predict the stable fixed point with
an average error of 2.6%.

B. Run Time Management

Runtime management represents an essential paradigm in
tackling these challenges by enabling optimisation and trade-
offs between computational quality, application throughput,
system reliability and energy efficiency. An increasing number
of runtime management algorithms are being employed to
control and optimise the execution of applications on het-
erogeneous embedded systems. Mainly online optimisation
has been considered to cater for dynamic workload scenarios
to optimise energy consumption while respecting the timing
constraint. For online optimisation, either all the processing is
performed at run-time or else the optimisation is supported by
offline characterisation.

For performing all the processing at run-time, several works
have been reported [20], [21], [22], [23], [24], [25]. In [20],
the online algorithm utilizes hardware performance moni-
toring counters (PMCs) to achieve energy savings without
recompiling the applications. The authors of [21] present
an accurate run-time prediction of execution time and a
corresponding DVFS technique based on memory resource
utilisation. A similar approach, which is a hardware-specific
implementation of the stall-based model, is proposed in [22].
In [23], an adaptive DVFS approach for FPGA-based video
motion compensation engines using run-time measurements
of the underlying hardware is introduced. In [25], online
reinforcement learning based adaptive DVFS is performed to

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 4

achieve energy savings. These approaches perform well for
unknown applications to be executed at run-time, but lead to
inefficient results as optimisation decisions need to be taken
quickly and offline analysis results are not used. Further, they
are agnostic of concurrent workload variations and thus fail to
adapt for concurrently executing multiple applications.

Recently, there has been focus on online optimization fa-
cilitated by offline analysis results [26], [27], [28], [29], [30],
[31], [32]. Such approaches lead to better performance results
than only online optimizations as they take advantage from
both offline and online computations. In [26], thread-to-core
mapping and DVFS are performed based on power constraint.
Similarly, in [27], first thread-to-core mapping is obtained
based on utilisation and then DVFS is applied depending
upon the surplus power. However, the approaches of [26], [27]
target homogeneous multi-core architectures and thus cannot
be applied to heterogeneous ones.

The state-of-the-art shows some implementations of run-
time managers using temperature predictors [15] or the current
chip temperature [11]. These works show good improvements
in energy and/or temperature efficiency. All these temperature
predictors were evaluated for a training set (explained in
details on next section); however the approaches lack accuracy,
showing high average prediction errors (up to 5◦C or 4%) ,
which may be improved by an accurate temperature predictor.
Also, a few implementations [16] are implemented as kernel
modules rather than a standalone library, which impact porta-
bility, e.g. to use the predictor in other runtime manager.

V. PROPOSED METHODOLOGY

An overview of the proposed methodology for temperature
prediction and its integration into the runtime manager is
illustrated in Figure 4. First, a training data set to classify the
best temperature prediction regression model is created offline.
This training set is composed of measurements of the system
when executing applications from the PARSEC benchmark on
both the big and LITTLE clusters of the chip. During this step,
we log the temperature, frequency and power consumption for
the memory and big cluster. Offline data is collected at a rate
of 1 Hz and later used for 1 Hz temperature prediction at
runtime, predicting the temperature over the next second of
execution. The frequency was changed randomly every 500
ms to evaluate all the operating points of the platform. This
way we focus more on the platform behavior rather than the
application behavior.

When applying this approach, we noticed that leaving the
fan disabled limits the testing ranges and capabilities. In
particular, we were only able to use lower frequency levels
of the big cluster as higher frequencies lead to reaching the
temperature threshold quickly. By default the Linux kernel
usually starts the fan when the temperature rises above the
65◦C temperature threshold. Leaving the fan with this setting
adds a non-linearity which is undesired. Therefore, the fan is
turned on to make sure the predictor does not have any other
non-linear behavior which would increase the temperature
prediction error. We endorse that the same methodology could
be applied for the system with the fan always off, but it would

limit the system to operate only with lower frequencies. In
this case the training set would generate different regression
coefficients, explained in next section.

This training set is then compared with the different re-
gression model outputs, explained in the next sections. The
regression model that provides the least error on predicting
temperature is then used to feed the runtime manager. Finally,
the runtime manager can take into account the next interval
when setting the frequency and mapping of the tasks. One
advantage of the predictor is that it is totally decoupled from
the RTM and thus can be used with other RTMs.

App(s)

Profiling

(temp., freq.,

power)

Choose best regression

model

Mapping and DVFS setting

Regression

Models

Temperature

predictor

Run-time

Manager

online

Fig. 4: Methodology to choose temperature regression model
and how it is used in runtime management.

A. Temperature Predictor

This section outlines the proposed temperature predictor.
We first list and describe the assumptions that are followed
throughout the paper.

• Assumption 1: The LITTLE cluster does not influence
the global temperature. Since there are no temperature
sensors available specifically targeting the LITTLE clus-
ter, the only measurement available is the cluster’s power
consumption. To measure the impact of the LITTLE
cluster on the big cluster temperature, we executed the
PARSEC benchmark on the 4 LITTLE cores only, then
measure the temperature on the big cluster. The maximum
temperature achieved on the big cluster was 42◦C. When
executing the same benchmark on the big cluster, the
minimum temperature on the big cluster is 42◦C while
the maximum is 95◦C. Also, the frequency setting of the
LITTLE cluster will not be modified by the temperature
management algorithm developed in Section V-B.

• Assumption 2: The GPU is not used by the running
applications. The GPU frequency is set to the lowest
possible frequency, and its power consumption is con-
stant during system operation. To take into account the
GPU management, applications should be written with
environments such as OpenCL or OpenGL to enable the
design space exploration. Also, the RTM can be able to
deal with load balancing between the CPU and GPU to
target energy/performance or temperature trade-offs.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 5

Considering the above assumptions, Equation 1 outlines the
regression model of the proposed temperature predictor.

T̃ (t) = constant+ αT (t− 1) + βT (t− 2) + γP̃ big
t + θPmem

t−1 (1)

The predictor uses the two past temperature measurements
(T (t−1) and T (t−2)) as well as the future power consumption
estimation for the big cores (P̃ big

t) and the memory (Pmem
t).

Considering that the memory operates at a constant frequency,
the value of Pmem

t−1 is the last value measured from the on-
chip power sensor. The value of P̃ big

t is estimated using the
following equation 2 [15],

P̃ big
t = (αC)bigt−1.f

big
t .(V big

t)2 + V big
t Ibigleakage,t−1 (2)

Where α and C are the activity factor and switching
capacitance, f is the operating frequency, V is the voltage and
Ibigleakage corresponds to the leakage current, computed using
the Equation 3,

Ibigleakage = β1T
2e

β2
T + Igate (3)

The parameters α, β, γ, θ, β1 and β2 represent regression
coefficients. The chip has first been put in an oven to re-
trieve measurements of the power sensors with temperature
T ∈ [40, 90] and a constant frequency f . During that process,
α is kept approximately constant using constant workload.
The leakage power model has been computed using simulated
annealing on MATLAB. Simulated annealing gave really good
result to find β1 and β2 with a starting temperature of a thou-
sand, a cooling rate of 10−6 and five rounds per temperature.
Figure 5 shows the power estimation of each cluster with Igate
and βi coefficients computed using the simulated annealing.

45 50 55 60 65 70 75 80 85 90 95

°C

0.35

0.4

0.45

0.5

0.55

0.6

0.65

W

big cluster leakage power estimation

Predicted power

Measured power

45 50 55 60 65 70 75 80 85 90 95

°C

0

0.01

0.02

0.03

0.04

0.05

W

LITTLE leakage power estimation

Predicted power

Measured power

Fig. 5: Results from leakage coefficient computation and
simulation. The predicted leakage power graph is close to the
measured power of each cluster.

One way of improving the results of the predictor is to
use previous prediction errors to estimate the future values.
The Autoregressive Moving Average model (ARMA) uses this

approach and should, therefore, improve the quality of the
prediction. Equation 4 shows the estimated prediction error
(η̃(t)) model. The mean represented as µ, η represents the
actual error, and η̃ the predicted error and β1 and β2 are the
values previously calculated.

Error Prediction : η̃(t) = µ+ β1.η(t− 1) + β2.η(t− 2) (4)

Figure 6 presents a comparison between the predicted and
actual measured temperature for different applications and
temperature ranges. Also, it shows the evolution of prediction
error over time.

0 50 100 150 200 250 300 350 400

s

40

60

80

100

°C

Predicted temperature

Measured temperature

0 50 100 150 200 250 300 350 400

s

-15

-10

-5

0

5

10

°C
Prediction error

Error std

Fig. 6: Temperature measurements for the predicted tempera-
ture versus the actual readings and the error between them.

The estimator developed estimates the future temperature
with a low average error at runtime but leaves different errors
based on the operating frequency, e.g. the average error is
different if the big cluster is executing at 1.7 or 2 GHz.

Error Correction Algorithm

The error difference between the frequencies is due to the
willingness of the temperature estimator to act the same for the
whole frequency set. To solve this issue, we propose an error
correction algorithm that uses different error coefficients for
each possible frequency setting of the big cluster. Algorithm 1
computes the associated error after each temperature predic-
tion iteration. The Algorithm uses an error correction table
to store the error for each frequency. The error is calculated
by the difference between the temperature prediction and the
actual temperature measurement (Line 3) and then stored in
the position of the error correction table (Line 4). This error
is then used to predict the next interval temperature (Line
6) taking into account the last error for that frequency. The
same temperature prediction model could be applied for the
error correction, but this would lead to a longer execution
time and more memory to store the values for each one of the
frequencies. Therefore, the decision is to trade-off accuracy for
a lower execution time, and then providing a lower processing
overhead.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 6

Algorithm 1 Error correction algorithm

1: while true do
2: temp = measure temperature();
3: error = temp− pred temp;
4: error correction[frequency] = error;
5: [pred temp, frequency] = temp estimator();
6: pred temp = pred temp +
error correction[frequency];

7: sleep(TIME);
8: end while

B. Dynamic Temperature Management

A Dynamic Temperature Management (DTM) is used to
limit the chip temperature based on the proposed temperature
estimator developed in the previous section. This section
describes the developed DTM algorithm. The temperature is
managed proactively by the proposed DTM while the Linux
kernel uses a reactive method by default with the lowest
temperature threshold being 95 degrees Celsius. Reactive tem-
perature management needs to be running faster than proactive
methods to avoid high-temperature violations since it decides
after the temperature reaches a given temperature. This may
result in performance losses as cores are shutdown to reach
lower temperatures.

The goal of a DTM algorithm on heterogeneous archi-
tectures is to determine a maximum frequency setting for
each cluster separately to avoid temperature violations. This
algorithm is analysed based on its error rate, mean absolute
error (MAE) and the performances losses or gains. The
DTM algorithm may also reduce the power consumption. For
example, the Dynamic Temperature Management developed in
[15] is not only used for temperature purposes but also to limit
the power consumption of the cluster.

The DTM algorithm developed determines the maximum
frequency based on the temperature estimator from the previ-
ous section. It applies DVFS based on the maximum frequency
for each cluster during a certain time interval. Algorithm 2
outlines the developed DTM. The DTM algorithm predicts
the temperature for the highest frequency and reduces this
frequency until the prediction stays below the defined thresh-
old. This enables the temperature to stay below the threshold
while keeping the maximum performances.

Algorithm 2 Dynamic Temperature Management

1: while true do
2: frequency = MAX FREQUENCY
3: pred temp = predict temperature(frequency)
4: while pred temp > THRESHOLD do
5: frequency = frequency - -
6: pred temp = predict temperature(frequency)
7: end while
8: set frequency(frequency)
9: sleep(TIME)

10: end while

C. Predictive Dynamic Thermal and Power Management

The Predictive Dynamic Thermal and Power Management
(PDTPM) for Heterogeneous Mobile Platforms developed uses
[8], a Dynamic Power Management algorithm for heteroge-
neous architectures that applies DVFS to the different clusters.
This method takes advantage of the frequency of the memory
read and write instructions to adapt the CPU frequency set-
tings and consequently reduce the energy consumption. The
approach combines application mapping and DVFS to reduce
the energy consumption.

It starts by applying a thread-to-core mapping of the dif-
ferent applications depending on their memory intensiveness.
It then applies DVFS to reduce the energy consumption. The
proposed PDTPM algorithm (Algorithm 3) combines the DTM
algorithm (previous Section) with the power management
based on memory reads per instruction (MRPI).

Algorithm 3 Predictive Dynamic Thermal and Power Man-
agement (PDTPM) algorithm.

1: interval count = DTM INTERVAL;
2: while true do
3: %%% Temperature management %%%
4: if interval count == 0 then
5: max big freq = DTM big(big freq);
6: interval count = DTM INTERVAL;
7: end if
8: %%% Power management %%%
9: new little freq = mrpi little(little freq);

10: new big freq = mrpi big(big freq);
11: if new big freq > max big freq then
12: repredict temperature();
13: new big freq=max big freq;
14: end if
15: %%% Frequency set %%%
16: set frequencies(big, new big freq);
17: set frequencies(little, new little freq);
18: interval count- -;
19: sleep(100ms)
20: end while

The DVFS algorithm is executed 10 times every sec-
ond while the DTM should predict the temperature and
choose the maximum frequency settings every second. The
interval count variable has been introduced for this purpose
(in this case, DTM INTERV AL should be initialised with
9). The DTM algorithm only runs when this variable is equal
to 0 (line 4). It then resets this variable to its maximum value,
which is equal to the number of time the DPM algorithm
should run before another temperature prediction is made (see
DTM interval constant). The function DTM big() predicts
the temperature for the next interval and returns the maximum
frequency settings that can be applied to the cores for the next
time interval to avoid temperature threshold violations.

The second part (lines 9 and 10) applies DVFS based on
the MRPI algorithm. It returns the frequencies settings for the
next MRPI interval (1

10 of the DTM interval). If the frequency
computed by the MRPI exceeds the max big freq (lines 11

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 7

to 14), the algorithm predicts the temperature for the next
DTM interval (line 12 - The DTM big function is called
inside the repredict temperature() function) and resets the
frequency of the big cluster to the maximum allowed by the
DTM algorithm (line 13).

Lastly, the algorithm (lines 15 to 19) sets the computed
frequencies to both clusters, updates the interval counter and
sleeps until the next interval.

VI. RESULTS

This section is divided into two parts. First, we evaluate
and compare the proposed regression model with the state-of-
the-art, and we show the impact of the improvements made
on this model. Then we present the results of the runtime
management using the regression to predict the temperature.
The temperature measurements have been collected at room
temperature.

Validation of the proposed temperature predictor and
methodology is done on the Odroid-XU3, see section IV for
more details of the experimental setup. PARSEC [10] and
SPLASH [33] applications are used to compare the results
of the proposed PDTPM algorithm with different approaches.
The chosen mapping for the validation and comparison is taken
from a state-of-the-art approach [8].

TABLE I: Selected applications from PARSEC [10] and
SPLASH [33] benchmarks including its performance require-
ments (execution time) in seconds.

PARSEC SPLASH
App Name Abbr. Req. (s) App Name Abbr. Req. (s)
blackscholes bl 500 water-spatial wa 357.1
bodytrack bo 416.7 raytrace ra 454.5
swaptions sw 1052.6 fmm fm 9.5
freqmine fr 909.1 MIBENCH
vips vi 416.7 basicmath bm 0.826
streamcluster st 588.2 crc32 crc 5.263
fluidanimate fl 476.2 blowfish bw 5.55

Table I lists the applications used for the validation. These
applications will be tested against the new PDTPM approach
and then compared to a series of Mapping-DPM tools of the
Linux kernel and the Inter-cluster Thread-to-core Mapping
and DVFS (ITMD). The ITMD approach proposes a mapping
of tasks and the MRPI metric used to execute DVFS. The
Linux kernel uses the Heterogeneous Multi-Processing (HMP)
[34] scheduler to map the task on the different clusters. The
temperature threshold of the PDTPM approach is set to 90◦C
while the Linux reactive temperature limit is 95◦C. This is
required to avoid temperature peaks to reach temperatures
more than 95◦C, the same as the Linux reactive control. The
list of considered approaches is listed in Table II.

TABLE II: Approaches considered for comparison purposes
with the additional proposed temperature approach.

Reference Approach Abbreviation
[34], [35] HMP + Ondemand HMPO
[34], [36] HMP + Performance HMPP
[34], [36] HMP + Conservative HMPC
[34], [36] HMP + Interactive HMPI

[8] Inter-cluster Thread-to-core
Mapping and DVFS ITMD

[15] CPU Cluster-Oriented Algorithm CCA
[16] Gradient Search Algorithm GSA

proposed PDTPM PDTPM

A. Regression Model Evaluation
Table III outlines the results on the training set for the

regression with and without the error prediction. MAE rep-
resents the mean absolute error, AEmax is the maximum
absolute error and AEstd the standard deviation. The AIC is
an estimator of the relative quality of a set of statistical models
for a given set of data, i.e. AIC estimates the quality of each
model, relative to each of the other models. A model with a
lower AIC provides a better estimator. Thus, AIC provides a
means for model selection. The mean absolute error on the
training data set is 1.21◦C without the error prediction and
drops to 1.13◦C when using it.

TABLE III: Comparison of regression with and without the
error prediction. MAE, AEstd and AEmax are presented in
degrees Celsius.

Interval [s] MAE AEstd AEmax AIC
w/o Error Pred. 1.0 1.21 1.32 18,91 34222
with Error Pred. 1.0 1.13 1.31 16,91 33222

Table IV shows the error generated when the frequency error
correction algorithm is used in combination with the proposed
temperature predictor. This table outlines the reduction of the
mean absolute error when using the error correction algorithm.
The average error drops by more than one degree, from 2.48◦C
to 1.19◦C, while the dependence of the error on the frequency
drops by 0.3◦C. This algorithm is not only useful to reduce
the error difference between the frequencies, but it also lowers
a lot the mean absolute error, by an average of approximately
50%.

TABLE IV: Online comparison of the proposed model with
and without the error correction algorithm. MAE, AEstd and
AEmax are presented in degrees celsius.

Interval [s] MAE AEstd AEmax

w/o Error Correc. 1.0 2.48 2.05 28.58
with Error Correc. 1.0 1.19 2.3 29.05

The prediction error is analysed by running a series of multi-
threaded PARSEC applications on the big and the LITTLE
cluster together for each different temperature predictor de-
scribed in the Section V-B earlier in this paper. The final
temperature prediction model developed performs better for
each different temperature threshold of the DTM.

Figure 7 gives the results from the different predictors with
different temperature threshold values. The bars show the
mean absolute error (MAE) between the actual temperature
and that estimated by the predictor, while the blue lines show
the standard deviation for each predictor. It is important for the
temperature predictor to maintain similar results and error for
different ranges of temperature. The proposed predictor gives
better error averages (53% better than the version without
the error correction and 64% better than a state-of-the-art
temperature predictor [15] with a temperature threshold of
90◦C) while keeping the error standard deviation within the
same range. The error standard deviation for other temperature
thresholds might grow further alongside higher thresholds.
This is because error correction introduces an instability when
the workload is changing. This error correction algorithm
needs time to adapt to the changing environments.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 8

 0

 1

 2

 3

 4

 5

 6

60 (°C) 70 (°C)
Temperature threshold

80 (°C) 90 (°C)

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(°
C

)

with error correction
without error correction

CCA [15]

Fig. 7: Online comparison of different predictors using the
DTM with a temperature threshold of 60, 70, 80 and 90◦C.

Figure 8 presents a comparison of the proposed temperature
predictor with the approach in [16] for a set of applications.
The proposed predictor shows less error for most of the
applications and also all the errors are lower than 2%.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 bm crc bw bl st fl

T
e

m
p

e
ra

tu
re

 P
re

d
ic

ti
o

n
 E

rr
o

r
(%

)

Proposed
GSA [16]

Fig. 8: Comparison of the proposed temperature predictor with
the GSA precictor [16] for different applications.

B. Runtime Manager Evaluation

Table V lists the different application scenarios with their
respective core allocations amongst the big and/or LITTLE
cluster. These scenarios are then launched separately on the
Odroid-XU3. The performances and energy consumption are
measured and then compared.

TABLE V: Application scenarios and resource combinations
determined by [8] mapping approach.

single double triple
bl (4L+4B)
bo (4L+4B)
sw (4L+4B)
fr (4L)
wa (4L+4B)
ra (3L+4B)

bl-bo (2L+2B : 2L+2B)
bl-sw (4B : 4L)
fr-sw (4L : 4B)
wa-bl (2L+2B : 2L+2B)
wa-bo (4L+3B : 1B)
wa-ra (4L+3B : 1B)

bl-bo-sw (3B : 1B : 4L)
bl-bo-fr (3B : 1B : 4L)
sw-bo-fr (4L : 1B : 3B)
bl-sw-fr (3B : 1B : 4L)
wa-ra-vi (2L+2B : 1B
: 2L+1B)

Figure 9 outlines an overview of the energy and execution
time savings obtained by the proposed approach compared to
the approaches detailed in Table V. It computes the improve-
ments of each scenario for all approaches and then presents
the average improvement for each approach. Figure 9 (a), (b)
and (c) present results for scenarios with single, double and
triple applications, respectively. Later, Figures 11 , 12 and 13
provide details for each of the applications compared to the
Linux performance governor (HMPP).

HMPC HMPI HMPO HMPP ITMD
-15

-10

-5

0

5

10

15

Im
p

ro
v
e

m
e

n
t

%

Time

Energy

(a)

HMPC HMPI HMPO HMPP ITMD
-5

0

5

10

15

20

Im
p

ro
v
e

m
e

n
t

%

Time

Energy

(b)

HMPC HMPI HMPO HMPP ITMD
0

5

10

15

20

25

30

35

Im
p

ro
v
e

m
e

n
t

%

Time

Energy

(c)
Fig. 9: Average time and energy improvements of the pro-
posed PDTPM compared to existing approaches. Figure shows
results for single (a), double (b) and triple (c) application
scenarios, respectively.
Energy

Figure 9 (a) shows single application scenarios compared
to the Linux HMP and governors. The proposed PDTPM
performs better on average by 5 to 10% regarding energy
consumption than the Linux governors, while increasing 5 to
10% on the execution time. Therefore showing a simple trade-
off rather than real improvements. It is interesting to note that

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 9

for single application scenarios, the ITMD approach consumes
a little more than the HMP+conservative Linux approach, less
than 2% on average. This means that most of the PDTPM
energy savings for single application scenarios are due to the
temperature management algorithm, which improves energy
savings in any of the single application cases. The results
also show that the performance governor is affected since
maintaining the highest frequency leads to more temperature
threshold violation and thus frequency throttling is more likely
to occur when comparing to the conservative governor, for
example.

Figure 9 (b) outlines the double application scenarios. The
proposed approach improves the energy consumption, by more
than 10% on average than any other Linux HMP-governor
association considered. It saves 14% of energy compared to
the Linux conservative governor, the low-energy governor, and
more than 17% compared the Linux, performance governor.
Part of it is due to the mapping proposed by ITMD approach
and its MRPI based DVFS management tool. However, more
than 10% of the energy savings are due to PDTPM and
especially to the temperature management algorithm added to
the original ITMD.

Triple application scenarios shows that PDTPM improves
more the energy savings made over the Linux HMP-governor
associations (see figure 9(c)). It reaches an average of 28%
of energy savings improvements over the different governors
and more than 25% on the conservative governor, the one
focusing on low energy consumption. These improvements are
partly due to the added temperature management algorithm.
The PDTPM raise the energy savings by 10% on average
compared to the power management in ITMD alone while
the other 15% is due to the mapping and power management.

The energy savings made on the different application scenar-
ios by the temperature management evidently increases with
the number of applications running at the same time on the
cores. This is due to the high workload and consequently,
high temperatures induced on the cores. The temperature
management part of the DPTM limits the frequency to even
lower frequency settings than for single application scenarios.
This results in a reduction of the energy consumption.

Unlike existing approaches, the proposed approach is aware
of concurrent execution; therefore, in the case of multi-
application scenario, there was more space for optimization in
terms of choosing thread-to-core mapping and compensating
for contention. Moreover, the temperature threshold violations
by other approaches become more prominent when multiple-
applications are executed concurrently (this leads to frequent
scaling down of frequency). This has helped our proactive
thermal manager (PDTPM) to improve performance by not
aggressively scaling down the frequency. The above two
cases lead to improved performance in the case of two and
three application scenarios compared to the single-application
scenario.

Figure 10 presents the results for the average power for the
single, double and triple application scenarios. It shows that
the proposed approach reduces the power consumption when
compared to the Linux governors and ITMD.

The mapping and PDTPM energy savings can be separated

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

proposed HMPC HMPI HMPO HMPP ITMD

A
v
e

ra
g

e
 P

o
w

e
r

(W
)

single
double

triple

Fig. 10: Average power for the evaluated scenarios with single,
double and triple applications.

into three parts. The application mapping onto the cores
try to limit the energy consumption by a mapping memory
intensive application on the LITTLE core, sometimes trading
performances against energy savings when performance re-
quirements are still met. The MRPI based power management
limits the frequency and consequently the energy consump-
tion by adapting the frequency to the memory intensiveness
of the applications. The temperature management limits the
frequency avoid a certain threshold. This increases the energy
savings as analysed earlier.

Performance

Now we compare the PDTPM approach with the Linux
Performance Governor for each scenario running one, two and
three applications concurrently using the mapping of Table V.
Single application scenarios show that PDTPM improves
energy at the cost of performances. The improvements for
single application scenarios are limited. For single applica-
tion scenarios the PDTPM run faster than HMP-performance
except for the PARSEC application Freqmine [10] as shown
on figure 11. Energy savings of Freqmine are considerable at
the cost of lower performances.

Blackscholes

Bodytra
ck

Freqmine

Raytra
ce

Swaptio
ns

Water-s
patia

l

Application scenario

-80

-60

-40

-20

0

20

40

60

Im
p
ro

v
e
m

e
n
t
%

Time

Energy

Fig. 11: Performance and energy improvements of the pro-
posed PDTPM over Linux HMP + the performance governor.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 10

In double application scenarios, the PDTPM improves the
energy savings compared to the Linux HMP and governors,
while the performance overheads of the proposed PDTPM
are limited. The PDTPM encourages better performances for
most of the double application scenarios compared to the
different Linux HMP-governors associations. The addition
of temperature management in proposed PDTPM improves
the performances by almost 10%. Figure 12 shows that
performances are usually better for every double application
scenarios compared to HMPP, the Linux governor built for the
highest performances.

bl-bo bl-sw fr-sw wa-bl wa-bo wa-ra

Application scenario

-30

-20

-10

0

10

20

30

40

Im
p

ro
v
e

m
e

n
t

%

Time

Energy

Fig. 12: Performance and energy improvements of the pro-
posed PDTPM over Linux HMP + the performance governor
for double application scenarios.

Triple application scenarios follow the results given by the
two application scenarios. Figure 13 shows that performances
and energy improve for all scenarios compared to the Linux
governor. The energy savings are in the worst case, 10% when
compared to the Linux governor.

bl-bo-fr bl-bo-sw bl-sw-fr sw-bo-fr wa-ra-vi

Application scenario

0

10

20

30

40

50

60

Im
p
ro

v
e
m

e
n
t
%

Time

Energy

Fig. 13: Performance and energy improvements of the pro-
posed PDTPM over Linux HMP + the performance governor
for triple application scenarios.

Thermal Cycling
Managing the temperature variations is also important to

avoid the reduction of lifetime reliability. A DTM algorithm
may induce more temperature variation due to the frequency
scaling that may change the frequency and thus the tempera-
ture at every time interval. This section compares the thermal
cycling rates of the PDTPM for the different predictors and
Linux governors.

Figure 14 shows the average of the temperature variations
for the presented scenarios. Each bar represents the average

temperature variation within one second. First, we measure
how much the temperature decreases or increases compared
to the previous second and then calculate the average for
the sample. Figure 14 shows that the thermal cycling of the
proposed model is almost equivalent to the one from [15] for
every temperature thresholds. The difference in temperature
between two measurements almost doubles at 90◦C.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

60°C 70°C 80°C 90°C
T

e
m

p
e

ra
tu

re
 V

a
ri
a

ti
o

n
 A

v
e

ra
g

e
 (

°
C

)
Temperature threshold

with error correction
without error correction

[15]

Fig. 14: Temperature variation average for the proposed as-
sociated with the different predictors. Thermal cycling is
represented by the difference of temperature between two
measurements of one second.

The PDTPM also increases thermal cycling compared to the
Linux performance CPU governor [36]. Table VI shows that
the difference between two temperature checks of the Linux
performance governor is halved the value of the thermal cy-
cling of the PDTPM. The Linux reactive thermal management
model reduces thermal cycling. This is due to the smaller
intervals between reactive measurements and frequency setting
adjustments.

TABLE VI: Thermal cycling comparison of the PDTPM and
the Linux performance governor.

90◦C Interval [s] ∆T/s (>85◦C)
With error correction 1.0 2.02

Linux performance governor 1.0 1.09

Overheads

As outlined in the previous sections, the proposed PDTPM
saves energy by different means, but it has an overhead for
predicting the temperature for the next interval. This section
evaluates the overhead of the temperature predictor only, not
taking into account the power management and DVFS. We
measure the overheads caused by the temperature prediction,
comprising the lines 4 to 7 of Algorithm 3, during the execu-
tion of the all scenarios outlined before. The average overhead
is 836.5 µs with a standard deviation of 48.5 µs. However,
70% of these overhead is spent reading the temperature sensor
and the power of the memory and big cluster. Therefore, only
the temperature prediction algorithm takes only around 250
µs in average. Since the temperature prediction is executed at
every 10th time the DVFS algorithm is executed, the overhead
is minimal. To put these results in perspective, a Model

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 11

predictive control-based policy (MPC) proposed in [37] takes
more than 4 ms, and it is applied every 10 ms. The best
comparison is the proposal in [16], where it takes 390 µs to
predict the temperature and to determine the frequency levels.
This means the proposed approach is 35% faster than [16].

VII. CONCLUSIONS

This paper firstly demonstrates that an accurate temperature
predictor helps to limit the high-temperature averages and
peaks. The proposed temperature model combines [8] and a re-
gression model to reduce further the theoretical mean absolute
error to 1.13◦C. The addition of an error correction algorithm
that uses different error predictions for each frequency setting
improves further the accuracy at runtime. The overall result is
a faster and more accurate temperature prediction when com-
paring with the latest state-of-the-art proposals [16], [15]. The
second contribution is the temperature estimator developed to
build a Dynamic Temperature Management algorithm. The
DTM proves that temperature management already reduces
the energy consumption by limiting the frequency. The third
contribution combines a state-of-the-art power manager and
the DTM algorithm. This combination gave great results for
two and three application scenarios, improving up to 20%
the energy savings compared to the power manager alone
while limiting the performance overhead. Finally, the accurate
predictor is decoupled from the run-time manager and may be
easily included in a different approach.

The proposed prediction can be extended to estimate the
temperature for the GPU since the Odroid-XU3 board pro-
vides temperature and current/voltage sensors for the GPU.
Therefore we could also evaluate the division of workloads
between the CPU clusters with the GPU, taking into account
the energy/performance and temperature trade-offs. The pro-
posed approach could be applied to single ISA heterogeneous
multicore platforms. This could require: (i) power monitors or
an accurate power model, and (ii) temperature monitors.

REFERENCES

[1] A. M. Rahmani, M. H. Haghbayan, A. Miele, P. Liljeberg, A. Jantsch,
and H. Tenhunen, “Reliability-aware runtime power management for
many-core systems in the dark silicon era,” IEEE Trans. on VLSI Syst.,
vol. 25, no. 2, 2017.

[2] Y. G. Kim, M. Kim, and S. W. Chung, “Enhancing Energy Efficiency
of Multimedia Applications in Heterogeneous Mobile Multi-core Pro-
cessors,” IEEE Transactions on Computers, vol. 66, no. 11, 2017.

[3] S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis,
and B. M. Al-Hashimi, “Adaptive Energy Minimization of Embed-
ded Heterogeneous Systems using Regression-based Learning,” in Int’l
Workshop on Power and Timing Modeling, Optim. and Sim., 2015.

[4] A. K. Coskun, T. S. Rosing, and K. Whisnant, “Temperature aware task
scheduling in MPSoCs,” EDAA, 2007.

[5] A. Das, B. Al-Hashimi, and G. Merrett, “Adaptive and hierarchical
runtime manager for energy-aware thermal management of embedded
systems,” ACM Transaction on Embedded Computing Systems, vol. 15,
2016.

[6] (2016) Exynos 5 octa (5422). [Online]. Available:
www.samsung.com/exynos/

[7] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated cpu-
gpu power management for 3d mobile games,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2014,
pp. 1–6.

[8] K. R. Basireddy, A. K. Singh, D. Biswas, G. V. Merrett, and B. M.
Al-Hashimi, “Inter-cluster thread-to-core mapping and DVFS on het-
erogeneous multi-cores,” IEEE Transactions on Multi-Scale Computing
Systems, 2017.

[9] K. R. Basireddy, A. Singh, G. V. Merrett, and B. M. Al-Hashimi,
“Itmd: run-time management of concurrent multi-threaded applications
on heterogeneous multi-cores,” in Conference on Design, Automation
and Test in Europe 2017 (DATE’17), January 2017.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterisation and architectural implications,” Princeton University
Technical Report TR-811-08, 2008.

[11] A. Prakash, H. Amrouch, M. Shafique, T. Mitra, and J. Henkel, “Improv-
ing mobile gaming performance through cooperative CPU-GPU thermal
management,” DAC ’16 Design Automation Conference, vol. 47, 2016.

[12] A. K. Coskun, T. S. Rosing, and K. Gross, “Utilizing predictors for
efficient thermal management in multiprocessor socs,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 28, 2009.

[13] L.Ljung, System Identification: Theory for the User (2nd Edition).
Upper Saddle River, NJ: Prentice-Hal PTR, 1999.

[14] Y. Ge, Q. Qiu, and Q. Wu, “A multi-agent framework for thermal aware
task migration in many-core systems,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 20, 2010.

[15] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras, “Predictive dynamic
thermal and power management for heterogeneous mobile platforms,”
in Design Automation and Test in Europe Conference, 2015.

[16] G. Bhat, G. Singla, A. K. Unver, and U. Y. Ogras, “Algorithmic
optimization of thermal and power management for heterogeneous
mobile platforms,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 3, pp. 544–557, March 2017.

[17] N. Peters, D. Füß, S. Park, and S. Chakraborty, “Frame-based and thread-
based power management for mobile games on hmp platforms,” in 2016
IEEE 34th International Conference on Computer Design (ICCD), Oct
2016, pp. 169–176.

[18] S. Pagani, H. Khdr, J. Chen, M. Shafique, M. Li, and J. Henkel, “Thermal
safe power (tsp): Efficient power budgeting for heterogeneous manycore
systems in dark silicon,” IEEE Transactions on Computers, vol. 66,
no. 1, pp. 147–162, Jan 2017.

[19] G. Bhat, S. Gumussoy, and U. Y. Ogras, “Power-temperature stability
and safety analysis for multiprocessor systems,” ACM Trans. Embed.
Comput. Syst., vol. 16, no. 5s, pp. 145:1–145:19, Sep. 2017. [Online].
Available: http://doi.acm.org/10.1145/3126567

[20] A. Weissel and F. Bellosa, “Process cruise control: event-driven clock
scaling for dynamic power management,” in CASES ’02 International
conference on Compilers, architecture, and synthesis for embedded
systems, 2002, pp. 238–246.

[21] L. C. Singleton, C. Poellabauer, and K. Schwan, “Monitoring of cache
miss rates for accurate dynamic voltage and frequency scaling,” in
Electronic Imaging. International Society for Optics and Photonics,
2005, pp. 121–125.

[22] V. Spiliopoulos, G. Keramidas, S. Kaxiras, and K. Efstathiou, “Power-
performance adaptation in intel core i7,” 2011.

[23] A. Nabina and J. L. Nunez-Yanez, “Adaptive voltage scaling in a
dynamically reconfigurable FPGA-based platform,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 5, no. 4, p. 20,
2012.

[24] A. K. Singh, C. Leech, K. R. Basireddy, B. M. Al-Hashimi, and G. V.
Merrett, “Learning-based run-time power and energy management of
multi/many-core systems: Current and future trends,” in Journal of Low
Power Electronics (JOLPE), 2017.

[25] R. A. Shafik, S. Yang, A. Das, L. A. Maeda-Nunez, G. V. Merrett,
and B. M. Al-Hashimi, “Learning transfer-based adaptive energy mini-
mization in embedded systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 6, pp. 877–890,
2016.

[26] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap:
adaptive DVFS and thread packing under power caps,” in Proceedings
of the 44th annual IEEE/ACM international symposium on microarchi-
tecture. ACM, 2011, pp. 175–185.

[27] H. Sasaki, S. Imamura, and K. Inoue, “Coordinated power-performance
optimization in manycores,” in Parallel Architectures and Compilation
Techniques (PACT), 2013 22nd International Conference on. IEEE,
2013, pp. 51–61.

[28] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (PIE),” in ACM SIGARCH Computer Architecture News,
vol. 40, no. 3, 2012, pp. 213–224.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, AUGUST 2018 12

[29] A. Aalsaud, R. Shafik, A. Rafiev, F. Xia, S. Yang, and A. Yakovlev,
“Power-aware performance adaptation of concurrent applications in
heterogeneous many-core systems,” in Proceedings of the 2016 Interna-
tional Symposium on Low Power Electronics and Design. ACM, 2016,
pp. 368–373.

[30] J. Ma, G. Yan, Y. Han, and X. Li, “An analytical framework for
estimating scale-out and scale-up power efficiency of heterogeneous
manycores,” IEEE Transactions on Computers, vol. 65, no. 2, pp. 367–
381, 2016.

[31] E. Del Sozzo, G. C. Durelli, E. Trainiti, A. Miele, M. D. Santambrogio,
and C. Bolchini, “Workload-aware power optimization strategy for
asymmetric multiprocessors,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016. IEEE, 2016, pp. 531–534.

[32] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt, “SPARTA: runtime
task allocation for energy efficient heterogeneous many-cores,” in Pro-
ceedings of the Eleventh IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. ACM, 2016, p. 27.

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: Characterization and methodological considerations,” Pro-
ceedings of the 22nd Annual International Symposium on Computer
Architecture, 1995.

[34] K. Yu, D. Han, C. Youn, S. Hwang, and J. Lee, “Power-aware task
scheduling for big. little mobile processor.” SoC Design Conference
(ISOCC), 2013 International, pp. 208–212, 2013.

[35] V. Pallipadi and A. Starikovskiy, “The ondemand governor,” Proc. of
the Linux Symposium, vol. 2, pp. 215–230, 2006.

[36] “The linux governors,” https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt [Accessed: 2017-08-19].

[37] F. Zanini, C. N. Jones, D. Atienza, and G. D. Micheli, “Multicore ther-
mal management using approximate explicit model predictive control,”
in ISCAS International Symposium on Circuits and Systems, May 2010,
pp. 3321–3324.

Eduardo Weber Wachter received the B.Eng. de-
gree in Computer Engineer from State University of
Rio Grande do Sul in 2009 and the Ph.D degree in
Computer Science from Pontifical Catholic Univer-
sity of Rio Grande do Sul (PUCRS) in 2015. He
is currently a Research Fellow at the University of
Southampton, UK.

Cédric de Bellefroid received a B.Eng. degree
in electronics/computer sciences from the Catholic
University of Louvain-la-Neuve in Belgium in 2016
and a M.Sc. degree in System on Chip from the
University of Southampton in 2017. He is currently
working as an ASIC/FPGA design and verification
engineer for NOKIA since 2017.

Basireddy Karunakar Reddy received his M.Tech.
degree in Microelectronics and VLSI from Indian
Institute of Technology (IIT), Hyderabad, India in
2015. He is a Ph.D. student in Electronic and Elec-
trical Engineering at the University of Southampton,
UK. His current research interests include design-
time and run-time optimization of performance and
energy in multi-core heterogeneous systems.

Amit Kumar Singh (M’09) received the BTech de-
gree in electronics engineering from the Indian Insti-
tute of Technology (Indian School of Mines), Dhan-
bad, India, in 2006 and the PhD degree from the
School of Computer Engineering, Nanyang Techno-
logical University (NTU), Singapore, in 2013. He
was with HCL Technologies, India for year and half
before starting the PhD degree at NTU, Singapore,
in 2008. He worked as a postdoctoral researcher at
National University of Singapore (NUS) from 2012
to 2014, at University of York, United Kingdom

from 2014 to 2016 and at University of Southampton from 2016 to 2017.
Currently, he is a lecturer at University of Essex, United Kingdom. His
current research interests include system level design-time and run-time
optimizations of 2D and 3D multi-core systems with focus on performance,
energy, temperature, and reliability. He has published more than 75 papers
in the above areas in leading international journals/conferences. He was
the recipient of ISORC 2016 Best Paper Award, PDP 2015 Best Paper
Award, HiPEAC Paper Award, and GLSVLSI 2014 Best Paper Candidate.
He has served on the TPC of IEEE/ACM conferences like DATE, CASES,
CODES+ISSS, ISED, MES, NoCArc, and ESTIMedia. He is a member of
the IEEE.

Bashir M. Al-Hashimi (M99-SM01-F09) is an
ARM Professor of Computer Engineering, Dean of
the Faculty of Physical Sciences and Engineering,
and the Co-Director of the ARM-ECS Research
Centre, University of Southampton, Southampton,
U.K. He has published over 380 technical papers.
His current research interests include methods, algo-
rithms, and design automation tools for low-power
design and test of embedded computing systems.
He has authored or co-authored five books and has
graduated 35 Ph.D students.

Geoff Merrett Geoff Merrett (GSM06-M09) re-
ceived the B.Eng. degree (Hons.) in electronic en-
gineering and the Ph.D. degree from the University
of Southampton, Southampton, U.K., in 2004 and
2009, respectively. He is currently an Associate
Professor and Head of the Centre for IoT and Perva-
sive Systems at the University of Southampton. His
research are energy-efficient computing, particularly
around system-level management of many-core and
battery-free systems. He has published over 150
articles in journals/conferences in these areas, and

is co-editor of the “Many-Core Computing: Hardware and Software” (IET
Press, 2019).

