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Abstract

We construct a dynamic theory of sovereign debt and structural reforms with limited enforcement
and moral hazard. A sovereign country in recession would like to smooth consumption. It can also
undertake costly reforms to speed up recovery. The sovereign can renege on contracts by suffering a
stochastic cost. The Constrained Optimum Allocation (COA) prescribes non-monotonic dynamics
for consumption and effort and imperfect risk sharing. The COA is decentralized by a competitive
equilibrium with markets for renegotiable GDP-linked one-period debt. The equilibrium features
debt overhang: reform effort decreases in a high debt range. We also consider environments with
less complete markets.
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In this paper, we propose a normative and positive dynamic theory of sovereign debt in an environ-
ment characterized by informational frictions. The theory rests on two building blocks. First, sovereign
debt is subject to limited enforcement, and countries can renege on their obligations subject to real
costs as in, e.g., Aguiar and Gopinath (2006), Arellano (2008) and Yue (2010). Second, countries can
undertake structural policy reforms to speed up recovery from an existing recession.1 The reform effort
is assumed to be unobservable and subject to moral hazard.

The theory is motivated by the recent debt crisis in Europe, where sovereign debt and economic
reforms emerged as salient and intertwined policy issues. Greece, for instance, saw its debt-GDP ratio
soar from 103% in 2007 to 172% in 2011 (despite a 53% haircut in 2011) and the risk premium on
its government debt boom during the same period. While creditors and international organizations
pushed the Greek government to introduce structural reforms that would help the economy recover and
meet its international financial obligations, such reforms were forcefully resisted internally.2 Opposers
maintained that the reforms would imply major sacrifice for domestic residents while a large share of the
benefits would accrue to foreign lenders. Meanwhile, international organizations stepped in to provide
financial assistance and access to new loans, asking in exchange fiscal restraint and a commitment to
economic reforms. Our theory rationalizes these dynamics.

The model economy is a dynamic endowment economy subject to income shocks following a two-
state Markov process. The economy (henceforth, the sovereign) starts in a recession with a stochastic
duration. Costly structural reforms increase the probability that the recession ends. Consumers’
preferences induce a desire for consumption and effort smoothing. We first characterize the solution
of two planning problems: the first best and the constrained optimum allocation (COA) subject to
limited enforcement and moral hazard. In the first best, the planner provides the sovereign country
with full insurance by transferring resources to it during recession and reversing the transfers once the
recession ends. The sovereign exerts the effi cient level of costly effort as long as the recession lasts.

The first best is not implementable in the presence of informational frictions for two reasons.
First, the sovereign has access to a stochastic outside option whose realization is publicly observable.
This creates scope for opportunistic deviations involving cashing in transfers for some time, and then
unilaterally quit (i.e., default on) the contract as soon as the realization of the outside option is
suffi ciently favorable. Second, the sovereign has an incentive to shirk and rely on the transfers rather
than exerting the required reform effort to increase output.

The COA is characterized by means of a promised utility approach in the vein of Spear and Sri-
vastava (1987), Thomas and Worrall (1988 and 1990), and Kocherlakota (1996). The optimal contract
is subject to an incentive compatibility constraint (IC) that pins down the effort choice and a partic-
ipation constraint (PC) that captures the limited enforcement. The COA has the following features:
throughout recession, within spells of a slack PC (i.e., when the realized cost of default is high), the
planner front-loads the sovereign’s consumption and decreases it over time in order to provide dy-
namic incentives for reform effort (as in Hopenhayn and Nicolini 1997). In this case, the solution is
dictated by the IC and is history-dependent: consumption and promised utility fall over time, while
effort follows non-monotone dynamics. Whenever the PC binds (i.e., the sovereign faces an attractive

1Examples of such reforms include labor and product market deregulation, and the establishment of fiscal capacity that
allows the government to raise tax revenue effi ciently (see, e.g., Ilzkovitz and Dierx 2011). While beneficial in the long
run, these reforms entail short-run costs for citizens at large, governments or special-interest groups (see, e.g., Blanchard
and Giavazzi 2003).

2 Italy is another example. The incumbent Italian government —which advocated economic reforms and fiscal stability
— was defeated in the elections of March 2018. Since a new populist government which strenuosly opposes structural
reforms took offi ce, the Italy-Germany 10-year bond spread has increased from 1.3% to 3.2% between March and October
2018.
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outside option), the planner increases discretely consumption and promised utility in order to prevent
the sovereign from leaving the contract.

Next, we study the decentralization of the COA. We show that the COA can be implemented by a
market equilibrium where the sovereign issues two one-period securities paying returns contingent on
the aggregate state (GDP-linked bonds). The bonds, which are defaultable and renegotiable, are sold
to profit-maximizing international creditors who hold well-diversified portfolios. When the sovereign
faces a low realization of the default cost, she could, in principle, default, pay a cost, and restart afresh
with zero debt. However, costly default can be averted by renegotiation: when a credible default threat
is present, a syndicate of creditors offers a take-it-or-leave-it debt haircut. As in Bulow and Rogoff
(1989), there is no outright default in equilibrium, but recurrent stochastic debt renegotiations.3 In
order for this market arrangement to attain constrained effi ciency, the creditors must, ex-post, have all
the bargaining power. We show that a Markov-perfect market equilibrium with these characteristics
attains the same allocation as a social planner who can inflict the same punishment in case of a deviation
as can the market in case of outright default (i.e., imposing the same stochastic default cost and letting
the agent resume in the market equilibrium with zero debt).

In our model, two one-period securities are suffi cient to decentralize the COA. This result hinges
on two features. First, the process of renegotiation (following a particular protocol) effectively turns
the two assets into a continuum of state-contingent securities. Second, the equilibrium debt dynamics
and its endogenously evolving price provide effi cient dynamic incentives for the sovereign to exert the
second-best reform effort. We prove that our environment yields the same allocation as a full set of
Arrow-Debreu securities with endogenous borrowing constraints in the spirit of Alvarez and Jermann
(2000). Our decentralization is parsimonious and simple, in the sense that it requires only two assets
and no need to solve for a set of endogenous borrowing constraints.

In the market equilibrium, debt accumulates and consumption falls over time as long as the recession
lingers and debt is not renegotiated. Interestingly, the reform effort is a non-monotone function of debt.
This result stems from the interaction between limited enforcement and moral hazard. Under full
enforcement, effort would increase monotonically over the recession as debt accumulates. Absent moral
hazard, effort would be constant when the PC is slack and decrease every time debt is renegotiated.
When both informational constraints are present, effort increases with debt at low levels. However, for
suffi ciently high debt levels the relationship is flipped: there, issuing more debt deters reforms because,
when the probability of renegotiation is high, most of the gains from an economic recovery would accrue
to foreign lenders. In this region, the reform effort falls over time as debt further accumulates. This debt
overhang curtails consumption smoothing: when sovereign debt is high, investors expect low reform
effort, are pessimistic about the economic outlook, and request even higher risk premia. Interestingly,
in our theory this form of debt overhang is constrained effi cient under the postulated informational
constraints.

We also study environments with more incomplete markets. In particular, we consider an economy
where the sovereign can issue only one asset —a non-contingent bond. This economy fails to attain
the COA: the sovereign attains less consumption smoothing and provides an ineffi cient effort level.4

This extension is interesting because in reality markets for GDP-linked bonds are often missing. In
this (arguably realistic) one-asset environment, there is scope for policy intervention. In particular,

3Empirically, unordered defaults are indeed rare events. Tomz and Wright (2007) and Sturzenegger and Zettelmeyer
(2008) documents a substantial heterogeneity in the terms at which debt is renegotiated, which is consistent with our
assumption of a stochastic outside option (see also Panizza et al. 2009 and Reinhart and Trebesch 2016).

4We also study a case where renegotiation is ruled out as in Eaton and Gersovitz (1981). This further curtails
consumption smoothing and welfare.
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an international institution such as the IMF can improve welfare by means of an assistance program.
During the recession, the optimal program entails a persistent budget support through extending loans
on favorable terms. When the recession ends, the sovereign is settled with a (large) debt on market
terms.

Our analysis is related to a large international and public finance literature. In a seminal con-
tribution, Atkeson (1991) studies the optimal contract in an environment in which an infinitely-lived
sovereign borrower faces a sequence of two-period lived lenders subject to repeated moral hazard. The
focus of our paper differs from Atkeson’s in two regards. First, we emphasize the non-monotone effort
dynamics and the role of periodic renegotiations along the equilibrium path. Second, we provide a
novel decentralization result through renegotiable bonds.

A number of recent papers deal with the dynamics of sovereign debt under a variety of informa-
tional and contractual frictions. Dovis (2019) studies the effi cient risk-sharing arrangement between
international lenders and a sovereign borrower with limited commitment and private information about
domestic productivity. In his model the COA can be implemented as a market equilibrium with non-
contingent defaultable bonds of short and long maturity. He does not consider the interaction between
structural reforms and limited commitment. Aguiar et al. (2017) study a model à la Eaton and Gerso-
vitz (1981) with limited commitment assuming, as we do, that the borrower has a stochastic default
cost. Their research is complementary to ours insofar as it focuses on debt maturity in rollover crises,
from which we abstract. Jeanne (2009) also studies a rollover crisis in an economy where the govern-
ment takes a policy action that affects the return to foreign investors (e.g., the enforcement of creditor’s
right) but this can be reversed within a time horizon that is shorter than that at which investors must
commit their resources.

Our work is also related to the literature on debt overhang initiated by Krugman (1988). He
constructs a static model with exogenous debt showing that a large debt can deter the borrower from
undertaking productive investments. In this regime, it may be optimal for the creditor to forgive
debt. This is never optimal in our model. Several papers consider distortions associated with high
indebtedness in the presence of informational imperfections. Aguiar and Amador (2014) show that
high debt increases the volatility of consumption by reducing risk sharing. Aguiar et al. (2009)
consider the effect of debt on investment volatility. When an economy is indebted, productivity shocks
gives rise to larger dispersion in investment rates. Aguiar and Amador (2011) consider a politico-
economic model where capital income can be expropriated ex-post and the government can default
on external debt. A country with a large sovereign debt position has a greater temptation to default,
and therefore investments are low. Conesa and Kehoe (2017) construct a theory where governments of
highly indebted countries may choose to gamble for redemption.

Our research is related also to the literature on endogenous incomplete markets due to limited
enforcement or limited commitment. This includes Alvarez and Jermann (2000) and Kehoe and Perri
(2002). Our result that effi ciency can be attained by a sequence of one-period debt contract is related to
Fudenberg et al. (1990) who provide conditions under which commitment problems in repeated moral
hazard setups can be resolved by a sequence of one-period contracts. Our theory also builds on the
insight of Grossman and Van Huyck (1988) that renegotiation can be used to complete markets. Our
focus on a unique Markov equilibrium is related to Auclert and Rognlie (2016) who study the properties
of an Eaton-Gersovitz economy. The analysis of constrained effi ciency by means of promise-keeping
constraints is related to the literature on competitive risk sharing contracts with limited commitment,
including, among others, Thomas and Worrall (1988), Marcet and Marimon (1992), Phelan (1995),
Kocherlakota (1996), and Krueger and Uhlig (2006).

Finally, our work is related, more generally, to recent quantitative models of sovereign default such
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as Aguiar and Gopinath (2006), Arellano (2008), and Chatterjee and Eyigungor (2012).5 Abraham et
al. (2018) study an Arellano (2008) economy, extended to allow shocks to government expenditures,
and compare quantitative outcomes of the market allocation to the optimal design of a Financial
Stability Fund. Broner et al. (2010) study the incentives to default when parts of the government debt
is held by domestic residents. Song et al. (2012) and Müller et al. (2016a) study the politico-economic
determinants of debt in open economies where governments are committed to honor their debt.

The rest of the paper is organized as follows. Section 1 describes the model environment. Section
2 solves for the first best and the COA under limited enforcement and moral hazard. Section 3
provides the main decentralization result. Section 4 considers one-asset economies and discusses policy
interventions to restore effi ciency. Section 5 concludes. Appendix A contains the proofs of the main
lemmas and propositions. Online Appendix B contains additional technical material referred to in the
text.

1 The model environment

The model economy is a small open endowment economy populated by an infinitely-lived representative
agent. A benevolent sovereign makes decisions on behalf of the representative agent. The stochastic
endowment follows a two-state Markov switching process, with realizations w and w̄, where 0 < w < w̄.
We label the two endowment states recession and normal time, respectively. An economy starting in
recession remains in the recession with endogenous probability 1− p and switches to normal time with
probability p. Normal time is assumed to be an absorbing state. This assumption aids tractability and
enables us to obtain sharp analytical results. During recession, the sovereign can implement a costly
reform policy to increase p. In our notation, p denotes both the reform effort and the probability that
the recession ends. The sovereign can smooth consumption by contracting with a financial intermediary
that has access to an international market offering a gross return R.

The sovereign’s preferences are given by E0
∑
βt
[
u (ct)− φtI{default in t} −X (pt)

]
, where β = 1/R.

The function u is twice continuously differentiable and satisfies limc→0 u(c) = −∞, u′ (c) > 0, and
u′′ (c) < 0. I ∈ {0, 1} is an indicator switching on when the economy is in a default state and φ is an
associated utility loss. In the planning allocation, the cost φ accrues when the sovereign opts out of the
contract offered by the planner. In the market allocation, it accrues when sovereign unilaterally reneges
on a debt contract with international lenders.6 In recession, φ follows an i.i.d. process drawn from
the p.d.f. f (φ) with an associated c.d.f. F (φ) . We assume that F (φ) is continuously differentiable
everywhere, and denote its support by ℵ ≡ [φmin, φmax] ⊆ R+, where φmin < φmax < ∞. The
assumption that shocks are independent is for simplicity. In order to focus on debt dynamics in
recessions we assume that there is full enforcement in normal time (i.e., in normal time φ is arbitrarily
large) — see (Müller et al. 2016b) for a generalization in which the distribution of φ is the same in
normal time and in recession.

The function X (p) represents the reform cost, assumed to be increasing and convex in the proba-
bility of exiting recession, p ∈ [p, p̄] ⊂ [0, 1]. X is assumed to be twice continuously differentiable, with
the following properties: X

(
p
)

= 0, X ′
(
p
)

= 0, X ′ (p) > 0 ∀p > p, X ′′ (p) > 0, and limp→p̄X ′ (p) =∞.
5Other papers studying restructuring of sovereign debt include Asonuma and Trebesch (2016), Bolton and Jeanne

(2007), Hatchondo et al. (2014), Mendoza and Yue (2012), and Yue (2010).
6The cost φ is exogenous and publicly observed, and captures in a reduced form a variety of shocks including both

taste shocks (e.g., the sentiments of the public opinion about defaulting on foreign debt) and institutional shocks (e.g.,
the election of a new prime minister, a new central bank governor taking offi ce, the attitude of foreign governments, etc.).
Alternatively, φ could be given a politico-economic interpretation, as reflecting special interests of lobbies.
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The time line of events is as follows: at the beginning of each period, the endowment state is
observed; then, φ is realized and publicly observed; finally, effort is exerted.

2 Planning allocation

We first characterize the constrained effi cient allocation as the solution to a (dual) benevolent social
planner problem which maximizes the principal’s (i.e., creditors’) discounted value of expected future
profits subject to a sequence of incentive and limited enforcement constraints. The problem can be
written recursively using the agent’s (i.e., sovereign’s) continuation utility as the state variable and
letting the planner maximize profits subject to a promise-keeping constraint.7

Let ν denote the promised utility, i.e., the expected utility the sovereign is promised in the beginning
of the period, before the realized φ is observed. ν is the key state variable of the problem. We denote
by ωφ and ω̄φ the promised continuation utilities conditional on the realization φ and on the economy
staying in recession or switching to normal time, respectively. We denote by P (ν) the expected present
value of profits accruing to the planner conditional on delivering the promised utility ν in the most
cost-effective way. The optimal value P (ν) satisfies the following functional equation:

P (ν) = max
{cφ,pφ,ωφ,ω̄φ}φ∈ℵ

∫
ℵ

[
w − cφ + β

(
pφP̄ (ω̄φ) + (1− pφ)P (ωφ)

)]
dF (φ) , (1)

where the maximization is subject to a promise-keeping constraint (PK)∫
ℵ

[u (cφ)−X (pφ) + β (pφω̄φ + (1− pφ)ωφ)] dF (φ) = ν, (2)

the planner’s profit function in normal time,

P̄ (ω̄φ) = max
c̄∈[0,c̃]

w̄ − c̄+ βP̄
(
β−1 [ω̄φ − u (c̄)]

)
, (3)

and the boundary conditions cφ ∈ [0, c̃], pφ ∈ [p, p̄], ν, ωφ ∈ [ω, ω̃], and ω̄φ ∈ [ω, ˜̄ω], where c̃, ω̃, ˜̄ω and ω
are generous bounds that will never bind in equilibrium.

We introduce two informational frictions. The first is limited enforcement captured by a set of PCs:
the sovereign can quit the contract when the realization of φ makes such action attractive ex-post.
The second is moral hazard captured by an IC: the reform effort is chosen by the sovereign and is not
observed by the planner.

Under limited enforcement, the planner must provide a utility that exceeds the sovereign’s outside
option if she quits the contract, α − φ, where φ is the shock discussed above and α is the sovereign’s
value of not being in the contract. Thus, the allocation is subject to the following set of PCs:

u (cφ)−X (pφ) + β [pφω̄φ + (1− pφ)ωφ] ≥ α− φ, φ ∈ ℵ, (4)

and to a lower bound on initial and future promised utility, i.e., ν ≥ ν ≡ α− E [φ] and

ωφ ≥ ν, (5)

7We formulate the planning problem as a one-sided commitment program. The problem would be identical under
two-sided lack of commitment under some mild restrictions on the state space. In particular, one should impose an upper
bound on the sovereign’s initial promised utility to ensure that the principal does not find it optimal to ever exit the
contract. We return to this point below.
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where ν is the expected utility that the sovereign could attain by quitting the contract in the next
period after the realization of φ. Thus, it is not feasible for the planner to promise a utility ωφ < ν.
In addition, we assume that α is suffi ciently low to ensure that it is never effi cient to terminate the
program (even under the realization φ = φmin).

8 In the first part of the paper we simply treat α as an
exogenous parameter. Later we endogenize α.

When the planning problem is subject to moral hazard, the allocation is also subject to the following
IC, reflecting the assumption that the sovereign chooses effort after the planner has set the future
promised utilities:

pφ = arg max
p∈[p,p̄]

−X (p) + β [pω̄φ + (1− p)ωφ] . (6)

2.1 First best

We start by characterizing the first-best allocation given by the program (1)—(3). The proof, which
follows standard methods, can be found in Appendix B.

Proposition 1 Given a promised utility ν, the first best allocation satisfies the following properties.
The sequences for consumption and promised utilities are constant at the level cFB (ν) , ωFB = ν,
and ω̄FB = ν + X

(
pFB (ν)

)
/
(
1− β

(
1− pFB (ν)

))
, implying full consumption insurance, cFB (ν) =

c̄FB
(
ω̄FB

)
. Moreover, effort pFB (ν) is constant over time throughout recession. cFB (ν) and pFB (ν)

are strictly increasing and strictly decreasing functions, respectively, satisfying:

β

1− β (1− pFB (ν))

 (w̄ − w)︸ ︷︷ ︸
output increase if recovery

× u′
(
cFB (ν)

)
+ X

(
pFB (ν)

)︸ ︷︷ ︸
saved effort cost if recovery

 = X ′
(
pFB (ν)

)
(7)

u
(
cFB (ν)

)
1− β −

X
(
pFB (ν)

)
1− β (1− pFB (ν))

= ν. (8)

The solution to the functional equation (3) in normal time is given by

P̄ (ω̄φ) =
w̄ − c̄FB(ω̄φ)

1− β , c̄FB(ω̄φ) = u−1((1− β)ω̄φ). (9)

The first-best allocation yields full insurance: the sovereign enjoys a constant consumption irrespec-
tive of the endowment state and exerts a constant reform effort during recession. Moreover, consump-
tion cFB is strictly increasing in ν while effort pFB is strictly decreasing in ν: a higher promised utility
is associated with higher consumption and lower effort. P̄ is strictly decreasing and strictly concave.

2.2 Constrained Optimum Allocation (COA)

Next, we characterize the COA. The planning problem (1)-(3) is subject to the PC (4), the lower bound
on ωφ (5), and the IC (6). Note that the planning problem is evaluated after the uncertainty about
the endowment state has been resolved, but before the realization of φ. For didactic reasons, we first
study a problem with only limited enforcement. Then, we generalize the analysis to the case in which

8Note that the constraint (5) is implied by next period’s PK (2) and the set of PCs (4). It is convenient to specify
it as a separate constraint since this allows us to attach a Lagrange multiplier to (5) instead of (2). The condition on
α must guarantee that w − cφmin+ β

[
pφmin P̄ (ω̄φmin) + (1− pφmin)P (ωφmin)

]
≥ 0. Otherwise, both parties would gain

from terminating the contract. This condition will always hold true when we endogenize α.

6



there is also moral hazard. We start by establishing a property of the COA that holds true in both
environments.9

Lemma 1 Assume that the profit function P is strictly concave. Define the sovereign’s discounted
utility conditional on the promised utility ν and the realization φ as µφ (ν) ≡ u(cφ (ν)) −X(pφ (ν)) +

β [pφ (ν) ω̄φ (ν) + (1− pφ (ν))ωφ(ν)] . Then, the COA features a unique threshold function φ̃(ν) such
that the PC binds if φ < φ̃(ν) and is slack if φ ≥ φ̃(ν). Moreover,

µφ (ν) =

{
α− φ if φ < φ̃(ν),

α− φ̃(ν) if φ ≥ φ̃(ν).

The lemma formalizes the intuitive properties that (i) if the planner provides the agent with higher
expected utility than her reservation utility α− φ in a state φa, then it is optimal for her to do so for
all φ > φa; moreover, promised utility is equalized across all such states; (ii) if the planner provides
the agent an expected utility equal to the reservation utility in a state φb, then it is optimal for her to
also do so for all φ < φb. Thus, µφ (ν) is linearly decreasing in φ for φ < φ̃(ν), and constant thereafter.

2.2.1 Limited Enforcement without Moral Hazard

In this environment, there is no IC and the planner can control the effort level directly. We prove
in Appendix B that the planner’s profit function P (ν) is strictly decreasing, strictly concave and
differentiable for all interior ν, i.e., ν > ν. Moreover, the first-order conditions (FOCs) of the program
are necessary and suffi cient. The proof follows the strategy in Thomas and Worrall (1990).

Combining the FOCs with respect to cφ, ωφ, and ω̄φ with the envelope condition (see the proof of
Proposition 2 in Appendix B) yields:10

1

u′(c̄ (ω̄φ))
− 1

u′(cφ)
= 0 (10)

u′ (cφ) = − 1

P ′ (ωφ)
, ∀ωφ > ν. (11)

Combining these with the FOC with respect to pφ yields

X ′ (pφ) = β
[
(ω̄φ − ωφ) + u′ (cφ)×

(
P̄ (ω̄φ)− P (ωφ)

)]
. (12)

Equation (10) establishes that the planner provides the sovereign with full insurance against the
endowment shock, i.e., she sets c̄ (ω̄φ) = cφ and equates the marginal profit loss associated with promised
utilities in the two states. Equation (12) establishes that effort is set at the constrained effi cient level:
The marginal cost of effort equals the sum of the marginal benefits accruing to the sovereign and to
the planner, respectively. Proposition 2 provides a formal characterization of the COA.11

9Proving that P̄ in equation (9) is strictly concave is straightforward. The strict concavity of P is more diffi cult to
establish analytically. We prove below that P is strictly concave in the case without moral hazard, while in the case with
moral hazard we will guess and verify it numerically.
10Note that since there is full enforcement during normal time, c̄(ω̄φ) and P̄ (ω̄φ) are as in the first best (cf. equation

9). Thus, P̄ ′ (ω̄φ) = −1/u′(c̄ (ω̄φ)). Also, equations (10)-(11) imply that the marginal cost of providing promised utility
is equalized across the two endowment states, i.e., P̄ ′ (ω̄φ) = P ′ (ωφ) .
11The proof is in Appendix B. The proof of Proposition 3 below encompasses the proof of Proposition 2 as a special

case.

7



Proposition 2 The COA is characterized as follows. The threshold function φ̃(ν) is decreasing and
implicitly defined by the condition

ν = α−
[∫ φ̃(ν)

φmin

φdF (φ) + φ̃(ν)
[
1− F (φ̃(ν))

]]
. (13)

Moreover:

1. If φ < φ̃(ν), the PC is binding, and the allocation (cφ, pφ, ωφ, ω̄φ) is determined by (10), (11),
(12), and by (4) holding with equality. Moreover, ωφ = ν ′ > ν.

2. If φ ≥ φ̃(ν), the PC is slack, and the allocation (cφ, pφ, ωφ, ω̄φ) is given by ωφ = ν ′ = ν, cφ = c (ν) ,
ω̄φ = ω̄ (ν) , and pφ = p (ν), where the functions c (ν) , ω̄ (ν) and p (ν) are determined by

u(c(ν))−X(p(ν)) + β [p(ν)ω̄(ν) + (1− p(ν))ν] = α− φ̃(ν), (14)

(10), and (12), respectively. The solution is history-dependent. The reform effort is strictly
decreasing and consumption and future promised utility are strictly increasing in ν.

The COA under limited enforcement has standard back-loading properties. Whenever the PC
is slack, consumption, effort and promised utility remain constant over time. Consumption remains
constant even when the recession ends. Thus, the COA yields full consumption insurance across
all states in which the PC is slack. Whenever the PC binds, the planner increases the sovereign’s
consumption and promised utilities while reducing her effort in order to meet her PC. In this case,
ν ′ > ν.12

The upper panels of Figure 1 describe the dynamics of consumption and effort (left panel), and
promised utilities (right panel) under a particular sequence of realizations of φ.13 In this numerical
example, the recessions last for 13 periods. Thereafter, the economy attains full insurance. Consump-
tion is back-loaded and effort is front-loaded. In periods 9 and 11, the PC binds and the planner must
increase consumption and promised utility, and reduce effort. Consumption and effort remain constant
when the PC is slack. Note also that consumption remains constant when the recession ends.

2.2.2 Limited Enforcement with Moral Hazard

Next, we consider the more interesting case in which the planner cannot observe effort and is subject
to both a PC and an IC. The COA features an important qualitative difference from the case without
moral hazard: within each spell in which the PC is slack, the planner front-loads consumption and
promised utility to incentivize the sovereign to provide effort. Therefore, moral hazard prevents full
insurance even across the states of nature in which the PC is slack.

Let us start the analysis from the IC (6). The FOC yields X ′ (pφ) = β (ω̄φ − ωφ), or equivalently

pφ = Υ (ω̄φ − ωφ) (15)

where Υ (x) ≡ (X ′)−1 (βx) . The properties of X imply that pφ is increasing in the promised utility
gap ω̄φ − ωφ. Equation (15) is the analogue of (12). Effort is distorted because the sovereign does not
internalize the benefits accruing to the planner.
12Although we have assumed that the planner controls effort directly, the same allocation would obtain if the planner

did not control effort ex ante but could observe it ex post and punish deviations. Details are available in the working
paper version (Müller et al. 2016b).
13All figures are generated by a choice of parameters discussed in Appendix B.3.
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Figure 1: Simulation of consumption, effort, and promised utilities for a particular sequence of φ’s. In
this particular simulation the recession ends in period 13. The top panels show the planner allocation
without moral hazard, the bottom panels with moral hazard.

The FOCs with respect to ωφ and ω̄φ together with the envelope condition yield (see proof of
Proposition 3 in Appendix A):

1

u′(c̄ (ω̄φ))
− 1

u′(cφ)
=

Υ′(ω̄φ − ωφ)

Υ(ω̄φ − ωφ)

[
P̄ (ω̄φ)− P (ωφ)

]
(16)

1

u′(cφ)
= −P ′ (ωφ) +

Υ′(ω̄φ − ωφ)

1−Υ(ω̄φ − ωφ)

[
P̄ (ω̄φ)− P (ωφ)

]
, ∀ωφ > ν (17)

0 = θφ × [ωφ − ν] , (18)

where θφ ≥ 0 is the Lagrange multiplier on the constraint ωφ ≥ ν. This constraint binds in a range
of low ν’s where the impossibility of promising a utility below ν curbs the planner’s ability to provide
dynamic incentives.14 Equation (17) is then replaced by the conditions ωφ = ν and θφ > 0.

The FOC (16) is the analogue of (10). With moral hazard, the planner does no longer provide the
sovereign with full insurance against the realization of the endowment shock: by promising a higher

14The issue did not arise in the absence of moral hazard because the optimal ωφ was non-decreasing.
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consumption if the economy recovers, she provides incentives for effort provision. Note that the effort
wedge is proportional to the elasticity Υ′/Υ.

The FOC (17) is the analogue of (11). There, the marginal utility of consumption simply equaled
the profit loss associated with an increase in promised utility. Here, the planner finds it optimal to
open a wedge that is proportional to the elasticity of effort: she front-loads consumption in order to
make the sovereign more eager to leave a recession.

We can now proceed to a full characterization of the COA with moral hazard. As is common for
problems with both limited enforcement and moral hazard, it is diffi cult to prove that the program is
globally concave and to establish analytically the curvature of the profit function. We therefore assume
that P (ν) is strictly concave in ν, and verify this property numerically.15

Proposition 3 Assume that P is strictly concave. The COA with unobservable effort is characterized
as follows: (i) pφ = Υ (ω̄φ − ωφ) as in equation (15); (ii) the threshold function φ̃(ν) is decreasing and
implicitly defined by equation (13). Moreover:

1. If φ < φ̃(ν), the PC is binding and the allocation (cφ, ωφ, ω̄φ, θφ) is determined by (16), (17),
(18), and by (4) holding with equality.

2. If φ ≥ φ̃(ν), the PC is slack and the allocation (cφ, ωφ, ω̄φ, θφ) is determined by (16), (17), (18),
and

u(cφ)−X(pφ) + β [pφω̄φ + (1− pφ)ωφ] = α− φ̃(ν). (19)

The solution is history-dependent, i.e., cφ = c (ν) , ωφ = ω (ν) , and ω̄φ = ω̄ (ν). Promised utility
falls over time, i.e., ωφ = ω (ν) = ν ′ ≤ ν with θφ = 0 when ν is suffi ciently large. The function
c (ν) is strictly increasing. The effort function p (ν) = Υ (ω̄ (ν)− ω (ν)) is strictly increasing in
a range of low ν. In this range effort declines over time when the PC is slack.

3. P (ν) is strictly decreasing, and differentiable for all ν > ν. In particular, P ′ (ν) = −1/u′ (c (ν)) <
0. Moreover, P̄ (ω̄φ) > P (ωφ) for all φ and ν.

Figure 2 illustrates the results of Proposition 3 based on a numerical example. All panels show
policy functions for an economy in recession, conditional on a slack PC. Promised utilities ωφ (ν) and
ω̄φ (ν) and consumption c (ν) are weakly increasing in ν. The upper left panel shows the law of motion
of ν when the recession lingers and the PC remains slack. The fact that ωφ (ν) is below the 45-degree
line implies that promised utility falls over time and converges to the lower bound ν.16 In the range
[ν, ν−] the planner is constrained by the inability to abase promised utility below ν. The two left panels
imply that, if the recession lingers and the PC is slack, consumption declines over time. Instead, the
dynamics of effort are non-monotone.

We now discuss some additional analytical properties of the COA. We start with consumption
dynamics. Combining (17) with the envelope condition P ′(ωφ) = −1/u′(c(ωφ)) for ωφ > ν and denoting
ν ′ = ωφ and ν̄ ′ = ω̄φ, yields:

1

u′(cφ)
− 1

u′(c (ν ′))
=

Υ′ (ν̄ ′ − ν ′)
1−Υ (ν̄ ′ − ν ′)

(
P̄
(
ν̄ ′
)
− P

(
ν ′
))
. (20)

15We prove that under the assumption that P is strictly concave, P (ν) must be differentiable for all interior ν and that
the FOCs are necessary (see Lemma 3.2 in Appendix B). Although we cannot establish in general that they are also
suffi cient, this turns out to be the case in all parametric examples we considered.
16Note that, as ν falls, the probability that the PC binds increases. At ν the PC binds almost surely in the next period,

and the sovereign receives the realized reservation utility (α− φ′) if the economy remains in recession.
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Figure 2: Policy functions for state-contingent promised utility, consumption, and effort conditional on
the maximum cost realization φmax.

We label equation (20) a Conditional Euler Equation (CEE). The CEE describes the optimal consump-
tion dynamics for states where the PC does not bind next period and ν > ν−. The right-hand side of
(20) is positive. Thus, consumption decreases over time as long as the economy remains in recession
and the PC is slack, echoing the optimal consumption dynamics in Hopenhayn and Nicolini (1997).17

Combining the CEE (20) with the Euler equation describing the consumption dynamics upon
recovery (16), yields a conditional version of the so-called Inverse Euler Equation (CIEE):

1

u′(cφ)
=
(
1−Υ

(
ν̄ ′ − ν ′

)) 1

u′(c (ν ′))
+ Υ

(
ν̄ ′ − ν ′

) 1

u′(c̄ (ν̄ ′))
. (21)

The CIEE equates the inverse marginal utility in the current period with next period’s expected
inverse marginal utility conditional on the PC being slack and ν > ν−. The key difference relative to
the standard inverse Euler equation in the dynamic contract literature (cf. Rogerson 1985) is that our
CIEE holds true only in states where the PC is slack. If there were no enforcement problems, then our

17The right-hand side of (20) is positive since Υ′ > 0 and P̄ (ν̄′) > P (ν′) (see the proof of Proposition 3 in Appendix
A). This implies that the marginal utility of consumption must be rising over time as ν falls. This property differs from
some other papers in the repeated moral hazard literature (e.g., Phelan and Townsend (1991)) where the profit function
can be non-monotone in promised utility. In our model, the planner would never be better off by delivering more than the
promised utility ν (as long as ν is in the feasible set ν ≥ ν), since she can reduce current consumption without affecting
the effort choice.
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CIEE would boil down to a standard inverse Euler equation.
Next, we turn to the effort dynamics. In analogy with consumption, one might expect that, when

the PC is slack, the planner would back-load effort to incentivize its provision. However, this conjecture
is incorrect. Effort is in fact decreasing in promised utility when ν is high, inducing back-loading of
effort.18 However, when ν is suffi ciently low, effort is increasing in promised utility (cf. Proposition 3
and its proof), implying that, as ν falls, effort decreases over time. In this range, the planner front-
loads effort even within spells when the PC is slack. The reason is that the planner cannot reduce
indefinitely the promised utility. When ν ≤ ν−, the constraint ωφ ≥ ν becomes binding, and the
planner sets ωφ = ν, inducing pφ (ν) = Υ (ω̄φ (ν)− ν). Since both both Υ and ω̄φ are increasing
functions (the planner can decrease ω̄φ without bound since there is perfect enforcement in normal
time), pφ must be increasing in ν. Hence, effort declines over time if the recession lingers and the PC
remains slack for suffi ciently long.19

The lower panels of Figure 1 illustrate simulated dynamics of consumption, promised utilities, and
effort in the case of moral hazard under the same sequence of realizations of φ as in the upper panels.
Consumption and promised utilities fall over time when the PC is slack, while effort falls or rises over
time depending on ν. When ν becomes suffi ciently low (i.e., in periods 7, 8, and 9), the reform effort
starts falling. Note that consumption increases when the recession ends, implying that the endowment
risk is not fully insured.

In conclusion, the combination of limited enforcement and moral hazard delivers effort dynamics
qualitatively different from models with only one friction. In our model effort is hump-shaped over time,
even when the PC remains slack. In contrast, effort is monotone increasing in many pure moral hazard
models and weakly decreasing in pure limited enforcement models. The dynamics of consumption
echo the typical properties of models with dynamic moral hazard as long as the PC is slack, namely
the planner curtails consumption in order to extract higher effort over time. However, the planner
periodically increases consumption and promised utility whenever the PC is binding. This averts the
immiseration that would arise in a world of perfect enforcement.

2.3 Primal Formulation

We have characterized the COA by solving a dual planning problem, i.e., maximizing profits subject to a
promised-utility constraint. We can alternatively solve a primal problem where the planner maximizes
discounted utility subject to a promised-expected-profit constraint. We characterize the primal program
because it is directly comparable with the market equilibrium studied below.

Let µpl (π) and µplφ (π) denote the sovereign’s discounted utility before and after the realization of
φ, respectively. We can write the primal problem as:

µpl (π) =

∫
ℵ
µplφ (π) dF (φ) (22)

=

∫
ℵ

max
{cφ,pφ,π′φ,π̄′φ}φ∈ℵ

[
u (cφ)−X (pφ) + β

(
pφµ̄

pl
(
π̄′φ
)

+ (1− pφ)µpl
(
π′φ
))]

dF (φ) ,

18Lemma 3.1 in Appendix B shows that effort is decreasing in promised utility when ν is large. This result is subject
to a suffi cient condition, namely that limp→pX

′′ (p) > 0. However, numerical analysis suggests that this is true more
generally.
19By continuity, this property extends to a contiguous range of ν above ν−.
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where µ̄pl (π̄) = u (w̄ − (1− β) π̄) / (1− β), subject to the promised-profit constraint

π =

∫
ℵ
bφdF (φ) , (23)

having defined bφ = w − cφ + β
[
pφπ̄

′
φ + (1− pφ)π′φ

]
as the planner’s discounted profit after the real-

ization of φ. The problem is subject to a set of PCs and ICs

u (cφ)−X (pφ) + β
[
pφµ̄

pl
(
π̄′φ
)

+ (1− pφ)µpl
(
π′φ
)]
≥ α− φ, φ ∈ ℵ, (24)

pφ = arg max
p∈[p,p̄]

−X (p) + β
[
pµ̄pl

(
π̄′φ
)

+ (1− p)µpl
(
π′φ
)]
, (25)

and to the boundary conditions cφ ∈ [0, c̃], π̄′φ ∈ [π, π̃], and π, π′φ ∈ [π, πmax], where π = (c̃−w)/(1−R−1)

and π̃ = w̄/(1 − R−1) are generous bounds that will never bind in equilibrium and πmax satisfies
µpl(πmax) = α− E[φ].

While the program (22) may in general admit multiple fixed points for µpl, we can characterize
the unique fixed point associated with the COA by exploiting duality properties. First, for the primal
and the dual to be equivalent, π = P (ν) and ν = µpl (π) . Thus, µpl = P−1. Since P is strictly
decreasing and strictly concave, so must be µpl. Second, the two solutions must feature the same
threshold function, i.e., Φpl(π) = φ̃(P−1 (π)).

A complete characterization of the primal COA is deferred to Proposition 4 in Appendix A. Here,
we highlight the properties that will be key for the decentralization results. First, the value function
of the primal COA satisfies:

µpl(π) =
[
1− F (Φpl(π))

] (
α− Φpl (π)

)
+

∫ Φpl(π)

φmin

(α− φ) dF (φ) , (26)

where π ∈ [π, P (α− E[φ])] and Φpl(π) ≡ φ̃(P−1 (π)). As in the dual, the agent perceives the utility
α− φ if the PC binds and α− φ̃(ν) if the PC is slack, where ν = P−1 (π). Second, effort must be the
same as in the dual, implying that p = Ψpl(π′, π̄′) = Υ(µ̄pl(π̄′)− µpl(π′)). Third, let bφ (π) denote that
optimal choice of bφ in the COA. In Proposition 4, we prove that the COA features20

bφ (π) =

{
bpl(π) =

(
W pl

)−1 (
α− Φpl (π)

)
if φ ≥ Φpl (π)

b̂pl(φ) =
(
W pl

)−1
(α− φ) if φ < Φpl (π)

, (27)

where

W pl (x) ≡ max
π̄′∈[π,π̃],π′∈[π,P (α−E[φ])]

u
(
w − x+ β

[
Ψpl(π′, π̄′)π̄′ +

(
1−Ψpl(π′, π̄′)

)
π′
])

(28)

−X(Ψpl(π′, π̄′)) + βΨpl(π′, π̄′)µ̄pl(π̄′) + β(1−Ψpl(π′, π̄′))µpl(π′)

is the agent’s discounted utility. In particular, W pl (bφ(π)) denotes the continuation utility after the
realization of φ, conditional on the optimal choice of bφ(π) given by (27). If the PC is slack, the
principal sets bφ = bpl(π) independently of φ. In this case, consumption and continuation utility

20Note that the optimal choice of consumption and future promised utility are also identical across the primal and the
dual problem. We defer their characterization to the formal statement of the proposition in the appendix.
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are also independent of φ, and in particular W pl
(
bpl(π)

)
= α − Φpl (π). If, instead, the PC binds,

then the principal sets bφ = b̂pl(φ), which ensures that the agent’s PC holds with equality. In this

case, the agent’s continuation utility is W pl
(
b̂pl(φ)

)
= α − φ. Note that π =

[
1− F (Φpl(π))

]
bpl(π)

+
∫ Φpl(π)
φmin

b̂pl(φ)dF (φ). Namely, the promised expected profit π equals the expected "transfer" she

receives from the agent. Note also that inverting this expression allows us to define bpl(π) recursively;

bpl (π) =
π −

∫ Φpl(π)
φmin

bpl
((

Φpl
)−1

(φ)
)
dF (φ)

1− F (Φpl (π))
. (29)

It is easy to show that (29) defines a unique function bpl (π) and that this function is increasing.
The primal COA admits the following interpretation. In the initial period, before the state φ is

realized, the risk-neutral principal is endowed with a claim b = bpl(π) on the sovereign whose expected
repayment is π.21 After φ is realized, the principal receives the face value of “debt” b in all states
φ in which the PC is slack. If the PC binds, she takes a haircut, i.e., she receives a lower payment
b̂pl(φ) < b. The planner then adjusts optimally the issuance of new claims. The case without moral
hazard is especially intuitive. If the PC is slack, the planner keeps the debt constant at its initial level
(b = b′). If the PC binds, she reduces the future obligation so as to keep the sovereign in the contract.
Under moral hazard, b (and, hence, the promised profit) change over time even when the PC is slack
in order to provide the optimal dynamic incentives for effort provision. This interpretation is useful to
understand the market decentralization to which we now turn.

3 Decentralization

In this section, we show that the COA can be decentralized by a market allocation where the sovereign
issues one-period defaultable bonds, held by risk-neutral international creditors. In the market economy,
the planner is replaced by a syndicate of international investors (the creditors) who can borrow and
lend at the gross interest rate R.

We assume that the sovereign can issue two one-period securities. The first is a non-contingent
bond, like in Eaton and Gersovitz (1981), which returns one unit of good in all states. However,
different from Eaton and Gersovitz (1981), the bond is defaultable and renegotiable according to the
protocol discussed below. The second security is a state-contingent bond that yields a return only in the
normal state, i.e., a GDP-linked bond. The GDP-linked bond is not subject to any risk of renegotiation,
because there is no default in the normal state. In this environment, markets are incomplete for two
reasons. First, there exists no market for securities offering a return contingent on the effort level.
Second, there is no market to insure explicitly against the realization of φ.

The market structure with a non-contingent bond and a GDP-linked bond is equivalent to one in
which there exist two state-contingent securities, which we label recession-contingent debt and recovery-
contingent debt, with prices Q

(
b, b̄
)
and Q̄

(
b, b̄
)
.22 We carry out our discussion with this latter notation

because it is more standard and convenient. At the beginning of each recession period, the sovereign
observes the realization of the default cost φ and decides whether to honor the recession-contingent
debt that reaches maturity or to announce the intention to default. This announcement triggers a

21Note that, since bpl(π) is a continuous and monotone increasing function, we can write the inverse function π =
Πpl

(
bpl
)
and define the problem for an initial level of bpl instead of an initial promised profit.

22Denote by bn and bs the non-contingent and state-contingent security, respectively. Then, bn = b and bs = b̄ − b.
Moreover, the prices of these bonds are given by Qn (bn, bs) = Q

(
b, b̄
)

+ Q̄
(
b, b̄
)
, and Qs (bn, bs) = Q̄

(
b, b̄
)
.
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renegotiation process. Since debt is honored in normal times, no arbitrage implies that Q̄ = pR−1. If
the country could commit to repay its debt also in recession, the bond price would be Q = (1− p)R−1.
However, due to the risk of renegotiation, recession-contingent debt sells at a discount, Q ≤ (1−p)R−1.

We now describe the renegotiation protocol. If the sovereign announces default, the syndicate of
creditors can offer a take-it-or-leave-it haircut that we assume to be binding for all creditors.23 By
accepting this offer, the sovereign averts the default cost. In equilibrium, a haircut is offered only if
the default threat is credible, i.e., if the realization of φ is suffi ciently low to make the sovereign prefer
default to full repayment.24 Note that the creditors have, ex-post, all the bargaining power, and their
offer makes the sovereign indifferent between an outright default and the proposed haircut.

The timing of a debt crisis can be summarized as follows: The sovereign enters the period with
the pledged debt b, observes the realization φ, and then decides whether to threaten default on all its
debt. If the threat is credible, the creditors offer a haircut b̂ ≤ b. Next, the sovereign decides whether
to accept or decline this offer. Finally, the sovereign issues new debt subject to the period budget
constraint c = Q̄

(
b′, b̄′

)
× b̄′ +Q

(
b′, b̄′

)
× b′ + w − b̂.

To facilitate comparison with the COA we start by setting the post-default outside option exoge-
nously equal to α. Thus, in the out-of-equilibrium event that the sovereign declines the offered haircut,
the default cost φ is triggered, debt is canceled, and realized utility is α− φ. We will later endogenize
α by assuming that the sovereign can subsequently resume access to financial markets.

3.1 Market Equilibrium

We focus on market equilibria where agents condition their strategies on pay-off relevant state variables,
ruling out reputational mechanisms. We view this assumption as realistic in the context of sovereign
debt since it is generally diffi cult for creditors to commit to punishment strategies, especially when new
lenders can enter and make separate deals with the sovereign. In our environment, the pay-off relevant
state variables are b, w, and φ. For technical reasons, we impose that debt is bounded, b ∈ [b, b̃] where
b̃ = w̄/

(
1−R−1

)
is the natural borrowing constraint in normal time and b > −∞ is such that for

b = b it is not optimal to default. In equilibrium, these bounds never bind.
The natural equilibrium concept is that of Markov-perfect equilibrium. For didactical reasons, we

first define a market equilibrium under the assumption that, in case of outright default, the game ends
and the sovereign receives the exogenous utility α− φ. Strictly speaking, this is not a Markov-perfect
equilibrium, as different strategies apply on and off the equilibrium path. We will later endogenize α
by setting it equal to the value of the reversion to the market equilibrium without debt. In that case,
we will refer to the equilibrium as a Markov-perfect equilibrium.

Definition 1 A market equilibrium is a set of value functions {V,W}, a threshold renegotiation
function Φ, a set of equilibrium debt price functions {Q, Q̄}, and a set of optimal decision rules
{B, B, B̄, C,Ψ} such that, given an outside option α and conditional on the state vector (b, φ) ∈
[b, b̃]× [φmin, φmax], the sovereign maximizes utility, the creditors maximize profits, and markets clear.
More formally:

23 In our environment there would be no reason for a subset of creditors to deviate and seek a better deal. In Section
4 below, we show that ruling out renegotiation altogether reduces welfare, ex-ante. Therefore, our theory emphasizes the
value of making haircut agreements binding for all creditors.
24By assumption, the sovereign has always the option to simply honor the debt contract. Thus, the creditors’take-it-

or-leave-it offer cannot demand a repayment larger than the face value of outstanding debt.
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• The value function V satisfies

V (b, φ) = max {W (b) , α− φ} , (30)

where W (b) is the value function conditional on the debt level b being honored,

W (b) = max
(b′,b̄′)∈[b,b̃]2

u
(
Q̄
(
b′, b̄′

)
× b̄′ +Q

(
b′, b̄′

)
× b′ + w − b

)
+ Z

(
b′, b̄′

)
, (31)

with continuation utility Z is defined as

Z
(
b′, b̄′

)
= max

p∈[p,p̄]

{
−X (p) + β

(
p× µ̄

(
b̄′
)

+ (1− p)× µ
(
b′
))}

, (32)

and the value of starting in recession with debt b and in normal time with debt b̄ are µ (b) =∫
ℵ V (b, φ) dF (φ) and µ̄(b̄) = u

(
w̄ −

(
1−R−1

)
b̄
)
/ (1− β), respectively.

• The threshold renegotiation function Φ satisfies

Φ (b) = α−W (b) . (33)

• The recovery- and recession-contingent debt price functions satisfy the arbitrage conditions:

Q̄
(
b′, b̄′

)
× b̄′ = Ψ

(
b′, b̄′

)
R−1 × b̄′ (34)

Q
(
b′, b̄′

)
× b′ =

[
1−Ψ

(
b′, b̄′

)]
R−1 ×Π

(
b′
)

(35)

where Π (b′) is the expected repayment of the recession-contingent bonds conditional on next period
being a recession,

Π (b) = (1− F (Φ (b))) b+

∫ Φ(b)

φmin

b̂ (φ)× dF (φ) , (36)

and where b̂ (φ) = Φ−1 (φ) is the new post-renegotiation debt after a realization φ.

• The set of optimal decision rules comprises:

1. A take-it-or-leave-it debt renegotiation offer:

B (b, φ) =

{
b̂ (φ) if φ ≤ Φ (b) ,
b if φ > Φ (b) .

(37)

2. An optimal debt accumulation and an associated consumption decision rule:〈
B (B (b, φ)) , B̄ (B (b, φ))

〉
=

arg max
(b′,b̄′)∈[b,b̃]2

{
u
(
Q̄
(
b′, b̄′

)
× b̄′ +Q

(
b′, b̄′

)
× b′ + w − B (b, φ)

)
+ Z

(
b′, b̄′

)}
, (38)

C (B (b, φ)) = Q̄
(
B (B (b, φ)) , B̄ (B (b, φ))

)
× B̄ (B (b, φ)) + (39)

Q
(
B (B (b, φ)) , B̄ (B (b, φ))

)
×B (B (b, φ)) + w − B (b, φ) .
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3. An optimal effort decision rule:

Ψ
(
b′, b̄′

)
= arg max

p∈[p,p̄]

{
−X (p) + β

(
p× µ̄

(
b̄′
)

+ (1− p)× µ
(
b′
))}

. (40)

• The equilibrium law of motion of debt is
(
b′, b̄′

)
=
〈
B (B (b, φ)) , B̄ (B (b, φ))

〉
.

• The probability that the recession ends is p = Ψ
(
b′, b̄′

)
.

Equation (30) implies that there is renegotiation if and only if φ < Φ (b) . Since, ex-post, creditors
have all the bargaining power, the discounted utility accruing to the sovereign equals the value that
she would get under outright default. Thus

V (b, φ) = W (B (b, φ)) =

{
W (b) if b ≤ b̂ (φ) ,

α− φ if b > b̂ (φ) .

Consider, next, the equilibrium price functions. Since creditors are risk neutral, the expected rate of
return on each security must equal the risk-free rate of return. Then, the arbitrage conditions (34) and
(35) ensure market clearing in the security markets and pin down the equilibrium price of securities in
recession. The function Π (b) defined in equation (36) yields the expected value of the outstanding debt
b conditional on the endowment state being a recession but before the realization of φ. The obligation
b is honored with probability 1 − F (Φ (b)), where Φ (b) denotes the largest realization of φ such that
the sovereign can credibly threaten to default. With probability F (Φ (b)), debt is renegotiated to a
level that depends on φ denoted by b̂ (φ) . The haircut b̂ (φ) keeps the sovereign indifferent between
accepting the creditors’offer and defaulting. This implies the following indifference condition,

W (b̂ (φ)) = α− φ. (41)

Consider, finally, the set of decision rules. Equations (38)-(39) yield the optimal consumption-saving
decisions while equation (40) yields the optimal reform effort. The effort depends on b′ and b̄′, since it
is chosen after the new securities are issued. Note also that since F (Φ (b)) = 0 for b′ ≥ (Φ)−1 (φmax),
the bond price function (36) implies that debt exceeding this level will not raise any debt revenue.
Thus, it is optimal to choose b′ ≤ (Φ)−1 (φmax).

3.2 Decentralization Through Renegotiable One-Period Debt

We now establish a key result of the paper, namely, that there exists a unique market equilibrium with
one-period renegotiable bonds satisfying Definition 1 and that this equilibrium decentralizes the COA.

We start by noting the analogy between π in the primal program and the equilibrium function
Π (b) in Equation (36). Both define the expected profit accruing to the principal or to the creditors.
In particular, one can invert the equilibrium function Π and define b (π) like bpl (π) in Equation (29)
—up to replacing Φpl by the equilibrium function Φ. The decentralization result will be stated under
the condition that π = Π(b) (or, identically, that b = b (π)), namely, the sovereign has the same initial
obligation in the COA and in the market equilibrium.

For technical reasons, we impose the following additional constraint to (31):

Π
(
b′
)
≤ b̄′. (LSS)

This constraint allows us to prove formally (as a suffi cient condition) that the program describing the
market equilibrium is a contraction mapping. We label this constraint Limited Short Selling (LSS)
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because it is equivalent to a limit on the ability of the sovereign to short sell the GDP-linked bond.25

The LSS constraint has an intuitive interpretation: debt issuance must be such that the expected debt
repayment is larger if the economy recovers than if it remains in recession —a natural feature of the
allocation given the sovereign’s desire to smooth consumption. The LSS constraint is never binding in
equilibrium. Under this condition, we can prove that the market equilibrium is unique and decentralizes
the COA.

Proposition 5 (A) The market equilibrium subject to the LSS constraint exists and is unique.
(B) This equilibrium decentralizes the COA of Proposition 4 conditional on the same outside option α.

We sketch here the strategy of the proof of existence and uniqueness. The complete proof is in
Appendix A. We establish that there exists a unique value function W and an associated equilibrium
debt threshold function b̂ satisfying the maximization in (31) and the market clearing conditions. In
particular, b̂ and W must satisfy the indifference condition (41) for all φ ∈ ℵ.

We proceed in two steps. First, we define an arbitrary debt threshold function δ(φ). We replace
the equilibrium debt repayment function Π (b) in (36) with the exogenous debt repayment function
Πδ(b) =

∫
ℵmin{b, δ(φ′)}dF (φ′). Then, we show by way of a contraction mapping argument that for

any δ (and associated Πδ) there exists a unique value functionWδ (with associated debt price functions)
consistent with the agents’optimizing behavior and market clearing. Note that equation (41) is not
necessarily satisfied for an arbitrary δ, and in general, δ(φ) 6= W−1

δ (α− φ). Second, we prove that the
mapping from, say, δn (φ) to an “updated”debt limit function δn+1 (φ) ≡W−1

δn
(α−φ) is a contraction

mapping. Therefore, the iteration converges to a unique fixed point b̂ (φ) = limn→∞ δn (φ) satisfying

equation (41), i.e., Wb̂

(
b̂(φ)

)
= α − φ. This is the equilibrium value function, namely, W = Wb̂. The

two contraction mapping arguments together imply that the equilibrium functions b̂ and W exist and
are unique.26 This proof strategy may also be of independent interest as a general approach for proving
uniqueness of equilibrium in infinite-horizon sovereign-debt models.27

Once we have established the existence and uniqueness of the market equilibrium, we show that it
decentralizes the COA (part (B) of Proposition 5). To this end, we show that the market equilibrium
satisfies the conditions of the primal representation of the COA, in particular W = W pl and Φ = Φpl

for π = Π (b) (see Proposition 4 in Appendix A). The strategy for establishing equivalence between
the two programs is similar to Aguiar et al. (2017).

The decentralization hinges on the equilibrium price functions Q and Q̄. The key features are that
(i) there exists two GDP-linked bonds; (ii) the recession-debt is renegotiable; (iii) renegotiation entails
no cost; and (iv) the renegotiation protocol involves full ex-post bargaining power for the creditors.
When selling one-period bonds at the prices Q and Q̄, the sovereign implicitly offers creditors an
expected future profit that takes into account the probability of renegotiation. This is equivalent to
the profit promised by the social planner in the primal problem. There are two noteworthy features.
First, although there is a continuum of states of nature, two securities are suffi cient to decentralize the

25To see this, recall that in the market structure with a non-state-contingent bond and a GDP-linked bond, b′n = b′ and
b′s = b̄′ − b. It follows that the LSS constraint Π (b′) ≤ b′ is equivalent to a limit on short-selling of the state-contingent
claim, namely bs ≥ Π (bn)−bn. Note that the LSS constraint is weaker than a no-short-selling constraint (bs ≥ 0) because
Π (bn)− bn ≤ 0.
26We show that the mapping maps arbitrary debt limits into debt limits that are bounded, countinuous, and non-

decreasing. The contraction mapping theorem guarantees that there is a unique debt limit and that this debt limit is also
bounded, continuous, and non-decreasing.
27We thank an anonymous referee for suggesting this proof strategy.
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COA. This is due to the state-contingency embedded in the renegotiable bonds. Second, the market
equilibrium provides effi cient dynamic incentives.

Finally, we briefly return to the discussion about one- vs. two-sided lack of commitment in the
planning problem of Section 2.2.1. In footnote 7 we argued that commitment on behalf of the principal
is not an issue as long as ν is suffi ciently low. In the market equilibrium, this amounts to assuming
that b ≥ 0. In this case, recession debt will always remain positive along the equilibrium path. Since
this claim has a non-negative value, the creditors would never unilaterally terminate existing contracts,
nor would the principal have any commitment problem if she promised the corresponding utility in the
planning program.

3.3 Endogenous Outside Option

Proposition 5 is stated conditional on an exogenous outside option α. In this section, we endogenize
α. In a sovereign debt setting, it is natural to focus on an environement in which the sovereign can
resume participation in financial markets after defaulting. For simplicity, we assume that access to
new borrowing is immediate. This has a natural counterpart in the planning problem, namely, if
the sovereign leaves the optimal contract, she reverts to the market equilibrium with zero debt after
suffering the punishment φ.

With some abuse of notation, let W (b;α) denote the value function conditional on honoring debt b
in an economy with outside option α. Similarly, letW pl(b;α) denote the analogue concept in the primal
planning allocation. Because W is monotone decreasing in α, there exists a unique αW satisfying the
fixed point αW = W (0;αW ). Intuitively, W (b;αW ) is the market (Markov-perfect) equilibrium when
(out of equilibrium) outright default triggers the payment of the cost φ and the reversion to a market
equilibrium with zero debt. The next proposition establishes that if the planner and the market can
inflict is the same punishment, namely, φ and the reversion to a market equilibrium with zero debt,
then the planner cannot improve upon the Markov-perfect equilibrium.

Proposition 6 Consider a planning allocation and a market equilibrium such that, if the sovereign
defaults, her continuation utility equals (in both cases) αW − φ, where αW is the solution to the fixed
point αW = W (0;αW ). Then, W (b;αW ) = W pl(b;αW ) and µ (b;αW ) = µpl(Π (b) ;αW ). Namely, the
Markov-perfect market equilibrium decentralizes the COA conditional on the threat of reversion to a
market equilibrium with zero debt.

Proposition 6 is established under the assumption that neither the planner nor the market can
inflict more severe punishments than the reversion to the Markov-perfect equilibrium. One could
sustain more effi cient subgame perfect equilibria if one could discipline behavior with threats that
are subgame perfect but not necessary Markovian (e.g., some forms of temporary market exclusions).
Interestingly, such allocations could still be decentralized by a market equilibrium with one-period
renegotiable bonds, similar to the equilibrium in Definition 1. Non-Markov equilibria require that the
market can coordinate expectations on a sequence of default and effort policies associated with a worse
equilibrium. In reality, it may be diffi cult to achieve such coordination when there exists a multiplicity
of anonymous market institutions to which the sovereign can turn after default.

3.3.1 Debt Overhang and Debt Dynamics

The market equilibrium inherits the same properties as the COA. A binding PC in the planning
problem corresponds to an episode of sovereign debt renegotiation in the equilibrium. Thus, as long
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as the recession continues and debt is not renegotiated, consumption falls. When debt is renegotiated
down, consumption increases discretely. The debt dynamics mirrors the dynamics of promised utility
in the dual representation of the COA. A fall in promised utility corresponds to an increase of sovereign
debt. In the COA of Section 2.2.2, ν decreases over time during a recession unless the PC binds and
the promised utilities ω (ν) and ω̄ (ν) are increasing functions (where, recall, ν ′ = ω (ν) if the recession
continues and the PC is slack). Correspondingly, as long as debt is honored and the recession continues,
both recession- and recovery-contingent debt are increasing over time.28

The left panel of Figure 3 shows the equilibrium policy function for recession- and recovery-
contingent debt (solid lines) conditional on no renegotiation and on the recession lingering. Recession-
contingent debt converges to bmax, which corresponds to the lower bound on promised utility ν discussed
in Section 2.2.2 and displayed in Figure 2. At this level, debt is renegotiated with certainty if the re-
cession continues, and issuing more debt would not increase the expected repayment in recession. The
figure also shows the level of debt b+ corresponding to ν− in Figure 2. In the range b > b+ the sovereign
would like to issue recession-debt above bmax but is constrained to issue b′ = bmax. However, she is not
subject to any constraints when issuing recovery-contingent debt, so b̄′ increases in b in this range.

The right panel of Figure 3 shows the equilibrium effort as a function of b (solid line). This
corresponds to the lower right panel in Figure 2: it is increasing at low debt levels and falling at high
debt levels. Intuitively, when debt is low, a larger debt strengthens the desire for the sovereign to
escape recession (this force is also present in the first best of Proposition 1 where effort is decreasing
in promised utility). However, as debt increases, the probability that debt is fully honored in recession
falls. At very high debt levels, the lion’s share of the returns to the effort investment accrues to creditors
making moral hazard rampant. In this region, a debt overhang problem arises, reminiscent of Krugman
(1988). In our model debt overhang is not a symptom of markets being irrational. To the opposite, it
is an equilibrium outcome: a long recession may lead the sovereign to rationally choose to issue debt in
the overhang region and creditors to rationally buy it. Creditors are willing to buy recession-contingent
debt from a highly indebted countries in the hope of obtaining favorable terms in the renegotiation
process.

3.4 Alternative Decentralizations

An alternative decentralization of the COA follows Alvarez and Jermann (2000), henceforth AJ, who
show that the COA of a dynamic principal-agent model with enforcement constraints can be attained
through a full set of Arrow-Debreu securities subject to appropriate borrowing constraints. In our
economy, this requires markets for a continuum of securities paying off in recession — one asset for
each φ ∈ ℵ —plus one recovery-contingent bond. In this section, we show that the AJ decentralization
attains the same allocation as our decentralization through two renegotiable securities.

The proof of Proposition 5 hints at this equivalence. There, the idea is to propose an exogenous
repayment schedule conditional on φ, denoted by b̂ (φ) , and then to show that there exists a unique
schedule that satisfies the equilibrium conditions. Such a repayment schedule can be interpreted as
the set of borrowing constraints that are necessary for the AJ equilibrium to attain effi ciency. While
AJ requires explicit trade in a large set of markets, our model achieves the same allocation with two
defaultable assets without imposing any explicit borrowing constraint.

To illustrate the result, consider an economy without moral hazard, which is the environment in the
original AJ model. Suppose that the sovereign can issue securities b′AJ,φ that are claims to output in the

28 In the absence of moral hazard (e.g., if effort were contractible), consumption and both types of debt would remain
constant over time unless there is renegotiation.
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following period if the recession lingers and state φ is realized. These securities are non-renegotiable,
and ex-post the sovereign can either deliver the payment b′AJ,φ or default and pay the penalty φ. Under
perfect enforcement, the security b′AJ,φ sells at a price QAJ,φ = (1 − p)f(φ)R−1. To ensure that the
sovereign has an incentive to repay in all states, AJ impose some borrowing constraints. In our model,
these constraints are, for all φ, b′AJ,φ ≤ b̂ (φ) where b̂ (φ) = Φ−1 (φ). In Appendix A we prove that
the AJ equilibrium yields an allocation that is equivalent to our decentralized equilibrium under the
assumption that b′AJ,φ = b̂ (φ) for all φ ≤ Φ (B (b)) and b′AJ,φ = B (b) for all φ > Φ (B (b)), where B is
the equilibrium debt function and b is the payment owed in the current period. The crux of the proof is
to establish that the revenue obtained from issuing recession-contingent debt in our market equilibrium
is identical to that raised by issuing the full set of Arrow-Debreu securities in the AJ economy.

Proposition 7 in Appendix A establishes that an AJ equilibrium with borrowing constraints b′AJ,φ ≤
b̂ (φ) sustains the COA even when the effort choice is subject to an IC. Our decentralization with two
renegotiable securities is parsimonious relative to the AJ equilibrium that requires as many securities
as there are states (in our environment, this means a continuum of securities). Parsimony is important
in realistic extensions in which it is costly for creditors to verify the overall exposure of the sovereign.
In our model, creditors must only verify the issued quantity for two assets, while in the AJ framework
they must verify that a large number of borrowing constraints are not violated.

We conclude this section by mentioning that, in an earlier draft of this paper, we discussed decen-
tralization with an even richer market structure and stronger informational assumptions. In particular,
we showed that if reform effort is observable and verifiable the market equilibrium decentralizes the
COA without moral hazard of Proposition 2 as long as there exists markets for effort-deviation securi-
ties whose return is contingent on the reform effort. In reality, we do not see debt contracts conditional
on reform effort, arguably because the extent to which a country passes and, especially, enforces reforms
is opaque.

4 Less Complete Markets

In this section, we consider a market equilibrium subject to more severe market frictions, i.e., the
sovereign can issue only a one-period non-contingent bond. This environment is interesting because in
the real world government bonds typically promise repayments that are independent of the aggregate
state. We take this market incompleteness as exogenous and study its effect on the allocation. We first
maintain the same renegotiation protocol as in the earlier sections; then, as an extension, we rule out
renegotiation as in Eaton and Gersovitz (1981). We use superscripts R and NR for policy functions in
the one-asset economy with and without renegotiation, respectively.

The one-asset market equilibrium does not attain the COA conditional on α. In the COA, the
planner trades off the gains from risk sharing against the cost of moral hazard in an optimal way. In
Section 3, we proved that two securities are suffi cient to replicate the COA. However, when only one
asset is available, the shortage of instruments forces a particular correlation structure between future
consumption in normal time and recession that is generally suboptimal, resulting in less risk sharing
in equilibrium.

A formal definition and characterization of equilibrium is deferred to Appendix B, where we also
prove existence and uniqueness of equilibrium in the special case of exogenous recovery probability
(Proposition 8). Here, we emphasize the salient features of the equilibrium.

Consider, first, the equilibrium policy function for effort ΨR (b), where b now denotes a claim to
one unit of output next period, irrespective of the endowment state. The FOC for the effort choice
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yields X ′
(
ΨR (b′)

)
= β

[
µ̄R (b′)− µR (b′)

]
. The equilibrium features debt overhang, namely, the effort

function ΨR is decreasing in b in a range of high b.29 Conversely, ΨR (b) is increasing in a range of
low b. Thus, effort is non-monotone in debt and shares the qualitative properties of the benchmark
allocation with two securities.

Consider, next, consumption dynamics. Even in the one-asset economy the risk of renegotiation
introduces some state contingency, since debt is repaid with different probabilities under recession and
normal time. This provides a partial substitute for state-contingent contracts, although now this is not
suffi cient to decentralize the COA. Recall that in the benchmark economy consumption was determined
by two CEEs, (16) and (20). Issuing optimally two types of debt allowed the sovereign to mimic the
planner’s ability to control promised utility in each of the two states. This is not feasible in the one-
asset economy: there is only one CEE, which pins down the expected marginal rate of substitution in
consumption conditional on debt being honored. In Appendix B (Proposition 9), we show that the
CEE with non-contingent debt takes the form

E
{
u′ (c′)

u′ (c)
|debt is honored at t+1

}
= 1 +

d
db′Ψ

R (b′)×
[
b′ −ΠR(b′)

]
Pr (debt is honored at t+ 1)

(42)

where b′ − ΠR(b′) is the difference between the expected debt repayment if the economy recovers or
remains in recession, and c′ denotes future consumption.

Consider, first, the case without moral hazard, i.e., dΨR/db′ = 0. In the equilibrium with GDP-
linked bonds, the sovereign could obtain full insurance against the realization of the endowment shock.
In the one-asset economy, this is no longer true: the CEE (42) requires that the expected marginal
utility in the CEE be equal to the current marginal utility. For this to be true, consumption growth
must be positive if the recession ends and negative if it lingers.

In the general case, the market incompleteness interacts with the moral hazard friction introducing
a strategic motive for debt. When the outstanding debt is low, then dΨR/db′ > 0 and the right-hand
side of (42) is larger than unity. In this case, issuing more debt strengthens the ex-post incentive to
exert reform effort. The CEE implies then higher debt accumulation and lower future consumption
growth than in the absence of moral hazard. In contrast, in the region of debt overhang (dΨR/db′ < 0)
more debt weakens the ex-post incentive to exert reform effort. To remedy this, the sovereign issues
less debt than in the absence of moral hazard. Thus, when debt is large the moral hazard friction
magnifies the reduction in consumption insurance.

Figure 3 shows the policy functions for debt and effort in the one-asset economy (dashed lines) and
in the two-security economy, with outside options αR and αW corresponding, respectively, to the fixed
points αR = WR (0;αR) and αW = W (0;αW ).30 Debt is always higher (lower) than recession-debt
(recovery-debt) in the two-security economy. Therefore, there is less consumption smoothing in the
one-asset economy. Effort is hump-shaped in both economies. Conditional on debt, effort is higher

29The reason for debt overhang is similar to that in the benchmark economy with GDP-linked bonds. There exists
a threshold debt bmaxR = Φ−1 (φmax) such that debt is renegotiated with probability one if b′ ≥ bmaxR and the recession
continues, while the debt is honored with positive probability if b′ < bmaxR . Recall that if the recession ends, debt is repaid
even for b′ ≥ bmaxR . Thus, for b′ ≥ bmaxR the difference µ̄R (b′)− µR (b′) is decreasing in b′ implying a decreasing effort, i.e.,
debt overhang. This feature extends to a contiguous range below bmaxR .
30The results are very similar if we use the same outside option in the two cases. Note that the policy rules for

debt accumulation and effort feature discontinuities. Figure 4 in Appendix B illustrates that also consumption has
discontinuities. Proposition 9), proves that such discontinuities only arise in correspondence of debt levels that are never
chosen in equilibrium (unless there is renegotiation). Moreover, the generalized Envelope Theorem in Clausen and Strub
(2016) ensures that the FOCs are necessary for interior optima in spite of the discontinuity of the decision rules.
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Figure 3: Policy functions conditional on the maximum cost realization φmax. The solid lines show the
policy functions for the constrained effi cient Markov equilibrium. For comparison, the dashed line in
each panel shows the policy functions of the one-asset economy.

in the one-asset economy than in the COA reflecting the fact that there is less insurance against the
continuation of a recession. This increases the sovereign’s incentives to leave the recession.

4.1 No Renegotiation

Next, we consider a version of an Eaton-Gersovitz economy where we shut down renegotiation.31

Namely, we assume that the sovereign can either default or fully honor the outstanding debt. This
alternative environment has three implications. First and foremost, there is costly default in equi-
librium. The real costs suffered by the sovereign yields no benefit to creditors, in contrast with
the equilibrium with renegotiation, where no real costs accrue and creditors recover a share of the
face value of debt. Second, renegotiation affects the price function of debt, and thus the incen-
tive for the sovereign to accumulate debt. In particular, the bond price now becomes QNR (b′) =
R−1

(
ΨNR (b′) +

[
1−ΨNR (b′)

] (
1− F

(
ΦNR (b′)

)))
. When renegotiation is ruled out the lender ex-

pects a lower repayment. Thus, the risk premium associated with each debt level is higher, making it
more costly for the sovereign to roll over debt. Therefore, the sovereign will be warier of debt accumu-
lation. This limits consumption smoothing and lowers welfare. Third, conditional on the debt level,
the range of φ for which debt is honored is different.32

Figure 4 in Appendix B compares the policy functions in a one-asset economy without renegotiation
(solid lines) with a one-asset economy with renegotiation (dashed lines). We use the outside options
αR (defined above) for the economy with renegotiation and αNR such that αNR = WNR (0;αNR) for
the no-renegotiation economy. Ruling out renegotiation implies lower consumption for each debt level.
The sovereign exerts more effort when it cannot renegotiate (but can default on) its debt, reflecting the
fact that the debt price is lower in recession and that there is less insurance. Finally, the probability

31Our environment here differs from the standard Eaton-Gersovitz economy insofar as the high endowment state is an
absorbing state and we have shocks to both the aggregate state and the outside option.
32More formally, in the equilibrium with renegotiation the sovereign renegotiates if φ < WR (0) −WR (b) whereas in

the no-renegotiation equilibrium she defaults if φ < WNR (0) −WNR (b), where WNR is the value function under no
renegotiation and recession. As long as WNR is falling more steeply in b than WR, then, conditional on the debt level, the
sovereign is more likely to fully honor the debt in the benchmark equilibrium than in the no-renegotiation equilibrium.
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of honoring debt is lower without than with renegotiation.

4.2 Assistance Program

The possibility of market failures provides scope for policy intervention. Consider an assistance program
conducted by an international agency like the IMF. The assistance program mimics the COA through
a sequence of transfers to the sovereign during recession in exchange of the promise of a repayment
once the recession is over. The IMF can commit but has —as the planner —limited enforcement: it can
inflict the same stochastic punishment (φ) as can markets.

The program has two key features. First, the terms of the program are renegotiable: whenever
the country credibly threatens to abandon it, the IMF sweetens the deal by increasing the transfers
and reducing the payment the country owes when the recession ends. When there is no credible
default threat, the transfer falls over time, implying the constrained optimum sequence of declining
consumption and time-varying reform effort prescribed by the COA. Second, when the recession ends,
the IMF receives a payment from the sovereign, financed by issuing debt in the market. This payment
depends on the length of the recession and on the history of renegotiations.

More formally, let νo denote the discounted utility guaranteed to the sovereign when the program
is first agreed upon. At the beginning of that period, the IMF buys the debt b0 with an expenditure
Π (b0) .33 Then, the IMF transfers to the country T (νo) = c (νo) − w where c (νo) is as in the COA
of Proposition 3 unless the realization of φ makes the sovereign prefer to terminate the program, in
which case the country receives Tφ = cφ−w, where, again, cφ is as in Proposition 3. In the subsequent
periods, consumption and promised utility evolve in accordance with the law of motion of the COA.
In other words, the IMF commits to a sequence of state-contingent transfers that mimics the planning
allocation, while the sovereign exerts the incentive-compatible reform effort level. As soon as the
recession ends, the country owes a debt b̄N to the international institution, determined by the equation
R−1× b̄N = c̄ (ω̄N )− w̄+ b̄N , where the discounted utility ω̄N depends on the duration of the recession
and on the history of realizations of φ. Note that c̄ is first-best consumption, exactly as in the COA,
and that in normal time the country resumes market access to refinance its debt at the constant level
b̄N .

The initial promised utility νo is determined by how much the IMF is willing to commit to the
assistance program. A natural benchmark is the νo that makes the IMF break even in expectation.
Whether, ex-post, the IMF makes net gains or losses depends on the duration of the recession and on
the realized sequence of φ’s.

Can such a program improve upon the market allocations? The answer hinges on the extent of
market and contract incompleteness. If there exists a market for GDP-linked bonds, the renegotiation
process is frictionless and effi cient, and the sovereign can access markets after leaving the contract, the
assistance program cannot improve upon the market allocation. More formally, νo = P−1 (Π (b0)) . This
follows immediately from our decentralization result in Section 3. However, in one-asset economies (with
or without renegotiation), the assistance program improves effi ciency upon the market equilibrium.
Interestingly, the assistance program would in this case yield higher utility than the Markov equilibrium
with GDP-linked debt. Since market incompleteness makes deviations less attractive, the IMF has
access to a more powerful threat to discipline the sovereign. The more incomplete are markets, the
lower the sovereign’s outside option and the closer to the first best can an assistance program get.

33Π depends on the market structure. If there are two securities, then Π is given by equation (36). If there is only one
asset, the corresponding definition given in Appendix B applies.
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The assistance program would be even more powerful if the IMF could take direct control over
the reform process. In this case, the program could implement the COA without moral hazard of
Section 2.2.1. Clearly, policies infringing on a country’s sovereignty run into severe politico-economic
constraints whose discussion goes beyond the scope of our paper.

5 Concluding Remarks

This paper proposes a novel theory of sovereign debt dynamics under limited enforcement and moral
hazard. A sovereign country issues debt to smooth consumption during a recession whose duration is
uncertain and endogenous. The expected duration of the recession depends on the intensity of (costly)
structural reforms. Both elements —the risk of repudiation and the need for structural reforms —are
salient features of the European debt crisis during the last decade.

We show that a market equilibrium with renegotiable one-period GDP-linked securities implements
the COA. The crux of this result is that, if creditors have full bargaining power ex-post, the renegotiable
securities stand in for missing markets for state-contingent debt. In addition, these markets provide the
optimal trade-off between insurance and incentives that a planner subject to the same informational
constraints and the same disciplining instruments as the market can achieve.

We also study the effect of additional exogenous restrictions on market arrangements, such as
assuming that the sovereign can only issue non-contingent debt and ruling out renegotiation. In this
case, the market equilibrium is not constrained effi cient. We discuss an assistance program that can
restore effi ciency.

To retain tractability, we make important assumptions that we plan to relax in future research.
First, in our theory the default cost follows an exogenous stochastic process. In a richer model, this
would be part of the equilibrium dynamics. Strategic delegation is a potentially important extension.
Voters may have an incentive to elect a government that undervalues the cost of default. In our current
model, however, the stochastic process governing the creditor’s outside option is exogenous, and is
outside of the control of the sovereign and creditors.

Second, again for simplicity, we assume that renegotiation is costless and that creditors have full
bargaining power in the renegotiation game. Each of these assumptions could be relaxed. For in-
stance, in reality the process of negotiation may entail costs. Moreover, as in the recent contention
between Argentina and the so-called vulture funds, some creditors may hold out and refuse to accept
a restructuring plan signed by a syndicate of lenders. Finally, the country may retain some bargaining
power in the renegotiation. All these extensions would introduce interesting additional dimensions, and
invalidate some of the strong effi ciency results. However, we are confident that the gist of the results
is robust to these extensions.

Third, we make the convenient assumption that reform effort and consumption are separable in
the utility function. If reforms are especially costly during recession, our results would be weakened.
Finally, by focusing on a representative agent, we abstract from conflicts of interest between different
groups of agents within the country. We leave the exploration of these avenues to future work.

While the current paper has a theoretical focus, in Müller et al. (2019), we study a generalized ver-
sion of the model where we relax some of the assumptions we made here to retain analytical tractability.
That paper quantifes the effects of policy intervention under different informational assumptions. We
find that a calibrated model can successfully replicate salient empirical moments not targeted in the
calibration, including the bond spread, the frequency of renegotiations, the average haircut of the debt’s
face value, and its variance across renegotiation episodes.
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A Appendix A

This appendix contains the proofs of main lemmas and propositions, and the statements of Propositions
4 and AlvarezJermann_equivalence. Additional technical material can be found in the online Appendix
B.
Proof of Lemma 1. To prove this result, we ignore technicalities related to the continuum of
states. Namely, we assume that there exist N states with associated positive probabilities, and view
the continuum as an approximation of the discrete state space for N → ∞. This is without loss of
generality. The proof involves two steps.

1. We start by proving that, if φ2 > φ1, then, µφ1 > α − φ1 ⇒ µφ2 = µφ1 > α − φ2. To see why,
recall that the planner’s objective is to deliver the promised utility ν given by (2) in a profit-maximizing
way. Since u, P , and P̄ are strictly concave, and X is strictly convex, then, profit maximization is
attained by setting cφ2 = cφ1 , pφ2 = pφ1 , ωφ2 = ωφ1 , and ω̄φ2 = ω̄φ1 . This planning choice implies
that µφ2 (ν) = µφ1 (ν) . This is feasible since the assumption that the PC is slack in state φ1 implies

that a fortiori the PC is slack in state φ2. Two cases are then possible: either ∃φ̃(ν) such that
µφ (ν) = α − φ̃ (ν) for all φ ≥ φ̃ (ν) ; or µφ (ν) = µ (ν) > α − φmin ∀φ ∈ [φmin, φmax]. The latter case
would imply that no PC ever binds and can be ignored.

2. Next, we prove that, if φ̂2 > φ̂1, then, µφ̂2 = α − φ̂2 implies that µφ̂1 = α − φ̂1. To derive a

contradiction, suppose that this is not the case, and that µφ̂1 > α− φ̂1 > µφ̂2
(the opposite inequality

would violate the PC and is not feasible). Then, the planner could deliver to the agent the promised
utility ν by uniformly increasing ω2, and ω̄2 and reducing ω1, and ω̄1 also uniformly, so as to keep ν
unchanged, while leaving consumption and effort constant (it is easy to check that this is feasible). The
strict concavity of P and P̄ guarantees that this change increases profits. Let φ̃ (ν) denote the largest
φ such that µφ̃(ν) (ν) = α− φ̃ (ν) . Then, µφ (ν) = α− φ for all φ ≤ φ̃ (ν) .

Parts 1. and 2. above jointly establish that the threshold φ̃(ν) is unique.
Proof of Proposition 3. This proof builds on Lemma 3.2 in Appendix B establishing that P is
strictly decreasing and differentiable with P ′(ν) = −1/u′(c(ν)) < 0 for all ν > ν.

The planner solves (1) subject to (2)-(5), and (15). The Lagrangian yields

L =

∫
ℵ

[
w − cφ + β

(
pφP̄ (ω̄φ) + (1− pφ)P (ωφ)

)]
f(φ)dφ

+ϑ

(∫
ℵ

(u (cφ)−X (pφ) + β (pφω̄φ + (1− pφ)ωφ)) f(φ)dφ− ν
)

+

∫
ℵ
λφ (u (cφ)−X (pφ) + β (pφω̄φ + (1− pφ)ωφ)− [α− φ]) dφ

+

∫
ℵ
χφ
(
−X ′ (pφ) + β (ω̄φ − ωφ)

)
dφ+

∫
ℵ
θφ (ωφ − ν) dφ, (43)

where λφ ≥ 0, θφ ≥ 0, ϑ, and χφ denote the multipliers. The first-order conditions (FOCs) with respect
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to cφ, ω̄φ, ωφ, pφ and χφ yield

0 = −f(φ) + [ϑf(φ) + λφ]u′(cφ),

0 = βpφP̄
′ (ω̄φ) f(φ) + [ϑf(φ) + λφ]βpφ + χφβ

0 = β(1− pφ)P ′(ωφ)f(φ) + [ϑf(φ) + λφ]β(1− pφ)− χφβ, ∀ωφ > ν

0 = β
[
P̄ (ω̄φ)− P (ωφ)

]
f(φ) + [ϑf(φ) + λφ]

(
−X ′(pφ) + β(ω̄φ − ωφ)

)
− χφX ′′(pφ)

0 = −X ′(pφ) + β(ω̄φ − ωφ)

Lemma 3.3 in Appendix B rules out corner solutions establishing that the FOCs are necessary optimality
conditions. The envelope condition yields −P ′ (ν) = ϑ for all ν > ν (note that P is only differentiable
at the interior support of ν), while the slackness condition for θφ implies 0 = θφ (ωφ − ν) . Combining
the FOCs and the envelope condition, and noting that −P̄ ′ (ω̄φ) = 1/u′(c̄(ω̄φ)), yields

1

u′(cφ)
= −P ′ (ν) +

λφ
f(φ)

, ∀ν > ν, (44)

and equations (16) and (17) in the text. Note that we have also used the facts that pφ = Υ(ω̄φ − ωφ)

(established in the text, see equation (15)) and Υ′(ω̄φ−ωφ) = β/X ′′(Υ(ω̄φ−ωφ)). When λφ = 0, then
(44) implies −P ′ (ν) = 1/u′(c(ν)) = ϑ > 0 for all ν > ν (cf. part 3 of the proposition).

To prove that φ̃(ν) is strictly decreasing, recall that, by Lemma 1, all PCs associated with φ <

φ̃(ν) are binding, while all those with φ ≥ φ̃(ν) are slack. Hence, the PK can be written as ν =∫ φ̃(ν)
φmin

(α− φ) dF (φ) +
(

1− F
(
φ̃ (ν)

))(
α− φ̃ (ν)

)
, which can be rearranged to yield equation (13).

Standard differentiation establishes then that φ̃(ν) is strictly decreasing.
Consider part 1 of the proposition. For all φ < φ̃ (ν) , the PC is binding and holds with equality.

Then, the optimal choice is independent of ν and cφ, ωφ, ω̄φ, and θφ are pinned down by the PC (4)
holding with equality, and by the FOCs (16)—(18).

Consider, next, part 2. For all φ ≥ φ̃ (ν) the PC is slack, and Lemma 1 implies equation (19). The
solution is history dependent: cφ = c(ν), ωφ = ω(ν), ω̄φ = ω̄(ν), θφ = θ(ν), where c(ν), ω(ν), ω̄ (ν) ,

and θ(ν) are determined by equations (16)—(19). To prove that c (ν) is an increasing function, note
that, since P and u are strictly concave, then (44) implies that c(ν) is strictly increasing for ν > ν.
Consumption is also increasing in ν at the lower bound, c(ν) < c(ν) ∀ν > ν, as the following argument
proves by contradiction: Suppose that ∃ν > ν such that c(ν) ≥ c(ν). The optimal allocation associated
with c(ν) yields then utility ν > ν. But, then, c(ν) ≥ c(ν) would violate the PK. A contradiction.

Next, we prove that when the PC is slack and the recession lingers promised utility falls over
time, i.e., ωφ = ω (ν) = ν ′ ≤ ν if θφ = 0 (i.e., as long as ν is suffi ciently large). To this aim, we
establish, first, that P̄ (ω̄φ(ν)) − P (ωφ(ν)) > 0 in the range ν > ν− and, second, that this implies
that c̄(ω̄φ(ν)) > cφ(ν) ≥ c(ν) > c(ω(ν)) and ω (ν) = ν ′ ≤ ν. Suppose, to derive a contradiction, that
P̄ (ω̄φ)− P (ωφ) ≤ 0 for θφ = 0. Then (16), (17), and (18) imply the following consumption ordering

c̄(ω̄φ) ≤ cφ ≤ c(ωφ). (45)

We show that this impossible. To see why, suppose first that P̄ (ω̄φ)−P (ωφ) ≤ 0 and ωφ ≥ ν. Since in
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normal state consumption, promised utility and profits are constant, we can write

c̄(ω̄φ) = w̄ − P̄ (ω̄φ) + βP̄ (ω̄φ) = w̄ − P̄ (ω̄φ) +
pφ
R
P̄ (ω̄φ) +

1− pφ
R

P̄ (ω̄φ)

> w − P̄ (ω̄φ) +
pφ
R
P̄ (ω̄φ) +

1− pφ
R

P̄ (ω̄φ)

≥ w − P (ωφ) +
pφ
R
P̄ (ω̄φ) +

1− pφ
R

P (ωφ)

≥ w − P (ν) +
pφ
R
P̄ (ω̄φ) +

1− pφ
R

P (ωφ) = cφ.

The second inequality follows from the fact that [(1− pφ)/R− 1] P̄ (ω̄φ) ≥ [(1− pφ)/R− 1]P (ωφ) since
[(1− pφ)/R− 1] < 0 and, per hypothesis, P̄ (ω̄φ) ≤ P (ωφ). The last inequality follows from ωφ ≥ ν

(again, per hypothesis) and P ′(ν) < 0. The conclusion that c̄(ω̄φ) > cφ contradicts the ordering in
(45). Thus, we can rule out that P̄ (ω̄φ)−P (ωφ) ≤ 0 and ωφ ≥ ν for ν > ν−. Nor can ωφ < ν, because
consumption is strictly increasing in promised utility, hence, ωφ < ν ⇒ c(ωφ) < c(ν) ≤ cφ(ν), again
contradicting the ordering in (45). We conclude that P̄ (ω̄φ)− P (ωφ) > 0 for ν > ν−.

Next, combining P̄ (ω̄φ)− P (ωφ) > 0, θφ = 0, (16), (17), and (18) yields

c̄(ω̄φ(ν)) > cφ(ν) ≥ c(ν) > c(ω(ν)).

Since c(ν) is strictly increasing in ν, the last inequality also implies that ω(ν) < ν. As soon as ω(ν) = ν,
promised utility and consumption remain constant.

Finally, we prove that the effort function p (ν) = Υ (ω̄ (ν)− ω (ν)) is strictly increasing in a range of
low ν that includes ν ≤ ν−. We do so by establishing that ω̄(ν) is strictly increasing and ω(ν) constant
on the interval [ν, ν−]. We invoke Topkis’theorem to show that ω̄(ν) is strictly increasing in ν when
ω(ν) = ν, and also that P̄ (ω̄φ(ν))−P (ωφ(ν)) > 0 for ν ≤ ν−. For all φ ≥ φ̃ (ν) , the planner solves the
following maximization problem

〈ω(ν), ω̄(ν)〉 = max
ω∈[ν,ω̃],ω̄∈[ω,ω̃]

w − u−1 (x(ν, ω, ω̄)) + β

[
Υ(ω̄ − ω)P̄ (ω̄)

+(1−Υ(ω̄ − ω))P (ω)

]
,

where x(ν, ω, ω̄) = α− φ̃(ν) +X(Υ(ω̄ − ω))− β [Υ(ω̄ − ω)ω̄ + (1−Υ(ω̄ − ω))ω]. Since

u′′(x(ν, ω, ω̄))φ̃
′
(ν)

u′(x(ν, ω, ω̄))2
× βΥ(ω̄ − ω) > 0,

then, for given ω, the objective function is supermodular in (ν, ω̄). Topkis’theorem implies then that
ω̄(ν) is strictly increasing in ν when ω(ν) = ν. This also implies that P̄ (ω̄(ν)) − P (ν) ≥ P̄ (ω̄(ν−)) −
P (ν) > 0, for ν ≤ ν−, thereby establishing that, P̄ (ω̄φ(ν)) − P (ωφ(ν)) > 0 for all ν (part 3 of the
proposition). Since ω̄(ν) is strictly increasing in ν and ω(ν) is constant for ν ≤ ν−, then ω̄ (ν)− ω(ν),

and hence effort, are strictly increasing in the range ν ∈ [ν−, ν]. By continuity, the result extends to a
contiguous range of ν > ν−. This concludes the proof of the proposition.

Proposition 4 The value function of the primal COA satisfies equation (26). Given π and φ, the
optimal choice of consumption is cφ = Cpl (bφ (π)), where

Cpl (bφ (π)) = w − bφ (π) + β

[
Ψpl

[
Πpl (bφ (π)) , Π̄pl (bφ (π))

]
· Π̄pl (bφ (π))

+
(
1−Ψpl

[
Πpl (bφ (π)) , Π̄pl (bφ (π))

])
·Πpl (bφ (π))

]
, (46)
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Ψpl(π′, π̄′) = Υ(µ̄pl(π̄′)− µpl(π′)), bφ (π) is as in (27)—(28), and〈
Π̄pl (bφ (π)) ,Πpl (bφ (π))

〉
= arg max

π̄′∈[π,π̃],π′∈[π,P (α−E[φ])]
u
(
w − bφ + βΨpl(π′, π̄′)π̄′ + β(1−Ψpl(π′, π̄′))π′

)
−X(Ψpl(π′, π̄′)) + βΨpl(π′, π̄′)µ̄pl(π̄′) + β(1−Ψpl(π′, π̄′))µpl(π′).

Moreover, 〈
Π̄pl (bφ (π)) ,Πpl (bφ (π))

〉
=
〈
P̄ (ω̄φ(ν)), P (ωφ(ν))

〉
. (47)

Proof of Proposition 4. We start by proving that the proposed allocation is feasible, i.e., satisfies
the set of constraints of the primal problem. Since cφ = w− bφ + βpφπ̄

′
φ + β(1− pφ)π′φ, we can rewrite

(22) as µpl(π) = maxbφ
∫
ℵW

pl(bφ)dF (φ), where:

W pl(bφ) = max
π̄′∈[b,b̃],π′∈[π,P (α−E[φ])]

u
(
w − bφ + βΨpl(π′, π̄′)π̄′ + β(1−Ψpl(π′, π̄′))π′

)
(48)

−X(Ψpl(π′, π̄′)) + βΨpl(π′, π̄′)µ̄pl(π̄′) + β(1−Ψpl(π′, π̄′))µpl(π′).

Here, Ψpl(π′, π̄′) = Υ(µ̄pl(π̄′)−µpl(π′)) is the incentive compatible effort. Note that the duality property
µpl(πmax) = P−1(πmax) = α − E[φ] allows us to write the upper bound for π′ in (28) explicitly as
πmax = P (α−E[φ]). The problem is subject to the constraints (23) and (24). It is immediate to verify
that the proposed solution satisfies both constraints. The fact that (23) is satisfied is proved in the
text. That (24) is satisfied follows from the observation that (27) implies that W pl(bφ(π)) ≥ α − φ,
∀φ ∈ ℵ, thus the set of PCs are satisfied.

Next, we verify that the proposed primal solution yields the same utility as the dual COA, i.e.,
µpl(π) = ν. The expression of µpl(π) in (26) yields

µpl(π) =
[
1− F (Φpl(π))

] (
α− Φpl (π)

)
+

∫ Φpl(π)

φmin

(α− φ) dF (φ)

=
[
1− F (φ̃(ν))

] (
α− φ̃(ν)

)
+

∫ φ̃(ν)

φmin

(α− φ) dF (φ) = ν

Finally, we prove that (27) implies the optimal solution for consumption. The fact that the optimal
choices of future promised profits are such that π̄′ = Π̄pl (bφ (π)) = P̄ (ω̄φ(ν)) and π′ = Πpl (bφ (π)) =

P (ωφ(ν)) follow, respectively, from full commitment under normal times and from the duality property
that π = P (ν) for all feasible ν’s. Moreover, we have already established that setting bφ = bφ(π) as in
(27) yields the expected utility ν of the COA. Since the utility function is concave, the consumption
plan maximizing expected utility must be unique. Given the definition of cφ, it must therefore be
optimal to set cφ = Cpl(bφ(π)) as in (46), and consumption must be the same as in the dual allocation
in Proposition 3.

Proof of Proposition 5. PART (A): The proof establishes that
〈
W, b̂

〉
is the unique fixed-point

of two contracting operators of the functional equations (31) and (41).
Road Map: We proceed in two steps: Step 1: We define an inner operator Tδ that maps value

functions into value functions conditional on an arbitrary debt threshold function δ(φ). We show that
this operator has a unique fixed point Wδ = limn→∞ Tnδ (γ) that satisfies (31). Step 2: We define an
outer operator S that maps debt threshold functions into debt threshold functions. We show that this
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operator has a unique fixed point b̂(φ) = limn→∞ Sn (δ) that satisfies (41) when Wδ is evaluated at

δ(φ) = b̂(φ), i.e., Wb̂(b̂(φ)) = α− φ. Let W = Wb̂. Then, the fixed point
〈
W, b̂

〉
must be unique. The

uniqueness of V follows then from (30).
Step 1: Let Γ be the space of bounded, continuous, and non-increasing functions γ : [b, b̃] →

[α − φmax, u(w̄ + (1 − β)b)/(1 − β)] with γ(b̃) = α − φmax. Moreover, let Λ be the space of bounded
and continuous functions δ : ℵ → [b, b̃]. Define d∞(y, z) ≡ supx∈X |y(x)− z(x)| such that (Γ, d∞) and
(Λ, d∞) are complete metric spaces. Let γ ∈ Γ and δ ∈ Λ and define the mapping T̃ ,

T̃δ (γ) (b) = max
b̄′,b′∈[b,b̃],Πδ(b′)≤b̄′

u

(
w − b+ βΨ∗

(
γ (b′) , b̄′

)
b̄′

+β
(
1−Ψ∗

(
γ (b′) , b̄′

))
Πδ(b

′)

)
+ Z∗

(
γ(b′), b̄′

)
,

≡ max
b̄′,b′∈[b,b̃],Πδ(b′)≤b̄′

O
(
b, b̄′, b′, γ(b′); δ

)
, (49)

where Πδ(b
′) =

∫
ℵmin{b′, δ(φ′)}dF (φ), Z∗ and Ψ∗ are defined as Z and Ψ in Equations (32) and (40),

respectively, after replacing b′ by γ (b′) and µ (b′) by µ∗ (γ (b′)) . In turn, µ∗ (γ(b′)) is defined in analogy
with µ (b′)) in Definition 1, i.e., µ∗ (γ(b′)) = (1− F (Φ∗(γ(b′)))) × γ(b′) +

∫ Φ∗(γ(b′))
φmin

[
α− φ′

]
dF (φ′),

where Φ∗ (γ(b′)) = α− γ(b′). Note that T̃δ(γ) maps γ for a given debt threshold function δ(φ).
Define, next,

Tδ(γ)(b) =

{
max

{
T̃δ(γ)(b), α− φmax

}
if b ∈ [b, b0(δ)]

α− φmax if b ∈ (b0(δ), b̃]
, (50)

where

b0(δ) ≡ max
b̄′,b′∈[b,b̃],Πδ(b′)≤b̄′

{
w + β

(
Ψ∗
(
γ (b′) , b̄′

)
b̄′

+
(
1−Ψ∗

(
γ (b′) , b̄′

))
Πδ(b

′)

)}

= max
b̄′∈[b,b̃],Πδ(b̃)≤b̄′

w + β

 Ψ∗
(
γ
(
b̃
)
, b̄′
)
b̄′

+
(

1−Ψ∗
(
γ
(
b̃
)
, b̄′
))

Πδ(b̃)

 < b̃ = w̄/(1− β),

denotes the largest b for which non-negative consumption is feasible. Note that b0 is independent of
γ because the maximum debt revenue always involves setting b′ = b̃ and since γ(b̃) = α − φmax for all
γ ∈ Γ. The definition of Tδ extends the mapping to a possible range in which T̃δ is not well-defined
and ensures that Tδ(γ)(b̃) = α− φmax.

Lemma 5.1. Suppose the LSS constraint Πδ(b
′) ≤ b̄′ holds. Then for any δ ∈ Λ, Tδ(γ) is a

contraction mapping with a unique fixed point Wδ = limn→∞ Tnδ (γ) ∈ Γ.
The detailed proof of Lemma 5.1 is deferred to Appendix B. Here, we sketch its argument. The proof

establishes that Tδ maps Γ into Γ and is strictly decreasing in b for all b such that Tδ(γ)(b) > α−φmax,
otherwise Tδ = α − φmax. Moreover, Tδ satisfies Blackwell’s suffi cient conditions (monotonicity and
discounting) on the complete metric space (Γ, d∞), thereby being a contraction mapping. Therefore,
Wδ = limn→∞ Tnδ (γ) exists and is unique (see Stokey et al. (1989), Theorem 3.3).

Step 2: We establish that there exists a unique threshold function b̂ ∈ Λ such that
〈
Wb̂, b̂

〉
satisfies

equation (41). Let δ ∈ Λ. Define the mapping:

S(δ)(φ) =

{
min

{
b ∈ [b, b̃] : Wδ(b) = α− φ

}
if Wδ(b) ≥ α− φ

b if Wδ(b) < α− φ
, ∀φ ∈ ℵ.
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The following lemma establishes that S has a unique fixed point in Λ:
Lemma 5.2. S(δ) has a unique fixed point b̂ ≡ limn→∞ Sn (δ) ∈ Λ and Wb̂(b̂(φ)) = α−φ, ∀φ ∈ ℵ.
The detailed proof of Lemma 5.2 is deferred to Appendix B. Here, we sketch the argument. S(δ)

is bounded by [b, b̃], continuous and non-decreasing in φ since Wδ(b) is continuous and non-increasing
in b. Thus, S is an operator on the complete metric space (d∞,Λ). The proof establishes that the
operator satisfies Blackwell’s suffi cient conditions (monotonicity and discounting), implying that S is
a contraction mapping.

Taking stock: Since the fixed point b̂ meets the indifference condition (41) and Wb̂ satisfies the

Bellman equation of the market equilibrium, Lemmas 5.1 and 5.2 imply that
〈
Wb̂, b̂

〉
is the unique

pair of value and threshold functions satisfying the market equilibrium conditions. This concludes the
proof of Proposition 5 (A).

PART (B): The strategy of the proof is to show that, given the initial condition π = Π(b), the
primal COA in Proposition 4 solves the same problem as the market equilibrium. Then, it follows from
part (A) that the unique market equilibrium constraint decentralizes the COA.

The primal COA is characterized by the value functions µpl and W pl, where W pl is a fixed point
to the following functional equation

W pl(bpl(π)) = max
π̄′∈[π,π̃],π′∈[π,P (α−E[φ])],π̄′≥π′

u

(
w − bpl(π)

+β
[
Ψpl(π′, π̄′)π̄′ + (1−Ψpl(π′, π̄′))π′

] ) (51)

−X(Ψpl(π′, π̄′)) + β

[
Ψpl(π′, π̄′)µ̄pl (π̄′) +

(1−Ψpl(π′, π̄′))µpl (π′)

]
,

and µpl and bpl are defined as follows

µpl(π) =

∫
ℵ

max
{
W pl(bpl(π)), α− φ

}
dF (φ)

π =

∫
ℵ

min
{
bpl(π), b̂pl(φ)

}
dF (φ) ≡ Π̂(bpl(π)) (52)

b̂pl(φ) =
(
W pl

)−1
(α− φ) ∀φ ∈ ℵ.

Note also that Π̂ is increasing in bpl for bpl ∈
[
b, b̂pl(φmax)

)
and constant at Π̂(bpl) = P (α − E[φ]) for

bpl ≥ b̂pl(φmax). The definition of Π̂ implies that Π̂(bpl(π′)) = π′, since π′ ≤ P (α− E[φ]).
To establish equivalence, we must impose the LSS constraint to the primal planning problem —

recall that LSS guarantees uniqueness of the equilibrium. Namely, π̄′ ≥ π′. This condition is always
satisfied in the COA (cf. Proposition 3, which shows that in the dual COA P̄ (ω̄φ) > P (ωφ)).

We can then redefine the program (51) in terms of the state variable b and of the choice variables b′

and b̄′, after setting b = bpl(π), b′ = bpl(π′), b̄′ = π̄′, b = π, and b̃ ≡ π̃. Furthermore, Π̂(b̃) = P (α−E[φ]).
More formally, we rewrite (51) as

W pl(b) = max
b̄′,b′∈[b,b̃],b̄′≥Π̂(b′)

u

(
w − b+ β

[
Ψpl(Π̂(b′), b̄′)b̄′

+(1−Ψpl(Π̂(b′), b̄′))Π̂(b′)

])

−X(Ψpl(Π̂(b′), b̄′)) + β

[
Ψpl(Π̂(b′), b̄′)µ̄pl

(
b̄′
)

+

(1−Ψpl(Π̂(b′), b̄′))µpl
(

Π̂(b′)
) ] ,
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where µpl
(

Π̂(b)
)

=
∫
ℵmax

{
W pl (b) , α− φ

}
dF (φ), π = Π̂ (b) , and b̂pl is defined as in (52). In addition,

the program must satisfy the LSS constraint b̄′ ≥ Π̂(b′). This program is identical to the market
equilibrium and must share the same properties.

Taking stock: We conclude that, if π = Π̂ (b) = Π (b), the primal COA and the unique market
equilibrium subject to the LSS constraint are a fixed point of the same functional equation with a
unique solution. In particular, µpl (π) = µ(b), µ̄pl(b̄′) = µ̄(b̄′), W pl (bφ (π)) = W (B(b, φ)), Ψpl

(
π′, b̄′

)
=

Ψ
(
b′, b̄′

)
, Φpl (π) = Φ (b), and bφ (π) = B(b, φ). This concludes the proof of part (B) of the proposition.

Proof of Proposition 6. With slight abuse of notation we write x(0;α) instead of just x(0) to make
explicit the dependence of (a function) x (0) on α. We show first that Φ(0;α) is strictly increasing
in α. Suppose to the opposite that ∂Φ(0;α)/∂α ≤ 0. Then, the indifference condition implies that
∂W (0;α)/∂α > 0 since ∂Φ(0;α)/∂α = 1−∂W (0;α)/∂α. This also implies that, ∂µ(0;α)/∂α > 0 since
µ(0;α) =

∫
ℵmax {W (0;α), α− φ} dF (φ). At the same time, Π(0;α) = 0 ∀α due to the assumptions

that the sovereign can always honor the contract and that α is suffi ciently low to ensure that default is
never effi cient. However, we know from Proposition 5 that P (ν;α) = Π(0;α) implies that ν = µ(0;α).
Thus, for any α′ > α there exists an allocation that yields the same profits Π(0;α) = Π(0;α′) but
higher promised-utility µ(0;α′) > µ(0;α) than the COA for α. This must be a contradiction, since —
for a given α —it is always feasible for the planner to replicate the allocation with outside option α′

by relaxing all the PCs by α′ − α. However, the planner chooses not to do so because its not optimal.
Thus, ∂Φ(0;α)/∂α > 0.

Next, by the Theorem of the Maximum W (0;α) (and therefore Φ(0;α)) is continuous in α. More-
over, at the fixed point W (0) = W (0;W (0)) = W (0) − Φ(0;W (0)) the threshold must be zero.
Then, since Φ(0;α) is continuous and strictly increasing in α on the interval [u(w)/(1 − β), µ̄(0)]

and u(w)/(1 − β) < W (0) < µ̄(0), it is suffi cient to state that Φ(0;u(w)/(1 − β)) < Φ(0,W (0)) = 0

and Φ(0; µ̄(0)) > Φ(0,W (0)) = 0 to establish that the fixed-point W (0) exists in the interior of this
interval and is unique.

Proposition 7 Assume the economy has an AJ market structure, where the sovereign can issue non-
renegotiable debt contingent on the realization of w and φ, subject to borrowing constraints. Then, the
COA can be decentralized by an AJ equilibrium with borrowing constraints b′AJ,φ ≤ b̂(φ). The borrowing
constraint is binding for φ ≤ Φ (B (b)) and slack otherwise, where b denotes the current debt repayment
and B and Φ are defined in Definition 1.

Proof of Proposition 7. Let φ-specific recession debt be denoted b′AJ,φ = b′φ and let the recession and
normal time value functions be given by WAJ and W̄AJ , respectively. Since debt is non-renegotiable,
the debt prices in recession and normal time are (1 − pAJ)f(φ)R−1 and pAJR−1, respectively, where
pAJ is expected effort. The problem for a sovereign who owes b in recession is then

WAJ (b) = max
{b′φ}φ∈ℵ,b̄′AJ

{
u

(
w − b+ pAJR

−1 × b̄′AJ + (1− pAJ)R−1 ×
∫
ℵ
b′φ f (φ) dφ

)

−X (pAJ) + βpAJW̄AJ

(
b̄′AJ
)

+ β (1− pAJ)

∫
ℵ
WAJ

(
b′φ
)
dF (φ)

}
,

where pAJ = arg maxp∈[p,p̄]{−X (p) + βpW̄AJ

(
b̄′AJ
)

+ β (1− p)
∫
ℵWAJ

(
b′φ

)
F (φ)}, subject to a set of

no-default borrowing constraints b′φ ≤ J (φ) ∀φ ∈ ℵ, and b′φ ≥ b, b̄′AJ ∈ [b, b̃].
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The proof strategy is to show that the market allocation of Definition 1 is feasible, rules out default,
is consistent with the FOCs, and yields the same expected utility in the AJ economy. Let the policy
functions b̂ (φ), Φ (b), Π(b), B̄

(
b̄
)
, B (b), B (b, φ), C(b), C̄(b̄), W (b), Ψ(b, b̄), and µ̄

(
b̄
)
be given by the

market allocation.
Guess that (i) the borrowing constraints are J (φ) = b̂ (φ), (ii) optimal debt issuance is given by:

b′φ =

{
B(b) for φ ≥ Φ (B(b))

b̂(φ) for φ < Φ (B(b))
,

and b̄′AJ = B̄(b), and (iii) optimal consumption is CAJ(b) = C(b) and C̄AJ(b̄) = C̄(b̄). Since b′φ =

B (B (b) , φ), the realized debt payments are equivalent to the market allocation. Equilibrium effort
pAJ must therefore be as in the market economy. Recession debt revenue is identical in the two
economies, since

(1− pAJ)R−1 ×
∫
ℵ
b′φ f (φ) dφ =

(
1−Ψ(B(b), B̄(b))

)
R−1 ×

(
(1− F (Φ (B (b)))) ·B (b)

+
∫ Φ(B(b))
φmin

b̂ (φ) f (φ) dφ

)
=

(
1−Ψ(B(b), B̄(b))

)
R−1 ×Π(B(b)).

Hence, the proposed allocation
{
b′φ, b̄

′
AJ , CAJ , C̄AJ , pAJ

}
satisfies the budget constraint and is therefore

feasible. It follows that discounted value must be identical; W̄AJ(b) = µ̄(b) and WAJ(b) = W (b). Since
WAJ(J(φ)) = W (b̂(φ)) = α− φ ∀φ ∈ ℵ, it follows that J(φ) is not too tight, in the sense that the PC
holds with equality at the borrowing constraint. Hence, J rules out default.

Finally, it is straightforward to verify that the proposed allocation satisfies the FOCs in the AJ
economy. Since the proposed allocation is feasible, satisfies the AJ optimality conditions, and at the
same time attains the same utility as in the COA, it must represent an equilibrium allocation in the
AJ economy.
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B Appendix B (Online)

B.1 Analysis of the One-Asset Economy (Section 4)

In this section, we provide the technical analysis of the results summarized in Section 4 and one related
figure. We consider the (Markov) market equilibrium for an economy where the sovereign can issue
only a one-period renegotiable non-contingent bond.34

We provide (i) a definition of the market equilibrium for the one-asset economy; (ii) a proof of
existence and uniqueness ofWR and the associated equilibrium functions when the effort is exogenously
given; (iii) a derivation of the CEE in equation (42). All proofs are in a separate section of this appendix
below.

Definition 2 A market equilibrium with non-contingent renegotiable debt is a set of value functions{
V R,WR

}
, a threshold renegotiation function ΦR, an equilibrium debt price function QR, and a

set of optimal decision rules {BR, BR, CR,ΨR} such that, conditional on the state vector (b, φ) ∈(
[b, b̃]× [φmin, φmax]

)
, the sovereign maximizes utility, the creditors maximize profits, and markets

clear. More formally:

• The value function V R satisfies

V R (b, φ) = max
{
WR (b) , α− φ

}
,

where WR (b) is the value function conditional on the debt level b being honored,

WR (b) = max
b′∈[b,b̃]

u
(
QR

(
b′
)
× b′ + w − b

)
+ ZR

(
b′
)
, (53)

continuation utility ZR is defined as

ZR
(
b′
)

= max
p∈[p,p̄]

{
−X (p) + β

(
p× µ̄R

(
b′
)

+ (1− p)× µR
(
b′
))}

, (54)

the value of starting in recession with debt b and in normal time with debt b̄ are µR (b) =∫
ℵ V

R (b, φ) dF (φ) and µ̄R(b̄) = u
(
w̄ −

(
1−R−1

)
b̄
)
/ (1− β), respectively.

• The threshold renegotiation function ΦR satisfies

ΦR (b) = α−WR (b) .

• The debt price function satisfies the following arbitrage condition:

QR
(
b′
)
× b′ = R−1

(
ΨR
(
b′
)
× b′ +

[
1−ΨR

(
b′
)]
×ΠR

(
b′
))

(55)

34The extension in which we rule out renegotiation is qualitatively similar. The only difference is that the bond price
when renegotiation is allowed, given by equation (55) in the below Definition 2, becomes

QNR
(
b′
)

= R−1
(

ΨNR (b′)+
[
1−ΨNR (b′)]× [1− F (ΦNR

(
b′
))])

when renegotiation is ruled out.
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where ΠR (b′) is the expected repayment of the non-contingent bond conditional on next period
being a recession,

ΠR (b) =
(
1− F

(
ΦR (b)

))
b+

∫ ΦR(b)

φmin

b̂R (φ)× dF (φ) , (56)

and where b̂R (φ) =
(
ΦR
)−1

(φ) is the new post-renegotiation debt after a realization φ.

• The set of optimal decision rules comprises:

1. A take-it-or-leave-it debt renegotiation offer:

BR (b, φ) =

{
b̂R (φ) if φ ≤ ΦR (b) ,
b if φ > ΦR (b) .

2. An optimal debt accumulation and an associated consumption decision rule:

BR
(
BR (b, φ)

)
= arg max

b′∈[b,b̃]

{
u
(
QR

(
b′
)
× b′ + w − BR (b, φ)

)
+ ZR

(
b′
)}

CR
(
BR (b, φ)

)
= QR

(
BR

(
BR (b, φ)

))
×BR

(
BR (b, φ)

)
+ w − BR (b, φ) .

3. An optimal effort decision rule:

ΨR
(
b′
)

= arg max
p∈[p,p̄]

{
−X (p) + β

(
p× µ̄R

(
b′
)

+ (1− p)× µR
(
b′
))}

.

• The equilibrium law of motion of debt is b′ = BR
(
BR (b, φ)

)
.

• The probability that the recession ends is p = ΨR (b′).

Since the haircut b̂R (φ) keeps the sovereign indifferent between accepting the creditors’offer and
defaulting, this implies the following indifference condition,

WR(b̂R (φ)) = α− φ. (57)

With some abuse of notation, let WR (b;α) denote the value function conditional on honoring debt
b in an economy with exogenous outside option α as defined above. In the analysis of Section 4, we
assume that in each economy (with and without renegotiation) the outside option is given by the
market equilibrium with a zero debt position. Namely, αR = WR(0;αR) in the case with renegotiation,
and αNR = WNR(0;αNR), when we rule out renegotiation.

We prove, next, that for an exogenously given effort ΨR = p a market equilibrium satisfying
Definition 2 exists and that the set of equilibrium functions {V R,WR,ΦR, QR,BR} is unique.

Proposition 8 Assume ΨR = p ∈ [p, p̄] ⊂ R+. Then the Markov equilibrium with non-contingent debt
exists and is unique: (A) The equilibrium functions {V R,WR,ΦR, QR,BR} satisfying Definition 2 exist
and are unique. The value functions

{
V R,WR

}
are continuous, WR is strictly decreasing in b, and

V R is non-increasing in b; (B) There exists a unique αR satisfying the fixed point αR = WR (0;αR).
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Finally, we derive formally the CEE of equation (42). Since the CEE is derived from first-order
conditions, the proposition must first establish appropriate differentiability properties that ensures that
the first-order conditions are necessary conditions for an equilibrium. It turns out that in the one-asset
economy with renegotiation the equilibrium functions are not continuous and differentiable everywhere.
However, we can prove that they are differentiable at all interior level of debt that can be the result of
an optimal choice. Moreover, the discontinuities in the policy functions do not invalidate the fact that
the FOCs are necessary conditions for an equilibrium. It is then useful to define B̂R as the set of debt
levels b′ that can be the result of an optimal interior choice given debt b.

Definition 3 B̂R = {b′ ∈ (b, b̃)|BR
(
BR (b, φ)

)
= b′, for b ∈ [b, b̃]}.

Proposition 9 Let C̄R(b) denote the consumption function in normal time. The equilibrium functions
WR(b′), ΦR(b′), QR(b′), and ΨR(b′) are differentiable for all b′ ∈ B̂R. Moreover, for any b′ ∈ B̂R,
the FOC (∂/∂b′)u(QR(b′)b′ + w − b) + (∂/∂b′)ZR(b′) = 0 and the envelope condition ∂WR(b′)/∂b′ =

−u′(CR(b′)) holds true, such that the conditional Euler equation (CEE)

ΨR(b′)

(1−ΨR(b′)) [1− F (ΦR(b′))] + ΨR(b′)

u′(C̄R(b′))

u′(CR(b))
+

(1−ΨR(b′))
[
1− F (ΦR(b′))

]
(1−ΨR(b′)) [1− F (ΦR(b′))] + ΨR(b′)

u′(CR(b′))

u′(CR(b))

= 1 +

(
ΨR
)′

(b′)
[
b′ −ΠR(b′)

]
(1−ΨR(b′)) [1− F (ΦR(b′))] + ΨR(b′)

, (58)

is a necessary condition for an interior optimum.

Note that the left-hand side of (58) is the expected ratio between next-period and current-period
marginal utility conditional on debt being honored in the next period. More precisely, the term
u′(CR(b′))/u′(CR(b)) is the ratio of marginal utilities if the recession continues, whereas the term
u′(C̄R(b′))/u′(CR(b)) is the ratio of marginal utilities if the recession ends. Therefore, equation (58) is
identical to equation (42).

B.1.1 Figure 4

Figure 4 illustrates the properties of the one-asset economy with and without renegotiation. This figure
is discussed in Section 4.1 in the text.
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Figure 4: Policy functions of the one-asset economy, conditional on the maximum cost realization φmax.
The dashed lines show the Markov equilibrium with renegotiation, the solid lines the equilibrium where
renegotiation is ruled out. The calibration of these economies is described in Section B.3.
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B.2 Proofs

B.2.1 First Best (Section 2.1)

In this section, we provide the proof of Proposition 1.
Proof of Proposition 1. In the first part of the proof we take as given that the profit function P̄
has the solution (9) and verify this below. Moreover, we also take as given that P is strictly decreasing,
strictly concave, and differentiable in ν. We defer the formal proof of these properties to Lemma 2.1
further below in this appendix.

The Lagrangian of the planner’s problem in recession reads as

L =

∫
ℵ

[
w − cφ + β

(
pφP̄ (ω̄φ) + (1− pφ)P (ωφ)

)]
f(φ)dφ

+ϑ

(∫
ℵ

[u (cφ)−X (pφ) + β (pφω̄φ + (1− pφ)ωφ)] f(φ)dφ− ν
)

where the Lagrange multiplier on the PK is given by ϑ. The FOCs with respect to the controls cφ, ωφ,
ω̄φ, and pφ yield:

f (φ) = u′ (cφ)ϑ f (φ) , (59)

ϑf (φ) = −P ′ (ωφ) f (φ) , (60)

ϑf (φ) = −P̄ ′ (ω̄φ) f (φ) , (61)

β
(
P̄ (ω̄φ)− P (ωφ)

)
f (φ) = ϑf (φ)

(
X ′ (pφ)− β (ω̄φ − ωφ)

)
, (62)

while the envelope condition is given by
−P ′ (ν) = ϑ. (63)

First, since f(φ) > 0 over the relevant support of φ the optimal allocation is independent of
the default cost realization. Thus, the planner fully insures the agent against the risk in φ. The
optimality condition in (61) implies that ϑ > 0, since −P̄ ′ (ω̄φ) > 0. The optimality conditions (60)
and (63) imply ωFB(ν) = ν such that promised utility, consumption, and reform effort stay constant
during recessions. Equations (59)-(61) together with (9) imply that the planner provides the agent
with full consumption insurance across the income states, u′

(
cFB(ν)

)
= u′

(
c̄(ω̄FB(ν))

)
⇔ cFB(ν) =

c̄(ω̄FB(ν)) = u−1
[
(1− β)ω̄FB(ν)

]
. Given the constant allocation, equation (8) in Proposition 1 follows

immediately from the PK (2). Moreover, since in normal time the agent gets the same consumption
as in recession (but reform effort is absent), equation (8) implies that promised utility in normal time
can be expressed as ω̄FB(ν) = ν+X

(
pFB (ν)

)
/
(
1− β

(
1− pFB (ν)

))
= u(cFB(ν))/(1−β). The FOC

with respect to effort (62) can then be expressed as

β
(
P̄
(
ω̄FB(ν)

)
− P (ν)

)
= u′(cFB(ν))−1

(
X ′
(
pFB(ν)

)
− β

(
ω̄FB(ν)− ν

))
, (64)

where

P̄
(
ω̄FB(ν)

)
− P (ν) = w̄ − w + β

(
1− pFB (ν)

) (
P̄
(
ω̄FB(ν)

)
− P (ν)

)
=

1

1− β (1− pFB (ν))
(w̄ − w)

ω̄FB(ν)− ν =
X
(
pFB (ν)

)
1− β (1− pFB (ν))

.
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Substituting for P̄
(
ω̄FB(ν)

)
−P (ν) and ω̄FB(ν)− ν in (64) yields equation (7) in Proposition 1. Note

that the profit function in recession

P (ν) =
w − cFB(ν)

1− β (1− pFB (ν))
+
βpFB (ν)

1− β
w̄ − cFB(ν)

1− β (1− pFB (ν))

=
w̄ − cFB(ν)

1− β − w̄ − w
1− β (1− pFB (ν))

, (65)

defines a positively sloped locus in the plane (p, c), while equation (7) defines a negatively sloped locus
in the same plane. The two equations pin down a unique interior solution for pFB(ν) and cFB(ν).
Now, consider the comparative statics with respect to ν. An increase in ν yields a strict increase in
consumption cFB(ν) according to (59) and (63) since P is strictly concave, while (7) is independent of
ν such that the increase in cFB(ν) must come with a strict decrease in pFB(ν). Finally, set w = w̄ in
(65) to see that the profit function in normal time is indeed given by (9). This concludes the proof of
the proposition.

B.2.2 Constrained Optimum without Moral Hazard (Section 2.2.1)

In this section, we provide the proof of Proposition 2. As a preliminary step, we state Lemma 2.1 that
is used in the proof of Proposition 2. Since the proof of Lemma 2.1 is long and uses standard methods,
we defer it to a separate section below.
Lemma 2.1. The profit functions P and P̄ that solve the Bellman equation (1) subject to (2)-(3),
or, subject to (2)-(5), are strictly decreasing, strictly concave, and differentiable at the interior of their
support. The FOCs of the planning problem are necessary and suffi cient to characterize the COA.
Proof of Proposition 2. In this proof we take as given Lemma 2.1, that is proved separately.
We limit the proof to the arguments that do not overlap with those in the proof of Proposition 3 in
Appendix A.

The Lagrangian of the planner’s problem is the same as in (43), except that we can drop all terms
that involve the incentive constraint (χφ = 0). The FOCs yield, then:

f (φ) = u′ (cφ) (ϑ f (φ) + λφ) , (66)

ϑ f (φ) + λφ = −P ′ (ωφ) f (φ) , ∀ωφ > ν, (67)

ϑ f (φ) + λφ = −P̄ ′ (ω̄φ) f (φ) , (68)

β
(
P̄ (ω̄φ)− P (ωφ)

)
f (φ) = (ϑf (φ) + λφ)

(
X ′ (pφ)− β (ω̄φ − ωφ)

)
. (69)

The envelope condition yields −P ′ (ν) = ϑ > 0, ∀ν > ν, and the slackness condition for θφ reads
0 = θφ (ωφ − ν).

Since P is strictly concave, Lemma 1 implies that the solution is characterized by the unique
threshold φ̃(ν) in (13). The PC binds only for φ < φ̃(ν).

The FOCs (66)—(69) imply equations (10)-(12) in the text. Combine equation (67) and the envelope
condition to yield P ′ (ν) = P ′ (ωφ) + λφ/f(φ) ≥ P ′ (ωφ) for ν, ωφ > ν. Since P is strictly concave this
implies that promised utility is weakly increasing conditional on staying in recession, ωφ ≥ ν > ν.
Note that this property extends to the lower bound where ν = ν = ω(ν) if the PC is slack. This can
be proved by a contradiction argument: Suppose that ∃ν > ν such that ω(ν) ≥ ω(ν). The optimal
allocation associated with ω(ν) yields utility ν > ν. Thus, ω(ν) ≥ ω(ν) would violate the PK, which
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is not feasible. In summary, promised utility is weakly increasing ωφ ≥ ν, such that its lower bound is
never relevant and we can drop the multiplier θφ from the further analysis.

Since λφ enters the optimality conditions, the solution will depend on whether the PC is slack or
binding:

1. When the PC is binding and the recession continues, φ < φ̃(ν), λφ > 0, ωφ > ν, and

u (cφ)−X (pφ) + β [pφω̄φ + (1− pφ)ωφ] = α− φ. (70)

Then, (10), (12), (11) and (70) determine jointly the solution for (cφ, pφ, ωφ, ω̄φ). In this case,
there is no history dependence, i.e., ν does not matter.

2. When the PC is not binding, φ ≥ φ̃(ν) and λφ = 0. Then, ωφ = ν, and cφ = c (ν), pφ = p(ν),
and ω̄φ = ω̄φ(ν) are determined by (19), (10), and (12), respectively. The solution is history
dependent.

By the same argument made in the proof of Proposition 3, c (ν) must be strictly increasing in ν.
In turn 1/u′(c (ν)) = 1/u′(c̄ (ω̄(ν))) implies that also ω̄(ν) is strictly increasing in ν. Finally, equation
(12) implies that

u′ (c (ν))
[
P̄ (ω̄ (ν))− P (ν)

]
+ [ω̄ (ν)− ν] = β−1X ′ (p (ν)) .

For ν > ν, differentiating the left-hand side yields

u′′ (c (ν)) c′ (ν)×
[
P̄ (ω̄ (ν))− P (ν)

]︸ ︷︷ ︸
<0

+
[
u′ (c (ν))P ′ (ν) + 1

] (
ω̄′ (ν)− 1

)
= u′′ (c (ν)) c′ (ν)×

(
P̄ (ω̄ (ν))− P (ν)

)
< 0

since (11) implies that P ′ (ν) = −1/u′ (c (ν)) , and we establish below that P̄ (ω̄ (ν)) − P (ω(ν)) =

P̄ (ω̄ (ν))−P (ν) > 0. This implies that the right-hand side must also be strictly decreasing in ν. Since
X is convex and increasing, this implies in turn that p (ν) must be strictly decreasing in ν > ν. Note
that this property extends to the lower bound, p(ν) > p(ν) ∀ν > ν. Suppose not, p(ν) ≤ p(ν), then
ν = ω(ν) > ω(ν) = ν which contradicts the fact that ω(ν) and p(ν) are optimal given ν and the same
φ. Thus, effort p(ν) must be strictly decreasing.

Finally, we must establish that P̄ (ω̄φ(ν)) − P (ωφ(ν)) > 0, ∀ωφ(ν) > ν. Suppose, to derive a
contradiction, that P̄ (ω̄φ(ν))− P (ωφ(ν)) ≤ 0. For simplicity, we write ωφ for ωφ(ν). The FOCs of the
planner problem in equations (10) and (11) imply

c̄(ω̄φ) = cφ = c(ωφ).

Recall that ωφ ≥ ν. Then, once the economy recovers, promised-utility and profits remains constant
such that consumption can be written as

c̄(ω̄φ) = w̄ − P̄ (ωφ) + βP̄ (ωφ) = w̄ − P̄ (ω̄φ) +
pφ
R
P̄ (ω̄φ) +

1− pφ
R

P̄ (ω̄φ)

> w − P̄ (ω̄φ) +
pφ
R
P̄ (ω̄φ) +

1− pφ
R

P̄ (ω̄φ)

≥ w − P (ωφ) +
pφ
R
P̄ (ω̄φ) +

1− pφ
R

P (ωφ)

≥ w − P (ν) +
pφ
R
P̄ (ω̄φ) +

1− pφ
R

P (ωφ) = cφ.
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To see why, note that [(1− pφ)/R− 1] P̄ (ω̄φ) ≥ [(1− pφ)/R− 1]P (ωφ) since [(1− pφ)/R− 1] < 0 and
(by assumption) P̄ (ω̄φ) ≤ P (ωφ). The last inequality follows from ωφ ≥ ν and P ′(ν) < 0. The
conclusion that c̄(ω̄φ) > cφ contradicts c̄(ω̄φ) = cφ which was derived above. Thus, we have proven
that P̄ (ω̄φ)− P (ωφ) > 0.

This concludes the proof of Proposition 2.

B.2.3 Constrained Optimum with Moral Hazard (Section 2.2.2)

This section contains three lemmas that are used in the analysis of the planner problem with moral
hazard in Section 2.2.2. Lemma 3.1 provides a suffi cient condition for the effort function to be falling in
promised utility when ν is suffi ciently large. Lemmas 3.2 and 3.3 are instrumental to prove Proposition
3 in Appendix A.

Lemma 3.1. Suppose limc→∞ u′(c) = 0 and that limp→pX ′′ (p) > 0. Then limν→∞ p(ν) = p.
Proof. We conjecture that in the limit the COA is given by limν→∞ {ω̄(ν)− ω(ν)} = 0, limν→∞ c(ν) =

limν→∞ c(ω(ν)) = limν→∞ c̄(ω̄(ν)) = ∞, and limν→∞ p(ν) = p, where p(ν) ≡ Υ (ω̄ − ω). We verify
that this allocation satisfies the necessary FOCs of the COA. First, eq. (2) implies limν→∞ ω(ν) =

limν→∞ ω̄(ν) = ∞. Second, limν→∞X ′ (p(ν)) = 0 satisfies eq. (15). Third, the lower bound on
ω and the PC (4) become irrelevant when ν is suffi ciently large. Fourth, note that Υ′ (ω̄ − ω) =

β/X ′′ (Υ (ω̄ − ω)). Equations (16)-(17) can then be rewritten as

1− p(ν) = (1− p(ν))
u′(c(ν))

u′(c(ω(ν)))
+ u′(c(ν))

β

X ′′(p(ν))

[
P̄ (ω̄(ν))− P (ω(ν))

]
(71)

p(ν) = p(ν)
u′(c(ν))

u′(c̄(ω̄(ν)))
− u′(c(ν))

β

X ′′(p(ν))

[
P̄ (ω̄(ν))− P (ω(ν))

]
. (72)

Consider the limit when ν → ∞. Equations (71)-(72) hold as ν → ∞ since limν→∞ p(ν) = p,
limν→∞

{
P̄ (ω̄(ν))− P (ω(ν))

}
= (w̄ − w) /

[
1− β(1− p)

]
, limν→∞ u′(c(ν)) = 0, limν→∞ {u′ [c(ν)] /u′ [c(ω(ν))]}

= limν→∞ {u′ [c(ν)] /u′ [c̄(ω̄(ν))]} = 1, and X ′′(p) is bounded away from zero by assumption. Finally,
note that the conjectured COA coincides with the FB in the limit, since limν→∞ u′(cFB(ν)) (w̄ − w)

= 0 in (7). Thus, it must yield the maximal profits given ν. This implies that the conjectured limiting
allocation is indeed the COA.

Lemma 3.2. Assume P is strictly concave. Then, P is differentiable at the interior of its support
with P ′(ν) = −1/u′ (c(ν)) < 0.
Proof. The proof is an application of Benveniste and Scheinkman (1979, Lemma 1). Consider the
profit of a pseudo planner that is committed to deliver the initial promise ν̃, but suboptimally chooses
effort and future promised-utility like in the optimal contract given an initial promise ν

P̃ (ν̃, ν) ≡
∫ φ̃(ν̃)

φmin

[
w − x(φ, pφ(ν), ω̄φ(ν), ωφ(ν)) + β

[
pφ(ν)P̄ (ω̄φ(ν))

+(1− pφ(ν))P (ωφ(ν))

]]
dF (φ)

+

∫ ∞
φ̃(ν̃)

[
w − x(φ(ν̃), pφ(ν), ω̄φ(ν), ωφ(ν)) + β

[
pφ(ν)P̄ (ω̄φ(ν))

+(1− pφ(ν))P (ωφ(ν))

]]
dF (φ),

where consumption provided by the pseudo planner is determined by

x(φ, p, ω̄, ω) = u−1 (α− φ+X(p)− β [pω̄ + (1− p)ω])
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and pφ(ν) = Υ(ω̄φ(ν) − ωφ(ν)). Note that for ν̃ = ν, the pseudo planner achieves the same profit as
in the optimal contract, P̃ (ν̃, ν̃) = P (ν̃), but profits must be weakly lower otherwise, P̃ (ν̃, ν) ≤ P (ν̃).
Furthermore, P̃ (ν̃, ν) is twice differentiable in ν̃ and strictly concave. Then, Lemma 1 in Benveniste and
Scheinkman (1979) applies and the profit function P (ν) is differentiable at the interior of its support
ν with derivative

P ′(ν) = P̃1(ν, ν) = −1/u′ (c(ν)) < 0.

This concludes the proof of the lemma.
Lemma 3.3. The FOCs of the planning problem are necessary for optimality.

Proof. That the optimal effort is interior follows from the assumed properties of the X function
(X ′(p) = 0, X ′(p) > 0 for p > p, and limp→p̄X ′(p̄) = +∞). The optimality condition for effort
X ′(pφ(ν)) = β(ω̄φ(ν)−ωφ(ν)) implies then ω̄φ(ν) > ωφ(ν), and that there exists an interior maximum
effort level p+ = max {pφ(ν)} < p̄. Since ωφ(ν) ≥ ν, then ω̄φ(ν) > ν. In conclusion, the optimal choice
of pφ is interior and ω̄φ(ν) will never be at the lower bound ω. Note that the possibility ωφ(ν) = ν is
taken into account by the stated FOCs.

Next, consider the upper bound ω̃ for ωφ(ν) which is suffi ciently high that none of the PCs will
bind if the economy starts at ω̃, i.e., ωφ(ω̃) = ω(ω̃) > α−φmin. Then, the FOC with respect to ωφ (17)
implies that - if the planner was not constrained by ωφ ≤ ω̃ - profits are maximized when ωφ(ω̃) < ω̃.
This allocation is feasible in the constrained problem thus it must also be the optimal choice when
ωφ(ν) is bounded by ω̃. The same applies to any level of promised-utility below ω̃ when the PC is
slack. Finally, in states where the PC binds, ωφ(ν) always remains below α − φmin < ω̃. Thus, ωφ(ν)

always remains strictly below ω̃. In turn, the optimality condition for effort then implies that the ω̄φ(ν)

can never be higher than X ′(p+)/β+ ω̃ < ˜̄ω, where X ′(p+) < +∞. In summary, the optimal choices of
ω̄φ and ωφ are also interior (apart from the corner solution, ωφ = ν). Finally, consumption must always
be positive since limc→0 u(c) = −∞ and it is interior because promised-utility and effort is interior.
Thus, the solution to the planner problem must be interior and the stated FOCs are necessary.

B.2.4 Decentralization (Section 3.2)

This section contains the complete proofs of two lemmas that are stated in the proof of Proposition 5
in Appendix A.
Proof of Lemma 5.1. We prove that the mapping Tδ defined in eq. (50), satisfies Blackwell’s suffi -
cient conditions on the complete metric space (Γ, d∞), thereby being a contraction mapping. Therefore,
Wδ = limn→∞ Tnδ (γ) exists and is unique (see Stokey et al. (1989), Theorem 3.3).

Claim (i): Tδ is strictly decreasing in b for all b such that Tδ(γ)(b) > α − φmax, otherwise Tδ =

α−φmax, in particular, Tδ(γ)(b̃) = α−φmax. Proof of the claim: For any ε > 0, T̃δ (γ) (b+ ε) < T̃δ (γ) (b)

since

T̃δ (γ) (b+ ε) = O(b+ ε,B∗γ (b+ ε) , B̄∗γ (b+ ε) , γ(B∗γ (b+ ε)); δ)

< O(b, B∗γ (b+ ε) , B̄∗γ (b+ ε) , γ(B∗γ (b+ ε)); δ)

≤ O(b, B∗γ (b) , B̄∗γ (b) , γ(B∗γ (b)); δ) = T̃δ (γ) (b) ,

where
〈
B̄∗γ(b), B∗γ(b)

〉
= arg maxb̄′,b′∈[b,b̃],Πδ(b′)≤b̄′ O(b, b′, b̄′, γ(b′); δ). The strict inequality follows from

b + ε > b and u′(·) > 0. The weak inequality follows from the fact that
〈
B̄∗γ(b), B∗γ(b)

〉
is the optimal

policy for the debt level b. Since T̃δ is strictly decreasing in b ∈ (b, b0(δ)), and limb→b0(δ) T̃δ(γ)(b) =
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−∞ < α−φmax, then, Tδ(γ)(b) is strictly decreasing in b for all b such that Tδ(γ)(b) > α−φmax, being
constant at α− φmax otherwise. Finally, since b0(δ) < b̃ (49) implies that Tδ(γ)(b̃) = α− φmax.

Claim (ii): Tδ maps Γ into Γ. Proof of the claim: Recall that Tδ is bounded from below by α−φmax.
Tδ is also bounded from above because consumption, reform effort, the support of the default cost, and
the elements of Γ and Λ are bounded. Continuity of T̃δ in b ∈ [b, b0(δ)) follows by the Theorem of the

Maximum. Since limb→b0(δ) T̃δ(γ)(b) = −∞ < α − φmax, then Tδ (γ) (b) = max
{
T̃δ (γ) (b), α− φmax

}
is also continuous in b. Finally, we have already established above that Tδ is non-increasing in b and
that Tδ(γ)(b̃) = α− φmax. Thus, Tδ(γ) ∈ Γ.

Claim (iii): Tδ discounts: for any scalar a ≥ 0 and γ ∈ Γ, Tδ(γ + a)(b) ≤ Tδ(γ)(b) + βa. Proof of
the claim: Let a ≥ 0 be a real constant. Then

T̃δ (γ + a) (b) ≤ max
b̄′,b′∈[b,b̃],Πδ(b′)≤b̄′

u

(
w − b+ βΨ∗

(
γ (b′) + a, b̄′

)
b̄′

+β
(
1−Ψ∗

(
γ (b′) + a, b̄′

))
Πδ(b

′)

)
+ Z∗

(
γ(b′), b̄′

)
+ βa(73)

≤ max
b̄′,b′∈[b,b̃],Πδ(b′)≤b̄′

u

(
w − b+ βΨ∗

(
γ (b′) , b̄′

)
b̄′

+β
(
1−Ψ∗

(
γ (b′) , b̄′

))
Πδ(b

′)

)
+ Z∗

(
γ(b′), b̄′

)
+ βa (74)

= T̃δ (γ) (b) + βa.

The first inequality follows from an envelope argument implying that dZ∗(γ(b′)+a, b̄′)/da = β
(
1−Ψ∗

(
γ (b′) + a, b̄′

))
[1− F (Φ∗(γ(b′) + a))] ∈

[0, β]. Therefore, a linear expansion yields Z∗
(
γ(b′) + a, b̄′

)
≤ Z∗

(
γ(b′), b̄′

)
+ βa. The second inequal-

ity follows from observing that Ψ∗
(
γ (b′) + a, b̄′

)
≤ Ψ∗

(
γ (b′) , b̄′

)
and b̄′ ≥ Πδ(b

′), implying that debt
revenue and utility is (weakly) higher in (74) than in (73). So, T̃δ discounts. The definition of Tδ
implies that if T̃δ discounts, so does Tδ.

Claim (iv): Tδ is a monotone mapping, i.e., ∀γ, γ+ ∈ Γ such that γ+ (b) ≥ γ (b), Tδ (γ+) (b) ≥
Tδ (γ) (b) ∀b ∈ [b, b̃]. Proof of the claim: Let γ, γ+ ∈ Γ with γ+ (b) ≥ γ (b), ∀b ∈ [b, b̃]. We first establish

that γ+(b) ≥ γ(b) ⇒ T̃δ (γ+) (b) ≥ T̃δ (γ) (b). To this aim, let
(
b′, b̄′

)
=
(
B∗γ+ (b) , B̄∗γ+ (b)

)
denote the

optimal debt issuance under the function γ+. Let ξ (b) ≥ 0 be such that γ+
(
B∗γ(b) + ξ (b)

)
= γ(B∗γ(b)).

(That such a positive function exists follows immediately from the properties of γ+ and γ.) Suppose,
first, that b is such that Πδ

(
B∗γ(b) + ξ (b)

)
≤ B̄∗γ (b), so that the LSS constraint is satisfied. Then, the

following sequence of inequalities holds true:

T̃δ
(
γ+
)

(b) = O
(
b, B∗γ+ (b) , B̄∗γ+ (b) , γ+

(
B∗γ+ (b)

)
; δ
)

≥ O
(
b, B∗γ(b) + ξ (b) , B̄∗γ (b) , γ+

(
B∗γ(b) + ξ (b)

)
; δ
)

= O
(
b, B∗γ(b) + ξ (b) , B̄∗γ (b) , γ

(
B∗γ(b)

)
; δ
)

≥ O
(
b, B∗γ (b) , B̄∗γ (b) , γ

(
B∗γ (b)

)
; δ
)

= T̃δ (γ) (b).

The first inequality follows from the fact that, under γ+, the choice
(
b′, b̄′

)
=
(
B∗γ(b) + ξ (b) , B̄∗γ+ (b)

)
is feasible and suboptimal. The second inequality follows from the fact that the expression in the third
line has a larger b′ than that in the fourth line, while effort is held constant across the two expressions.
Thus, the former grants (weakly) higher consumption than the latter.
Consider, next, the case when the LSS binds, i.e., Πδ

(
B∗γ(b) + ξ (b)

)
> B̄∗γ (b). Define ξ̃(b) such that
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Πδ(B
∗
γ(b) + ξ̃ (b)) = B̄∗γ(b) and note that 0 ≤ ξ̃ (b) < ξ (b). Then,

T̃δ
(
γ+
)

(b) = O
(
b, B∗γ+ (b) , B̄∗γ+ (b) , γ+

(
B∗γ+ (b)

)
; δ
)

≥ O
(
b, B∗γ(b) + ξ̃ (b) , B̄∗γ (b) , γ+

(
B∗γ(b) + ξ̃ (b)

)
; δ
)

= u
(
w − b+ βB̄∗γ (b)

)
+ Z∗

(
γ+
(
B∗γ(b) + ξ̃ (b)

)
, B̄∗γ (b)

)
≥ O

(
b, B∗γ (b) , B̄∗γ (b) , γ

(
B∗γ (b)

)
; δ
)

= T̃δ (γ) (b).

The first inequality follows from the fact that, under γ+, the choice
(
b′, b̄′

)
=
(
B∗γ(b) + ξ̃ (b) , B̄∗γ+ (b)

)
is

suboptimal. The second equality follows from the fact that pΠδ(B
∗
γ(b) + ξ̃ (b)) + (1− p)B̄∗γ(b) = B̄∗γ(b).

The second inequality follows from the observation that both consumption and continuation utility
are higher in the expression in the third line than in that in the fourth line. Consumption is higher
because (by the LSS) B̄∗γ(b) ≥ Πδ(B

∗
γ(b)). Continuation utility is higher because (i) ξ̃ (b) ≤ ξ (b) ⇒

γ+
(
B∗γ(b) + ξ̃ (b)

)
≥ γ+

(
B∗γ(b) + ξ (b)

)
= γ

(
B∗γ(b)

)
and (ii) Z∗ (y+, x) ≥ Z∗ (y, x).

This establishes that T̃δ is a monotone mapping. Next, observe that Tδ (γ+) = max{T̃δ (γ+) , α −
φmax} ≥ max{T̃δ (γ) , α− φmax} = Tδ(γ). Thus, Tδ is also a monotone mapping.

By Blackwell’s theorem, Claims (i)—(iv) jointly imply that Tδ (γ) is a contraction operator on the
complete metric space (Γ, d∞), thus its fixed point Wδ = limn→∞ Tnδ (γ) exists in Γ and is unique.
Proof of Lemma 5.2. First, note that S(δ) is bounded by [b, b̃], continuous and non-decreasing in
φ since Wδ(b) is continuous and non-increasing in b. Thus, S is an operator on the complete metric
space (d∞,Λ). We now verify Blackwell’s suffi cient conditions for S being a contraction mapping.

Monotonicity: Let δ+, δ ∈ Λ and assume δ+ ≥ δ. We claim that S(δ+) ≥ S(δ). Corollary 5.1
below establishes that δ+ ≥ δ ⇒ Wδ+(b) ≥ Wδ(b), ∀b ∈ [b, b̃]. This property must also hold true for
b = S(δ)(φ), so Wδ+(S(δ)(φ)) ≥Wδ(S(δ)(φ)). To prove the claim, we distinguish two cases:
(i) Wδ(b) ≥ α − φ: The definition of S implies that Wδ+(S(δ+)(φ)) = α − φ and Wδ(S(δ)(φ)) =

α − φ, implying that Wδ+(S(δ+)(φ)) = Wδ(S(δ)(φ)). Joint with the above inequality this yields
Wδ+(S(δ)(φ)) ≥Wδ+(S(δ+)(φ)). Since Wδ+(b) is monotone decreasing in b, then, S(δ)(φ) ≤ S(δ+)(φ).
(ii) Wδ(b) < α− φ: The definition of S yields S(δ)(φ) = b, implying S(δ+)(φ) ≥ S(δ)(φ) = b.

Discounting: Let a ≥ 0. We claim that S(δ+a) ≤ S(δ)+βa. Corollary 5.1 below establishes that
for any b ∈ [b, b̃] ∃β̃(b) ∈ [0, β] such that Wδ(b) = Wδ+a(b + β̃(b)a). This property must also hold for

b = S(δ)(φ). Thus, ∃β̃φ ∈ [0, β] such that Wδ (S(δ)(φ)) = Wδ+a

(
S(δ)(φ) + β̃φa

)
. We now distinguish

three cases to prove the claim.
(i) Wδ(b) ≥ α− φ: The definition of S implies Wδ (S(δ)(φ)) = α− φ and Wδ+a (S(δ + a)(φ)) = α− φ.
Thus,Wδ+a(δ+a) (S(δ + a)(φ)) = Wδ (S(δ)(φ)) = Wδ+a

(
S(δ)(φ) + β̃φa

)
, implying that S(δ+a)(φ) =

S(δ)(φ) + β̃φa ≤ S(δ)(φ) + βa.
(ii) Wδ(b) < α−φ andWδ+a(b) ≥ α−φ: The definition of S implies S(δ)(φ) = b andWδ+a (S(δ + a)(φ)) =

α−φ. The above equality implies thatWδ(b) = Wδ+a(b+β̃(b)a) = α−φ. It follows thatWδ+a (S(δ + a)(φ)) =

α− φ = Wδ+a(b+ β̃(b)a) and therefore S(δ + a)(φ) = b+ β̃(b)a ≤ S(δ) + βa.
(iii) Wδ+a(b) < α−φ: The definition of S implies that S(δ)(φ) = b and S(δ+a)(φ) = b, implying that
S(δ + a)(φ) = S(δ)(φ) ≤ S(δ)(φ) + βa is necessarily satisfied.

Thus, S is a contracting operator with a unique fixed point δ̂(φ) = limn→∞ Sn(δ) in Λ. This
concludes the proof of the lemma.
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The following corollary of Lemma 5.1 was used in the proof of Lemma 5.2.
Corollary 5.1.. Wδ has the following properties: (a) Wδ is monotone in δ: if δ+ ≥ δ, then
Wδ+(b) ≥ Wδ(b) ∀b ∈ [b, b̃]; (b) for any b ∈ [b, b̃] and a ≥ 0, ∃β̃(b) ∈ [0, β]: Wδ+a(b+ β̃(b)a) = Wδ(b).

Proof of Corollary 5.1.1. Part (a): First, note that Tδ+(γ)(b) ≥ Tδ(γ)(b). The reason is that
δ+ ≥ δ ⇒ Πδ+(b′) ≥ Πδ(b

′). Moreover, any feasible debt revenue under δ (β
[
pb̄′ + (1− p)Πδ(b

′)
]
) is

also feasible under δ+ while yielding a weakly higher continuation value than Z∗
(
γ(b′), b̄′

)
. Since Tδ

is a contraction mapping, it follows that Wδ+(b) ≥Wδ(b). Part (b): Part (a) implies that T̃δ(γ)(b) is
bounded from above by T̃δ+a (γ) (b). T̃δ(γ)(b) is also bounded from below by

T̃δ(γ)(b) = max
b̄′,b′∈[b,b̃],Πδ(b′)≤b̄′

u

(
w − b+ βΨ∗

(
γ (b′) , b̄′

)
b̄′

+β
(
1−Ψ∗

(
γ (b′) , b̄′

))
Πδ(b

′)

)
+ Z∗

(
γ(b′), b̄′

)
≥ max

b̄′,b′∈[b,b̃],Πδ(b′)≤b̄′
u

(
w − b+ βΨ∗

(
γ (b′) , b̄′

)
b̄′

+β
(
1−Ψ∗

(
γ (b′) , b̄′

))
[Πδ+a(b

′)− a]

)
+ Z∗

(
γ(b′), b̄′

)
≥ max

b̄′,b′∈[b,b̃],Πδ+a(b′)≤b̄′
u

(
w − b− βa+ βΨ∗

(
γ (b′) , b̄′

)
b̄′

+β
(
1−Ψ∗

(
γ (b′) , b̄′

))
Πδ+a(b

′)

)
+ Z∗

(
γ(b′), b̄′

)
= T̃δ+a (γ) (b+ βa).

The first inequality follows from the fact that Πδ+a(b) − a ≤ Πδ(b) for all b ∈ [b, b̃]. The second
inequality follows from 1 − Ψ∗

(
γ (b′) , b̄′

)
≤ 1 and the fact that Πδ+a(b

′) ≤ b̄′ is a tighter constraint
than Πδ(b

′) ≤ b̄′. Since the function T̃δ+a (γ) (x) is continuous in x, there must exist a β̃(b) ∈ [0, β]

such that T̃δ+a (γ) (b + β̃(b)a) = T̃δ(γ)(b). This implies that Tδ+a (γ) (b + β̃(b)a) = Tδ(γ)(b). Since Tδ
is a contraction mapping, the same holds true at the fixed point.

B.2.5 Less Complete Markets (Section 3.2)

Proof of Proposition 8. Part (A): We follow the same strategy used to prove Proposition
5. First (step 1), we define an inner operator Tδ that maps value functions into value functions
conditional on an arbitrary debt threshold function δ(φ). We show that this operator has a unique
fixed point Wδ = limn→∞ Tnδ (γ) that satisfies (53). Second (step 2), we define an outer operator S
that maps debt threshold functions into debt threshold functions. We show that this operator has a
unique fixed point b̂R(φ) = limn→∞ Sn (δ) that satisfies (57) when Wδ is evaluated at δ(φ) = b̂R(φ),

i.e., Wb̂R(b̂R(φ)) = α − φ. Let WR = Wb̂R . Then, the fixed point
〈
WR, b̂R

〉
must be unique. The

uniqueness of the remaining equilibrium functions follows then from Definition (2).
Step 1: Let Γ be the space of bounded, continuous, and non-increasing functions γ : [b, b̃] →

[α−φmax, u(w̄+ (1− β)b)/(1− β)]. Moreover, let Λ be the space of bounded and continuous functions
δ : ℵ → [b, b̃]. Define d∞(y, z) ≡ supx∈X |y(x)− z(x)| such that (Γ, d∞) and (Λ, d∞) are complete
metric spaces. Let γ ∈ Γ and δ ∈ Λ and define the mapping:

T̃δ (γ) (b) = max
b′∈[b,b̃]

u

(
w − b+R−1pb′

+R−1 (1− p) Πδ(b
′)

)
+ Z∗

(
γ(b′), b′

)
,

≡ max
b′∈[b,b̃]

O
(
b, b′, γ(b′); δ

)
, (75)

where Πδ(b
′) =

∫
ℵmin{b′, δ(φ′)}dF (φ) and Z∗(γ(b′), b′) = −X(p) + β [pµ̄(b′) + (1− p)µ∗(b′)] In turn,

µ∗ (γ(b′)) is defined in analogy with µ(b′) in Definition 2, i.e., µ∗ (γ(b′)) = (1− F (Φ∗(γ(b′)))) × γ(b′)
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+
∫ Φ∗(γ(b′))
φmin

[
α− φ′

]
dF (φ′), where Φ∗ (γ(b′)) = α − γ(b′). Note that T̃δ(γ) maps γ for a given debt

threshold function δ(φ) and effort is exogenously given by p. Define, next,

Tδ(γ)(b) =

{
max

{
T̃δ(γ)(b), α− φmax

}
if b ∈ [b, b0(δ)]

α− φmax if b ∈ (b0(δ), b̃]
, (76)

where
b0(δ) ≡ w − b+R−1pb̃+R−1 (1− p) Πδ(b̃) < b̃ = w̄/(1− β),

denotes the largest b for which non-negative consumption is feasible. The definition of Tδ extends the
mapping to a possible range in which T̃δ is not well-defined.

Lemma 8.1. For any δ ∈ Λ the mapping Tδ(γ) has a unique fixed point Wδ = limn→∞ Tnδ (γ) ∈ Γ.
Proof of Lemma 8.1. The same argument used in the proof of Lemma 5.1 establishes that Tδ maps

Γ into Γ and is strictly decreasing in b for all b such that Tδ(γ)(b) > α−φmax, otherwise Tδ = α−φmax.
Moreover Tδ discounts by the same argument used in the proof of Lemma 5.2 —noting that effort is
exogenous. Finally, Tδ is also monotone since γ+(b) ≥ γ(b)⇒ Z∗(γ+(b′), b′) ≥ Z∗(γ(b′), b′) such that

T̃δ(γ
+)(b) ≥ O(b, B∗γ(b), γ+(B∗γ(b)); δ)

≥ O(b, B∗γ(b), γ(B∗γ(b)); δ) = T̃δ(γ)(b),

whereB∗γ(b) = arg maxb′∈[b,b̃]O(b, b′, γ(b′); δ). Then, T̃δ satisfies Blackwell’s suffi cient conditions (monotonic-
ity and discounting) on the complete metric space (Γ, d∞), thereby being a contraction mapping.
Therefore, Wδ = limn→∞ Tnδ (γ) exists and is unique (see Stokey et al. (1989), Theorem 3.3).

Step 2: We establish that there exists a unique threshold function b̂R ∈ Λ such that
〈
Wb̂R , b̂

R
〉

satisfies equation (57). Let δ ∈ Λ. Define the mapping:

S(δ)(φ) =

{
min

{
b ∈ [b, b̃] : Wδ(b) = α− φ

}
if Wδ(b) ≥ α− φ

b if Wδ(b) < α− φ
, ∀φ ∈ ℵ.

Lemma 5.2 then establishes that S has a unique fixed point δ̂ ≡ limn→∞ Sn (δ) ∈ Λ andWδ̂(δ̂(φ)) =

α− φ, ∀φ ∈ ℵ.
Since the fixed point δ̂ meets the indifference condition (57) and Wδ̂ satisfies the Bellman equation

of the market equilibrium, Lemma 5.1 and Lemma 5.2 imply that
〈
Wb̂R , b̂

R
〉
is the unique pair of value

and threshold functions satisfying the market equilibrium conditions.
Then, the uniqueness of V R, ΦR, QR, and BR follows from Definition 2. Note that we do not claim

uniqueness of BR and CR. The continuity of the value function WR(b) in b follows from the Theorem
of the Maximum, and implies that also the equilibrium functions V R, ΦR, and QR are continuous in b.
Since T̃b̂R(γ ) maps decreasing functions into strictly decreasing functions, it follows that the fixed-point
WR is strictly decreasing in b and, hence, V R(b, φ) = max

{
WR(b), α− φ

}
is non-increasing in b.

Part (B): Having proved the existence and uniqueness of a fixed point WR conditional on α, we
now show that there exists a unique αR ∈ [WMIN ,WMAX ] ≡ [α − φmax, u(w̄ + (1 − β)b)/(1 − β)]

such that WR (0;αR) = αR ∈ (WMIN ,WMAX) (with slight abuse of notation we add α as a function
argument in WR(b;α) and Φ∗(γ(b);α)) . To see why, note that, by the Theorem of the Maximum,
WR (b;α) is continuous in α. Moreover, since WR ∈ [WMIN ,WMAX ], then, Brouwer’s fixed-point
theorem ensures that there exists an α ∈ [WMIN ,WMAX ] such that WR (0;α) = α. Since WR (0;α) =
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α−Φ∗
(
WR(0;α);α

)
, then Φ∗

(
WR(0;α);α

)
= 0. To prove that such an α is unique, we note that Φ∗ is

monotone increasing in α (the set of states of nature in which the outside option is preferred expands
as α increases). Therefore, there exists a unique fixed point αR such that Φ∗

(
WR(0;αR), αR

)
= 0. In

particular, αR = WR (0;αR) ∈ (WMIN ,WMAX).
This concludes the proof of the proposition

Proof of Proposition 9. The proof is an application of the generalized envelope theorem in Clausen
and Strub (2016) which allows for discrete choices (i.e., repayment or renegotiation) and non-concave
value functions. Consider the programWR(b) = maxb′∈[b,b̃]O(b′), O(b′) ≡ u(QR(b′)b′−b+w)+βZR(b′).
Theorem 1 in Clausen and Strub (2016) ensures that if we can find a differentiable lower support function
(DLSF) for O, then O is differentiable at all interior optimal debt choices b′ ∈ B̂R where B̂R was defined
in Definition 3 above.

To construct a DLSF for O, we follow the strategy of Benveniste and Scheinkman (1979), and
consider the value function of a pseudo borrower with post-renegotiation debt b that chooses debt
issuance b′ = BR(x) instead of the optimal b′ = BR(b),

W̃ (b, x) ≡ u
(
QR

(
BR (x)

)
BR (x)− b+ w

)
+ ZR

(
BR (x)

)
.

Note that W̃ is differentiable and strictly decreasing in b. Since debt issuance is chosen suboptimally, it
must be that W̃ (b, x) ≤ WR(b) with equality holding at x = b. Furthermore, let the pseudo borrower
set the default threshold at the level Φ̃ (b, x) = WR(0) − W̃ (b, x), where Φ̃ (b, x) ≥ ΦR (b). Thus, the
pseudo borrower renegotiates even for some φ larger than ΦR(b). Note that Φ̃ (b, x) is differentiable
and strictly increasing in b. Thus, the inverse function exists and is such that Φ̃−1

x (φ) ≤ b̂R(φ) (where
we define Φ̃x (b) ≡ Φ̃ (b, x)).

Let
Õ
(
b′, x

)
= u

(
Q̃(b′, x)b′ − b+ w

)
+ Z̃(b′, x),

where Q̃(b′, x)b′ and Z̃(b′, x) are given by

Q̃
(
b′, x

)
b′ = R−1

[(
1− Ψ̃(b′, x)

)([
1− F (Φ̃

(
b′, x

)
)
]
b′ +

∫ Φ̃(b′,x)

φmin

Φ̃−1
x (φ)dF (φ)

)
+ Ψ̃(b′, x)b′

]
,

Z̃(b′, x) = −X(Ψ̃(b′, x)) + β

[
Ψ̃(b′, x)µ̄R(b′) + (1− Ψ̃(b′, x))

×
([

1− F (Φ̃ (b′, x))
]
W̃ (b′, x) +

∫ Φ̃(b′,x)
φmin

[
WR(0)− φ

]
dF (φ)

) ] ,
having defined Ψ̃(b′, x) as

Ψ̃(b′, x) =
(
X ′
)−1

(
β

[
µ̄R(b′)−

([
1− F (Φ̃

(
b′, x

)
)
]
W̃
(
b′, x

)
+

∫ Φ̃(b′,x)

φmin

[
WR(0)− φ

]
dF (φ)

)])
.

Note that Q̃, Z̃ and Ψ̃ are differentiable in b′ since we established above that W̃ and Φ̃ are differentiable.
Then, Õ is a DLSF for O such that Õ(b′, x) ≤ O(b′) with equality (only) at b′ = x. Thus, Theorem

1 in Clausen and Strub (2016) ensures that O (b′) is differentiable at all optimal interior choices b′ ∈ B̂R

and that ∂O(BR (b))/∂BR (b) = ∂Õ(BR (b) , BR (b))/∂BR (b) = 0. In this case, a standard FOC holds

∂u
(
QR(BR(b))BR(b)− b+ w

)
∂BR(b)

+
∂ZR(BR(b))

∂BR(b)
= 0.
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Moreover, Lemma 3 in Clausen and Strub (2016) ensures that also the functions WR(b′), ZR(b′),
ΦR(b′), QR(b′), and ΨR(b′) are differentiable in b′ ∈ B̂R and that a standard envelope condition applies,
namely,

∂ZR(BR(b))

∂BR(b)
= β

[
(1−ΨR(BR(b)))

[
1− F (ΦR(BR(b)))

] ∂WR(BR(b))

∂BR(b)
+ ΨR(BR(b))

∂µ̄R(B(b))

∂BR(b)

]
,

∂WR(BR(b))

∂BR(b)
= −u′

(
CR(BR(b))

)
< 0.

This proves that the FOC stated in Proposition 9 is necessary for an interior optimum.

B.2.6 Proof of Lemma 2.1

In this section, we prove Lemma 2.1. The proof strategy follows Thomas and Worrall (1990, Proof
of Proposition 1). We show first that the planner’s problem is a contraction mapping with a strictly
concave fixed-point P . The differentiability of P follows from Benveniste and Scheinkman (1979,
Lemma 1). Note that P̄ is given by (9) and has the same properties. Finally, we prove that P and P̄
pin down uniquely interior promised utilities, effort and consumption.

We prove the results in the form of five claims. Each of them has a separate prove below. We demon-
strate the proof for the COA. The properties of the first-best planning problem follow immediately by
dropping the PC and adjusting the boundary conditions appropriately.

Define, first, the mapping T (γ)(ν) as the right-hand side of the planner’s functional equation

T (γ)(ν) = max
({cφ,pφ,ω̄φ,ωφ}φ∈ℵ)∈Λ(ν)

∫
ℵ

[
w − cφ + β

[
pφP̄ (ω̄φ)

+(1− pφ)γ(ωφ)

]]
dF (φ)

where maximization is constrained by the set Λ(ν) defined by∫
ℵ

[u(cφ)−X(pφ) + β [pφω̄φ + (1− pφ)ωφ]] dF (φ) = ν

u(cφ)−X(pφ) + β [pφω̄φ + (1− pφ)ωφ] ≥ α− φ, ∀φ ∈ ℵ,
cφ ∈ [0, c̃], pφ ∈ [p, p̄], ν, ωφ ∈ [ν, ω̃] , ω̄φ ∈ [ω, ˜̄ω] .

We take as given that P̄ is strictly concave and bounded between P̄MIN and P̄MAX .

Claim 1 T (γ) maps concave functions into strictly concave functions.

Proof. Let ν ′ 6= ν ′′ ∈ [ν, ω̃], δ ∈ (0, 1), ν = δν ′+ (1− δ)ν ′′, Pk(ν) = T (Pk−1)(ν), and Pk−1 be concave.
Then,

Pk−1(δν ′ + (1− δ)ν ′′) ≥ δPk−1(ν ′) + (1− δ)Pk−1(ν ′′).

We follow the strategy of Thomas and Worrall (1990, Proof of Proposition 1), i.e., we construct a

feasible but (weakly) suboptimal contract,
{
coφ(ν), poφ(ν), ω̄oφ(ν), ωoφ(ν)

}
φ∈ℵ
, such that even the profit

generated by the suboptimal contract P ok (δν ′ + (1 − δ)ν ′′) ≤ Pk(δν
′ + (1 − δ)ν ′′) is higher than the
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linear combination of maximal profits δPk(ν ′) + (1− δ)Pk(ν ′′). Define the weights δ, δ̄ ∈ (0, 1) and the
4-tuple (coφ(ν), poφ(ν), ωoφ(ν), ω̄oφ(ν)) such that

δ ≡ δ [1− pφ(ν ′)]

δ(1− pφ(ν ′)) + (1− δ)(1− pφ(ν ′′))
≡ δ1− pφ(ν ′)

1− poφ(ν)

δ̄ ≡ δpφ(ν ′)

δpφ(ν ′) + (1− δ)pφ(ν ′′)
≡ δ pφ(ν ′)

poφ(ν)

ωoφ(ν) = δωφ(ν ′) + (1− δ)ωφ(ν ′′)

ω̄oφ(ν) = δ̄ω̄φ(ν ′) + (1− δ̄)ω̄φ(ν ′′)

coφ(ν) = u−1

[
δu(cφ(ν ′)) + (1− δ)u(cφ(ν ′′))

− [δX(pφ(ν ′)) + (1− δ)X(pφ(ν ′′))] +X (δpφ(ν ′) + (1− δ)pφ(ν ′′))

]
.

Hence,

(1− poφ(ν))ωoφ(ν) = δ
(
1− pφ(ν ′)

)
ωφ(ν ′) + (1− δ)(1− pφ(ν ′′))ωφ(ν ′′)

poφ(ν)ω̄oφ(ν) = δpφ(ν ′)ω̄φ(ν ′) + (1− δ)pφ(ν ′′)ω̄φ(ν ′′)

u
(
coφ(ν)

)
−X(poφ(ν)) = δu(cφ(ν ′)) + (1− δ)u(cφ(ν ′′))−

[
δX(pφ(ν ′)) + (1− δ)X(pφ(ν ′′))

]
By construction the suboptimal allocation satisfies

coφ(ν) ∈ [0, c̃], poφ(ν) ∈ [p, p̄], ωoφ(ν) ∈ [ν, ω̃], ω̄oφ(ν) ∈ [ω, ˜̄ω],

and, given the promised-utility ν, is also consistent with the PK∫
ℵ

[
u
(
coφ(ν)

)
−X(poφ(ν)) + β

[
poφ(ν)ω̄oφ(ν) + (1− poφ(ν))ωoφ(ν)

]]
dF (φ)

=

∫
ℵ

 δu (cφ(ν ′)) + (1− δ)u (cφ(ν ′′))− [δX(pφ(ν ′) + (1− δ)X(pφ(ν ′′))]
+β [δ(1− pφ(ν ′))ωφ(ν ′) + (1− δ)(1− pφ(ν ′′))ωφ(ν ′′)]

+β [δpφ(ν ′)ω̄φ(ν ′) + (1− δ)pφ(ν ′′))ω̄φ(ν ′′)]

 dF (φ)

= δν ′ + (1− δ)ν ′′ = ν.

Moreover, the PC for any φ yields

u
(
coφ(ν)

)
−X(poφ(ν)) + β

[
poφ(ν)ω̄oφ(ν) + (1− poφ(ν))ωoφ(ν)

]
=

 δu (cφ(ν ′)) + (1− δ)u (cφ(ν ′′))− [δX(pφ(ν ′) + (1− δ)X(pφ(ν ′′))]
+β [δpφ(ν ′)ω̄φ(ν ′) + (1− δ)pφ(ν ′′))ω̄φ(ν ′′)]

+β [δ(1− pφ(ν ′))ωφ(ν ′) + (1− δ)(1− pφ(ν ′′))ωφ(ν ′′)]


= δ

[
u
(
cφ(ν ′)

)
−X(pφ(ν ′) + βpφ(ν ′)ω̄φ(ν ′) + β(1− pφ(ν ′))ωφ(ν ′)

]
+(1− δ)

[
u(cφ(ν ′′))−X(pφ(ν ′′)) + βpφ(ν ′′))ω̄φ(ν ′′) + β(1− pφ(ν ′′))ωφ(ν ′′)

]
≥ δ (α− φ) + (1− δ) (α− φ) = α− φ,

Thus, we have proven that the suboptimal allocation
{
coφ(ν), poφ(ν), ωoφ(ν), ω̄oφ(ν)

}
φ∈ℵ

is feasible. Namely,

it satisfies the PCs and delivers promised utility ν. The profit function evaluated at the optimal contract
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{cφ(ν), pφ(ν), ωφ(ν), ω̄φ(ν)}φ∈ℵ then implies the following inequality,

δPk(ν
′) + (1− δ)Pk(ν ′′)

= δT (Pk−1)(ν ′) + (1− δ)T (Pk−1)(ν ′′)

=

∫
ℵ

 w − [δcφ(ν ′) + (1− δ)cφ(ν ′′)]
+β
[
δpφ(ν ′)P̄ (ω̄φ(ν ′)) + (1− δ)pφ(ν ′′)P̄ (ω̄φ(ν ′′))

]
+β [δ(1− pφ(ν ′))Pk−1(ωφ(ν ′)) + (1− δ)(1− pφ(ν ′′))Pk−1(ωφ(ν ′′))]

 dF (φ)

=

∫
ℵ

 w − [δcφ(ν ′) + (1− δ)cφ(ν ′′)]
+βpoφ(ν)

[
δ̄P̄ (ω̄φ(ν ′)) + (1− δ̄)P̄ (ω̄φ(ν ′′))

]
+β(1− poφ(ν)) [δPk−1(ωφ(ν ′)) + (1− δ)Pk−1(ωφ(ν ′′))]

 dF (φ)

<

∫
ℵ

 w − u−1 (δu(cφ(ν ′)) + (1− δ)u(cφ(ν ′′)))
+βpoφ(ν)P̄ (δ̄ω̄φ(ν ′) + (1− δ̄)ω̄φ(ν ′′))

+β(1− poφ(ν))Pk−1(δωφ(ν ′) + (1− δ)ωφ(ν ′′))

 dF (φ)

<

∫
ℵ

 w − u−1

(
δu(cφ(ν ′)) + (1− δ)u(cφ(ν ′′))

− [δX(pφ(ν ′)) + (1− δ)X(pφ(ν ′′))] +Xδpφ(ν ′) + (1− δ)pφ(ν ′′)

)
+βpoφ(ν)P̄ (δ̄ω̄φ(ν ′) + (1− δ̄)ω̄φ(ν ′′))

+β(1− poφ(ν))Pk−1(δωφ(ν ′) + (1− δ)ωφ(ν ′′))

 dF (φ)

=

∫
ℵ

[
w − coφ(ν) + β

[
poφ(ν)P̄ (ω̄oφ(ν)) + (1− poφ(ν))Pk−1(ωoφ(ν))

]]
dF (φ)

≡ P ok (ν) ≤ Pk(ν) = Pk(δν
′ + (1− δ)ν ′′).

The first inequality follows from the strict concavity of u and P̄ , along with the concavity of Pk−1. The
second inequality follows from 0 ≤ X (δpφ(ν ′) + (1− δ)pφ(ν ′′)) < δX(pφ(ν ′)+(1−δ)X(pφ(ν ′′)) since X
is strictly convex. The third inequality, P ok (ν) ≤ Pk(ν) follows from the fact that the optimal allocation
delivers (weakly) larger profits than the suboptimal one. We conclude that Pk(δν ′ + (1 − δ)ν ′′) >

δPk(ν
′) + (1− δ)Pk(ν ′′), i.e., Pk is strictly concave. This concludes the proof of the lemma.

Let Γ denote the space of continuous functions defined over the interval [ν, ω̃] and bounded between
PMIN =

(
w − c̃+ βpP̄MIN

)
/(1 − β(1 − p)) and PMAX = w̄/(1 − β). Moreover, let d∞ denote the

supremum norm, such that (Γ, d∞) is a complete metric space.

Claim 2 The mapping T (γ) is an operator on the complete metric space (Γ, d∞), T (γ) is a contraction
mapping with a unique fixed-point P ∈ Γ.

Proof. By the Theorem of the Maximum T (γ)(ν) is continuous in ν. Moreover, T (γ)(ν) is bounded
between PMIN and PMAX since even choosing zero consumption for any realization of φ would induce
profits not exceeding PMAX

w + β

∫
ℵ

[
pφP̄ (ω̄φ) + (1− pφ)γ(ωφ)

]
dF (φ) < w̄ + β/(1− β)w̄

= w̄/(1− β) = PMAX ,

and choosing the maximal consumption c̃ and promised utility ω̃ and ˜̄ω for any φ would induce profits
no lower than PMIN . Thus, T (γ)(ν) is indeed an operator on (Γ, d∞).

According to Blackwell’s suffi cient conditions T (γ) is a contraction mapping (see Stokey et al. (1989,
Theorem 3.3) if: (i) T is monotone, (ii) T discounts.
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1. Monotonicity: Let γ+, γ ∈ Γ with γ+(ν) ≥ γ(ν), ∀ν ∈ [ν, ω̃]. Then

T (γ+)(ν) = max
({cφ,pφ,ω̄φ,ωφ}φ∈ℵ)∈Λ(ν)

∫
ℵ

[
w − cφ + β

[
pφP̄ (ω̄φ)

+(1− pφ)γ+(ωφ)

]]
dF (φ)

≥ max
({cφ,pφ,ω̄φ,ωφ}φ∈ℵ)∈Λ(ν)

∫
ℵ

[
w − cφ + β

[
pφP̄ (ω̄φ)

+(1− pφ)γ(ωφ)

]]
dF (φ)

= T (γ)(ν).

2. Discounting: Let γ ∈ Γ and a ≥ 0 be a real constant. Then

T (γ + a)(ν) = max
({cφ,pφ,ω̄φ,ωφ}φ∈ℵ)∈Λ(ν)

∫
ℵ

[
w − cφ + β

[
pφP̄ (ω̄φ)

+(1− pφ) (γ(ωφ) + a)

]]
dF (φ)

= T (γ)(ν) + βa

∫
ℵ
(1− pφ)dF (φ)

≤ T (γ)(ν) + βa

and β ∈ (0, 1).

Thus, T (γ) is indeed a contraction mapping and according to Banach’s fixed-point theorem (see
Stokey et al. (1989), Theorem 3.2) there exists a unique fixed-point P ∈ Γ satisfying the stationary
functional equation,

P (ν) = T (P )(ν).

Claim 3 The profit function P is strictly concave.

This claim follows immediately from Stokey et al. (1989, Corollary 1). Since the unique fixed-point
of T (γ) is the limit of applying the operator n times Tn(γ)(ν) starting from any (and, in particular the
concave ones) element γ in Γ, and the operator T (γ) maps concave into strictly concave functions the
fixed-point P must be strictly concave.

Claim 4 The profit function P differentiable at its interior support with P ′(ν) = 1/u′ (c(ν)) < 0.

Proof. Given the strict concavity of the profit function, the proof is the same as for Lemma 3.2. The
only difference is that pφ(ν) denotes the optimal effort stated in Proposition 2 instead of Proposition
3.

We can now establish that the FOCs of the COA are necessary and suffi cient.

Claim 5 The FOCs of the planner problem without moral hazard are necessary and suffi cient for
optimality.

Proof. Lemma 1 implies that there cannot be two optimal contracts with distinct ωφ and ω̄φ. Suppose

not, so that there exists a 4-tuple of promised utilities
{
ω′φ, ω

′′
φ, ω̄

′
φ, ω̄

′′
φ

}
such that either ω′φ(ν) 6= ω′′φ(ν)

or ω̄′φ(ν) 6= ω̄′′φ(ν) (or both). Then, from the strict concavity of P and P̄ , it would be possible to
construct a feasible allocation that dominates the continuation profit implied by the proposed optimal
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allocations, i.e., either P (δω′φ + (1 − δ)ω′′φ) > δP (ω′φ) + (1 − δ)P (ω′′φ), or P̄ (δ̄ω̄′φ + (1 − δ̄)ω̄′′φ) >

δ̄P̄ (ω̄′φ) + (1 − δ̄)P̄ (ω̄′′φ) (or both). This contradicts the assumption that the proposed allocations are

optimal, establishing that the optimal contract pins down a unique pair of promised utilities,
{
ωφ, ω̄

′
φ

}
.

Finally, we show that a unique pair of promised utilities pins down uniquely effort and consumption.
The assumptions on X rule out corner solutions for effort, the assumptions on u and the fact that
promised utility is interior (ωφ and ω̄φ remain constant for ν ≥ α−φmin) implies that also consumption
is interior. Then the FOCs in (10) and (12) imply that

−P̄ ′ (ω̄φ(ν))−1 = u′(cφ(ν)),

X ′ (pφ(ν)) = β
(
−P̄ ′ (ω̄φ(ν))−1 (P̄ (ω̄φ(ν))− P (ωφ(ν))

)
+ (ω̄φ(ν)− ωφ(ν))

)
,

which shows that, given ν and φ, effort and consumption are uniquely determined as well.
This concludes the proof of the proposition.

B.3 Parameterization

In this section, we provide details of the parameterization underlying the numerical examples shown
in the figures of the paper. We focus on the quantitative properties of the one-asset economy (with
renegotiation) of Section 4 since this is a more realistic positive representation of the world. We choose
parameters so as to match salient moments observed for Greece, Ireland, Italy, Portugal, and Spain
(GIIPS) during the Great Recession.

A model period corresponds to one year. We normalize the GDP during normal time to w̄ = 1 and
assume that the recession causes a drop in income of 25%, i.e., w = 0.75× w̄. This corresponds to the
fall of real GDP per capita for Greece between 2007 and 2016.35 The annual real gross interest rate is
set to R = 1.02. The utility function is assumed to be CRRA with a relative risk aversion of 2. We
assume an isoelastic effort cost function, X(p) = ξ

1+1/10(p)1+1/10, and calibrate ξ = 14.371 so that a
country starting with a 100% debt-output ratio in recession recovers in expectation after one decade
(we have Greece in mind). Finally, we parameterize f(φ) and its support. The maximum default cost
realization φmax = 2.275 is calibrated to target a debt limit during recession of bmax/w = 178% in
line with Collard et al. (2015, Table 3, Column 1).36 Finally, we assume that φmax − φ is distributed
exponential with rate parameter η = 1.625 and truncation point φmax.

37 The model then generates
an average default premium of 4.04% for a country with a debt-output ratio of 100% in recession.
This overlaps with the average debt and average default premium for the GIIPS during 2008-2012
(Eurostat).

B.4 References for Appendix B

Benveniste, Larry M., and Jose A. Scheinkman (1979). “On the Differentiability of the Value Function in

35Real GDP per capita of Greece fell from 22’700 to 17’100 Euro between 2007 and 2016 (Eurostat, nama_10_pc
series). Where the years 2007 and 2016 correspond to the peak and the trough, respectively, of real GDP per capita
relative to a 2% growth trend with base year 1995.
36We ignore the value of 282% for Korea which is a clear outlier.
37More formally, φ has the p.d.f.

f(φ) =
ηe−η(φmax−φ)

1− e−ηφmax , φ ∈ [0, φmax].

This also implies that φmin = 0.
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