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Abstract 

Copper (Cu) is essential to the growth and the morphological development of Streptomyces 

lividans. Understanding how Cu regulates the key development switches in this Gram-

positive bacterium has been an area of extensive research. In particular, how Cu homeostasis 

and regulation are controlled and how metalation of enzymes important for morphological 

development is achieved have been previously investigated. To this end, this thesis reports 

the discovery of a cytosolic copper storage protein in S. lividans and offers new insight into 

intracellular Cu regulation, which is not under direct control of the Cu regulator protein CsoR 

(copper sensitive operon repressor). This copper storage protein belongs to a family of 

recently discovered cytosolic proteins known as Csp3. These members are exclusively found 

in the bacterial cytosol and comprise of a four-helix bundle that assemble into 

homotetramers and can bind between 70-80 Cu(I) ions through mainly Cys thiolate 

coordination. In Chapter 2 bioinformatic analyses reveals the phylogenetic distribution of 

Csp3 across Bacteria and Archaea and confirms the presence of Csp3 in S. lividans. 

Furthermore, the Csp3 in S. lividans is located in a gene environment that is sensitive to 

elevated Cu levels. Taxonomic distribution of these genes reveals a possible link to a novel 

transmembrane Cu export system that could facilitate removal of Cu from Csp3. X-ray 

structures of the apo and Cu(I) bound forms of the Csp3 from S. lividans have been 

determined and confirm a homotetramer assembly that can bind up to 80 Cu(I) ions (Chapter 

3). The binding of Cu(I) ions in Csp3 is found to be cooperative with a Hill coefficient of 1.9 

and Cu(I) can be transferred to Csp3 from a CopZ-like Cu(I) chaperone (Chapter 3). A Δcsp3 

null-mutant in S. lividans reveals that Csp3 is operable at high Cu levels and this suggests it 

acts to provide an additional level of protection against Cu toxicity once the CsoR system 

becomes saturated (Chapter 3). The mechanism of Cu(I)-loading to Csp3 has also been 

investigated through X-ray crystallography, site-directed mutagenesis and stopped-flow 

reaction kinetics using aqueous Cu(I) and Cu(I) chelated by a donor. A clear role for a His 

residue (His107) leading to the formation of a tetranuclear [Cu4(µ2-S-Cys)4(Nδ1-His)] cluster is 

observed, followed by the loading of Cu(I) in a fluxional and dynamic manner (Chapters 4 and 

5). Finally, over-expression studies of a putative transmembrane protein (SLI_RS17250) that 

is encoded by a neighbouring gene to the S. lividans Csp3 gene and could be part of a novel 

Cu export system, identified in Chapter 2, is described (Chapter 6). 
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1.1 An introduction to Copper 
Copper (Cu) is a d-block transition metal with valuable properties to humanity that have been 

exploited for thousands of years. Cu derives from the Earth’s crust and is one of the few 

metals that naturally occurs in the environment (25). The first recorded use of Cu dates back 

between 5th and 6th millennia B.C. as it was found in metallic form in nature thus smelting 

was not essential (26). The antimicrobial properties of Cu were evidenced through initial uses 

in treating burns, wounds, headaches and for hygiene by Aztec, Greek and Roman 

civilisations (26).  

Cu can exist in one of two oxidation states, the cupric oxidised form (Cu(II)) or the cuprous 

reduced form (Cu(I)). It is this redox chemistry that can cause toxicity problems in all 

organisms. For example Cu can participate in Fenton type reactions (27) (Equation 1.1),  

𝐶𝑢+ +  𝐻2𝑂2  →  𝐶𝑢2+ +  𝑂𝐻− +  𝑂𝐻∙            1.1 

producing hydroxyl radicals that can be involved in several processes that lead to damaging 

oxidation of lipids and proteins (26, 28). Cu ions can take part in a cycle (Equations 1.2 & 1.3) 

that depletes sulfhydryls in proteins/peptides (e.g. cysteine, glutathione) (26). This cycle 

produces hydrogen peroxide whereby it can partake in the Fenton reaction (Equation 1.1), 

thus triggering further damage to the cell (26). 

2 𝐶𝑢2+ + 2 𝑅𝑆𝐻 →  2 𝐶𝑢+ + 𝑅𝑆𝑆𝑅 + 2𝐻+      1.2 

2 𝐶𝑢+ + 2 𝐻+ + 𝑂2  →  2 𝐶𝑢2+ + 𝐻2𝑂2             1.3 

The amino acid residues that demonstrate preferential binding to the soft Cu(I) ion possess 

thiol and thioether groups and thus include cysteine and methionine residues (25). The hard 

Cu(II) ion can also coordinate with imidazole nitrogen and oxygen groups such as histidine 

and aspartic amino acids (25). Relative stabilities of metal-ion complexes as described in the 

Irving-Williams series (Mn(II) < Fe(II) < Co(II) < Ni(II) < Cu(II) > Zn(II)) suggests that Cu is capable 

of displacing certain metals from their binding sites in metalloproteins thus disrupting 

enzymatic processes (25, 29). An example of this includes iron-sulphur cluster proteins in 

which thiolate bonding occurs between sulphur and Cu(I) which is detrimental to these types 

of proteins (29-31).  

The antibacterial properties of Cu are now recognised to have a role in the host-pathogen 

response in humans. The host innate immune system will employ several mechanisms to kill 

the invading pathogen. These include use of bactericidal toxins and to limit availability of 

nutrients to starve the pathogen (nutritional immunity) (30, 32). In addition, the host will 

expose the pathogen to Cu. There is growing research into how Cu toxicity is used by the 

human immune system to destroy invading pathogens; the “Cu burst” (33). The use of 
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increased concentrations of Cu is utilised in the host macrophage as it engulfs the pathogen. 

During phagocytosis, the use of plasma membrane CTR1 copper importers to transfer Cu to 

cytoplasmic ATOX Cu(I) chaperone is achieved. The Cu(I) is transferred to ATP7A copper 

pump which delivers Cu(I) to the phagosome where the pathogen lies (30, 32). The Cu 

undergoes Cu(I) Fenton chemistry to produce hydroxyl radicals which derive from hydrogen 

peroxide generated by superoxide produced by NADPH oxidase (NOX) (30, 32). Indeed, this 

defence system against invading pathogens seems efficient in the prevention of infection. 

However, there are existing Cu resistance systems in pathogens that act to combat Cu 

toxicity. Indeed, the environment of copper surfaces or salts could be fatal to most bacteria, 

but many have developed robust Cu tolerance genes as a counteractive measure (30, 34, 35). 

It is well known that this involves expression of one or more Cu-exporting ATPases that are 

often under the control of a Cu(I) metalloregulator. Examples of this type of system will be 

given later in this chapter for the non-pathogenic Streptomyces lividans, but the interesting 

aspect is that the same mechanism can be utilised in bacteria as part of their pathogenicity.  

1.2 Importance of Cu as a cofactor in proteins 
Cu is required by many proteins and enzymes to carry out electron-transport processes, 

oxygen activation, denitrification and many other functions (36, 37). To achieve these various 

functions, a variety of Cu active sites have evolved.  Examples of such sites can be found in 

Fig. 1.1. An example of a denitrifying enzyme is nitrous oxide reductase which is a 

multicopper protein and is involved in reducing N2O to produce dinitrogen and H2O (38). The 

multicopper sites of this protein consists of a CuZ centre which is a tetranuclear centre and a 

dinuclear CuA centre that maintains either one or two sulphide bridges (39). Another 

important example of protein that requires Cu in order to function is cytochrome c oxidase 

(CcO) which utilises Fe and Cu as cofactors (40). CcO possesses a binuclear heme-Cu centre 

and is involved in cellular respiration by reducing molecular oxygen combined with proton 

pumping activity across either a bacterial membrane or eukaryotic mitochondrial membrane 

(40). There are four active sites in CcO which are metal binding that include CuA, heme a, 

heme a3, and CuB, (40). Indeed, CcO has remained as one of the most studied metalloenzymes 

and the characterisation of its dinuclear CuA site and mononuclear CuB sites has greatly aided 

the understanding of its role in the mitochondrial electron transport chain (41-44). Another 

example of a Cu metalloenzyme are laccases which belong to the class of blue multicopper 

oxidases. Laccases can oxidise a range of organic aromatic compounds in combination with 

reducing molecular oxygen to water (45). These proteins are found in both eukaryotes and 

prokaryotes but are most abundant in fungi (46). Laccase active sites contain four Cu ion 
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binding sites (46). These binding sites include a mononuclear type 1 blue Cu site close to the 

substrate binding pocket, the second site is a trinuclear Cu site consisting of one type 2 Cu 

and a type 3 coupled dinuclear centre (47, 48). An example of a monocopper oxidase is the 

fungal protein galactose oxidase (49). This enzyme catalyses the oxidation of primary alcohols 

groups (R-CH2OH) to aldehydes with a coupled reaction, involving a two-electron reduction 

of O2 to produce H2O2 (49). Another class of proteins that utilises Cu as a cofactor are lytic 

polysaccharide monooxygenases (LPMOs). An LPMO possesses a mononuclear Cu ion in its 

active site which is coordinated in trigonal manner by a ‘histidine brace’ and the N-terminal 

amino group (50). The single Cu ion centre is involved in activating oxygen which leads to the 

process of oxidatively cleaving −1-4 glycan linkages in crystalline polysaccharides, such as 

chitin, cellulose and starch (50).  

 

Figure 1.1 – Examples of copper active sites in proteins (A) Various types of copper sites which includes 
Types 1-3 and a CuA site (image taken from (14)). (B) (From left to right) Copper active sites of the following 
proteins; Galactose oxidase displaying monocopper active site; Laccase with a binuclear type 3 copper 
centre, type 1 and 2 copper centres (image taken from (21)); Cytochrome c oxidase showing the binuclear 
heme-Cu centre (image taken from (22)). (C) (From left to right) Copper active sites of the following proteins; 
LPMO with a mononuclear Cu ion in ‘His brace’ binding site (image taken from (23)); Nitrous oxide 
reductase, left hand image shows  catalytic Cu

Z
 site in the N-terminal domain whereas the right hand image 

displays the C-terminal domain Cu
A
 site (images taken from (24)) 



16 
 

1.3 Methods to determine Cu(I) affinity  
The techniques required to analyse the Cu(I) content and behaviour within bacterial 

cuproproteins are paramount. Such methods include the use of Cu(I) binding ligands as 

affinity 

standards such 

as 2,2’ 

bicinchoninic 

acid (BCA) (Fig. 

1.2). This 

compound has 

been extensively 

used in assays 

for determining 

protein concentrations since its discovery by Smith et al. in 1985 (51, 52). BCA facilitates two 

reactions in this assay; firstly, the biuret reaction at the peptide bonds and certain residues 

in an alkaline milieu which involves reducing Cu(II) ions to Cu(I) ions (51, 52). Secondly, two 

BCA molecules chelate with one Cu(I) ion to form a chromogenic purple complex which 

absorbs strongly at a wavelength of 562 nm (51, 52). Indeed, BCA is a commonly used ligand 

to determine Cu(I) concentration and has even been used to determine Cu(I) concentrations 

in biological serum samples due to its high sensitivity and specificity for Cu(I) (53). Another 

high affinity Cu(I) binding ligand is bathocuproine disulfonate hydrate (BCS) (Fig. 1.2) which 

also binds Cu(I) in a bidentate manner similar to BCA. Upon Cu(I) binding, the BCS-Cu(I) 

chromogenic complex is orange in colour and absorbs strongly at 483 nm (54). Xiao et al. 

have documented the issues of inconsistent metal binding constants being reported in the 

literature (54). These issues are caused by several factors including minimal control of pH and 

how this affects affinities of ligand probes and disregard of metal affinities of pH buffers (54). 

Following carefully laid out protocols, BCA and BCS have become the standard ligands to 

determine the Cu(I) affinities of proteins under competitive conditions.  

Methods in quantifying Cu(I) concentration and binding affinities of cuproproteins 

are ever evolving to improve their accuracy. For example a study by Bagchi et al. suggested 

high-affinity ligand stability constants are more reliably attained by carrying out competitive 

binding studies by using an affinity standard with a well-established solution chemistry and 

stability constant (13). In the study by Bagchi et al., they characterised three new monovalent 

Cu binding ligands that are water soluble; MCL-1, MCL-2 and MCL-3 (13). It was reported that 

 

Figure 1.2 – (Image taken from paper by Bagchi et al. (13)). Compounds BCS and 
BCA. 
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all three ligands form 1:1 stoichiometry with Cu(I) and have been used to predict binding 

affinity of an Escherichia coli metalloprotein, CusF (13). 

 

1.4 Bacterial copper storage proteins 
An example of a bacteria that require Cu for essential cell maintenance and biological 

reactions is methanotrophic mycobacteria (1). Vita et al. report that these bacteria require a 

substantial amount of Cu to oxidise methane. These prokaryotes can accomplish this by using 

Cu for their specialised membranes that store methane monooxygenase (1). These Gram-

negative bacteria possess a regular Cu efflux system and aerobically oxidising methane to 

methanol involves two differing families of metalloenzymes which are particulate methane 

monooxygenase (pMMO) (55, 56) and soluble methane monooxygenase (sMMO) (55, 57). 

Both proteins are regulated by Cu and some methanotrophs possess both metalloenzymes 

(55). In particular, pMMO is located in intracytoplasmic membranes and is produced in the 

presence of Cu (55, 58, 59). It is noted that pMMO is a trimeric protein with three Cu sites 

(55, 56) and is widely expressed, with around a  fifth of the cellular protein mass comprised 

of this protein (55, 60). Indeed, methanotrophs have provided much information in bacterial 

systems involving procurement of Cu.  

 

Methanotrophs store Cu in modified peptides known as methanobactins (Mbns), which aid 

in detoxifying the cytosol from high Cu concentrations (1, 55, 61). Mbns have a high affinity 

for Cu which they chelate through thioamide/enethiol moieties and paired nitrogen-

containing hetero cycles (55, 62). These proteins are key members of Cu binding 

metallophore family known as chalkophores (55, 61). It is unsurprising to find methanotrophs 

in near-neutral pH, organic rich habitats such as lake sediments, peatlands and rice paddies 

due to the high Cu affinity of Mbn and their ability to remove Cu from such environments 

 

Figure 1.3 – Structure of Mbn from M. trichosporium OB3b. (A) Stick representation of crystallographic 
structure of Mbn (PDB file 2XJH) (6). (B) Diagram of Cu-Mbn (image taken from (16))  
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(55, 63, 64). The first Mbn to be structurally characterised was from Methylosinus 

trichosporium OB3b in 2004 (55, 62). The structure of M. trichosporium Mbn (Fig. 1.3) 

revealed the heterocycles to be oxazolones (OxaA and OxaB), as previous research had mis-

assigned these as imidazolone rings (55, 65). Two absorption peaks are observed at 345 nm 

and 392 nm for both oxazolone rings in the apo-form and this absorption range is typical for 

oxazolone compounds (55, 66). In addition, Mbn can bind both Cu(I) and Cu(II) but in the 

absence of Cu, the oxazolone rings are susceptible to acid-catalysed hydrolysis (55, 67, 68). 

It has been found that Cu binding by these oxazolone rings is a reductive process, because 

even after Cu(II) binding, the final species is Cu(I)-Mbn (55, 69, 70). Mbn is capable of binding 

other metal ions but with lower affinity compared to Cu(I) (55, 71), for example Ni(II), Co(II), 

Ag(I), Pb(II), Fe(III) and Zn(II) (55, 71). There is speculation that Mbn interacts with pMMO 

but there is lack of evidence to prove this (55). It has been reported that pMMO activity is 

increased in the presence of apo-Mbn (55, 72). Though, this may be due to apo-Mbn binding 

inhibitory metals since pMMO becomes inactivated by excess amounts of zinc or copper (55, 

73, 74).  

 

Until recently is was a long-held view that prokaryotes do not possess any proteins that store 

Cu (1). Vita et al. discovered and isolated a soluble protein present in the methanotroph 

Methylosinus trichosporium OB3b that is capable of binding a high number of Cu(I) ions and 

 

Figure 1.4 – X-ray crystallographic structure of 
apo MtCsp1 (1) (A) showing the tetramer 
arrangement of four coloured alpha helical 
bundles (B) and a 90 ͦ rotation of fig. (A) 
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was named copper storage protein 1 (Csp1) (1). The Csp1 was found to contain 122 amino 

acids with a molecular mass of 12,591.4 Da (1) and shown crystallographically to be a four 

helix-bundle which assembles in to a homotetramer (Fig. 1.4). In the core of each four helix-

bundle, 13 Cys residues are present (Fig. 1.5A). These residues are not involved in disulfide 

bonding and were shown to primarily bind Cu(I) ions (1) (Fig. 1.5B). Thus, Csp1 can bind up 

to 52 Cu(I) ions per tetramer assembly and contains a signal peptide that suggest it is a 

periplasmic protein (1). Signal peptides are 16-30 amino acids in length that are fused to 

newly synthesised proteins and are involved in transporting that protein within or outside 

the cell. The specific signal peptide found in Csp1 was a twin arginine translocation (Tat) 

peptide (1) involved in transporting proteins outside the cytosol. Vita et al. identified another 

homologous protein known as Csp2 from M. trichosporium OB3b which also possessed a 

signal peptide. Notably a third homologue was identified, called Csp3, but this homologue 

differed in that it did not possess a signal peptide and therefore it was inferred that Csp3 was 

a cytosolic protein (1). Bioinformatic analyses, revealed the Csp3 homologue is widespread 

in non-methanotrophic prokaryotes.  
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The X-ray structure of MtCsp3 reveals 18 

cysteine residues in the core of the four 

helix-bundles (1) which, like Csp1, can 

coordinate Cu(I) but with a higher 

capacity due to the additional cysteine 

residues, enabling 76 Cu(I) ions to bind 

(2, 75, 76). In vivo data suggested a role 

of these Csp3s in preventing Cu(I) 

toxicity within the bacterial cell (2, 75). 

The binding affinities for MtCsp3 and 

BsCsp3 are (1.7 ± 0.5) × 1017 M−1 and (1.5 

± 0.4) × 1017 M−1 respectively and unlike 

Csp1 do not display Cu(I) binding 

cooperativity (2, 75). Vita et al. have 

shown Cu(I) removal experiments 

between the Csp3s and the Cu(I) specific 

ligand BCS which has a higher Cu(I) 

affinity for Cu(I) that Csp3, and shows 

that Cu(I) removal is slow from these 

proteins, it was reported by Vita et al. 

that after 85 hours, ~85% Cu(I) was 

removed from BsCsp3 by BCS whereas 

only ~20% was removed from MtCsp3 in 

the same period of time (2, 75). This is a 

unique finding for these Csp3s whereas 

previous studies with MtCsp1 (1) have shown rapid Cu(I) removal by this ligand (2). These 

Csp3s possess three His residues that participate in coordination of Cu(I) at one end of the 

four helix-bundle, which has been proposed to be the entry site for Cu(I) ions into the Cys 

core (2). These His residues (Fig. 1.6A) are highly conserved in Csp3s and are found in both 

MtCsp3 and BsCsp3 (2, 75). In contrast, MtCsp1 has three Met residues at the opening of the 

bundle (1, 2) (Fig. 1.5A). Another structural feature of MtCsp3 includes a coordinating Asn58 

with Cu(I) shared with Cys13 (2, 76). An Asn residue at this position is unique to MtCsp3 and 

an Asp residue is more frequent in Csp3s and is highly conserved. (2, 76). The structural 

aspects of Cu loading in Csp3s has been established in the study by Basle et al. (76). Whereby 

 

Figure 1.5 - X-ray crystallographic structure of MtCsp1 
protomer (1, 2) (A) (Image taken from paper by Vita et 
al. (2)) Labelled amino acids include 13 Cys residues in 
the inner core of the helical bundle. The pore opening 
also includes residues Met40, Met43, Met48 and His36. 
The hydrophobic end of the bundle includes residues 
Leu19, Leu65 and Val120 (2) . (B) All 13 Cys residues are 
involved in Cu(I) binding and the protomer unit of 
MtCsp1 binds a total of 13 Cu(I) ions. 
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X-ray crystallographic analyses display semi-Cu loading into these proteins (76). The 

complete filling of the protein core with metal ions is unique in Csps and until now was not 

seen in either engineered or naturally occurring four helix-bundles (76-81). In addition, the 

presence of thiolate Cu(I) clusters is uncommon in biological systems thus the discovery of 

Csps offers a new perspective on prokaryotic copper storage (76). In the study by Basle et al., 

MtCsp3 seems to demonstrate 

binding of partial occupancy Cu(I) ions 

at different sites (76). For instance, 

MtCsp3 loaded with ~2 molar 

equivalents of Cu(I) shows partial 

occupancies of four Cu(I) ions in the 

structure which are arranged in a 

symmetrical tetranuclear cluster (76). 

Additionally, MtCsp3 was 

subsequently loaded with ~9 

equivalents of Cu(I) to give a structure 

displaying 18 Cu(I) ions present with 

partial occupancy. But the occupancy 

of these Cu(I) ions was higher 

compared to the structure loaded 

with ~2 Cu(I) equivalents giving an 

overall occupancy value of 8.2 versus 

1.3 (76). Thus, it is apparent that the 

occupancy values of individual Cu(I) 

ions rises upon Cu(I) loading and 

appears to be a key feature of 

organothiolate-coordinated 

tetranuclear clusters (76). These 

formations are considered 

uncommon in biological systems due 

to their latent toxicity and complexity 

but are often found in inorganic complexes (75). Despite this, various proteins have emerged 

to form these Cu(I) clusters due to the evolution of Cu(I) handling in both eukaryotes and 

prokaryotes (75). 

 

Figure 1.6 – X-ray crystallographic structures of MtCsp3 (A) 
(Image taken from paper by Vita et al. (2)) Protomer of apo 
MtCsp3 showing 18 Cys residues and an N-terminal α -helix 
(αN). The pore opening includes three His residues (His104, 
His108 and His110). The hydrophobic end of the protomer 
highlights amino acids Leu21, Leu83 and Leu87. (B) Fully 
Cu(I) loaded MtCsp3 protomer that binds a total of 18 Cu(I) 
ions.  
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1.5 Streptomyces development 
The Streptomyces genus belonging to the phylum Actinobacteria, offers many possibilities in 

the domain of biotechnology where certain enzymes/proteins and metabolites can be used 

for industrial and pharmaceutical purposes. This type of work was also greatly aided by the 

advent of new DNA sequencing technologies at the turn of the 21st century, enabling for the 

complete sequence of Streptomyces coelicolor A3(2) to be determined (82). This bacterium 

is the best representative bacterium of the Streptomyces genus (82). The vast amount of 

proteins coded in the genome of S. coelicolor offers many research possibilities and allows to 

perhaps better understand certain pathways and regulatory functions in other similar 

organisms through comparison. For example, S. coelicolor harbours cognate signal sequences 

and other components to support the TAT (twin arginine transport) pathway as well as the 

Sec system (82). The understanding of pathways such as this may offer possibilities in 

manipulating other similar organisms for biotechnological/biopharmaceutical purposes. 

Also, Streptomycetes produce a range of antibiotics, anti-tumour agents, cytostatics, 

fungicides and other secondary metabolites that have pharmaceutical properties that are 

highly used in medicine and other industries (83). For instance, the antibiotic streptomycin 

was first discovered in Streptomyces by Waksman (83). In addition, this genus is often used 

for large scale production of enzymes (84). 

The growth and morphology of Streptomycetes is unlike other typical prokaryotes; 

this genus almost mimics a fungal life cycle whereby spores germinate to firstly produce two 

germ tubes (14). These evolve into vegetative or substrate mycelia which grow downwards 

into their soil habitats to create an extended network of hyphae (Fig. 1.7). Once nutrients 

 

 Figure 1.7 – Life cycle of Streptomyces 

 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjcspCSnbjQAhUE7xQKHa1jBhwQjRwIBw&url=https://www.studyblue.com/notes/note/n/mimm-323-marczynski-post-midterm/deck/11499304&psig=AFQjCNFjnbHkd0ZSJPdFtnaV8R79XKK0wg&ust=1479761982111282
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become scarce, substrate mycelium develops into aerial mycelium (76). In this stage of 

morphogenesis, aerial hyphae are divided through septation and sporulate (76).  Indeed, this 

growth cycle of Streptomyces had challenged the classification system in the past; during the 

1950s researchers considered this genus as mainly fungi (85), whereas others classified it as 

a group between bacteria and fungi due to its Gram positive cell wall characteristics and 

vulnerability to anti-bacterial antibiotics (85). Overall the most fascinating stage of this life 

cycle is aerial hyphae formation. In response to lack of nutrients and other signals, this stage 

produces secondary metabolites (as well as aerial hyphae) that include compounds that have 

been shown to have antibiotic and antitumor properties (14, 86). Thus, it is not surprising 

that this stage has been of great research interest to pharmaceutical industries. The aerial 

hyphae continue to grow out of the vegetative mycelium in the aqueous environment and 

develop into the air (86).  The hyphae transform into extended chains of pre-spore 

compartments which is due to a type of regulated cell division (86). In this growth phase 

proteins from the SsgA-Like Protein (SALP) family regulate this complex cell division (14). 

These pre-spores eventually form thick spore walls and evolve into mature spores (86). 

Finally, these matured spores are released from the spore chains into the environment 

whereby this mycelium growth can be repeated (14) (Fig. 1.7). 

It is believed that the function of many of the secondary metabolites produced 

during the switch between substrate and aerial mycelia within Streptomyces is to inhibit 

growth of competitive microorganisms (85, 87, 88). The genes that are responsible for 

antibiotic production has been discussed in a review by van Wezel et al. It has been discussed 

that gene clusters for antibiotic production are regulated and transduced by cluster-situated 

(transcriptional) regulators (CSRs) (88, 89). CSRs directly control the transcription of these 

genes that encode enzymes involved in producing these antibiotics. Examples of gene 

clusters regulated by CSRs include streptomycin antibiotic in Streptomyces griseus and 

actinorhodin in S. coelicolor (88). However, van Wezel et al. mention that these two antibiotic 

coding gene clusters are regulated by transcriptional regulators which are StrR (88, 90) and 

ActII-ORF4 (88, 91) , respectively. Indeed, there are existing examples of multiple CSRs that 

control biosynthetic genes, such as five transcription regulators that control expression of 

tylosin cluster in Streptomyces fradiae (88). It has been found that the production of 

antibiotics can be increased several-fold by cloning URAPs (ultimate (pathway-specific) 

regulator of antibiotic production) in high-copy number plasmids (88). URAPS are similar to 

CSRs and categorised as the final downstream regulators (88).  
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1.6 Cu bioavailability for Streptomyces development 
For certain Streptomyces strains, a distinct dependence on the bioavailability of Cu to initiate 

the morphological development switch between substrate mycelia and aerial hyphae is 

known (86, 92). Indeed, Cu is needed for production of spores and aerial hyphae thus making 

it an important 

element to this 

genus. In order to 

exploit the valuable 

secondary 

metabolites 

produced in 

Streptomyces, an 

understanding of 

how Cu is used must firstly be obtained. Using Streptomyces lividans as an example, it was 

found that the vegetative growth phase in S. lividans  can occur even at low Cu availability 

(14). The use of Cu is essential for the complete maturation of aerial hyphae and spores which 

has a distinct phenotype of a grey pigment colour (Fig. 1.8) The development of aerial 

mycelium is blocked in mutant strains of Streptomyces such as S. lividans with defective Tat 

(twin-arginine translocation) secretory pathway (14, 93). There are two pathways that occur 

in Streptomyces; Tat and Sec (secretion pathway), the Tat pathway involves secretion of 

folded proteins across the cytoplasmic membrane that contain cofactors including metal ions 

(14). The Sec pathway involves simply the secretion of unfolded proteins out of the cell and 

is was believed that S. lividans relied mainly on this pathway (84). But the Tat pathway was 

identified (84, 94) and is apparently used as a general pathway for the transport of a large 

number of Tat substrates and is not specific to enzymes with cofactors (14, 95). In the mutant 

Tat strains, morphological development can be re-established with increased copper 

supplementation, thus suggesting that secreted Cu proteins are essential for Streptomyces 

development (14). 

The formation of aerial hyphae that transform into extended spore chains with cell 

division producing septa arranged into ladders (96-98) poses issues from a biotechnological 

perspective. Streptomyces tends to form ‘pellets’ or ‘clumps’ in liquid environments due to 

this mycelial growth (98). This very manner of growth is one of the main obstacles of using 

Streptomyces as an expression host. There has been recent research to overcome this issue 

as highlighted by van Dissel et al. which discusses a gene cluster target involved in mycelial 

aggregation which upon modification could lead to better performance of Streptomyces as 

 

Figure 1.8 – S. lividans morphological development at increasing concentrations 
of Cu(II) on agar R5 medium (contains yeast extract and glucose as carbon 
source). Aerial hyphae(grey) and spores develop as the Cu(II) bioavailability 
increases. 
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cell factories (98). It was stated by van Dissel et al. that the formation of mycelial structures 

occurs when growing Streptomycetes in submersion and overall forms pellets which on an 

industrial scale poses several issues including culture heterogeneity, mass-transfer 

impediments and slow development (98). van Dissel et al. aimed to address this issue of 

pellet formation by identifying the genes involved (98). This was achieved by firstly using a 

chemostat to grow and select over 100 generations of S. lividans to obtain a loose pellet 

forming mutant (PM01) and a non-pelleting strain (PM02) (98). Thus, with the use of various 

growth limiting substrates, PM02 was analysed in continuous culture for the plasmids’ 

segregational stability which are plasmids pIJ2 (99) and selected pSG5 plasmids reported in 

previous research (98, 100). Mutations were identified in both strains PM01 and PM02 – the 

non-pelleting mutation was discovered in a membrane protein gene (matA gene) that is co-

transcribed with a bifunctional polysaccharide deacetylase/synthase gene (matB gene) (98). 

Both genes are needed for pellet formation and reverse engineering was performed to 

decipher an original molecular factor required for pellet development (98). A single point 

mutation was identified that was responsible for the phenotype of mycelial aggregation and 

this mutation was labelled Mat (98).  Based on genetic complementation of strain PM02 

studied it was found that the mutations in the matA gene was the main target of this 

morphogenesis (98). Also, it was found that a more dispersed mycelium with increased 

growth rate in S. lividans when deletion of the mat genes was performed (98). 

Indeed, research behind this pellet formation in Streptomyces is essential to ever 

transform members of this genus into production hosts. The requirement to then grow 

Streptomyces in large bioreactors on an industrial scale would require the growth to produce 

a more fragmented mycelium and inhibit pellet formation altogether. The exact biochemical 

mechanism behind pellet formation has yet to be fully elucidated. However, proposed 

mechanisms in S. lividans have been offered.  

This begins with the Sco operon discovered in S. lividans which contains three genes 

(SLI4212, SLI4213, SLI4214) that encode cuproproteins that are essential to Cu dependent 

development (44, 101). Specifically, the Sco protein (SLI4214) has been shown to participate 

in the Cu driven development of S. lividans (44). Sco proteins are best known for the role in 

delivering Cu to the CuA site of CcO. However it was discovered that this development can 

occur in the absence of CcO and thus it was suggested that Sco participated in a branched 

Cu-trafficking pathway, whereby one branch delivered Cu to CcO and the second branch to 

a protein required for morphological development (44). 
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The paper by Petrus et al. discusses the cuproenzyme GlxA in S. lividans alongside the newly 

discovered DyP-type peroxidase (DtpA) and how these proteins function in a Cu regulated 

pathway in the hyphal tips of the aerial mycelium of S. lividans (12). At these hyphal tips, 

extracellular glycans are produced which are essential to pellet formation when S. lividans is 

grown in liquid culture (12, 92, 102). The role of GlxA in S. lividans involves a crucial Cu 

dependent morphological development in this bacterium. GlxA active site contains a redox 

cofactor that is a cross-linked Tyr-Cys along with a mononuclear Cu ion (103). According to 

Chaplin et al., GlxA is similar to fungal galactose oxidase (Gox) in terms of its Cu co-ordination 

geometry but different to Gox based on spectroscopic data (103). Complete loss of glycan 

development in the hyphal tips of S. lividans strains containing GlxA null-mutants grown in 

both liquid and solid culture has been reported (103). It was observed that the GlxA null-

mutant did not respond to Cu supplementation and thus supports a hypothesis that GlxA is 

essential for development of an as yet unknown glycan (103). Thus, the GlxA null-mutant 

offers promise of creating the desired morphology of open mycelium in liquid culture; this 

brings possibilities of using S. lividans as an heterologous expression host of valued enzymes 

(103). 

To place GlxA into the context of the Cu trafficking pathway involving DtpA (Fig. 1.9), 

the extracytoplasmic Cu chaperone (ECuC) transfers Cu ion to the extracellular Sco 

chaperone. The Sco chaperone delivers this Cu ion to GlxA which incorporates it into its active 

site to initiate enzyme activity (12). DtpA would act to removes hydrogen peroxide produced 

 

Figure 1.9 - (Image taken from paper by Petrus et al. (12)) Illustrated pathway for hyphal tip formation in S. 
lividans. An uncharacterised transporter SLI_4212 is involved in transporting intracellular Cu to the 
extracellular space.  Lipoprotein ECuC transfers Cu to Sco chaperone. DtpA is involved in changing Cu(I) to 
Cu(II) which is required for GlxA maturation. This is followed by Sco chaperone transferring Cu to GlxA. GlxA 
generates H2O2 during oxidation of its substrate which is possibly removed by DtpA. Cellulose synthase 
protein CslA cooperatively functions with GlxA to produce extracellular glycan which in turn could be possibly 
treated by endoglucanase CslZ (12) 
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by GlxA thus maintaining its stability (12). A cellulose synthase protein, deriving from family 

2 of glycosyl transferases is encoded by the CslA (12, 104) and is proposed to act 

cooperatively with GlxA to produce an extracellular glycan (synthesizes a β(1,4)­glycan at 

hyphal tips) which could then be processed by CslZ (endoglucanase) (12). It was found that 

mutation of the CslA gene inhibits aerial growth and thus pellet formation when S. lividans is 

grown in a submerged environment (12, 105, 106).  

The genes for CslA, GlxA and CslZ form a gene cluster in S. lividans and this operon 

can be found in most Streptomycetes (12). Deletion of either glxA or cslA inhibits 

morphological development in S. lividans leading to poor glycan formation and overall 

absence of pellets (12, 103, 107). As discussed in the paper by Chaplin et al., in vivo null 

mutants of glxA and cslA were created and by adding exogenous Cu(II) to these mutants, this 

does not restore S. lividans morphological growth (103). In addition, the lack of Cu inhibits 

aerial hyphae and pellet formation in the null-mutants glxA, dtpA, sco and cslA except for cslZ 

(12). It was found via Western analysis that dtpA and sco mutants inhibit GlxA development 

but with the addition of Cu, this morphology can be salvaged (12). The research by Petrus et 

al. provides a Cu pathway whereby GlxA and CslA are essential to the morphological 

development in S. lividans which functions with the Tat-secreted DtpA (12). 

 

1.7 Cytosolic Cu control in S. lividans 
As discussed above, Cu is needed for S. lividans morphological development, but it is essential 

to regulate the amount of Cu in the cytoplasm to prevent toxicity. This is achieved via various 

cytosolic Cu metallochaperones as they are essential for transporting Cu to areas within cells 

where Cu is required. Worrall et al. initially identified two operons in S. coelicolor that 

encoded for a CopZ-like Cu metallochaperone and a CopA-like P1-type ATPase transporter 

(14). Further work by Chaplin et al. revealed a total of four copZ and five P-type ATPase 

encoding genes in S. lividans (17). A CsoR operator sequence was found to precede the copZ 

genes (17, 108), indicating Cu regulation was under the control of a copper sensitive operon 

repressor (CsoR) metalloregulator. The CopZ Cu(I) binding motif was deduced as MX1CX2X3C 

with two Cys thiols which is typical of Atx1 type proteins (17, 109-111). Chaplin et al. 

discovered the KD for two of the CopZ chaperones in S. lividans were 2.1 × 10-17 M and 3.7 × 

10-18 M (17). The mechanism used by most bacteria to avoid Cu toxicity is by buffering the 

cytosol but if this method is insufficient then Cu sensors (metalloregulatory proteins) 

stimulate the expression of efflux system genes such as Cu exporting P1-type ATPases that 

restore the cytosol to homeostasis (14). Overall, a mechanism of a Cu homeostatic pathway 

in S. lividans was deduced through RNA-seq, promoter probing and other methods (14, 17). 
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CsoR can regulate the Cu concentrations in S. lividans which involves transcriptional 

derepression of Cu efflux genes which include CopZ-like Cu chaperones and CopA-like P-type 

ATPases (17, 108). This is achieved by cuprous ions binding to apo-CsoR (17, 108, 112). This 

mechanism overall allows the CsoR regulon to maintain a set level of Cu ions within the 

bacterial cell under homeostatic and stress induced conditions (17, 108, 112) (Fig. 1.10). 

Research into cytosolic Cu regulation in S. lividans such as this can aid in the understanding 

of similar systems in other organisms. For instance, the work by Novoa-Aponte et al. 

describes Cu delivery to P. aeruginosa CueR transcriptional regulator (113-115) by 

cytoplasmic Cu chaperones CopZ1 and CopZ2 in both in vitro and in vivo studies (114). It was 

highlighted that CopZ2 had a greater role of Cu storage as it was more abundant and has 

higher Cu affinity due to a His residue in a Cu binding loop (MXCXHC) (114). This is relevant 

for CopZ chaperone found in S. lividans as deletion of this His residue affects Cu affinity (17, 

114). It was stated by Novoa-Aponte et al. that these two CopZ chaperones operated in 

different metal pools in vivo (114). This is supported by the finding that CopZ1 is responsible 

for Cu delivery to CueR as CopZ1 has a higher KD compared to that of CopZ2 (114). It was 

deduced that CopZ2 had a role in responding to Cu stress (114). Novoa-Aponte et al. 

described experiments  involving P. aeruginosa being exposed to 0.5 mM Cu2+ whereby copZ2 

gene was induced in response to this Cu stress (114). 

1.8 New concepts regarding Cu regulation in Streptomyces 
The existence of Csp3 proteins challenges previous ideas of cytoplasmic Cu storage in 

prokaryotes and raises the question if other organisms possess these proteins. The presence 

 

Figure 1.10 - Schematic diagram displaying the function of CopZ-like copper chaperones in the cytosol of S. 
lividans when the cell is under Cu(I) stress. These CopZ chaperones contain Cys residues that can bind Cu(I) 
ions (17). The CsoR is also displayed, which regulates Cu concentrations in S. lividans through the 
transcriptional derepression of copper efflux genes. As shown in the diagram, this is achieved by CopZ 
transferring Cu ions to apo-CsoR bound to DNA whereby it dissociates itself (17). 
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of Csp3 in P. aeruginosa 

(PA2107) has been 

mentioned in the paper by 

Novoa-Aponte et al. (114). 

The discovery of Csp3 has led 

to suggestions that these 

proteins could act as 

virulence factors in 

pathogenic bacteria (75). The ability of Csp3 to store large amounts of cytosolic Cu is ideal 

for pathogens that could possess homologues of these Csp3 proteins and utilise them in 

preventing Cu toxicity inflicted by the host immune system. But there is currently no evidence 

to justify this virulence factor aspect of Csp3s and still requires further investigation. Csp3 

proteins could also provide a better understanding of the copper regulated pathways in 

Streptomyces and other non-pathogenic bacteria. Before the discovery of Csp3, the existence 

of cytosolic copper storage proteins remained unknown (1, 75). Indeed, to be able to find a 

homologous protein in S. lividans would be beneficial to the goal of utilising this organism as 

an expression host. Before this can be achieved, the understanding of cytoplasmic Cu 

regulation in S. lividans must be elucidated. Recent findings in how cytosolic Cu affects gene 

expression, secondary metabolism, spore germination and vegetative growth in 

Streptomyces coelicolor have been reported by González-Quiñónez et al. (116). It was found 

that cytosolic Cu secretion was managed by SCO2730/2731 copper chaperone/P-type ATPase 

export system during germination (116). The absence of this Cu export system was found to 

delay germination and sporulation in S. coelicolor but enhanced secondary metabolism by 

40% (116) which increased production of industrially valuable secondary metabolites (116).  

There are significant discoveries of Cu efflux systems in many prokaryotes but very 

few examples of Cu uptake. Cu uptake has been well studied in eukaryotic systems. A recent 

study in Streptomyces by Wang et al. (5) highlights the discovery of a Cu uptake system. 

Chalkophores have been identified in bacteria that lack Mbn. An example includes diisonitrile 

natural product, SF2768 (Fig. 1.11), identified in the Gram-positive bacterium Streptomyces 

thioluteus (5, 55). The research by Wang et al. (5) discusses the discovery of biosynthetic 

gene cluster by genome sequencing, labelled as putative nonribosomal peptide synthetase 

(NRPS) that included the sfa operon that produced the compound SF2768 (5). The SF2768 

was found to bind extracellular Cu to produce copper-SF2768 complex and its chalkophore 

activity demonstrated transporting Cu into S. thioluteus (5). Through various biochemical in 

 

Figure 1.11 – Chemical structure of SF2768 diisonitrile compound 
from S. thioluteus (5) 
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vitro and in vivo experiments, the work by Wang et al. had uncovered a novel Cu uptake 

system (5). This included the characterisation of major facilitator superfamily (MFS) exporter 

operon that is responsible for exporting SF2768, specifically Orf12 transporter (5). SF2768 

binds environmental Cu(II) in a reductive manner to produce Cu(I) (5). Wang et al. reported 

that the ABC transporter Orf19-21 transported the copper-SF2768 back within the cell 

whereby the bound Cu(I) is released and utilised for various cuproproteins (5). 

The biotechnological possibilities associated with utilising a bacterium such as S. 

lividans requires much consideration in research applications. The need to fully understand 

the inner regulatory pathways on a genetic, morphological and biochemical level are 

paramount. Thus, further research into each area is required and investigation into other 

microorganisms can aid in this task. For example, the discovery of Csps in M. trichosporium 

(1). Such proteins that can be found in S. lividans could provide the missing link in Cu 

regulation as to how exactly Cu is stored in this bacterium. Additionally, the work by Petrus 

et al. in formulating a model of a Cu regulated pathway in development of extracellular 

glycans in the hyphal tips of S. lividans could offer a solution to the issue of pellet formation 

when this prokaryote is grown in liquid culture (12). This also includes the research carried 

out by Chaplin et al. on the characterisation of LPMO AA10 found in S. lividans and its role in 

glycan formation (117). The overall aim to characterise each component and pathway 

involved in morphological development in S. lividans is crucial as this would allow 

modification of these components to exploit this bacterium for industrial purposes. Indeed, 

improving S. lividans as an expression host will open up new possibilities for the production 

of high value enzymes and compounds, which would greatly benefit the biotechnological 

industry.  

1.9 Aim and scope of thesis 
The aim of this thesis is to investigate cytoplasmic Cu regulation in S. lividans. S. lividans is 

shown to contain a Csp3 and this thesis will explore various aspects of this novel 

metalloprotein. This includes an in-depth phylogenetic analysis using bioinformatic 

approaches as well as structural, biochemical and functional characterisation of the protein. 

There will also be an investigation into the kinetics of Cu(I) loading into this non-

methanotrophic Csp3 and initial expression studies of a transmembrane protein which could 

be a possible component in Cu homeostasis/regulation in S. lividans linked to the function of 

the Csp3 is explored. 
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2 Chapter Two 

 

 

Phylogenetic characterisation and 

taxonomic distribution of a novel 

cluster of copper genes in 

Streptomyces lividans 
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2.1 Introduction 
Streptomycetes are Gram-positive bacteria that are members of the Terrabacteria group 

which belongs to the greater phylum of Actinobacteria. Streptomyces is the greatest genus 

within this phylum and its members are predominantly soil-dwelling organisms. Many 

streptomycetes display a strong dependence on the bioavailability of copper (Cu) for their 

morphological development. As indicated in Chapter 1, the bioavailability of Cu governs the 

morphological switch between vegetative mycelium and aerial hyphae in Streptomyces 

lividans and understanding this phenomena has been a target of research due to the many 

useful secondary metabolites produced during this switch (14). The Gram-positive bacterium 

obtains Cu through its natural surroundings in soil and how Cu is utilised to enable the 

development switch has been extensively investigated (12, 14, 17-19, 44, 101, 103, 108, 112, 

118, 119). The Cu proteome of S. lividans contains an array of Cu chaperones (extracellular 

and cytosolic), a Cu metalloregulator belonging to the copper sensitive repressor (CsoR) 

family (120), that regulates efflux pumps and several classes of Cu enzymes, including lytic 

polysaccharide monooxygenases and Cu oxidases (14). Cu is strictly regulated within the cell 

due to its toxicity and S. lividans has developed tightly regulated efflux systems to efficiently 

remove Cu out of the cytosol when under Cu stress (17, 18, 108, 119). Extensive structural, 

biochemical and transcriptional characterisation has been carried out on the Cu regulatory 

systems in S. lividans (17, 18, 108, 119), which have been essential for understanding the 

salient mechanisms of cytosolic Cu handling.  

Evolutionary analyses of biological systems, such as genes involved in Cu toxicity and 

regulation, requires investigating sequence data across the three domains of life; Archaea, 

Bacteria and Eukaryota. (121, 122). Eukaryotes are known to hold their chromosomes in the 

nucleus and possess organelles whereas prokaryotes maintain their DNA in a circular plasmid 

in the cytoplasm. An investigation into the key aspects of the Tree of Life was reviewed by 

Williams et al. (123), whereby recent advances in evolutionary biology suggest the 

Eurkaryota domain originated from Archaea (123). The rise of eukaryotes occurred through 

the possible fusion of a bacterial cell and an archaean and lateral gene transfer events 

occurred thereafter (123, 124). Horizontal gene transfer (HGT) or lateral gene transfer (LGT) 

involves genetic material moving across regular mating barriers between unrelated 

organisms. LGT is known to be a great contributor to influencing the evolution of genomes 

across the Tree of Life (125, 126).  

Cu storage proteins (Csp) were first identified in the methanotroph Methylosinus 

trichosporium OB3b and have subsequently been found to store high quantities of cuprous 

Cu ions (1). Csp1 and Csp2 have Tat export sequences and are secreted to the periplasm and 
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have been considered to act as a Cu(I) store for particulate methane monooxygenase 

(pMMO) (1, 55, 127). A third Csp, Csp3, was identified in M. trichosporium and is distinct from 

Csp1/2 through the absence of a Tat signal sequence and therefore Csp3 remains in the 

cytosol (1). Following the discovery of M. trichosporium OB3b Csp3, BLAST searches revealed 

Csp3 homologs were present in non-methanotrophic bacteria (1).  

This chapter reports the identification of a gene encoding for a cytosolic Csp in S. 

lividans (referred to in this chapter as Ccsp) and the identification of two genes in the Ccsp 

genomic environment that may serve to function alongside the Ccsp. The taxonomic 

occupancy of these three genes and their evolution across the Tree of Life using similarity 

searches and evolutionary reconstruction methods has been carried out.  

2.2 Methods 
Protein sequences were retrieved by using BLAST (128) to carry out similarity searches by 

using the online version in the National Center for Biotechnology Information webpage (129). 

The following sequences of these proteins from Streptomyces lividans 1326; Ccsp 

SLI_RS1725541 (Accession number: AIJ15215), SLI_RS17245 (Accession number: AIJ15217) 

and SLI_RS17250 (Accession number: AIJ15216) were utilised as queries. These searches 

were carried out against each major group within Bacteria, Archaea, and Eukaryota as listed 

in NCBI Taxonomy (130). In addition, as S. lividans belongs to the bacterial group 

Terrabacteria, a more in-depth search into this group was carried out. The default e-value 

threshold of 2E-02 was used in these BLAST searches. For each taxonomic group, the top 5 

results (between 1 and 5 hits) were selected. Thereafter, MAFFT was used for multiple 

sequence alignment using the “Auto” strategy option (15). The online version of Gblocks 

(131) using the “less stringent” options was used to remove positions of ambiguous 

alignment. The Maximum Likelihood method was used to construct the phylogenetic trees 

by using the program FastTree2 (132); the WAG + Gamma evolutionary model of 

substitutions (133) and a combination of parameters that overall carried out a slow and 

accurate tree search (-spr 4 -mlacc 2 -slownni -no2nd). The Shimdodaira-Hasegawa (134) test 

was used to calculate the local support values. 

2.3 Results 
2.3.1 Identification of a Csp gene in S. lividans and genes that could represent a 

putative Cu transport system 
The S. lividans 1326 genome was searched for genes encoding Csp members using MtCsp3 

(1) as input. A gene encoding a putative Csp was discovered between the genes SLI_3625 and 

SLI_3626 that transcribes on the opposite strand and is thus not part of the 

SLI_3625/SLI_3626 operon (19, 135). This gene was not originally annotated in the S. lividans 
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1326 sequence but was later given the locus-tag SLI_RS1725541 in the S. lividans Genbank 

annotation (CM001889) (19, 136). The upstream and downstream genes were given new 

locus tags; SLI_RS17250 (old tag SLI_3625) and SLI_RS17260 (old tag SLI_3626) (19). The 

SLI_RS1725541 gene translates into a protein sequence of 136 amino acids that is lacking a 

recognisable export signal sequence (19) and contains 18 Cys residues whereby 17 are in a 

CXXXC or CXXC motif (19). Sequence alignment with Csp3 proteins from other bacteria (Fig. 

2.1) revealed strong sequence conservation of the Cys residues, and together with the 

absence of a signal peptide, this strongly suggested S. lividans 1326 possessed a Csp3 

member. The protein was named Ccsp (cytosolic copper storage protein).  



35 
 

 

Figure 2.1 - Multiple sequence alignment of Csp3 homologues made using MAFFT (15). Conserved amino acid residues highlighted using 80 % 
stringency. Cys residues are highlighted in dark red. 
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Further analysis into the Ccsp genomic environment revealed two upstream genes predicted 

to encode a Na+/H+ antiporter (SLI_RS17245) and a protein that belongs to the domain of 

unknown function DUF4396 superfamily composed of 181 amino acids (SLI_RS17250) (Fig. 

2.2 inset). A precorrin-8x methyl mutase is predicted to be encoded in the adjacent 

downstream gene (SLI_RS17260) (Fig. 2.2 

inset). Further examination of 

SLI_RS17250 (DUF4396) protein 

sequence predicts a His-rich N-terminal 

sequence (13 His in total) and at least 

four transmembrane helices with the 

beginning of the first helix having a 

CXXXC motif. Additionally, no close 

homologues of SLI_RS17250 with a 

known structure were found in the BLAST 

search against the PDB and thus 

SLI_RS17250 could represent a distinct 

family of transporter. Intriguingly, some 

remote homology can be established 

with the substrate binding S-subunits of the energy coupling factor family of micronutrient 

transporters, and the SLC11/NRAMP family, which are involved in transition metal ion 

transport. (137) (138, 139).  

 From a previous RNA-seq study with S. lividans 1326 grown under Cu stress (18), it 

was reported that SLI_RS17245 and SLI_RS17250 become upregulated 6-fold following a 30 

min Cu pulse (400 M) (18, 19). At the time of the initial RNA-seq report on global Cu 

regulation in S. lividans, the Ccsp gene had not been identified and re-analysis of the RNA-

seq data (18) revealed that the Ccsp transcript is present at low-levels under homeostasis 

conditions but following the Cu pulse is up-regulated some 5-fold (Fig. 2.2). Moreover, the 

precorrin-8x methyl mutase gene, SLI_RS17260, is unaffected following the Cu pulse (Fig. 2.2) 

(18). The fold change of the transcript levels for Ccsp/DUF/Na+/H+ is on a similar magnitude 

as the CopZ/ATPase transcripts under regulatory control of the copper sensitive operon 

repressor protein (CsoR) (Fig. 2.2). Furthermore, RNA-seq data with a csoR strain indicate 

that the Ccsp/DUF/Na+/H+ is not under the transcriptional control of CsoR (18). Thus, the Ccsp 

gene and the SLI_RS17245 and SLI_RS17250 genes are concomitantly sensitive to elevated 

 

Figure 2.2 – Genomic environment of the Ccsp (inset). 
RNA-seq data represented as fold change of S. lividans 
gene expression after a Cu pulse (18). The genes 
include Ccsp, SLI_RS17245 (Na+/H+), SLI_RS17250 
(DUF4396), CsoR efflux and 17260 (SLI_RS17260). 

 

 

 

 



37 
 

Cu levels and in a sense decoupled from CsoR control. This could hint at the possibility of a 

novel Cu export system whereby Ccsp could act as a donor to SLI_RS17250, which through 

the coupled action with a Na+/H+ antiporter (SLI_RS17245), moves Cu out of the cytosol. 

2.3.2 Taxonomic distribution of the putative Ccsp Cu transport system  
BLAST searches revealed that SLI_RS17245 was the most abundant across the Tree of Life 

with a higher number of BLAST hits compared to Ccsp and SLI_RS17250 (SLI_RS17245 giving 

1,174 BLAST hits versus 621 and 277 BLAST hits for Ccsp and SLI_RS17250, respectively). 

However, Ccsp and SLI_RS17245 showed a considerable number of BLAST hits in Bacteria 

groups Terrabacteria, FCB and Proteobacteria, which for all three groups, gave over 100 hits 

for both Ccsp and SLI_RS17245. Overall, less than ten BLAST hits were found in most of the 

other bacterial groups. This may be due to sampling bias in NCBI for certain bacterial groups 

or may represent a genuine lower profusion of those protein sequences in some bacterial 

groups. The overall taxonomic distribution of the three proteins is displayed in Table 2.1. 

The evolutionary lineage of the three protein sequences was next investigated (Ccsp, 

SLI_RS17245 and SLI_RS17250). From the taxonomic distribution shown in Table 2.1, it was 

found that 13 Bacterial groups contain at least one element of this putative Cu export system. 

There were 5 groups within Bacteria that possess all three components but only few species 

possessed all three: Acidobacteria, FCB group, Proteobacteria, Nitrospirae and Terrabacteria. 

Due to our interest in Streptomyces a deeper search for the three genes was performed in 

the Terrabacteria group. All the groups within Terrabacteria have at least one representative 

of the putative Cu resistance system, with the exception of Tenericutes. The four 

terrabacterian groups showing the highest number of BLAST hits are also the ones in which 

the three members of the system are present: Actinobacteria, Chloroflexi, Firmicutes, and 

Deinococcus-Thermus (Table 2.1). Regarding the three major groups of Archaea, Ccsp and 

SLI_RS17250 were not found in the DPANN group but were present (with a low number of 

hits) in the TACK group and the halophilic Euryarcheota (Table 2.1). Like the situation found 

in Bacteria many hits were found for SLI_RS17245 in the three archaean groups compared to 

Ccsp and SLI_RS17250. Finally, among eukaryotes only the fungi (Opisthokonta) show 

representatives for the three genes, with Ccsp also found in land plants (Table 2.1).  
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Table 2.1 - Taxonomic distribution of the Ccsp, SLI_RS17245 and SLI_RS17250 in the Tree of Life 

  Ccsp SLI_RS17250 SLI_RS17245 

BACTERIA 
   

Acidobacteria       

Aquificae     

Caldiserica    

Chrysiogenetes     

Deferribacteres  
 

  

Dictyoglomi    

Elusimicrobia    

FCB group       

Fusobacteria  
 

 

Nitrospinae/Tectomicrobia group  
 

  

Nitrospirae       

Proteobacteria (purple bacteria)       

PVC group   
 

  

Rhodothermaeota 
 

  

Spirochaetes   
 

  

Synergistetes     

Terrabacteria group       

Thermodesulfobacteria     

Thermotogae    

    
Terrabacteria group 

   
Actinobacteria       

Armatimonadetes     

Chloroflexi (green non-sulfur bacteria)       

Cyanobacteria/Melainabacteria group   
 

  

Deinococcus-Thermus       

Firmicutes (Gram-positive bacteria)       

Tenericutes 
  

 

    

ARCHAEA       

DPANN group     
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Euryarchaeota       

TACK group       

    
EUKARYOTA       

Alveolata (alveolates) 
  

 

Amoebozoa  
 

  

Apusozoa    

Breviatea    

Centroheliozoa (centrohelids)    

Cryptophyta (cryptomonads) 
  

 

Euglenozoa 
  

 

Fornicata    

Glaucocystophyceae 

(glaucocystophytes) 
   

Haptophyceae (coccolithophorids)  
 

 

Heterolobosea 
  

 

Jakobida    

Katablepharidophyta  
 

 

Malawimonadidae    

Opisthokonta       

Oxymonadida (oxymonads)    

Parabasalia (parabasalids) 
  

 

Rhizaria 
  

 

Rhodophyta (red algae) 
 

   

Stramenopiles (heterokonts) 
  

  

Viridiplantae (green plants)      
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Construction of phylogenetic trees from the three protein sequences (Ccsp, SLI_RS17245 and 

SLI_RS17250) reveal mainly bacterial branches with a low number of archaea and eukaryote 

twigs interspersed (Fig. 2.3, 2.4 & 2.5). Most nodes display high statistical supports; however, 

the evolutionary trees do not recover the monophyly of many bacterial groups due to the 

high degree of conservation of the three sequences. Their broad taxonomic distribution 

across the major Bacteria groups supports a hypothesis that these three sequences 

originated in the bacterial last common ancestor (LCA), followed by multiple gene losses in 

independent bacterial lineages. In contrast, the scarce presence of the three sequences in 

different members of Archaea and Eukaryota, together with the lack of evolutionary 

relationships between their sequences, points to the absence of these sequences in the LCA 

of each of those domains and a most likely origin is multiple lateral gene transfer (LGT). Using 

the taxonomic occupancy together with the phylogenetic trees a reconstruction of the origin 

and evolutionary history of the three protein sequences can be created (Fig. 2.6). This 

illustrates that the bacterial Ccsp gene jumped twice to Euryarcheota, twice to the TACK, and 

 

Figure 2.3 – Spiral phylogenetic tree of all potential homologues of Ccsp. Maximum Likelihood method was 
used to construct the phylogenetic trees by using the program FastTree2 (21). Final construction of the 
spiral trees was carried out using MEGA7 (7). The branches highlighted in blue colour represent all species 
that belong to Archaea and all branches highlighted in red colour are species that are part of Eukaryota 
group 
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twice to eukaryotes (fungi and plants). SLI_RS17245 underwent at least five independent LGT 

towards Archaea, and three towards Eukaryota (Fig. 2.6). The SLI_RS17250 gene jumps the 

least, with two transfers to different Archaea, and two others to the eukaryotic fungi (Fig. 

2.6). It is important to note that the presence of the three genes in eukaryotes will be 

analysed further in the Discussion. It is not possible to infer from this data if there is 

coincidence in the timing of the transfers for the three genes. However, it is striking that the 

genome of three species of TACK archaeans (related to the genus Nitrososphaera, an 

ammonia oxidizing archaean) hold the three genes, suggesting they may have been 

transferred together in block. It must be noted that for all three genes, the data collected for 

the Eukaryota domain has been recently questioned as to whether these targets are in fact 

been mistaken for bacterial species (75). This will be explored further in the Discussion, but 

this issue has been considered for all data collected and the eukaryotic species can be 

identified in all phylogenetic trees (Figs. 2.3-2.5 and Appendix 1.1). 

 

 Figure 2.4 - Spiral phylogenetic tree of all potential homologues of SLI_RS17245. 
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2.4 Discussion 
2.4.1 Origin and Evolution of the copper storage system 

 

Figure 2.6 - Evolution of the Ccsp, SLI_RS17245 (3624) and SLI_RS17250 (3625) in the Tree of Life. 
The occupancy and phylogenetic patterns point to multiple transfer events (indicated with arrows) 
from Bacteria to the other domains of the Tree of Life. Eukaryota has been circled in red due to 
issues in validating sample taxonomy (see Discussion). 

 

 

 

 

 

 

 

 Figure 2.5 - Spiral phylogenetic tree of all potential homologues of SLI_RS17250. 
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It has been possible to determine the evolutionary history and origins of Ccsp, SLI_RS17245 

and SLI_RS17250 by constructing the phylogenetic trees and their taxonomic occupation 

presented in this chapter. It has been hypothesised that all three genes derive from a 

bacterial last common ancestor (LCA) due to their wide distribution among the main Bacteria 

groups and were subjected to several gene losses in independent bacterial lineages. 

Although, it cannot be disregarded that possible LGT events occurred as there is a shortfall 

in resolution in parts of the phylogenetic trees. On the other hand, Ccsp, SLI_RS17245 and 

SLI_RS17250 are lacking in various members of Archaea and Eukaryota, along with 

inadequate evolutionary relationships between their sequences. Lest a great number of 

secondary gene losses occurred to explain their scarcity, this overall suggests an absence of 

these genes in the LCA of each of those domains. The likely explanation for this is due to 

multiple LGT events but with more genetic sampling this theory may change. 

Figure 2.6 has helped by illustrating possible transfer patterns across all three 

phylogenetic trees as high levels of conservation in these genes have yielded some surprising 

phylogenetic patterns. Figure 2.6 initially shows the bacterial Ccsp gene jumped twice to 

Euryarcheota, twice to the TACK, and twice to eukaryotes (fungi and plants). As for 

SLI_RS17245, it is possible that at least five independent LGT events occurred towards 

Archaea and three towards Eukaryota. The SLI_RS17250 gene displayed the least amount of 

movement showing only two transfer events to various Archaea and two others to eukaryotic 

fungi. From this data alone, it is not possible to suggest any coincidence in the timing of the 

multiple transfers of the three genes. Interestingly, it was found that three species of TACK 

archaeans (related to the genus Nitrososphaera, an ammonia oxidizing archaean) possess all 

three genes in their genomes and suggests that, Ccsp, SLI_RS17245 and SLI_RS17250 have 

been transferred together simultaneously. For this to be validated, more information into 

these three genes structure and function within Nitrososphaera must be obtained to support 

this theory. Also, it has been observed that all three genes have jumped multiple times 

towards multicellular groups such as plants, slime molds, and fungi, as well as some 

unicellular algae.  

Despite fascinating observations made from these phylogenetic analyses especially 

regarding transfer events of all three genes occurring in Eukaryota, it is essential to note that 

these eukaryotic targets could have been mistaken for bacterial species. It has been 

mentioned for Ccsp in particular, that due to a high sequence similarity between eukaryotic 

homologues and Ccsp raises this suspicion as stated by Dennison et al. in their review of Csps 

(75). As suggested by Dennison et al. this error is not surprising as many bacterial species are 
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soil dwelling or widespread in nature (75). Thus, contamination of samples with bacterial 

DNA is highly likely and gives this probable error in the phylogenetic analyses (75). The same 

issue could also be applied for SLI_RS17245 and SLI_RS17250 eukaryotic targets. The 

Eukaryota branch in Figure 2.6 has also been highlighted for this purpose, see also Appendix 

1.1.  

It was widely considered that the bacterial cytosol did not possess the machinery to 

store copper due to the absence of metabolic requirement and the toxicity of copper. This is 

unlike mammals, which possess various metallothioneins which are able to bind cadmium(II), 

copper(I) , zinc(II) or two of these metal species simultaneously (75, 140). The unexpected 

discovery and characterisation of cytosolic copper storage proteins known as Csp3s 

overturned the previous ideas about cytosolic copper in bacteria. This has now led to the 

discovery of Ccsp in S. lividans and has revealed its extensive taxonomic distribution across 

the Tree of Life (Figs. 2.3-2.5). Additionally, the phylogenetic distribution of SLI_RS17245 

(Na+/H+ antiporter) and SLI_RS17250 (DUF4396) could suggest the existence of a copper 

cytosolic storage and regulation system that have not yet been characterised in other 

bacteria. It is well established that S. lividans requires copper as part of its development (19, 

118). Stemming from this, previous studies in the extensive characterisation of S. lividans 

copper efflux and trafficking system, CsoR/CopZ/P1-type ATPase, have yielded some 

interesting transcriptional responses to copper (17-19, 138, 139). Many genes other than 

CsoR/CopZ/ATPase efflux system responded to copper stress by becoming up- or down 

regulated (18). As mentioned previously in this chapter, these genes included the 

upregulation of Ccsp, SLI_RS17245 and SLI_RS17250, not under control of CsoR (Fig. 2.2) (18, 

19) and thus appear to be under the control of an unknown regulator. As suggested in the 

study by Dwarakanath et al., it is possible that multiple copper homeostatic mechanisms are 

simultaneously involved in regulating copper other than the CsoR regulon in S. lividans such 

as that described in redox homeostasis (18). Overall, these results present a potential new 

model for cytosolic copper storage and transport in S. lividans that requires further testing.  
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3 Chapter Three 

 

 

 

Characterisation of a 

cytosolic copper storage 

protein from Streptomyces 

lividans 

 

 

 
Results from this Chapter have been published in:  
Straw, Megan L., Chaplin, Amanda K., Hough, Michael A., Paps, Jordi, Bavro, Vassiliy N., 
Wilson, Michael T., Vijgenboom, Erik, Worrall, Jonathan A. R. “A cytosolic copper storage 
protein provides a second level of copper tolerance in Streptomyces lividans” 2018 
Metallomics, 10, 180-193 
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3.1 Introduction 
Streptomyces lividans shows a distinct dependence on copper (Cu) for initiating a 

morphological switch from vegetative to aerial growth that simultaneously produces 

secondary metabolites (12, 44, 103, 141, 142). From a biotechnology perspective there is 

interest in using S. lividans as an industrial cell factory for the heterologous production of 

high value proteins and enzymes for processing biomass waste, diagnostic, therapeutic and 

agricultural uses (143). Indeed, the Streptomyces genus contains some important antibiotics 

and industrially useful enzymes that would prove beneficial if exploited correctly. The 

bioavailability of metal ions in microbial growth cultures is known to be important for 

optimizing batch processes, and to a certain extent this has been shown for Cu bioavailability 

in S. lividans and as such can impact on growth morphology in submerged (liquid) cultures 

(103). Thus a thorough understanding of how Cu is utilized in the host, i.e. in ‘correctly’ 

metalating secreted nascent apo-enzymes or proteins (37, 144, 145) in Cu resistance 

mechanisms (146) and in Cu trafficking pathways is important for creating re-engineered 

strains for optimized and improved growth.  

Linked to understanding Cu handling in S. lividans is the discovery of a cytosolic 

copper storage (Ccsp) protein (Fig. 3.1) that has been described in Chapter 2. This Chapter 

describes initial structural and biochemical characterization of Ccsp and its ability to bind 

Cu(I). In addition, a ccsp null-mutant in S. livdians has been constructed by collaborators at 

Leiden University, The Netherlands, and its effect on growth and morphology investigated 

under increasing exogenous Cu concentrations. Cu(I) trafficking has also been investigated, 

and using size-exclusion chromatography evidence for a S. lividans Cu(I) metallochaperone, 

CopZ, being able to traffic Cu(I) to Ccsp is presented.   

 

3.2 Materials and Methods 
3.2.1 Cloning of SLI_RS1725541 (Ccsp) 
The SLI_RS1725541 gene was amplified from S. lividans genomic DNA and restricted into a 

pUC19 vector provided by Dr Erik Vijgenboom (Leiden University, The Netherlands). The 

primers shown in Fig. 3.2 were used to amplify the Ccsp gene from the pUC19 vector for 

subsequent ligation into a pET28a vector (Novagen) using the NdeI and HindIII restriction 

SLI_RS1725541 
MPTTVNDLLRTYPADLGGVDREAMARCIEECLRCAQACTACADACLSEPTVADLTKCIRT 

DMDCADVCTATAAVLSRHTGYDANVTRAVLQACATVCAACGDECARHAGMHEHCRVCAEA 

CRSCEQACQELLAGLG 

 
Figure 3.1– Amino acid sequence of SLI_RS1725541 (Ccsp) derived from S. lividans. The 18 Cys residues have 
been highlighted in yellow. 
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sites to create a N-terminal (His)6-tagged Ccsp construct. The PCR cycle and reagents used 

are reported in Tables 3.1 and 3.2, respectively. 

  

The amplified product was electrophoresed on an agarose gel, extracted and gel purified. 

The NdeI-HindIII gene insert was ligated using T4 DNA Ligase (Thermo Scientific) into a 

pET28a plasmid, the vector was used to transform Escherichia coli XLI-Blue competent cells 

and transformants selected for DNA sequencing following a mini-prep (Thermo Scientific).  

3.2.2 Over-expression of Ccsp 

Forward primer 

NdeI-F 28-mer Tm ~ 63 oC (5 mM MgSO4 salt) 

5’-TCAACATATGCCCACCACCGTCAACGAC-3’ 

Reverse primer 

HindIII-R 30-mer Tm ~ 62 oC (5 mM MgSO4 salt) 

5’-AGTTAAGCTTGCATGCCTGCAGGTCGACTC-3’ 

Figure 3.2 - Forward and reverse primers used to amplify Ccsp gene via PCR. NdeI and HindIII sites underlined. 

 

 

 

 

Table 3.1 – The reagents and volumes used to amplify SLI_RS1725541 (Ccsp) gene from the plasmid pUC19. 

Reagent Concentration Volume (µl) 

SLI3625_A_pTZ19R plasmid 

DNA 

N/A 2.5 

Forward Primer - 1.0 

Reverse Primer - 1.0 

dNTP’s 10 mM 2.5 

10 x Buffer Pfu + MgSO4 - 5.0 

DMSO 100 % 2.5 

Sterile, deionized water - 35.0 

Pfu DNA polymerase - 0.5 

Total - 50.0 

 

 

 

Table 3.2 - PCR cycles – bold text indicates these steps were repeated 35 times and other steps only once. 

Temperature (OC) Time (minutes) 

95 3.0 

95 1.0 

62 (Annealing temperature) 1.0 

72 2.0 

72 7.5 (Final Extension) 

4 Finish  
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The Ccsp_pET28a construct was used to transform chemically competent E. coli BL21 (DE3) 

cells for overexpression of the Ccsp protein. Overnight cultures were prepared by selecting 

individual colonies from the transformation plate and inoculating 3 ml of 2xYT medium 

(Melford) containing 50 mg ml-1 Kan. These cultures were incubated at 37 oC with shaking at 

225 rpm for 16 h and then used to inoculate 750 ml of 2xYT media in 2 L flasks. Shaking 

continued at 37 oC and 220 rpm until an optical density at 600 nm (OD600) of 0.6 was reached 

followed by induction with IPTG (Melford) to a final concentration of 1 mM. At this point the 

temperature was reduced to 25 oC and the flasks were grown for a further 16 h. The cells 

were harvested by centrifugation at 3,501 g (F8-6x1000y rotor) using a Sorvall Evolution RC 

Superspeed centrifuge for 20 min at 4 oC. The resulting pellets were re-suspended in Buffer 

A (50 mM Tris/HCl pH 7.5, 500 mM NaCl, 20 mM imidazole) followed by addition of 1 µl of 1 

M MgCl2 to every 1 ml of cell suspension with stirring at 4 oC for 35 min. The cell suspension 

was passed through an EmulsiFlex-C5 cell disrupter (Avestin), equilibrated with Buffer A, to 

lyse the cells. The cell lysis was then centrifuged at 38,724 g (SS-34 rotor) using a Sorvall RC-

5 centrifuge for 25 min at 4 oC. The cell pellet was discarded, and the supernatant was applied 

to a 5 ml His-trap FF Ni-NTA column (GE Healthcare) to bind the (His)6-tagged Ccsp protein 

and then attached to an AKTA-Purifier and washed with Buffer A. A linear imidazole gradient 

generated using Buffer B (Buffer A with 500 mM Imidazole) to elute the bound Ccsp. The 

fractions from the Ni-NTA column were pooled and dialysed overnight at 4 oC in Buffer C (50 

mM Tris/HCl pH 7, 100 mM NaCl). The dialysate was clarified by centrifugation at 38,724 g 

(SS-34 rotor) using a Sorvall RC-5 centrifuge for 10 min and then concentrated at 4 oC, using 

centricon (Vivaspin) with 30 kDa cut-off. The N-terminal (His)6-tag was removed by incubating 

the protein at room temperature overnight with 125 KU of thrombin (Sigma) and then re-

applied a Ni-NTA column in the same manner as previously described. The flow-through was 

collected and concentrated to 2 ml in a centricon (30 kDa cut-off) and injected onto a 120 ml 

Sephadex G75 column (GE Healthcare), equilibrated in Buffer C. Selected fractions from the 

major elution peak monitored at 280 nm were examined for purity on 15 % SDS-PAGE 

(Appendix 5). Samples deemed of good purity were pooled, concentrated, flash frozen in 

liquid nitrogen and stored at -80 oC for further use. 

3.2.3 Over-expression and purification of CopZ-3079 
The overexpression of CopZ-3079 was carried out in chemically competent E.coli BL21 (DE3) 

cells and purified using the method described by Chaplin et al. (17).  

3.2.4 Preparation of Cu(I) and Ag(I) solutions and titration of apo-Ccsp 
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Solid CuCl (Sigma) was dissolved in 10 mM HCl and 500 mM NaCl and diluted with 10 mM 

MOPS pH 7.5, 150 mM NaCl in an anaerobic chamber (Don Whitley Scientific [O2] < 2 ppm). 

The Cu(I) concentration was determined spectrophotometrically using a Cary 60 UV-visible 

spectrophotometer (Varian) at 20 oC through step-wise addition of the stock CuCl solution 

into a known concentration of the Cu(I) specific bidentate chelator bicinchoninic acid (BCA; 

Sigma). Formation of the [Cu(BCA)2]3- complex was monitored at 562 nm and the 

concentration determined using an extinction coefficient () of 7,900 M-1 cm-1 (147). A stock 

solution of AgNO3 was diluted to 1 mM using MOPS buffer and then used for titration to apo-

Ccsp. An  at 280 nm of 4,105 M-1 cm-1 was used to determine Ccsp concentration 

spectroscopically as predicted by Protparam (https://web.expasy.org/protparam). Apo-Ccsp 

(4-10 µM) samples for titration with either Cu(I) or Ag(I) were sealed in an anaerobic quartz 

cuvette (Hellma) and absorbance changes, following addition of the monovalent metal ions 

monitored between 350 and 200 nm.  

3.2.5 Preparation of Cu(I)-loaded Ccsp 
Cu(I)-bound Ccsp was prepared anaerobically by diluting apo-Ccsp to a concentration of ~75 

µM and incubating 25 equivalents of a stock CuCl solution. The Ccsp-CuCl mix was left to 

equilibrate for > 15 min in an anaerobic chamber and then applied to a PD10 column 

equilibrated in MOPS buffer to remove unbound Cu(I). Cu(I)-bound Ccsp samples were taken 

out of the anaerobic chamber and concentrated to the desired concentration in a centricon 

(30 kDa cut-off) at 4 oC. Cu(I)-Ccsp samples prepared in this way were used for analytical gel-

filtration (10/300 GL G75 Superdex column (GE Healthcare)) equilibrated with 10 mM MOPS 

pH 7.5, 150 mM NaCl, and far UV-CD spectroscopy carried out on Applied Photophysics 

Chirascan CD spectrophotometer (Leatherhead, UK). The ellipticity (mdeg) was converted to 

mean residue ellipticity (deg.cm2dmol.res-1) using equation 3.1, 

𝑀𝑅𝐸 =
𝐸

10(𝑃𝑐)𝑙
    3.1 

where MRE is mean residue ellipticity, E is the ellipticity in mdeg, P is the number of peptide 

bonds (number of residues -1), c is the molar concentration and l is the pathlength in cm.  

3.2.6 Determination of apparent Cu(I) binding constants 
Samples of apo-Ccsp (4-10 µM) in 10 mM MOPS pH 7.5, 150 mM NaCl were incubated under 

anaerobic conditions with various concentrations of BCA (50-1000 µM) and increasing 

amounts of Cu(I) were added to each sample. Each Ccsp-BCA sample was prepared as 

individual solutions in Eppendorf tubes whereby each tube contained a constant [Apo Ccsp] 

and [L] (ligand – BCA). After the addition of increasing Cu(I) concentrations, each BCA series 

https://web.expasy.org/protparam
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were left to equilibrate for 2 to 16 h and spectrophotometric measurements were taken to 

quantify the [CuL2]3- BCA complex as function of Cu(I):Ccsp ratio. 

 

3.2.7 X-ray Crystallography 
Crystals of Ccsp suitable for X-ray diffraction were grown using the hanging drop vapor 

diffusion method at 18 oC following discovery of initial crystal hits in commercial screens 

using 96 well plates dispensed using an ARI Gryphon crystallization robot. For optimisation 

of the initial crystal hits, apo- and Cu(I)-loaded Ccsp, 1 µl of protein solution at a 

concentration of 15 mg/ml were mixed with an equal volume of reservoir solution which for 

apo-Ccsp contained 1.4 M ammonium sulphate, 0.1 M HEPES pH 7.0 and for Cu(I)-loaded 

contained 1.4 M ammonium sulphate, 0.1 M MES pH 6.0. Crystals of apo and Cu(I)-loaded 

were transferred to a cryoprotectant solution consisting of 40 % w/v sucrose, and flash 

cooled by plunging into liquid nitrogen. Apo-Ccsp crystals were measured at the Diamond 

Light Source on beamline I02 using an X-ray wavelength of 0.979 Å and a Pilatus 6M-F 

detector. Cu(I)-loaded crystals were measured at the ESRF on beamline ID29 using a Pilatus 

6M detector and an X-ray wavelength of 0.976 Å. All data were indexed using XDS (148) and 

scaled and merged using Aimless (149) in the CCP4 suite with the CCP4i2 interface. The apo-

Ccsp structure was solved by molecular replacement in PHASER (150) using the PDB-ID 3lmf 

as the search model. Automated model building was carried out using the Buccaneer pipeline 

(151) followed by cycles of model building in Coot (152) and refinement in Refmac5 (153). 

Riding hydrogen atoms were added when refinement of the protein atoms had converged. 

The final model of apo-Ccsp was used as the search model for Cu(I)-Ccsp molecular 

replacement. The Cu(I)-Ccsp data were twinned and twin refinement against intensities was 

performed in Refmac5 together with TLS refinement. An anomalous map for validation of Cu 

atom positions was generated using PHASER (150) in the CCP4i2 interface from a separate 

dataset measured at a wavelength of 1.368 Å. Structures were validated using the Molprobity 

server (154) the JCSG Quality Control Server and tools within Coot (152). Structural 

superpositions were carried out using GESAMT in CCP4i2 (155). Coordinates and structure 

factors were deposited in the RCSB Protein Data Bank. A summary of data, refinement 

statistics and the quality indicators for the structures are given in Table 3.3. 

3.2.8 Cu(I) transfer experiments 
The CopZ-3079 protein to be used in Cu(I) transfer experiments between Ccsp was prepared 

in an anaerobic chamber in 10 mM MOPS pH 7.5, 150 mM NaCl and 2 mM DTT. Following 

over-night incubation, DTT was removed by passing twice down a PD10 column equilibrated 

in 10 mM MOPS pH 7.5, 150 mM NaCl. Cu(I)-CopZ-3079 was then prepared by addition of a 
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stock concentration of CuCl and excess Cu removed by passing down a PD-10 column. Apo 

and Cu(I)-loaded CopZ were loaded to a 10/300 GL G75 Superdex column (GE Healthcare) 

equilibrated with 10 mM MOPS pH 7.5, 150 mM NaCl, using a 100 µl loop and the respective 

elution profiles recorded. For Cu(I)-transfer experiments, stoichiometric equivalents of Cu(I) 

were loaded to either CopZ or Ccsp, under anaerobic conditions, before mixing samples in a 

molar ratio followed by incubation of up to 3 h and then loading to the mixture to 10/300 GL 

G75 Superdex column. Stock protein concentrations were in the range of 1-3.5 mM. 

3.2.9 Generation of the Δccsp mutant of S. lividans 
The Ccsp mutant (Δccsp) was constructed according to the protocol described by Blundell et 

al. (44) from the parental strain S. lividans 1326 (John Innes Institute collection). The ccsp 

open reading frame (ORF) was replaced by a 62 nt scar of the lox recombination site including 

two XbaI sites. The mutant was analysed by PCR with genomic DNA as template to confirm 

the loss of the ccsp gene. For complementation of the Δccsp mutant the ccsp ORF with 150 

bp upstream was cloned as an EcoRI-HindIII fragment in the moderate copy number plasmid 

pHJL401 (156) and designated pCcsp-1. 

 

3.2.10 Growth morphology of S. lividans 
Soya flour mannitol (SFM) plates were used to grow fresh spores which were extracted and 

diluted to the desired concentration in sterile water. These spores were spotted in 10 l 

drops containing 103 spores and left to dry in a flow cabinet before incubation at 30 oC for 6 

days. Standard petri dishes (diameter 9 cm) containing the indicated agar medium or 24 well 

plates with 1.8 ml agar medium per well were used for spore spotting. Cu(II) citrate (Sigma-

Aldrich) was used as the Cu source and diluted to the desired concentration. 2 x 106 spores 

were used to inoculate Bennett’s glucose medium and liquid R5 medium in 125 ml baffled 

flasks and incubated with shaking (160 rpm) for 32 h. Cu was added as Cu(II)citrate to the 

desired final concentration along with BCDA (bathocuproinedisulfonic acid; Sigma-Aldrich) 

which was added to a final concentration of 50 mM. After 32 h, 2 ml samples were collected 

in duplicate in pre-weighed Eppendorf tubes. The mycelium was collected by centrifugation, 

the pellets dried for 48 h at 98 oC and dry weight of all biomass collected was deduced using 

an analytical balance. 

 

3.2.11 Cytochrome c oxidase activity 
The in vivo CcO activity was carried out using TMPD (Sigma-Aldrich) as substrate (44, 157, 

158). DNA or Bennett’s glucose agar was used for spotting strains (10 ml containing 1000 

spores) which was incubated at 30 oC for 24 h. The mycelium spots were fixed by using a light 
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spray of 0.3% (w/v) agarose in water proceeded overlaying this with 10 ml of 25 mM sodium 

phosphate pH 7.4 solution containing 20% ethanol, 0.6% agarose, 1% sodium deoxycholate 

and 10 mg TMPD. Digital images were taken every 30 seconds for 5-10 minutes to record CcO 

activity. The average pixel intensities of the indophenol blue stained mycelium were 

calculated using IMAGEJ software (159). 

 

3.3 Results 
3.3.1 Construction of an expression construct for Ccsp 

Amplification of the Ccsp DNA from the pUC19 vector using the primers reported in Fig. 3.2 

was successful based on the size of the visualised PCR product (~500 bp) on an agarose gel 

(Fig. 3.3). This band was excised, gel purified and subjected to restriction digest with the NdeI 

and HindIII enzymes before ligation to a pET28a vector cut with the same enzymes. 

Transformants following ligation were checked for the correct insert by performing a 

restriction digest with the enzymes NdeI and HindIII (Fig. 3.3) and DNA sequencing confirmed 

the correct sequence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – (A) Agarose gel showing PCR product of 
amplified Ccsp gene (470 bp). (B) Agarose gel 
confirming the Ccsp insert ligated into pET28a 
plasmid as a NdeI/HindIII fragment. 
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3.3.2 Ccsp purification and confirmation of a homotetramer in solution 
The Ccsp-pET28a construct was over-expressed in E. coli and following cell lysis and loading 

to a Ni-NTA Sepharose column eluted as a single broad peak starting at ~30 % buffer B (Fig. 

3.4A). SDS-PAGE analyses of the fractions eluting from the Ni-NTA column under this peak 

showed a major band running at ~15 kDa (Fig. 3.4C). After thrombin digestion to remove the 

(His)6-tag, Ccsp ran at a lower molecular weight on SDS-PAGE (Fig. 3.4D) and was further 

purified on a G75 size-exclusion column resulting in a major peak eluting at ~58 ml. Based on 

the column calibration this volume is consistent with Ccsp existing as a higher-order 

assembly, with the elution volume suggestive of a homotetramer (Fig. 3.4B). Denaturing ESI-

MS (carried out by Dr. Jason Crack at the University of East Anglia) gave a mass of 14,604.6 

Da as expected for a Ccsp protomer following cleavage of the (His)6-tag. Native ESI-MS gave 

a mass of 58,418.16 Da (14,604 Da x 4), thus corroborating the observation from the gel-

filtration profile that Ccsp existed in solution as a higher-order assembly most consistent with 

a homotetramer. Furthermore, the native ESI-MS studies were consistent with the absence 

of Cu bound to the purified Ccsp. Therefore, the purification protocol used not only leads to 

the successful production of Ccsp for further in vitro studies but also delivers the apo-form 

of the protein. 

3.3.3 Absorption and far-UV CD spectroscopy of apo-Ccsp 
The UV-vis spectrum of apo-Ccsp revealed no absorption transitions in the visible region 

(350-800 nm). In the UV-region (200-350 nm) a distinct peak at 280 nm is observed (Fig. 3.5A), 

 

Figure 3.4 – (A) Elution profile of Ccsp (His)6-tag on a 5 ml His-trap FF Ni-NTA column, blue line represents 
Buffer B gradient. (B) Gel filtration elution profile of Ccsp on a 120 ml Sephadex G75 column. SDS-PAGE gel 
analysis. (C) Coomassie stained 15 % SDS-PAGE analysis of fractions from the Ni-NTA column showing a 
strong band running at ~15 kDa. (D) Cleavage of (His)6-tag, lane 1 before addition of thrombin, lane 2 flow-
through from Ni-NTA column. (E) G75 column fractions. 
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which likely arises from the presence of two Tyr residues present in the Ccsp sequence (Fig. 

3.1). The far UV-CD spectrum of apo-Ccsp is shown in Fig. 3.5B and has the characteristic 

minima at 222 and 208 nm that are typical signatures of -helical secondary structure, 

confirming that the isolated apo-Ccsp is folded following purification.  

 

3.3.4 X-ray crystal structure of apo-Ccsp 
Initial crystal hits for apo-Ccsp obtained from screening against commercial crystallisation 

screens were optimised to obtain larger crystals for X-ray diffraction experiments. The 

optimised conditions for apo-Ccsp produced large colourless crystals after one week (Fig. 3.6) 

and these were selected for diffraction studies at 

Diamond Light Source. The X-ray structure of Ccsp 

was determined by molecular replacement to a 

resolution of 1.34 Å (Table 3.3). Four Ccsp 

protomers (Chains A to D) were identified in the 

crystallographic asymmetric unit (Fig. 3.7A), with 

unbroken electron density observed for residues 

17–136 in chain A, 20–135 in chain B, 19–135 in 

chain C and 16–136 in chain D. Thus, in all four 

protomers electron density corresponding to residues 1–15 in the sequence was not 

observed. Each protomer is made-up of four -helices arranged to form a four-helix bundle 

motif (Fig. 3.7A). Chains A, C and D together with a symmetry related molecule create the 

functional homotetramer quaternary structure (Fig. 3.7B). The core of each four helix-bundle 

protomer creates a solvent shielded pore or channel that is lined with the 18 Cys residues 

 

 

Figure 3.5 – (A) UV spectroscopy profile of apo-Ccsp. (B) Far UV-CD spectra of Apo-Ccsp (~3 µM) at 20 oC, 

pH 7 and of Cu(I)-Ccsp (~2 µM), at 20 oC, pH 7.5.  

 

Figure 3.6 – Examples of apo-Ccsp crystals 
in 1.4 M Ammonium sulphate, 0.1 M HEPES 
pH 7. 
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(Fig. 3.7B), none of which participate in disulfide bonds or exhibit any modifications. 

Generation of the electrostatic surface potential of the quaternary homotetramer reveals 

large stretches of negative charge spanning essentially the length of the protomer interaction 

site (Fig. 3.7C). Notably, from the surface representation it is apparent that there an 

asymmetry of negative charge between the two ends of the pore opening (Fig. 3.7C) and may 

have consequences for Cu(I) loading. 

 

 

 

 

 

 

 

 

 

   

Figure 3.7 – Cartoon representation of X-ray crystallographic structure of apo-Ccsp. (A) Arrangement of 
Ccsp protomers in the asymmetric unit. Colour coding as follows: gold chain A, grey chain B, blue chain C 
and orange chain D. The N and C-termini are labelled in chain C. (B) Biological quaternary structure of the 
homotetramer of Ccsp. Chain B is omitted and the symmetry related Ccsp protomer required to form the 
biologically relevant unit is shown in lilac. (B) The 18 Cys residues are shown as green sticks with the Sƴ 
atom coloured yellow. (C) Electrostatic surface potential of Ccsp in the same orientations as in (B) and the 
yellow dashed circle indicates the asymmetry in charge distribution at the opposite ends of the pore 
openings. Image was created in CCP4i2 using the graphics program CCP4mg. 
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Table 3.3 – Crystallographic data processing and refinement statistics for apo-Ccsp. Values in parenthesis refer 
to the outermost resolution cell. 

Structure Apo-Ccsp 

Space group P6122 
Unit cell (Å) 93.6, 93.6, 213.4 
Resolution (Å) 80.3–1.34 
Unique reflections 123 798 
Mn (I/SD) 18.0 (0.8) 
CC1/2 0.999 (0.764) 
Completeness (%) 100 (99.1) 
Redundancy 18.2 (12.6) 
Rcryst 0.157 
Rfree 0.192 
RMS dev. bond lengths (Å) 0.015 
RMS dev. bond angles (o) 1.63 
Ramachandran favoured (%) 99.8 
PDB accession code 6EI0 

 

3.3.5 Ccsp can bind Cu(I) and Ag(I) ions  
Ccsp is able to bind both Cu(I) and Ag(I) Group 11 monovalent ions. Under anaerobic 

conditions, Cu(I) ions were added to Ccsp which resulted in the appearance of prominent 

absorbance bands in the UV-region of the absorption spectrum (Fig. 3.8A). These bands 

signify (Cys)S→Cu(I) ligand to metal charge transfer (LMCT) bands and increase 

concomitantly with increasing Cu(I) concentrations until reaching a saturation point 

indicative of a stoichiometry of ~18-20 Cu(I) ions bound per Ccsp protomer (Fig. 3.8B). This 

indicates that up to 80 Cu(I) ions may be bound in a homotetramer of Ccsp. Stoichiometric 

loading of Ccsp with Cu(I) ions to create the holo-Ccsp resulted in a far UV-CD spectrum that 

was not significantly different from apo-Ccsp, demonstrating that bound Cu(I) ions do not 

grossly alter the secondary structure (Fig. 3.5B). Addition of Ag(I) ions to Ccsp also displayed 

changes in the UV-region of the absorption spectrum, which most likely represent 

(Cys)S→Ag(I) LMCT bands (Fig. 3.9A). The saturation point was less well defined compared 

to that of Cu(I) but seems to reveal a stoichiometry of ~15 Ag(I) ions bound per Ccsp protomer 

(Fig. 3.9B).  
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Figure 3.8 – (A) Changes in the UV-vis difference spectra baselined with apo-Ccsp (5.6 µM) on titration with 
1.5 equivalents of Cu(I). (B) Selected wavelengths plotted against Cu(I):Ccsp ratio derived from the UV-vis 
difference spectrum in (A). Experiments were conducted at 20 oC, pH 7.5. 

 

 

Figure 3.9 - (A) Changes in the UV-vis difference spectra baselined with apo-Ccsp (5 µM) on titration with 1 
equivalent of Ag(I) (B) Selected wavelengths plotted against Ag(I):Ccsp ratio derived from the UV-vis 
difference spectrum in A. Experiments were conducted at 20 oC, pH 7.5. 
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3.3.6 Determination of a Cu(I) affinity of Ccsp via competitive Cu(I) titrations with BCA  
An estimation of Cu(I) binding affinities for cuproproteins is possible through competition 

experiments using high affinity chromogenic Cu(I) bidentate ligands such as BCA (13, 160). At 

low BCA concentrations (50-100 M) Ccsp binds all Cu(I) ions until > 15 Cu(I) equivalents have 

been added and the formation of the [Cu(BCA)2]3- complex occurs (Fig. 3.10A and B). Upon 

increasing the BCA concentration (250-1000 M) competition for the titrated Cu(I) ions 

between Ccsp and BCA is now observed (Fig. 3.11A), with a maximum Cu(I) occupancy in a 

Ccsp protomer estimated to be 15 Cu(I) equivalents. All titration experiments at the different 

BCA concentrations were carried out in triplicate. An approximate Cu(I) binding affinity was 

determined at BCA concentrations of  250 µM in two ways. The below equilibria are present 

under the experimental conditions employed. 

2𝐿𝑓 + 𝐶𝑢𝑓
+ ⇌ 𝐶𝑢(𝐿)2        𝐾𝐵𝐶𝐴  =   

[𝐿𝑓]2 [𝐶𝑢𝑓
+]

[𝐶𝑢(𝐿)2]
 

𝑆𝑓 + 𝐶𝑢𝑓
+ ⇌ 𝐶𝑢+𝑆           𝐾𝐶𝑢   =   

[𝑆𝑓] [𝐶𝑢𝑓
+]

[𝐶𝑢+𝑆]
 

 

where Lf = free BCA ligand and Sf = sites on Ccsp that are unoccupied with Cu(I), Cu+
f is free 

Cu and KBCA and KCu are equilibrium dissociation constants for the affinities of Cu(I) for BCA 

(BCA formation constant β2 = 1017.7 M-2) (161) and Ccsp, respectively. Based on the above 

equilibria the [Cu+
f] is given by 

 

Figure 3.10 – (A) Changes in the UV-vis spectra monitoring the formation of the [Cu(BCA)2]3-  complex in 
the presence of BCA (50 µM) and apo-Ccsp (3.7 µM) on titration with 1.35 Cu(I) equivalents. (B) 
Absorbance data at wavelength 562nm in A plotted against Cu(I):Ccsp ratio. Experiments were conducted 
at 20 oC, pH 7.5. 
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[𝐶𝑢𝑓
+] =

𝐾𝐵𝐶𝐴[𝐶𝑢(𝐿)2]

[𝐿𝑓]2 =
𝐾𝐶𝑢[𝐶𝑢+𝑆]

[𝑆𝑓]
 

which can be rearranged to solve for KCu 

 

𝐾𝐶𝑢 =
𝐾𝐵𝐶𝐴[𝐶𝑢(𝐿)2] ([𝑆𝑡] − [𝐶𝑢𝑡

+] + [𝐶𝑢(𝐿)2])

([𝐿𝑡] − 2[𝐶𝑢(𝐿)2])
2
 ([𝐶𝑢𝑡

+] − [𝐶𝑢(𝐿)2])
             (3.2) 

 

where [St] is the total concentration of sites occupied in Ccsp, [Cu+
t] is the total concentration 

of Cu(I) added and [Lt] is the total concentration of BCA in the experiment. The derivation of 

equation 3.2 can be found in Appendix 2. The maximum Cu(I) occupancy for Ccsp in the 

presence of BCA was estimated to be 15 Cu(I) equivalents. In addition, the KCu can be 

determined by calculating the [Cu+
f] using equation 3.3 

 

[𝐶𝑢𝑓
+] =  

[𝐶𝑢(𝐿)
2
]

[𝐿∗]2𝛽
2

           (3.3) 

where [L*] = [Lt] – 2[Cu(L)2] and 2 is the affinity of BCA for Cu(I). Plots of [Cu+
f] against the 

fractional Cu(I) occupancy (YCu+) of Ccsp at a given [BCA] were best fitted to a nonlinear form 

of the Hill equation (3.4) to yield a KCu value and a Hill coefficient (n).  

 

𝑌𝐶𝑢+ =
[𝐶𝑢𝑓

+]𝑛

𝐾𝐶𝑢
𝑛 + [𝐶𝑢𝑓

+]𝑛 
       (3.4) 

 

Using equation 3.2 apparent Cu(I) dissociation constants (KCu) for each titration of Cu(I) into 

Ccsp at BCA concentrations of 250, 500 and 1000 M can be determined, with an average 

KCu = 3.3 ± 1.3 x 10-17 M (error given is a standard error from the replicates at each BCA 

concentration). Alternatively, the data in Fig. 3.11A at BCA concentrations ≥ 250 M can be 

used to calculate the [Cu+
free] using equation 3.3. Plots of fractional occupancy of Cu(I) sites 

versus the [Cu+
free] at two set BCA concentrations are illustrated in Fig. 3.11B. The data clearly 

show a sigmoidal dependence and given that the system is at equilibrium then this implies 

cooperative of Cu(I) binding. Therefore, these data have been fitted accordingly using a 
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nonlinear form of the Hill equation (eq. 3.4) (Fig. 3.11B). From triplicate experiments with set 

BCA concentrations ranging between 250-1000 M an average KCu = 2.9 ± 0.2 x 10-17 M and 

a Hill coefficient, n, = 1.9 ± 0.2 are determined. Thus, Cu(I) binding to S. lividans Ccsp appears 

to be a cooperative process with a binding affinity in line with a role in sequestering and 

storing cytosolic Cu(I) ions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 - Ccsp Cu(I) affinity (A) Plots of [Cu(BCA)2]3- concentration versus the Cu+:Ccsp concentration 
ratio upon titrating Cu(I) ions into Ccsp (5-10 µM) in the presence of increasing BCA concentrations. 
Competitive Cu(I) binding occurs with increasing BCA concentrations. (B) Plots of fractional occupancy of 
Cu(I) binding sites in Ccsp at varying Cu+

free concentrations determined from the data in (A) at 500 and 
1000 µM BCA concentrations. The data points are fitted with non-linear form of the Hill equation as shown 

in equation 3.4 to give a KCu = 3.0 ± 0.1 x 10-17 M and a Hill coefficient, n = 2.0 ± 0.2 at 500 M BCA and a 

KCu = 3.4 ± 0.2 x 10-17 M and n = 1.7 ± 0.1 at 1000 M BCA. All experiments were performed in 10 mM 
MOPS pH 7.5, 150 mM NaCl. 
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3.3.7 The X-ray crystal structure of Cu(I)-loaded Ccsp  
Examples of Cu(I)-loaded Ccsp crystals from optimisation screens are shown in Fig. 3.12. The 

structure of the Cu(I)-loaded Ccsp was determined to 1.5 Å resolution by X-ray 

crystallography with one Ccsp protomer found in the asymmetric unit. Statistics and 

refinement details are given in Table 3.4. 

Unbroken electron density was observed for 

residues 16–136 with strong anomalous scattering 

attributed to the presence of bound Cu(I) ions 

observed (Fig. 3.13A). The anomalous electron 

density, plotted from a dataset measured at a 

wavelength of 1.368 Å, reveals 20 Cu(I) ions can be 

coordinated in the core of the Ccsp four-helix 

bundle (Fig. 3.13A), thus corroborating the 

estimate from the titration data (Fig. 3.8A). Therefore, the Ccsp homotetramer has the 

capacity to bind a total of 80 Cu(I) ions. Inspection of the Cu(I)–Ccsp structure reveals that 

Cu(I) ions 1 to 13 all have bis- cysteinate coordination with (Cys)–S–Cu(I) bond distances of 

between 2.0 and 2.3 Å and each Cys residue bridging two different Cu(I) ions (Fig. 3.13B). Out 

of these 13 Cu(I) ions seven (Cu2, Cu4, Cu5, Cu7, Cu10, Cu12 and Cu13) are coordinated by 

CXXXC motifs, with the remainder coordinated by Cys residues that are on different helices 

of the bundle. No Cu(I) ions are coordinated by CXXC motifs. The bis-cysteinate coordination 

pattern is broken at Cu(I) ion 14 which has a third coordinate bond from the Oδ1 atom (2.2 

Å) of Asp61 (Fig. 3.13B and C). Similarly, the Cu(I) ion 15 has a coordinate bond with the Oδ2 

atom of Asp61 (2.1 Å) as well as thiolate coordination from Cys104, which also participates 

in coordination with the Cu(I) ions 13 and 14. (Fig. 3.13B and C). It is possible that the Cu(I) 

ion 15 is further coordinated by Cys41 and Cys57 (the latter being the only Cys residue not in 

either a CXXC or CXXXC motif), to create a distorted tetrahedral coordination geometry, 

however we note that the (Cys)–S–Cu(I) bond distances of 2.5 and 2.7 Å (Fig. 3.13C, 

indicated with blue arrows), respectively, are longer than for other thiolate Cu(I) interactions. 

The remaining 5 Cu(I) ions, 16 to 20, cluster beyond Cu(I) ion 15 towards the entrance of the 

pore (Fig. 3.13B and C) and if a coordinate bond from Cys41 and Cys57 to Cu(I) ion 15 is absent 

it may be considered as a separate cluster. None of these remaining Cu(I) ions are 

coordinated in CXXXC motifs. Cu(I) ions 16 and 18 have bis-cysteinate coordination (Fig. 

3.13C), with the Cu(I) ions 17 and 19 having bis-cysteinate coordination as well as ligation 

from the Nδ of His113 (1.9 Å) and His107 (2.1 Å), respectively. Finally, Cu(I) ion 20 is 

 

Figure 3.12 – Examples of Cu(I)-Ccsp 
crystals in 1.4 M ammonium sulphate, 0.1 
M MES pH 6. 
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coordinated by Cys114 and the Nδ of His111 (2.2 Å). Cys114 is the only other Cys residue to 

participate in coordination with three different Cu(I) ions (Fig. 3.13C). Finally, a total of nine 

Cu(I)–Cu(I) interactions are identified with distances between 2.5 and 2.8 Å. 

 

 

Figure 3.13 - X-ray crystal structure of Cu(I) loaded-Ccsp. (A) Worm representation of Cu(I)–Ccsp with the 
anomalous electron density map (orange) contoured at 5ơ. Twenty Cu(I) ions have been modelled into the 
density and labelled 1 to 20 starting at the N and C-termini (B) Ribbon representation of a Ccsp protomer 

and coordination bonds (red dashed lines) to Cu(I) ions (brown spheres) labelled 1 to 20, from S(Cys) 
Oδ(Asp) and Nδ(His) atoms. (C) Close-up of the His coordinating pore opening. The blue arrows indicate the 

(Cys)–S–Cu(I) bond distances of 2.5 and 2.7 Å in a distorted tetrahedral coordination geometry. 
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3.3.8 S. lividans Ccsp is required for growth under extreme Cu conditions in vivo 

To investigate the role of Ccsp in the Cu-dependent morphological development a ccsp 

mutant strain of S. lividans was created by Dr Erik Vijgenboom (Leiden University) and in vivo 

growth and morphology studies investigated. It has been previously demonstrated that WT 

S. lividans is highly tolerant to increased Cu levels, which differentiates with various growth 

media (44, 141). This is illustrated in Fig. 3.14, using defined medium with either mannitol or 

glucose. The WT strain, grown on glucose, tolerated growth with Cu at concentrations past 5 

mM, but, as shown in Fig. 3.14A, the presence of aerial mycelium becomes scarce at Cu 

concentrations above 1 mM. This differs for the WT strain grown on mannitol (Fig. 3.14B), 

with Cu tolerance much reduced (~ 5-fold). The WT shows a higher Cu tolerance overall on 

complex media such as R5 or Bennets-glucose media but is again media dependent (Fig. 

3.15). On all media tested the Δccsp mutant consistently shows a weaker tolerance to Cu 

compared to the wild-type. This can be observed for glucose supplemented media (Fig. 

3.14A) whereby growth is weakened at 500 µM Cu whereby the growth on mannitol (Fig. 

3.14B) is inhibited at 200 µM Cu. However, when the Δccsp mutant is grown at low Cu 

concentrations, the growth does not differentiate from the WT. This clearly demonstrates 

that Ccsp is needed for growth at higher Cu concentrations but is not required for 

development at lower Cu concentrations. The pCcsp-1 represents the ccsp gene inserted into 

a plasmid whereby it is transcriptionally controlled by its own promoter. The Δccsp mutant 

becomes restored in growth to the same level as the WT strain with pCcsp-1, in all media 

tested (Fig. 3.14 A-B). In liquid media, a similar pattern to that observed on solid media is 

Table 3.4 - Crystallographic data processing and refinement statistics for Cu(I)-
Ccsp. Values in parenthesis refer to the outermost resolution cell. 

Structure Cu(I) - Ccsp 

Space group I222 

Unit cell (Å) 62.1, 64.1, 66.0 

Resolution (Å) 45.2–1.50 

Unique reflections 20 701 

Mn (I/SD) 9.7 (4.5) 

CC1/2 0.992 (0.958) 

Completeness (%) 96.4 (96.6) 

Redundancy 3.6 (3.5) 

Rcryst 0.206 

Rfree 0.231 

RMS dev. bond lengths (Å) 0.020 

RMS dev. bond angles (o) 2.05 

Ramachandran favoured (%) 99.2 

PDB accession code 6EK9 
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found (Fig. 3.14C) with a reduced tolerance for Cu in terms of the biomass produced in the 

Δccsp mutant as illustrated for Bennetts-glucose medium (Fig. 3.14C).  

Under Cu homeostasis, enzymes requiring Cu for their activity such as CcO or GlxA in S. 

lividans obtain their Cu from a Cu trafficking pathway that involves at least two Cu 

metallochaperones, ECuC and Sco (12, 44, 101, 103). To investigate whether Ccsp influences 

this extracellular Cu trafficking pathway, the activity of CcO under low exogenous Cu 

 

Figure 3.14 - The effect of Ccsp on the growth and development of S. lividans at 30 oC. Cu tolerance after 6 
days growth of the wild type parent strain, the Δccsp mutant strain and the Δccsp mutant strain 
complemented with the pCcsp-1 plasmid on defined agar media with (A) glucose and (B) mannitol as the 
sole carbon source. Cu(II) concentrations as indicated. All images are the same magnification with a scale 
bar of 2 mm. (C) Biomass production after 32 h in liquid Bennetts-glucose (B-G) cultures for the wild type and 
the Δccsp mutant strain in the presence of the Cu chelator BCDA and various concentrations of Cu(II) citrate. 
The dry weight biomass of the wild type strain in the B-G culture was set at 100%. (D) CcO oxidase activity at 
24 h growth on B-G agar detected by the TMPD assay. Average pixel intensity of the indophenol blue stained 
mycelium was calculated using ImageJ software38 and expressed in arbitrary units. Experiments were 
carried out in triplicate. 
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concentrations was determined in the WT strain and the Δccsp mutant on various media. As 

illustrated on Bennetts-glucose agar (Fig. 3.14D) the CcO activity of the Δccsp mutant is 

identical to the WT, therefore demonstrating that Ccsp is not participating in the Cu 

trafficking pathway for maturation of CcO. 

3.3.9 Analytical gel filtration chromatography - Cu(I) transfer between CopZ3079 and 
Ccsp 

The movement and trafficking of Cu in the cytosol of S. lividans under homeostasis and stress 

has been shown to involve CopZ-like Cu metallochaperones (17, 18). CopZ-like Cu 

metallochaperones are involved in Cu(I) homeostasis in the cytosol of S. lividans (17, 18). 

These Atx-1 homologues possess a βαββαβ-fold and a MXCXXC metal binding motif that 

utilizes the two Cys residues for bis-cysteinate Cu(I) ion coordination (162). Therefore, it was 

investigated in vitro whether a CopZ plays a role in Cu(I) trafficking either to and/or from 

Ccsp. Transient ligand-exchange mechanisms occur in metal trafficking from donor to 

acceptor in vitro to allow ease of metal transfer ensuring that no unbound metal is present 

in solution (163, 164). Thus, by simply mixing the donor and acceptor in solution, transfer can 

occur. To test this with Ccsp and CopZ a method using gel-filtration was devised. CopZ-3079 

(hereafter CopZ) in the apo monomeric form (Mr ~ 8 kDa) displays an elution peak on a size-

exclusion column at ~12.5 ml (Fig. 3.16A). At Cu(I):CopZ ratios higher than 1:1 a shift in the 

elution profile (~11 ml) is observed, which based on the column calibration is consistent with 

the presence of a dimer species. Binding of Cu(I) to Bacillus subtilis CopZ has been shown to 

be a very complex process with initial binding of Cu(I) resulting in dimerization to form a 

Cun
+(CopZ)2 species which has the capacity to bind three further Cu(I) ions at the monomer 

interface to create a Cu4
+(CopZ)2 species as the addition of stoichiometric Cu(I) ions increase 

(165-167). In the present work with S. lividans CopZ, it has not been determined how many 

   
Figure 3.15- The effect of Ccsp on the growth and development of S. lividans at 30 oC. Cu tolerance after 6 
days growth of the wild type parent strain and the Δccsp mutant strain on R5 agar media (A) and Bennett’s 
glucose media (B). Cu(II) concentrations as indicated. All images are the same magnification with a scale bar 
of 2 mm.  
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Cu(I) ions, n, are at the monomer interface (Cun
+(CopZ)2). However, based on the size-

exclusion chromatography profile, a protein dimer species is predominately formed at > 1 

Cu(I)/CopZ. Thus, if Cu were to be transferred from the CopZ then the peak at the higher 

elution volume would be observed. 

The profile in Fig. 3.16B reveals transfer of Cu(I) from Cu(I)-CopZ to apo-Ccsp in a 1:1 ratio. In 

the blue coloured elution profile, mixing Cun
+(CopZ)2 and apo-Ccsp (Fig. 3.16B) results in the 

presence of the elution peak for the monomeric apo-CopZ (~12.1 ml) and therefore 

supporting the notion that Cu(I) has been transferred. The same experiment was repeated 

but carried out in reverse by loading the Ccsp with Cu(I), and mixing with apo-CopZ with 

incubation periods of > 1 h (Fig. 3.16 C & D). Formation of the higher-order CopZ peak was 

  

Figure 3.16 - Cu trafficking from CopZ to Ccsp. (A) (the data in chromatogram (A) were provided by Dr 
A.K. Chaplin) Size exclusion elution profiles of S. lividans CopZ prior to the addition of Cu(I) (black line) and 
post-incubation with 1, 1.5 and 2 equivalents of Cu(I). In the absence of bound Cu(I), CopZ elutes as a 
monomer (CopZ), with a dimer species, Cun

+–(CopZ)2, predominantly formed in the presence of >1Cu(I) 
equivalents. (B) A size exclusion experiment whereby Cun +–(CopZ)2 is mixed with Ccsp and the resulting 
products indicated in the blue elution profile. The grey elution profiles indicate where the starting 
samples would elute if no Cu(I) transfer had occurred.  (C) - Analytical gel filtration chromatogram for 
apo-Ccsp (black line) and 1:1 ratio of Ccsp–Cu(I) (loaded ~15 equivalents of Cu(I)) and apo-CopZ3079 
(purple line). All samples and column were prepared in 10 mM MOPS pH 7.5, 150 mM NaCl. (D) Is a 
magnified image of the peaks in fig. (C) showing the apo-CopZ3079 indicated with the arrow, in the 1:1 
mixture at ~12.1 ml.  
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not observed suggesting that Cu(I) transfer from Ccsp does not occur under these conditions. 

But this may be due to a lack of sensitivity of analytical gel filtration as possible transfer of <1 

Cu(I) ion could have occurred. This amount of Cu(I) transferred would be insufficient to cause 

dimerization of CopZ thus making detection of transfer difficult through gel filtration alone. 

Taken together these results support the notion that in vitro CopZ can transfer Cu(I) ions to 

Ccsp, but the possible release of Cu(I) from Ccsp to CopZ is not initially observed under the 

conditions employed.  

3.4 Discussion 
The bacterial cytosol has no known metabolic requirement for Cu and therefore Cu storage 

proteins had been thought not to exist. The discovery of Ccsp from S. lividans and extensive 

distribution of cytosolic Csp3 members in the Tree of Life as shown in Chapter 2 offers the 

tantalising possibility that new layers of Cu resistance or a possible cytosolic requirement for 

Cu exists amongst many bacteria that are yet to be fully understood. The subsequent 

analyses of Ccsp has shown many similarities in structure and stoichiometry of Cu(I) binding 

compared to the first discovered members of the Csp family reported by Vita et al, 2015 (1). 

For instance, MtCsp3 contains 18 Cys residues in the core of each protomer unit and exists 

as a homotetramer in solution (1, 2, 75, 168) as is the case here with Ccsp.  

The KCu value determined for the Ccsp lies within the range 10-17 to 10-18 M for 

cuproproteins with bis-cysteinate Cu(I) coordination (160). However, we note that our KCu 

values using BCA as the affinity probe are at the lower end to those determined for other 

Csp3 members (3.1 x 10-17 M vs 6 x10-18 M, average for MtCsp3 and BsCsp3 (2)). In addition, 

Ccsp demonstrates cooperative binding with an average Hill coefficient (n) value of 1.9. 

Cooperativity is also seen in MtCsp1 (1) but surprisingly this is not so for MtCsp3 and BsCsp3 

(2). Though concerning the cooperativity of Ccsp, it must be considered that the [Cu+
free] 

values are very low (Fig. 3.11B) and calculated indirectly from binding to BCA. Regardless, 

concluding that cooperativity occurs in Ccsp, then it can be suggested that the mechanistic 

basis for this phenomenological result may lie in the observations by Dennison and co-

workers that Cu(I) clusters of the type [Cu4(S-Cys)4] are thermodynamically favoured (76). 

The X-ray crystal structures of apo-Ccsp and Cu(I)-loaded Ccsp (Fig. 3.7 and 3.13) 

offer further valuable insight into the structural characteristics of Csp3 members. These 

cytosolic proteins can store large amounts of Cu(I) and most of the Cu is bound by Cys 

residues. No evidence for disulfide bond formation is observed and a maximum of 20 Cu(I) 

ions are found to be coordinated in a Ccsp protomer. Therefore, Ccsp has the highest Cu(I) 

binding capacity of any Csp3 member so far characterised (2). Furthermore, Ccsp is the first 
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Csp3 member to reveal a unique coordination role of a highly-conserved Asp residue (Asn in 

MtCsp3 (2)). This residue is positioned at the end of the Cys cage that harnesses Cu(I) ions 1 

to 13, which are all coordinated by two Cys ligands (Fig. 3.13A & B). Asp61 is situated such 

that it breaks this coordination trend by providing coordination to Cu(I) ions 14 and 15 

through its O and O carboxylate atoms, respectively. The Asp61 is homologous to Asp42 

in BsCsp3 whereas MtCsp3 has an Asn at the same position (2). The five remaining Cu(I) ions 

form a distinct cluster and is coordinated by three conserved His residues and four Cys 

residues. The three His residues clearly guard the more solvent accessible end of the four-

helix bundle core and in addition to their coordination role may also play a part in partner 

recognition to assist Cu(I) loading to Ccsp. 

CopZ Cu chaperones are mainly involved in a Cu stress response but have been 

shown to help buffer the bacterial cytosol (17, 18, 119, 163). The possibility of a CopZ being 

involved in Cu transfer with Ccsp was investigated through size-exclusion chromatography 

(Fig. 3.16). Whilst transfer does occur it proceeds only in one direction from a Cun
+–(CopZ)2 

species to apo-Ccsp (Fig. 3.16B). Under homeostasis conditions S. lividans has three 

CopZ/ATPase couples, expressed at a basal level, that serve to buffer the Cu(I) concentration 

in the cytosol (17, 18). One of these couples is not characterised but does act under Cu stress 

whereas the other two are under direct transcriptional control of CsoR (18). A fourth couple 

is also present in the genome and controlled by CsoR but is not constitutively present under 

Cu homeostasis (17). It has been well established in vitro that CsoR accepts Cu(I) from two 

CopZ chaperones in a unidirectional way (17). This would induce transcription of three of the 

couples in vivo that are under CsoR influence (17). In addition, the fourth couple not 

regulated by CsoR would create a substantial defence against Cu stress (17). In vitro, two of 

the CopZ proteins have been determined to transfer Cu(I) to the CsoR in a unidirectional 

manner (17). Therefore in vivo this would induce transcription of the three CopZ/ATPases 

couples under CsoR control, which together with the fourth non-CsoR controlled couple 

creates a high capacity for Cu resistance under Cu stress. The ability of CopZ to traffic Cu(I) 

to CsoR and P1-type ATPases indicates a characteristic promiscuity in these small chaperone 

proteins for off-loading their metal cargo. This indiscriminate nature is also observed for CopZ 

with Ccsp, where Cu(I) is transferred from the Cun
+–(CopZ)2 species to Ccsp as evidenced by 

the reformation of the apo-CopZ monomer (Fig. 3.16B). In contrast, under stoichiometric 

conditions, apo-CopZ is unable to remove Cu(I) from Cu(I)–Ccsp in a physiologically 

meaningful time frame as has also reported for BsCsp3 with its cognate BsCopZ (2).  A KCu 

value of 3.9 × 10-18 M has been determined for this particular S. lividans CopZ used in this 
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work under the same buffer conditions as employed in the transfer experiments with Ccsp 

(17). This value is lower than the KCu value determined for Ccsp and thus from a 

thermodynamic perspective the transfer can be viewed as being unfavourable. However, 

other factors such as the tuning of the reactivity of the ligands involved in the transfer of 

Cu(I) from donor to acceptor are important considerations and have been shown to influence 

the directionality of transfer. Such an example has been reported for the transfer of Cu(I) 

from CopZ to the CsoR, where the Cys residues in the CXXXC motif of CopZ have been 

optimised to favour Cu release to the acceptor (CsoR) (17). 

The in vivo data show that Ccsp is not required for Cu homeostasis at Cu 

concentrations up to several hundred M depending on the medium used (Fig. 3.14 & 15). 

This observation is further demonstrated by the CcO activity data, which precludes a 

downstream role for Ccsp in supplying Cu(I) to the extracytoplasmic environment to be 

utilised by the Cu-chaperones Sco and ECuC for metalation of CcO and GlxA (12, 44, 101). The 

CopZ/ATPase couples appear to maintain the control of cytoplasmic Cu levels. However, as 

exogenous Cu concentrations rise above 200 M, a clear phenotype for Ccsp is observed 

though with a range limit that is strongly medium dependent (Fig. 3.14). Re-analysed RNA-

seq data (18)  reveals transcription of ccsp is up-regulated 5-fold in liquid defined medium 

supplemented with 400 M Cu and thus fits with the phenotype in Fig. 3.14 showing that 

Ccsp becomes essential for growth and development in the 200–500 M Cu range. 

Importantly, in contrast to three out of the four CopZ/ATPase couples, the Ccsp expression 

is not under the control of CsoR as demonstrated by the absence of a consensus CsoR binding 

site in the ccsp promoter region and expression induction in the csoR mutant (18). This all 

suggests that a second layer of Cu responsive transcription is operating on top of the CsoR 

regulon in S. lividans and becomes operative at more extreme Cu concentrations to express 

ccsp. 

In conclusion, the results confirm the discovery of Ccsp in S. lividans; the 

crystallography data strongly supports a tetramer of alpha-helical bundles capable of binding 

up to 20 Cu(I) ions with cooperativity of Cu binding. The overall interaction of Ccsp with a 

CopZ in Cu(I) transfer and the in vivo data also enforces the idea that when the CsoR efflux 

system becomes saturated during Cu stress, Ccsp accepts Cu from CopZ and stores it as the 

environment returns to homeostasis. It remains unclear how the release of Cu from Ccsp 

occurs and what further actions take place with this excess Cu. It is a possibility to consider 

that non methanotrophic bacteria may possess Cu scavenging systems, like methanobactins 

in methanotrophs. In support of this, a diisonitrile compound produced from a non-ribosomal 
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peptide synthetase in S. thioluteus has recently been reported and shown to have a 

chalkophore function (i.e. Cu-import into the cytosol) (5). This discovery could suggest that 

chalkophores are more widespread than originally considered and an interplay with Ccsps in 

non-methanotrophic bacteria is a possibility and certainly requires further investigation. 
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4 Chapter Four 

 

 

 

Visualising Cu(I) loading to SlCsp3 

and the effect of His and Cys 

mutations 
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residue and a tetranuclear cuprous-thiolate cluster dominate the copper loading landscape 
of a copper storage protein from Streptomyces lividans” 2019 Chemistry – A European 
Journal. 
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4.1 Introduction 
Structural studies of non-methanotrophic Csp3 members reveal structural homology with 

MtCsp3, (2, 19) but only the Csp3 from the Gram-positive bacterium S. lividans, SlCsp3 

(previously referred to as Ccsp), has been structurally characterised with Cu(I) bound as 

described in Chapter 3, revealing up to 20 Cu(I) ions can bind per protomer (80 per 

homotetramer) (19). In addition to the extra Cys residues lining the four helix-bundle core in 

Csp3s compared to MtCsp1/2, a set of three His residues are present at one end of the four 

helix-bundle, which together with nearby Cys residues also participate in Cu(I) coordination 

(2, 19). The His end of the four helix-bundle is considered from structural insights to be the 

loading and leaving point for Cu(I), as access to the Cys core from the opposite end of the 

bundle is prevented by hydrophobic side chains (2, 19). However, no experimental evidence 

has been reported to prove this. Further Cu(I) coordination arises from the Oδ1 atom of an 

Asn residue (58 in MtCsp3) (2) and the Oδ1 and Oδ2 atoms of an Asp residue (61 in SlCsp3) 

(19). The Asp and the Asn residues are highly conserved across Csp3 species and are 

structurally positioned to create a crossing point, dividing the Cu(I) ions participating in 

His/Cys coordination at the mouth of the Cys core and those coordinated solely through bis-

cysteinate coordination in the Cys core. 

Insights into Cu(I)-loading of the MtCsp3 have been obtained through X-ray 

crystallography studies (76). Structures determined at various stoichiometric loadings of Cu(I) 

reveal the existence of initial tetranuclear Cu-thiolate clusters [Cu4(µ2-S-Cys)4] in the Cys core 

(Cu sites 3 to 14) of the four helix-bundle (76). As more Cu(I) is loaded, the tetranuclear 

clusters considered as ‘intermediates’ evolve into the final Cu(I) clusters (76). Thus, the 

formation of tetranuclear clusters is considered a driving force for acquisition and safe 

storage of Cu(I) by Csp3 members (76, 169). 

In this chapter, Cu(I)-loading to SlCsp3 has been investigated by using a combination 

of X-ray crystallography and site-directed mutagenesis (170). It has been discovered that at 

low Cu(I) loading, a tetranuclear [Cu4(µ2-S-Cys)4(Nδ1-His)] cluster is first formed in the His 

entrance of the four helix-bundle. As more Cu(I) is loaded, the Cys core of the four helix-

bundle of SlCsp3 together with Cu sites in the His entrance become occupied to varying 

extents but no evidence for the formation of tetranuclear clusters in the Cys core is observed, 

consistent with a highly fluxional process of Cu(I) binding. SlCsp3 protein variants have been 

created in which the His residues at the hydrophilic entrance of the Cys core have been 

changed to Ala and two Cys variants also in the His entrance have been mutated to Ser, to 

begin to build a picture of how these residues influence Cu(I) loading and binding. 
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4.2 Methods 
4.2.1 Site-directed mutagenesis, over-expression and purification 
To create the H107A, H111A, H113A, C41S, and C57S, SlCsp3 site-directed variants, the 

Quikchange (Stratagene) site-directed mutagenesis strategy was carried out and forward and 

reverse mutagenic primers were designed and synthesised (Sigma-Aldrich) with the 

respective nucleotide change(s) (Table 4.1). A double His variant, H107A/H111A, was also 

constructed and this variant was created by taking the H107A construct and then using the 

H111A primers (Table 4.1) for site-directed mutagenesis PCR (Tables 4.2 and 4.3). Mutant 

clones were corroborated for the presence of the desired mutation by DNA sequencing 

(Source Bioscience). Recombinant production in Escherichia coli BL21(DE3) cells and 

purification of wild-type (WT) SlCsp3 and the His variants was carried out as described in 

Table 4.1 - Mutagenic forward and reverse primers used for site directed mutagenesis to create the SlCsp3 
variants. The codons highlighted show where the mutation was made and the nucleotides in uppercase show 
this single nucleotide change. 

Variant Forward primer Reverse primer Tm 

( ͦC)    

H107A 5’-GTGCGCCCGGgcCGCCGGCATG-3’ 

 

5’-CATGCCGGCGgcCCGGGCGCAC-3’ 74 

H111A 5’ – 

CACGCCGGCATGgcCGAGCACTGCC- 3’ 

5’ – 

GGCAGTGCTCGgcCATGCCGGCGTG 

– 3’ 

 

73 

H113A 5’ -CATGCACGAGgcCTGCCGGGTC- 3’ 

 

5’ –GACCCGGCAGgcCTCGTGCATG- 

3’ 

 

67 

C41S 5’ GTGCACCGCGAgcGCCGACGCC 3’ 5’ GGCGTCGGCgcTCGCGGTGCAC 3’ 

 

72 

C57S 5’ GATCTGACCAAGAgcATCCGCACCG 

3’ 

5’ 

CGGTGCGGATgcTCTTGGTCAGATC 

3’ 

 

63 

 

 

 

 

 

 

 

 

 

Table 4.2 – The reagents and volumes used for site directed mutagenesis. 

Reagent Concentration Volume (µl) 

Plasmid DNA 25 ng/ µl 1.0 

Forward Primer 75 ng/ µl 1.0 

Reverse Primer 75 ng/ µl 1.0 

dNTPs 10 mM 0.6 

PFU Buffer 10 x 3.0 

PFU Turbo Polymerase - 0.6 

DMSO 5 % 1.5 

Sterile ddH2O - 21.3 

Total  30.0 
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Chapter 3. Far UV-circular dichroism spectroscopy using a Chirascan CD spectrometer 

(Applied Photophysics) was used to assess whether the proteins were folded. All proteins 

once purified were stored at -20 oC until required. 

4.2.2 X-ray crystallography 
Under anaerobic conditions WT SlCsp3 (2000 µM) was incubated with 5, 10 and 25 molar 

equivalents of CuCl, and to the SlCsp3 variants (1500 to 3900 µM) 25 molar equivalents of 

CuCl was added. Unbound Cu was removed by passing samples through a PD-10 column 

(Generon) and concentrated to ~ 10-15 mg/ml. Optimisation of crystallisation conditions for 

the Cu(I)-loaded samples was carried out by screening around 1.4 to 1.6 ammonium sulfate, 

0.1 M MES pH 6.0 by mixing equal (1 µl) volumes of protein and reservoir solution. Crystals 

were transferred to a cryoprotectant solution consisting of 40 % w/v sucrose and precipitant, 

and flash cooled by plunging into liquid nitrogen. WT Cu(I)-loaded SlCsp3 crystals were 

measured at the Swiss Light Source on beamline XS10A using an X-ray wavelength of 1.33 Å 

and a Pilatus 6M-F detector. Crystals of the His variants were measured at the Diamond Light 

Source on beamline I04 using an X-ray wavelength of 0.979 Å and a Pilatus 6M-F detector. All 

data were indexed using XDS (148) and scaled and merged using Aimless (149) in the CCP4 

suite with the CCP4i2 interface. Structures were solved by molecular replacement in MOLREP 

using the apo-SlCsp3 structure (PDB ID 6EI0) as the search model. Cycles of model building in 

Coot (152) and refinement in Refmac5 (153) were carried out and riding hydrogen atoms 

were added when refinement of the protein atoms had converged. For all data sets 

anomalous difference maps for validation of Cu(I) atom positions was generated using 

PHASER (150) in the CCP4i2 interface. Structures for His variants and partially Cu(I) loaded 

SlCsp3 samples were validated using the Molprobity server (154) the JCSG Quality Control 

Server and tools within Coot (152). Coordinates and structure factors were deposited in the 

RCSB Protein Data Bank. A summary of data, refinement statistics and the quality indicators 

for the structures are given in Tables 4.4 & 4.5. 

  

Table 4.3 – QuickChange site-directed mutagenesis protocol 

Temperature (oC) Time (minutes) 

95 3 

95 0.5 

58 (Annealing temperature) 1 

68 13 

68 8 (Extension) 

10 Hold 
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Table 4.4 - Crystallographic data processing and refinement statistics for the partial Cu(I) loaded forms of SlCsp3 used in this work. Values in parenthesis refer to the outermost 
resolution shell. 

Structure Ccsp-5Cu Ccsp-10Cu 

Space group P6122 P6122 

Unit cell (Å) 93.1, 93.1, 212.3 93.4, 93.4, 216.0 

Resolution (Å) 75.4-1.50 75.8-1.90  

Unique reflections 85587 (3492) 44544 (2831) 

Mn (I/SD) 19.5 (1.3) 12.8 (1.2) 

CC1/2 0.99 (0.45) 0.99 (0.46) 

Completeness (%) 98.0 (82.5) 99.7 (100) 

Redundancy 8.0 (8.7) 9.1 (9.2) 

Rcryst 0.195 0.218 

Rfree 0.214 0.255 

RMS dev. bond lengths (Å) 0.013 0.015 

RMS dev. bond angles (o) 1.47 1.64 

Ramachandran favoured (%) 99.8 98.2 

PDB accession code 6Q58 6Q6B 
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Table 4.5 - Crystallographic data processing and refinement statistics for the variants of SlCsp3 used in this work. Values in parenthesis refer to the outermost resolution shell. 

Structure C41S C57S H111A H113A H107A/H11A 

Space group I222 I222 P21212 I222 I222 

Unit cell (Å) 62.2, 64.2, 65.1 63.4, 64.7, 66.6 65.3, 62.2, 65.2 62.2, 65.1, 65.3 62.2, 64.0, 65.7 

Resolution (Å) 44.70-1.49 46.45-2.11 65.3-1.20 32.7-1.30 44.6-1.20 

Unique reflections 21446 (1039) 7385 (408) 86182 (3562) 33353 (1526) 42048 (1551) 

Mn (I/SD) 12.9 (1.9) 16.8 (2.1) 17.6 (1.2) 23.7 (1.4) 18.6 (1.0) 

CC1/2 0.99 (0.58) 0.99 (0.62) 0.99 (0.61) 0.99 (0.59) 0.99 (0.50) 

Completeness (%) 98.8 (97.4) 90.0 (99.0) 98.1 (81.6) 96.7 (89.2) 96.9 (73.1) 

Redundancy 7.6 (7.9) 4.1 (4.4) 6.3 (3.3) 7.3 (7.3) 7.1 (4.1) 

Rcryst 0.229 0.236 0.182 0.161 0.168 

Rfree 0.242 0.295 0.194 0.187 0.192 

RMS dev. bond lengths (Å) 0.06 0.20 0.0064 0.0052 0.0079 

RMS dev. bond angles (o) 2.44 10.23 1.40 1.33 1.48 

Ramachandran favoured (%) 98.3 79.6 100.0 96.7 100.0 

PDB accession code - - 6QYB 6QVH 6R01 
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4.3 Results 
4.3.1 Crystal formation and conditions 
Crystallisation trials with low Cu(I) concentrations of WT SlCsp3 (5, 10 Cu(I) equivalents and 

25 Cu(I)-equivalents) to 

all SlCsp3 variants were 

carried out. The 

conditions used for 

these trials were 1.2 – 

1.9 M ammonium 

sulphate with 0.1 M 

HEPES pH 7 or 0.1 M 

MES pH 6. The variants 

that were successfully 

crystallised were 

H111A, H113A, 

H107A/H111A, C41S 

and C57S. Crystals also 

grew of partially loaded SlCsp3, with 5 and 10 Cu(I) molar equivalents. The morphology of 

these crystals can be seen in Fig. 4.1 whereby they were often large block crystals but 

occasionally some crystals were smaller fragmented cube like structures. 

4.3.2 Definition of Cu(I) sites and their grouping within SlCsp3  
From previous structural characterisation of Csp3 members, modes of Cu(I) binding within 

the protein have been discussed and defined (2, 19, 169). Prior to reporting the results from 

the present study, Cu(I) sites, cores and coordination are briefly defined. For SlCsp3 the 

positions of the 20 Cu(I) ions of the fully Cu(I)-loaded form are shown in Fig. 4.2A and can be 

subdivided into outer and inner cores (dashed red lines Fig. 4.2) that incorporate the Cu(I) 

sites, 1-14 (inner), and 15-20 (outer) (Fig. 4.2A) (19). Within these two cores Cu(I) 

coordination can be divided into three groups based on differences in coordination 

environment (169). In group I, Cu(I) ions are coordinated by two Cys thiolates on the same 

helix in a CXXXC motif, in group II, by two Cys thiolates on different helices of the four helix-

bundle and in group III, by Cys thiolates and other residues e.g. Nδ1 or Oδ atoms from His or 

Asp, respectively. The Cu(I) ions in SlCsp3 assigned to each of these groups are reported in 

the legend to Fig. 4.5.  

4.3.3 Polynuclear Cu(I) clusters form in the outer core at low Cu(I) loading 

 

Figure 4.1 – Images of crystals of SlCsp3 variants and partial Cu(I) loaded 
proteins. (A) 5 Cu(I) (B) 10 Cu(I) (C) H111A (D) H113A (E) H107A/H111A (F) 
C41S (G) C57S. 
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The X-ray structure of SlCsp3 incubated with 5 Cu(I)-equivalents was found to contain four 

protomers in the asymmetric unit in a similar manner to apo-SlCsp3 (19). Anomalous 

electron-density map features were evident in each protomer, which were used, together 

with strong peaks in the 2Fo-Fc map to assign the location of bound Cu(I) ions (Fig. 4.2B). Of 

the four protomers, one displayed anomalous electron-density peaks consistent with the 

presence of three Cu(I) ions with the remaining protomers consistent with the presence of 

four Cu(I) ions (Fig. 4.2B). The Cu(I) ions are coordinated by the Nδ1 atom of His113 and the 

thiolates of Cys41, Cys57, Cys104 and Cys114 (Fig. 4.2C). One of the Cu(I) ions, occupies the 

same binding site as Cu17 in the fully Cu(I)-loaded SlCsp3 and has an identical group III 

coordination sphere of Cys114/Cys57/His113 (19). In contrast, two Cu(I) ions, although 

occupying similar positional locations to Cu15 and Cu18 in the fully Cu(I)-loaded SlCsp3 

structure, they are distinct in that they have an altered coordination sphere (19). In this 

respect, Cu15 (group III coordination) is not positioned close enough to the Oδ2 atom of Asp61 

to fulfil the requirements for a coordinate bond and is now assigned as group II coordination 

and Cu18 (group II coordination) no longer coordinates to Cys45 but instead, occupies a 

position enabling coordination by Cys114, but remains group II coordination (Fig. 4.2C). To 

recognise these differences compared to the fully Cu(I)-loaded structures these Cu(I) sites 

have been designated Cu15* and Cu18*. A fourth Cu(I) ion is present at a site, which is absent 

in the fully Cu(I)-loaded SlCsp3, and is designated as a non-cognate Cu(I) binding site with 

group II coordination (Fig. 4.2C green circle).  

Group II and III dominate the coordination chemistry of the Cu(I) ions in the outer 

core of the four helix-bundle at low Cu(I) loading (Fig. 4.3A), creating a negatively charged 

trinuclear [Cu3(µ2-S-Cys)2(S-Cys)2(Nδ1-His)]- cluster and a neutral tetranuclear [Cu4(µ2-S-

Cys)4(Nδ1-His)] cluster (Fig. 4.3A). The latter is symmetrical in that all Cys thiolates are bridging 

(µ2-S-Cys) a Cu(I) ion, whereas in the trinuclear cluster this symmetry is broken as two Cys 

thiolates display monodentate Cu(I) coordination (Fig. 4.3A). The Cu-Nδ1(His113) bond 

distance is 2.1 Å in both CuS clusters and the Cu-Sƴ(Cys) bond distances range between 1.9-

2.2 Å. In addition, interactions (2.5-3.1 Å) between Cu(I) ions within the [Cu4(µ2-S-Cys)4(Nδ1-

His)] cluster are observed. From the anomalous electron-density peaks, it is apparent in the 

trinuclear cluster that Cu15* exhibits weaker electron-density, which is attributed to a lower 
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Cu(I) occupancy relative to the other Cu(I) coordination sites (Fig. 4.2B). Notably, in the 

[Cu4(µ2-S-Cys)4(Nδ1-His)] cluster, the anomalous electron-density peak for Cu15* is consistent 

with a higher occupancy, whereas the anomalous electron-density peak for the non-cognate 

Cu(I) ion required to form the tetranuclear cluster has lower occupancy (Fig. 4.2B). This could 

imply that the [Cu4(µ2-S-Cys)4(Nδ1-His)] cluster is formed in a sequential manner, whereby 

Cu17 and Cu18* are bound first, followed by Cu15* (trinuclear) and finally binding to the 

non-cognate site to create µ2-S-Cys57 and µ2-S-Cys104 coordination (Fig. 4.3A).  

 

Figure 4.2  - Location of Cu(I) sites in fully and partially Cu(I)-loaded SlCsp3 determined by X-ray 
crystallography. The location of bound Cu(I) ions are inferred by the anomalous electron-density peaks 
shown in orange mesh and contoured at 5σ. A) Fully Cu(I)-loaded structure with the location and the 
number of Cu(I) ions found in the inner and outer cores indicated by dashed red lines (PDB 6EK9) (19). B & C) 
5 Cu(I)-equivalent structures. B) Two protomers showing three and four Cu(I) bounds, respectively. C) 
Coordination chemistries found in the outer core of the two promoters in (B), with Cu(I) ions represented in 
blue spheres and coordinate bonds as dashed lines. The smaller spheres indicate partial occupancy based on 
the anomalous electron-density peaks, and the green circle indicates a non-cognate site with a Cu(I) ion 
bound. 
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4.3.4  Cu(I) ions fill the inner core in a dynamic and fluxional manner  
In the X-ray structure for SlCsp3 incubated with 10 Cu(I)-equivalents, surprisingly, the 

anomalous electron-density maps revealed more sites occupied than Cu(I) equivalents added 

(Fig. 4.4), indicating that some of the sites are not fully occupied. In protomer A, fourteen 

Cu(I) ions have been modelled into the anomalous electron-density map, with ten of these 

positioned in the inner core and four located in the outer core (Fig. 4.4). All Cu(I) ions 

observed in protomer A are occupying cognate sites i.e. found in the fully Cu(I)-loaded SlCsp3 

structure, but the anomalous electron-density peaks for Cu(I) ions 11, 12, 15*, 16 and 18* 

(Fig. 4.4), indicates reduced occupancy. Notably, no anomalous electron-density peaks are 

observed for sites 1, 2 and 4 in the inner core, which is also the case in the other protomers 

that make up the crystallographic asymmetric unit (Fig. 4.4). For protomer B, the anomalous 

electron-density map is once more consistent with the presence of fourteen Cu(I) ions. 

However, Cu12 and Cu16 are absent, and anomalous electron-density peaks are present for 

two non-cognate sites filled with Cu(I) ions, and therefore distribution of ten Cu(I) ions in the 

inner core and four in the outer core as found in protomer A is maintained. For protomers C 

 

Figure 4.3 - Polynuclear Cu(I) clusters present in the outer core of SlCsp3. The clusters present in the 5 Cu(I)-
equivalent structure (A) and the 10 Cu(I)-equivalent structure (B). The Cu(I) ions (blue spheres) bound at non-
cognate sites are labelled, nc, and the smaller blue spheres indicate a lower occupancy as determined form 
the anomalous electron-density peaks. 
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and D (the latter not shown), eighteen Cu(I) ions are observed, with Cu12, Cu13 and Cu16 

present, along with additional anomalous electron-density peaks located between Cu15* 

and 18* (green circle Fig. 4.4). Furthermore, Cu6, Cu8, and Cu14 have anomalous electron-

density peaks consistent with lower occupancy relative to Cu(I) ions in other sites. These 

observations of different distributions and occupancies of Cu(I) ions within the inner and 

outer cores reflect a clear fluxionality of site occupancies during Cu(I) loading (Fig. 4.4).  

An overview of the coordination chemistries of the Cu(I) ions in protomers A, B and 

C, together with the fully Cu(I)-loaded SlCsp3 are illustrated in Fig. 4.5. In common with the 

5 Cu(I)-equivalent structure, only His113 out of the three His residues at the mouth to the 

outer core is found to participate in coordination chemistry (Fig. 4.5). Furthermore, Cu15 is 

once more not coordinating to the Oδ1 atom of Asp61 (Cu15*), but the Oδ1 atom of Asp61 

does maintain coordination to Cu14, albeit with a longer than average bond length of 2.8 Å 

compared to 2.2 Å in the fully Cu(I)-loaded structure. Notably, when Cu13 is absent 

(protomers A and B), Cu14 adopts a distorted tetrahedral coordination geometry (Cu14*) 

through coordination by Cys100, normally reserved for Cu13 (Fig. 4.5). 

Polynuclear Cu(I)-thiolate clusters dominated by group II and III coordination are 

observed in the outer core for all protomers of the 10 Cu(I)-equivalent structure (Fig. 4.3B). 

In protomer B, the same neutral symmetrical tetranuclear [Cu4(µ2-S-Cys)4(Nδ1-His)] cluster as 

seen in the 5 Cu(I)-equivalent structure is present (Fig. 4.3A and 4.5). However, a different 

 

Figure 4.4 - X-ray structures of SlCsp3 with 10 Cu(I)-equivalents added. Protomers A, B and C are 
represented with the fully Cu(I)-loaded structure shown for comparison. Anomalous electron-density for the 
Cu(I) ions is depicted in orange mesh and contoured at 5σ. Green circles indicate the location of non-
cognate sites containing a Cu(I) ion. In protomer A, electron-density is present in the asymmetric unit that 
enables for additional residues to be modelled at the N-termini, which now starts at residue 7, as opposed 
to residue 15 in the other protomers in the crystallographic asymmetric unit. 
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tetranuclear cluster is found in protomer A, where Cys45 acts as a bridging (µ2-S) ligand to 

Cu16 and Cu18*, and Cys41 as a µ3-S ligand to Cu15*, 16 and 17 and Cys57 and Cys104 as 

monodentate ligands to create an asymmetric negatively charged [Cu4(µ3-S-Cys)(µ2-S-Cys)2(S-

Cys)2(Nδ1-His)]- cluster (Fig. 4.3B). Notably the Cu18* position is shifted in this cluster in 

respect to the other clusters and becomes three coordinate (Fig. 4.3B). In protomer C, the 

two polynuclear clusters observed in protomers A and B combine, together with a second 

non-cognate Cu(I) ion (green circle Fig. 4.5) to form a positively charged hexanuclear [Cu6(µ3-

S-Cys)2(µ2-S-Cys)3(Nδ1-His)]+ cluster (Fig. 4.3B). The second non-cognate Cu(I) ion in this 

cluster is coordinated by Cys45 and Cys57, now making the latter a µ3-S ligand (Fig. 4.3B). 

Beyond Cu14 and into the inner core no evidence of polynuclear CuS clusters is observed and 

Cu(I) ions are coordinated in their respective group 1 or group 2 coordination. Therefore, 

these polynuclear Cu(I)-thiolate clusters confined to the outer core serve to illustrate the 

coordinative flexibility inherent within the group II and group III sites and how these can 

adapt to increase cluster size whilst retaining either four or five Cys thiolates as ligands (Fig. 

4.3).  
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4.3.5  Structural effects 
of the entrance His residues on 
Cu(I) ion coordination 
The three His residues 

positioned at the solvent 

exposed entrance to the Cys 

lined core in SlCsp3 were tested 

for their contribution to Cu(I) 

binding and loading. Each His 

was individually replaced with 

Ala to create the H107A, H111A 

and H113A variants. 

Furthermore, from inspection of 

the X-ray structures of the 

partially Cu-loaded SlCsp3, 

His113 was consistently found to 

coordinate a Cu ion (Figs. 4.2 and 

4.5). It was therefore 

hypothesized that His107 and 

His111 could be involved in 

initial Cu capture and facilitate 

transfer to His113. Therefore, 

the double His-variant, 

H107A/H111A, was constructed. 

All variants were purified in the 

apo-state and CD spectroscopy 

indicated the mutations caused 

no significant effect to the 

protein fold in solution.  

 To visualise the effect on 

the Cu(I) coordination chemistry 

on removing the His residues, X-

ray crystallography studies were 

carried out. X-ray structures of the H111A, H113A and the H107A/H111A variants after 

loading with 25 Cu(I)-equivalents were determined to the resolutions reported in Table 4.5, 

 

Figure 4.5 - Coordination chemistry of SlCsp3 with 10 Cu(I)-
equivalents added. Protomers A, B and C are represented with the 
fully Cu(I)-loaded structure shown for comparison. Coordinate 
bonds to the Cu(I) ions (blue spheres) from Cys-Sƴ, His-Nδ1 and 
Asp-Oδ atoms indicated by dashed lines. The smaller spheres 
indicate partial occupancy based on the anomalous electron-
density peaks. Green circles indicate the location of non-cognate 
sites filled with a Cu(I) ion. The following Cu(I) ions belong to 
group I coordination, Cu2, Cu4, Cu5, Cu7, Cu10, Cu13 and Cu16; 
group II coordination, Cu1, Cu3, Cu6, Cu8, Cu9, Cu11, Cu12 and 
Cu18; group III 14, 15, 17, 19 and 20. 
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and the positioning of Cu(I) ions inferred through creation of anomalous electron-density 

maps (Fig. 4.6). For the H111A variant, two SlCsp3 protomers were identified in the 

crystallographic asymmetric, whereas only one SlCsp3 protomer was found in the H113A and 

H107A/H111A variant structures. Suitable diffraction quality crystals for the H107A variant 

were not obtained. From the anomalous electron-density maps (Fig. 4.6), it is apparent that 

for all variants the inner core housing Cu(I) ions 1-14 retains identical coordination chemistry 

to the WT SlCsp3, however, some variation is observed in the outer core (Fig. 4.6). For all 

variants, an additional Cu(I) ion is present that is absent in the fully Cu(I)-loaded WT SlCsp3 

structure, and is located adjacent to Cu15 and coordinated by the Oδ1 of Asp61 and Sƴ of Cys 

57 (Fig. 4.6 green circle). In the H111A and H107A/H11A structures both Cu19 and 20 are 

notable by their absence, implying that H111 and H107 are important for initial Cu loading. 

Removal of His113 results in the absence of Cu17 (Fig. 4.6), but would appear to release steric 

constraints enabling for the side chain of His111 to adopt an alternative conformation to that 

observed in the WT SlCsp3 structure resulting in facile coordination to Cu20. It is noted that 

in one of the H111A protomers a further additional Cu(I) ion is present that shares the 

coordination of the Nδ1 atom of His113 with Cu17, with further coordination by the Sƴ of 

Cys41. This brings the total number of Cu ions bound to 20 in one H111A protomer (19 in the 

other), eighteen regular sites and two additional sites, and underscores the adaptability and 

flexibility of Cu(I) coordination sites within these proteins.   
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Figure 4.6 - X-ray structures of the His variants of SlCsp3 fully Cu(I)-loaded. A) Worm representations with 
the His and Ala side chains of each variant shown in ball-and-stick representation and the N and C-terminus 
labelled. The anomalous electron density for the Cu(I) ions is shown in orange mesh and contoured at 5σ. B) 
Close-up of the coordination chemistry of the Cu(I) ions (blue spheres) in the outer core with coordinate 
bonds indicated by dashed lines. The smaller spheres indicate partial occupancy, based on the anomalous 
electron-density and the green circles indicate the location of non-cognate sites not present in the fully Cu(I)-
loaded structure. 
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4.3.6 Cu(I) arrangement in SlCsp3 Cys variants 
To further understand Cu(I) loading into SlCsp3, the C41S and C57S variants, were also 

created to assess whether these Cys variants would impact Cu(I) arrangements further into 

the inner core of SlCsp3. As observed with the His variants, anomalous electron-density maps 

were produced for the two Cys variant structures (Fig. 4.7). Similar Cu(I) ion arrangements 

were observed in the Cys variants whereby the inner core of Cu(I) ions 1-14 maintained 

similar coordination chemistry as WT SlCsp3. The outer core showed differences in Cu(I) ion 

arrangement (Fig 4.7A). For both Cys variants, one Cu(I) was absent compared to the fully 

loaded Cu(I) WT SlCsp3 structure thus giving a total of 19 Cu(I) ions (Fig. 4.7). The outer core 

Cu(I) arrangement in C41S variant shows Cu17 to be absent (Fig. 4.7A, green circle). Cu16 

seems to take the place of Cu17 by coordinating with the Nδ1 of His113 giving a bond length 

of 2.3 Å (Fig. 4.7B). In addition, Cu15 is observed to coordinate with Sƴ(Cys) of C57 in the C41S 

variant structure giving a bond length of 2.3 Å and also newly coordinates with Sƴ(Cys) of 

C104, giving a bond length of  2.0 Å. Whereas in the WT Cu(I)-SlCsp3 structure, this Cu15 is 

coordinated to Sƴ(Cys) of C41. 

All Cu(I) ions surrounding the C41S site maintain full occupancy and adjust to the loss 

of Cys41 by positioning themselves slightly closer to the adjacent Cu(I) binding residues (Fig. 

4.7B). However, the positioning of these outer core Cu(I) ions does not differ greatly 

compared to the WT Cu(I)-SlCsp3 structure. The structure of C57S variant demonstrates 

similar characteristics. Again, the absence of one Cu(I) is highlighted in the C57S structure as 
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shown in Fig. 4.7A and B (red 

and green circles) thus giving 

a total of 19 Cu(I) ions. The 

inner core (Cu(I) ions 1-14) 

maintain same positioning 

as WT SlCSp3. The outer core 

displays similar patterns in 

Cu(I) positioning as C41S 

variant. The Cu(I) ion missing 

from this structure is Cu18 

(Fig. 4.7B) and slight re- 

positioning of outer core 

Cu(I) ions is observed to 

compensate for the loss of 

C57 binding site. But again, 

this repositioning of Cu(I) 

ions is only slight and does 

not differ greatly to the WT 

Cu(I)-SlCsp3 structure thus 

all Cu(I) ions still maintain 

coordination with their 

corresponding ligands.

 

Figure 4.7  - X-ray structures of the Cys variants of SlCsp3 fully Cu(I)-
loaded. A) Worm representations with the His side chains of each 
variant shown in ball-and-stick representation and the N and C-
terminus labelled. The anomalous electron density for the Cu(I) ions is 
shown in orange mesh and contoured at 5σ with a red circle and green 
sphere showing the absence of one Cu(I) ion. B) Close-up of the 
coordination chemistry of the Cu(I) ions (blue spheres) in the outer core 
with coordinate bonds indicated by dashed lines. Based on the 
anomalous electron-density and the green circles indicate the location 
of Cu(I) ions not present in the fully Cu(I)-loaded structure. 
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4.4 Discussion 
At low Cu(I) to protein ratios, Cu(I) sites 15*, 17 and 18* are loaded with variable occupancy 

and a trinuclear [Cu3(µ2-S-Cys)2 (S-Cys)2(Nδ1-His)] and a tetranuclear [Cu4(µ2-S-Cys)4(Nδ1-His)] 

cluster, with the fourth Cu(I) occupying a non-cognate site (a binding site that is not occupied 

in the fully Cu(I)-loaded SlCsp3) is visualised in the outer core (Fig. 4.3A). Cu(I) sites 19 and 20 

remain empty but they must participate in Cu(I)-loading. It is notable from the structural 

studies of partially loaded SlCsp3 that Cu(I) occupancy at sites 19 and 20 is only observed in 

the fully Cu(I)-loaded structure, and in the case of the His variants, sites 19 and 20 are only 

occupied when His107 and His111 are together present (Fig. 4.6B). Thus, Cu(I) sites 19 and 

20 may be considered as transient loading sites or entrance sites to the outer core. Dennison 

and co-workers using X-crystallography also visualised an initial [Cu4(µ2-S-Cys)4] cluster 

forming, but in the inner core of MtCsp3 under low Cu(I) loading conditions (76). However, 

in SlCsp3, the formation of [Cu4(µ2-S-Cys)4] cluster is observed not in the inner core but in the 

outer core. 

At low Cu(I) loadings (five Cu(I) equivalents), binding sites 1-14 remain empty, 

implying an energetic barrier to the distribution of Cu(I) beyond the initial tetranuclear 

cluster formed in the His entrance must exist. Thus, the [Cu4(µ2-S-Cys)4] cluster must be 

thermodynamically more favoured than occupancy of the sites available in the inner core, at 

least under low Cu(I) to protein ratios. On addition of 10 Cu(I)-equivalents, sites within the 

inner core become occupied, with it noted that variability in site occupancy between 

different chains of the homotetramer exist, implying flexibility and fluxionality of Cu(I) in the 

protein during loading. Furthermore, sites 1, 2 and 4 display similar traits to sites 19 and 20 

in that occupancy is only observed when Ccsp becomes fully Cu(I) loaded (Figs. 4.4 and 4.5). 

The Cys variant structures upon full Cu(I)-loading maintain an undisturbed inner core 

which was identical to the WT Cu(I) SlCsp3 (Fig. 4.7). The outer core however did show slight 

differences in Cu(I) ion arrangement. In particular, Cu15 seemed to adjust in the absence of 

either Cys41 or Cys57 by coordinating with either one of these Cys ligands that was still 

present. In each structure, there was an absence of one Cu(I) ion, in the C41S structure, the 

absent Cu(I) ion was Cu17 whereby in the C57S structure, the absent Cu(I) ion was Cu18. The 

overall impact that changing Cys41 and Cys57 had on the Cu(I) ion arrangement of the outer 

core was minimal. The remaining outer core Cu(I) ions showed only small variances in 

positioning but maintained analogous coordination symmetry as the WT Cu(I)-SlCsp3 

structure. 

The combination of the Cu(I)-loaded variant structures and partial loaded structures 

of SlCsp3 will aid in understanding the kinetics of Cu(I)-loading to SlCsp3. Chapter 5 describes 
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stopped flow kinetic studies, which together with the structures presented in this chapter, 

help define the mechanism of Cu(I) loading, with particular focus of the three His variants 

(H111A, H113A and H107A/H111A).  
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5 Chapter Five 

 

 

Studying the kinetics of Cu(I) 

loading and Histidine coordination 

in SlCsp3 
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5.1 Introduction 
To circumvent the potentially toxic effects of aqueous Cu(I) ions in the bacterial cytoplasm, 

Cu(I) is moved between sites in a defined and safe manner. The accepted view of cellular 

Cu(I)-trafficking i.e. transfer of Cu(I) from a donor to an acceptor, is that it comprises of a 

ligand-substitution process at the inorganic centre, a fundamental process of inorganic 

reaction mechanisms (171). In this manner, a Cu(I)-bound donor (protein or low molecular 

weight ligand) associates with an acceptor, enabling intrusion into the donor coordination 

sphere of a ligand from the acceptor, ensuring that Cu(I) remains at all time coordinated 

between donor and acceptor and facilitating rapid Cu(I) exchange (111, 172-176). Therefore, 

for Csp3 members to act as a cytosolic Cu(I) store, cuprous ions will unquestionably need to 

be delivered by a donor. The nature of the donor that acts to deliver Cu(I) to Csp3 members 

in vivo is unknown, but as shown in Chapter 3, a Cu(I)-chaperone protein, CopZ, that 

coordinates a solvent exposed Cu(I) ion through thiolate coordination in a CXXC motif can 

readily transfer Cu(I) in vitro to SlCsp3 (19).  

 Recent insights into Cu(I)-loading of MtCsp3 have been obtained through X-ray 

crystallography studies (76). Structures determined at various Cu(I) to protein ratios reveal 

the existence of initial tetranuclear Cu(I)-thiolate clusters, [Cu4(µ2-S-Cys)4], located in the Cys 

core (Cu sites 3 to 14) of the four helix-bundle (76). As more Cu(I) is loaded the tetranuclear 

clusters considered as ‘intermediates’ evolve into the final Cu(I) coordinated states (76). 

Thus, the formation of tetranuclear clusters is considered a driving force for acquisition and 

safe initial storage of Cu(I) by Csp3 members (76, 169). 

 This Chapter investigates stopped-flow kinetics of Cu(I) loading to WT SlCsp3 and His 

variants (170). This work complements the structural studies described in Chapter 4, where 

the formation of various intermediate clusters including a tetranuclear [Cu4(µ2-S-Cys)4(Nδ1-

His)] cluster in the outer core is discussed. These data reveal that at low Cu(I) loadings, 

polynuclear Cu(I) clusters form exclusively in the His entrance of the four helix-bundle. As 

more Cu(I) ions are loaded, Cu(I) sites become occupied to varying extents in the Cys core. 

Kinetic studies using the Cu(I) bicinchoninic acid complex ([Cu(BCA)2]3-) as a donor, reveals 

rapid uptake by SlCsp3 of two Cu(I) ions within the first few seconds of the reaction time 

course, followed by additional slower phases. The role of the His residues lining one end of 

the four helix-bundle in Cu(I) loading have been determined, offering the first experimental 

kinetic evidence that Cu(I) loads at the His end. From these data, a model of Cu(I) binding to 

SlCsp3 is proposed and discussed. In addition, data obtained from split chamber tandem 

cuvette studies is also presented to further demonstrate the Cu(I) acceptor/donor 

interactions between CopZ chaperone, CopZ3079 and WT SlCsp3. 
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5.2 Methods 
5.2.1 Preparation of proteins, Cu(I) solutions and complexes 
Apo-SlCsp3 proteins were exchanged into 10 mM MOPS pH 7.5, 150 mM NaCl. For Cu(I)-

titrations and stopped-flow kinetics samples were prepared together with CuCl solutions in 

an anaerobic chamber (DW Scientific [O2] < 2 ppm). Solid CuCl (Sigma-Aldrich) was dissolved 

in 10 mM HCl and 500 mM NaCl and diluted with 10 mM MOPS pH 7.5, 150 mM NaCl. The 

Cu(I) concentration was determined spectrophotometrically using a Cary 60 UV-visible 

spectrophotometer (Varian) thermostatted at 20 oC through step-wise addition of the stock 

CuCl solution into a known concentration of the Cu(I) specific bidentate chelator 

bicinchoninic acid (BCA; Sigma-Aldrich). Formation of the [Cu(BCA)2]3- complex was 

monitored using absorption spectroscopy by following the increase in absorbance at 562 nm 

on addition of Cu(I) and the concentration determined using an (Ɛ) = 7,900 M-1 cm-1 (147).  

5.2.2 Stopped-flow absorption spectroscopy 
An Applied Photophysics (Leatherhead, UK) stopped-flow spectrophotometer operating in 

absorbance mode using either a photomultiplier capture system or diode array and 

thermostatted to 20 oC was employed to monitor the kinetics of Cu(I)-loading to SlCsp3 and 

the His variants. Anaerobic buffers were prepared by repeated exposure to vacuum followed 

by equilibration with oxygen free argon. Buffers were taken into glass syringes equipped with 

coupling tubes allowing dilution of the anaerobic Cu(I) solutions without exposure to oxygen. 

Protein solutions were prepared by similar cycles of gentle degassing and equilibration with 

oxygen free argon. The stopped-flow apparatus was washed through with anaerobic buffer 

prior to introduction of the reactants (protein and Cu(I)) under study. This procedure permits 

reactions to be studied at oxygen concentrations of 2 µM or below.   The appropriate 

extinction coefficient (accounting for the slit-width used in the stopped-flow experiments 

and wavelength discrimination in the diode array) for bleaching the [Cu(BCA)2]3- complex on 

Cu(I) removal was determined by mixing a known concentration of the [Cu(BCA)2]3- complex 

(200 µM) with an excess of protein and monitoring full bleaching of the absorption band at 

562 nm using the diode array. The value determined for Ɛ562nm = 7,200 M-1 cm-1. This value 

constitutes ~ 90 % of the literature value (147).  

5.2.3 UV-visible spectroscopy Cu(I) transfer studies  
Apo-CopZ3079 protein (3 mM) was prepared in an anaerobic chamber (DW Scientific [O2] < 

2 ppm) in 10 mM MOPS pH 7.5, 150 mM NaCl and 2 mM DTT in a total volume of 2 ml and 

incubated over-night at room temperature. This CopZ3079 was applied twice to a 25 ml 

desalting PD10 column equilibrated in the experimental buffer to remove DTT. If required, 

the CopZ3079 was loaded with an excess of Cu(I) (2-5 molar equivalents) then applied to a 
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PD10 column to remove any unbound Cu(I). Apo-SlCsp3 protein was exchanged into the 

experimental buffer in the anaerobic chamber. The proteins were then added in equal 

volume to each compartment of a glass split chamber tandem cuvette (0.5 – 1 ml). A baseline 

scan measurement scan was taken using a Cary 60 UV-visible spectrophotometer (Varian) 

thermostatted at 20 oC before mixing of the two proteins. Then both proteins were manually 

mixed together and a measurement scan was taken in the first ~ 10 seconds after mixing. 

Subsequent scan measurements were taken at set time intervals to observe for possible Cu(I) 

transfer. 

5.3 Results 
Addition of Cu(I) to the apo-state of the Cys variants, single and double His-variants under 

anaerobic conditions, led to the appearance of absorbance bands in the UV-spectrum that 

have previously been attributed in the WT protein to arise from (Cys)Sƴ→Cu(I) ligand to 

metal charge transfer (LMCT) bands (1, 19). For all variants the absorbance bands in the UV-

region of the spectrum increase concomitantly with the Cu(I):SlCsp3 ratio (Fig. 5.1A and 

Appendix 3). A saturation point coinciding with a stoichiometry of ~18-20 Cu(I) ions bound 

per protomer (Fig. 5.1B) was observed as also noted for WT SlCsp3 and thus, the Cys variants, 

single and double His-variants do not prevent Cu(I) loading.  

 

5.3.1 Aqueous Cu(I) can rapidly fill SlCsp3 binding sites  
On rapidly mixing Cu(I) with SlCsp3 at sub- to super-stoichiometries with respect to the Cu(I) 

binding sites within SlCsp3 under anaerobic conditions, optical transitions in the UV region 

of the absorption spectrum were observed, consistent with previously reported static 

 

Figure 5.1 - Cu(I) titration to the SlCsp3 H107A/H111A variant. A) UV-vis difference spectrum 
upon titration of a stock solution of CuCl to 5.6 µM of the protein revealing the appearance of 

(Cys)Sƴ→Cu(I) LMCT bands. B) Plots of absorbance versus the Cu(I):SlCsp3 concentration ratio 
at selected wavelengths taken from (A). A break point in the absorbance is reached at ~18-20 
Cu(I) equivalents. Experiments were performed at 20 oC in 10 mM MOPS pH 7.5, 150 mM NaCl. 
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titrations (19). The reaction time courses for the transition at 280 nm are shown in Fig. 5.2A. 

A rapid increase in absorbance is observed within the first 2 seconds followed by slower 

processes (Figs. 5.2A and B). The amplitudes of the fast processes at 280 and 310 nm (0-2 

seconds of the reaction) show distinct dependences on the Cu(I) concentration (Fig. 5.2C), 

consistent with the titration of SlCsp3 with Cu(I), i.e. below stoichiometric Cu(I) 

concentrations the amplitude increases linearly, indicating high affinity binding. Thereafter, 

(at super-stoichiometries) the amplitude plateaus, as expected for saturation of all available 

sites and the intersection of these two titration phases indicates a stoichiometry of Cu(I) 

binding of ~90 µM Cu(I) (Fig. 5.2C), consistent with 20 Cu(I) sites per protomer (19). 

Therefore, from the stopped-flow data, SlCsp3 becomes fully Cu(I) loaded within 2 seconds. 

The rates of the loading processes seen in the time courses in Fig. 5.2A and B, display some 

Cu(I) concentration dependence, but do not conform, when analysed as sums of one or two 

exponentials, to second-order rate processes. This is to be expected given the complex 

physical chemistry of Cu(I) loading at a single site and then transferring through the 

protomer. For full loading to occur within 2 seconds, the individual binding sites within the 

protomer although having a high intrinsic affinity for Cu(I), are able to pass the Cu(I) between 

sites suggesting an internal ligand-exchange mechanism is operating through the protomer. 

Thus, these data imply that the half-life for Cu(I) dissociation from any site within the binding 

tube is << 2 seconds. The slower phases seen in Fig. 5.2A could not be assigned, but were 

variable in rate and amplitude, and may result from either non-specific binding or metal-

induced protein-protein interactions and are not further discussed. In addition, the rate 

constants associated with every time course reported in this chapter have not been included. 

 

Figure 5.2 - Kinetics of aqueous Cu(I) loading to SlCsp3. A) and B) Stopped-flow reaction time-courses 
monitored at 280 nm on mixing increasing concentrations of CuCl under anaerobic conditions. A fast phase 
between 0-2 seconds is observed (B), followed by slower phases over timescales up to 200 s (A). C) The 
amplitudes of the fast phase (between 0-2 seconds) observed at 280 nm and 310 nm plotted against 
increasing concentrations of Cu(I). The intersection of the two dashed lines is indicated revealing a 
saturating Cu(I) concentration of ~ 90 µM. Experiments were performed at 20 oC in 10 mM MOPS pH 7.5, 
150 mM NaCl with 4.5 µM of SlCsp3 after mixing. Solutions of Cu(I) at known concentration were obtained 
from dilution of a 1 mM stock CuCl solution under anaerobic conditions. 
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These values were often varying and inconsistent during plotting and fitting for further 

analysis. This could be due to the complex mechanisms potentially occurring in Cu(I) transfer 

and binding with SlCsp3 thus are not further mentioned. 

5.3.2 Cu(I) is loaded to SlCsp3 from a donor in multiple phases 
Loading of aqueous Cu(I) to SlCsp3 is unlikely to occur in vivo. Trafficking of Cu(I) within the 

bacterial cytosol involves ligand-exchange between the metal containing donor and an 

acceptor (171), ensuring that the Cu(I) ion remains coordinated at all times. To investigate 

such a process, the Cu(I) nitrogen donor BCA has been used to monitor the kinetics of Cu(I) 

loading to SlCsp3. In Chapter 3 it was shown that SlCsp3 can remove Cu(I) from the 

[Cu(BCA)2]3- complex (19). On rapid mixing of SlCsp3 with [Cu(BCA)2]3- in the stopped-flow 

spectrophotometer, bleaching of the complex absorbance band centred at 562 nm was 

observed. The kinetics of this process are shown Figs. 5.3A & B. A rapid decrease in 

absorbance at 562 nm in Fig. 5.3B, illustrates Cu(I) transfer occurs within the first 2 seconds 

of the time monitored. Given, the high affinity of BCA for Cu(I) (implying a vanishingly small 

dissociation rate constant), the transfer cannot proceed with aqueous Cu(I) as an 

intermediate and thus must proceed via complex formation between SlCsp3 and [Cu(BCA)2]3-

. The amplitude of the absorbance change is seen to be [Cu(BCA)2]3- concentration dependent 

(Fig. 5.3A). Using an Ɛ562 nm = 7,200 M-1 cm-1 for the [Cu(BCA)2]3- complex as determined for 

monitoring in the stopped-flow spectrophotometer (see 5.2.2 Methods), it is indicated on 

Fig. 5.3A the expected absorbance changes for filling up to four sites in SlCsp3 (5 µM) with 

 

Figure 5.3 - Kinetics of Cu(I) loading to SlCsp3 from the [Cu(BCA)2]3- complex. A) and B) stopped-flow 
reaction time-courses monitored at 562 nm on mixing SlCsp3 (5 µM) with increasing concentrations of 
Cu(I) chelated in the [Cu(BCA)2]3- complex revealing an initial fast phase (B) followed by slower phases (A). 
Dashed lines indicate the expected absorbance changes for removal of Cu(I) equivalents from the 
[Cu(BCA)2]3-. Up to 50 µM [Cu(BCA)2]3- complex the kinetics could be monitored satisfactorily for the first 
200 seconds, thereafter, at longer times and at higher [Cu(BCA)2]3- concentrations, interactions between 
[Cu(BCA)2]3- complexes themselves perturbed the spectra and made it impossible to analyse confidently 
the data in terms of Cu(I) transfer to SlCsp3. Experiments were performed at 20 oC in 10 mM MOPS pH 
7.5, 150 mM NaCl. 
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Cu(I). Within the first 2 seconds, between 1 and 2 Cu(I) ions are delivered depending on the 

concentration of the [Cu(BCA)2]3- complex (Fig. 5.3B). Over a longer time-period (Fig. 5.3A), 

80-85 % of the Cu(I) is removed from the BCA complex, e.g. 10 µM Cu(I) of the 12.5 µM Cu(I) 

available. The discrepancy of the total Cu(I) available and the Cu(I)-loaded may arise either 

from a much slower delivery over a longer time-period that is not observed or in the 

experimental error of solution concentrations. Analysis of the kinetic processes showed them 

to comprise of at least three-exponential phases. This may be expected given that Cu(I) ions 

must be delivered from the [Cu(BCA)2]3- complex one at a time and thus involve i) complex 

formation, ii) Cu(I) transfer and iii) dissociation of the free BCA. Furthermore, sequential 

loading of Cu(I) implies Cu passing from site-to-site within the SlCsp3 protomer as inferred 

from aqueous Cu(I)-loading. Nevertheless, it is observed that the most rapid phase is most 

easily interpreted as transfer of a Cu(I) ion to a first coordination site in SlCsp3.  

5.3.3 His107 is important for initial Cu(I) entry  
To probe further the mechanism of the initial Cu(I)-loading to SlCsp3, stopped-flow kinetics 

of the His-variants with the [Cu(BCA)2]3- complex as the donor was carried out. Figure 5.4 

compares the loading of Cu(I) to the WT SlCsp3 and the His variants with the expected optical 

density change for filling one site with Cu(I) indicated. Over the first 2 seconds, rapid transfer 

is observed (Fig. 5.4A) and it is apparent that the H111A and H113A variants are essentially 

indistinguishable from the WT SlCsp3, whereas the H107A and the H107A/H111A double 

variant clearly show that entry of Cu(I) is perturbed (Fig. 5.4A). This implies that H107A has a 

major role in initial Cu(I) transfer. Over a longer time-period, during which ~ 80% of the 

available Cu(I) can be delivered to the WT SlCsp3, further effects of the His-variants may be 

 

Figure 5.4 - Kinetics of Cu(I) loading to the SlCsp3 His variants from the [Cu(BCA)2]3- complex. A) and B) 
stopped-flow reaction time-courses monitored at 562 nm on mixing SlCsp3 (4.5 µM) and the His variants 
(5.5-5.8 µM) with 50 µM [Cu(BCA)2]3- complex revealing an initial fast phase A) followed by slower phases 
B). Shaded area in (A) indicates the expected absorbance changes for removal of one Cu(I) equivalents from 
the [Cu(BCA)2]3- complex based on the variation of protein concentrations used. Experiments were 
performed at 20 oC in 10 mM MOPS pH 7.5, 150 mM NaCl. 
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discerned (Fig. 5.4B). The H107A variant identified as important in initial entry, slows 

subsequent loading (Fig. 5.4B), whereas the H111A variant, while not effecting the initial 

entry, does further slow Cu(I) entry (Fig. 5.4B). Of note, the double variant which is similar to 

H107A in affecting the initial entry, has a significant effect on subsequent loading (Fig. 5.4B). 

Examination of the structure in Fig. 4.5 and these data, indicate H107 and H111 are important 

ligands to the first two Cu(I) sites (19 and 20). The H113A variant affects neither the initial 

entry nor subsequent loading of up to at least four Cu(I) ions per protomer, suggesting that 

the removal of this coordinating His does not impair binding to the site or impair transfer 

from the initial entry sites to other available sites. 

5.3.4 Cu(I) transfer between WT SlCsp3 and CopZ3079 
The studies of Cu(I) transfer between cytosolic Cu(I) chaperone, CopZ3079 and WT SlCsp3 

have been previously described in Chapter 3 (19). These in vitro experiments involving gel 

filtration revealed a clear distinction between the elution profiles of Cu(I)-CopZ dimer species 

(Cu+–(CopZ)2) and the apo CopZ monomer species. This allowed visual clarification of Cu(I) 

transfer between these two proteins; Cu+–(CopZ)2 donating Cu(I) to apo SlCsp3 thus 

reforming the monomer CopZ species (19). This outcome indicated the possibility of these 

two cytosolic proteins interacting in vivo through transient Cu(I) exchange mechanisms (163). 

To further investigate these interactions and support the previous work, UV-vis 

spectrophotometry was carried out to observe Cu(I) transfer using a split chamber tandem 

cuvette. The results of these experiments are shown in Fig. 5.5. Upon mixing Cu+–(CopZ)2 

with apo WT SlCsp3, LMCT bands can be observed at wavelengths 310 nm – 360 nm (Fig. 

5.5A). Though these LMCT bands are not shown in their entirety, as absorbance at 

wavelengths lower than 300 nm were not possible due to using a glass cuvette in these 

studies. Regardless, this outcome clearly shows Cu(I) transfer from donor CopZ to acceptor 

protein SlCsp3. The time recorded in Fig. 5.5B showing a plateau in Cu(I) transfer was reached 

after 10-15 minutes. Fig. 5.5C displays the same experiment but involved mixing of WT Cu(I)-

SlCsp3 with a ~28-fold excess of apo CopZ. It is seen in the UV-vis spectrum (Fig. 5.5C) that a 

drastic increase in the LMCT bands demonstrates the CopZ removing Cu(I) ions from Cu(I)-

SlCsp3. The plots shown in Fig. 5.5D further demonstrate this instant and rapid Cu(I) transfer 

as a plateau was reached after mixing both proteins (~10 seconds). This outcome is a direct 

result of the presence of excess CopZ chaperone that outcompetes SlCsp3 for Cu(I) due to 

this protein concentration difference (Cu(I)-SlCsp3 (6.28 μM) and apo CopZ (176 μM). 
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5.4 Discussion 
The capacity to bind multiple Cu(I) ions through predominately thiolate coordination 

chemistries to protect bacteria against potential toxicity is an inherent feature of the recently 

discovered Csp3 members (169). Understanding the kinetic and thermodynamic intricacies 

associated with Cu(I) loading to these proteins is particularly challenging considering the 

number of potential binding sites (cognate and non-cognate) that Cu(I) thiolate chemistry 

can impose. The results from these kinetic studies are rationalised below and a model of Cu(I) 

binding in terms of the relative energy of binding to the distinct Cu(I) sites in SlCsp3 has been 

constructed. 

 

Figure 5.5 – Cu(I) transfer between CopZ3079 and SlCsp3. (A) UV-vis spectrum of split cuvette 
measurement of Cu(I) loaded CopZ3079 (88.13 μM) and apo SlCsp3 (7.6 μM). A measurement of 
the baseline was taken which is before mixing these two proteins. After mixing, measurements 
were taken every 1 minute for 70 minutes (B) Plots of absorbance versus time (minutes) at selected 
wavelengths taken from (A). A plateau in Cu(I) transfer between the two proteins was reached 
after 10-15 minutes. (C) UV-vis spectrum of split cuvette measurement of Cu(I) loaded SlCsp3 (6.28 
μM) and apo CopZ3079 (176 μM). A measurement of the baseline was taken which is before 
mixing these two proteins. After mixing, measurements were taken every 1 minute for 33 minutes. 
(D) Plots of absorbance versus time (minutes) at selected wavelengths taken from (C). An almost 
instant plateau was reached in Cu(I) transfer after mixing (~10 seconds). Experiments were 
performed at 20 oC in 10 mM MOPS pH 7.5, 150 mM NaCl. 
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 An initial binding complex is not directly observed when using either aqueous Cu(I) 

or the [Cu(BCA)2]3- complex as a donor to load SlCsp3 as implied by the lack of second-order 

binding kinetics (i.e. no linear dependence of kobs on Cu(I) concentration). Such a complex 

must be present in the initial binding step and is a situation reminiscent of Cu(I) loading to 

other proteins which have been studied using stopped-flow spectroscopy, whereby rapid 

metal ion binding may be inferred but not directly observed (112, 118, 177). It seems 

reasonable to suggest that this complex involves initial His binding to Cu(I), which is expected 

to be optically silent as proposed earlier (112). 

A model to describe Cu(I) binding in terms of the relative energy of binding to the 

distinct Cu(I) sites is depicted in Fig. 5.6 and illustrates the relative stability of the complexes 

of Cu(I) in the sites described. When Cu(I) transfer is from the [Cu(BCA)2]3- complex, this must 

occur via a ligand-substitution mechanism to account for the relatively fast transfer (Fig. 5.3). 

As the tetrahedral [Cu(BCA)2]3- complex is coordinatively saturated we suggest that on mixing 

with SlCsp3 a heteroleptic complex forms, consisting of [Cu(BCA)]- and a nitrogen from a His 

residue with the net loss of a BCA ligand (Fig. 5.6). This His residue can be identified as His107 

based on the initial phase of the kinetic time course (Fig. 5.4A). Following this step, an 

energetically favourable transfer to sites 19 and 20 will occur, which structurally would 

involve both His and Cys coordination (group III). Sites 19 and 20 are transiently filled and 

Cu(I) is transferred to sites 15*, 17 and 18* causing release of His107 from coordination and 

enabling for further Cu(I) capture from the donor (His-ligand cycle, Fig. 5.6). The trinuclear 

cluster that is visualised in one of the protomers at 5 Cu(I)-equivalents may therefore be 

considered as a higher energy cluster on the way to forming the more thermodynamically 

stable tetranuclear cluster (Figs. 5.6 and 4.3A). 

 

Figure 5.6 - Scheme to illustrate Cu(I)-loading from the [Cu(BCA)2]3- complex to the Cu(I) sites in SlCsp3. The 
relative stabilities of the sites are depicted relative to an arbitrary energy scale. The extent of loading of Cu(I) 
is in accordance with the thermodynamic stabilities of the sites, whilst the kinetics of loading are controlled 
by ligand-exchange mechanisms between adjacent sites. See main text for details. 
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Figure 5.4B shows that over a longer reaction time course, both His107 and His111 

slow Cu(I) loading beyond sites 19 and 20 and their effects are additive. This may be 

accounted for by reference to the crystal structure (Fig. 4.6)  that indicates both His residues 

are involved in binding and stabilising Cu(I) in sites 19 and 20. The removal of these residues 

may lead to a decrease in the Cu(I) loading to these sites and hence to a slowing of loading 

to the interior of the protein as this must occur from Cu(I) populated at sites 19 and 20. 

Furthermore, as His107 is important for the ligand-exchange mechanism of passing Cu(I) 

from BCA, it may be expected that this residue has a marked effect, because in order for up 

to four Cu(I) ions to load as illustrated in Fig. 5.4B, the [Cu(BCA)2]--His-SlCsp3 complex must 

form, transfer Cu(I) and dissociate after each Cu(I) is donated. Thus, for four Cu(I) ions loaded, 

the His-ligand cycle must occur four times and as each loading requires His107 for efficient 

transfer its absence would have a significant effect on the loading and could account for the 

observed kinetics (Fig. 5.4B). 

At low Cu(I) stoichiometry, Cu(I) transfer beyond site 15* is not observed. Thus, the 

formation of the [Cu4(µ2-S-Cys)4(Nδ1-His)] cluster creates an unfavourable barrier to loading 

into the inner core (Fig. 5.6). A reason for this may be that to move Cu(I) into the inner core 

via the binding sites 15 and 14, interaction with Asp61 must occur (Asp sites Fig. 5.6). A hard 

ligand/soft metal interaction is less favoured and of lower affinity than the Cu(I) thiolate 

coordination dominating the tetranuclear cluster. However, as more Cu(I) is loaded into the 

outer core this barrier can be overcome, leading to transfer into the inner core becoming 

favourable. This accounts for the observation that at 10 Cu(I)-equivalents Cu(I) ions are 

present in both cores (Fig. 4.4).  

The model depicted in Fig. 5.6, also gives insight into how SlCsp3 achieves very high 

affinity for Cu(I) while retaining rapid kinetic transfer. A mathematical analysis of a multi-site 

protein (up to 20 sites) is complex and requires solutions of at least quartic equations. 

However, without resorting to such complexity it is possible to see that the dissociation 

constant (Kd) for SlCsp3, defined as the free Cu(I) concentration in solution at equilibrium 

with the protein at half saturation, arises from the Kd of the initial Cu(I) capture site, which is 

likely to be of the order 10-5 M (typical for Cu(I) His interaction (112, 118)) divided by a 

function of the multiple of the equilibrium constants for transfer from the capture complex 

to sites 19 and 20, sites 15*, 17 and 18* and so on. Overall this multiple will be large and 

positive, resulting in the extremely small Kd value (10-17 M) measured for SlCsp3 (19). 

The in vitro Cu(I) transfer studies between CopZ3079 and WT SlCsp3 presented in 

this chapter further support work presented in Chapter 3 (19). The analytical gel filtration 
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studies shown in Chapter 3 demonstrated Cu+–(CopZ)2 is able to transfer Cu to apo SlCsp3 

(19). These interactions are not uncommon for metalloproteins and normally involves a 

transient ligand exchange mechanism (163). Indeed, the split cuvette method yielded results 

that Cu(I) transfer is unidirectional thus Cu(I) is only transferred from Cu+–(CopZ)2 to apo 

SlCsp3 (Fig. 5.5A & B). This exchange does not occur vice versa using equal protein 

concentrations in the split cuvette method as equilibrium does not favour this but further 

experiments were carried out using an ~28-fold excess of apo CopZ in the presence of Cu(I)-

SlCsp3 (Fig. 5.5C & D). This demonstrated an almost instant removal of Cu(I) ions from SlCsp3 

by apo CopZ after mixing (~10 seconds). The split cuvette experiments support in vitro that 

Cu(I) transfer does occur between these two proteins and under the experimental conditions 

in Fig. 5.5A & B, transfer reaches a plateau after 10-15 minutes. 

Future work could involve testing the Cys and His SlCsp3 variants for Cu(I) transfer 

with CopZ and further examining rates of Cu(I) transfer. For instance, Dennison and co-

workers presented similar studies between a Csp3 from Bacillus subtilis and a CopZ from the 

same organism (2, 75). It was determined that Cu(I) removal from BsCsp3 by BsCopZ was a 

slow process whereby ~40% of Cu(I) was removed from BsCsp3 by BsCopZ in 64 hours (2, 75). 

This was also observed for Cu(I) removal from Methylosinus trichosporium OB3b MtCsp3 by 

its physiological partner, Mbtin, which has a high affinity for Cu(I) (2, 6, 13). It was found in a 

study by Vita et al. that Mbtin removes all Cu(I) from MtCsp3 in ~15 days (2). This highlights 

the thermodynamically unfavourable direction of Cu(I) transfer for these Csp3s by their 

physiological partners. 

In conclusion, this study offers the first insight into the kinetics of Cu(I) loading to a 

non-methanotrophic Csp3 member and in particular highlights that the His residues at the 

hydrophilic mouth of the outer core are the entrance sites of Cu(I) loading. Furthermore, it 

illustrates that efficient kinetic transfer occurs from an organic Cu(I) nitrogen donor to SlCsp3. 

In vivo potential Cu(I) donors to SlCsp3 could involve Cu chaperone proteins that utilise 

digonal bis-cystientate coordination (111, 176, 178) and thus the kinetics of Cu(I) transfer to 

a Csp3 may differ from a thiol Cu(I) donor compared to a nitrogen donor. However, 

chalkophores, natural products produced by bacteria that chelate and transport copper (16, 

62, 179, 180) predominately utilise nitrogen as a Cu(I) donor, as is the case here with the 

[Cu(BCA)2]3- complex. Until recently chalkophores have been associated with 

methanotrophic bacteria (62). Interestingly, diisonitrile derivatives with nitrogen and/or 

oxygen as Cu(I) donor, with 1:2 (Cu(I):ligand) stoichiometry, have been discovered in 

Streptomyces thioluteus and identified to play a role in Cu uptake mechanisms (5). This poses 
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the question of whether similar compounds serve as donors to Csp3s, as opposed to thiol 

donors such as CopZ Cu chaperones. Thus, the kinetic studies of Cu(I) transfer to SlCsp3 

utilizing a nitrogen Cu(I) donor in the guise of the [Cu(BCA)2]3- complex and the discovery of 

role for a His residue in facilitating the Cu(I) transfer bear significance on potential biological 

events. Structural studies further indicate that the driving force to sequester Cu(I) and 

prevent toxicity by Csp3 members is through the initial formation of tetranuclear Cu(I)-

thiolate clusters (76, 169). Contrary to cluster formation in the inner core as revealed in 

MtCsp3, a tetranuclear cluster forms in the outer core of SlCsp3 and its presence affects the 

loading of the inner core at low Cu(I) loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



103 
 

6 Chapter Six 

 

 

Developing an over-expression 

system for the integral membrane 

protein SLI_RS17250 (DUF4396) 

from Streptomyces lividans 
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6.1 Introduction 
The expression and characterisation of membrane proteins continues to be one of the most 

challenging areas in protein structural biology (181, 182). This is due to their hydrophobic 

nature as they are found in the mosaic lipid bilayer of the cell with occasionally extra domains 

outside the bilayer (183). This makes it difficult to express these proteins with an added 

difficulty being that they are often unstable in solution without a suitable detergent present 

(183-185). Indeed, the structural biology of this class of proteins is highly sought after as they 

represent more than 60% of drug targets (186, 187). In addition, most membrane proteins 

are present in low amounts in membranes and the need to over-express them efficiently is 

paramount. Furthermore, the issues that arise from expressing cloned constructs of 

membrane proteins in any system is protein aggregation in the cytoplasm therefore 

obtaining high amounts of protein is extremely challenging (185). The use of detergents in 

membrane protein purification is a pre-requisite as they comprise of a hydrophobic chain 

and a polar head group and are amphipathic overall (185), thus mimicking the natural 

membrane lipid environment. Some examples of commonly used detergents are shown in 

Fig. 6.1. 

The detergent molecules in Fig. 6.1 have physicochemical properties that are similar to the 

phospholipids in the mosaic lipid bilayer of cell membranes. They form micelles in aqueous 

 

Figure 6.1 – Chemical structures of detergents used in membrane protein solubilisation. Sodium dodecyl 
sulfate (SDS); polyoxyethylene sorbitan monolaurate (Tween20); n-decyl-β-ᴅ-maltoside (DM); n-octyl-β-
ᴅ-glucoside (OG); 5-cyclohexyl-1-pentyl-β-ᴅ-maltoside (Cymal-5); nonanoyl-N-methylglucamide (Mega-
9); lauryldimethylamine-N-oxide (LDAO); decylphosphocholine (Fos-choline-10). Image taken from (8). 
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solution and thus form around the membrane protein which maintains their stability and 

solubilises these proteins (185). However, despite the wide use of detergents, their 

effectiveness in maintaining membrane protein structure and activity has often proven to be 

inadequate. The structure of some cell membranes contains various other lipids and 

membrane proteins have adapted to exist in such environments whereby the membrane 

provides this lipidic complexity that ensures proper protein folding which leads to enhanced 

membrane protein activity (188). Due to this, detergents alone are insufficient in replicating 

this environment. The use of detergents also poses the fundamental question of which 

detergent to use? The lack of a single solution to solubilise any membrane protein leads to 

endless experiments of testing a great number of detergents which is time consuming (188). 

Thus, a new technology had been developed to replicate the physically diverse membrane 

bilayer (188-190) known as styrene maleic acid lipid particles (SMALPs) (188, 191, 192). This 

method involves directly removing proteins from the membrane into SMALPs (188). SMALPs 

maintains a structure of an outer layer of styrene maleic acid co-polymers (SMA) (188, 193) 

supporting a central lipid bilayer (188). This assembly is maintained by intercalating 

hydrophobic styrene groups between the acyl chains in the bilayer with solvent exposed 

maleic groups (188). This novel bilayer capsule allows to extract proteins by maintaining the 

lipid formation and physical characteristics of the protein’s native membrane environment 

(188, 194). This method is an improvement of the detergent-based method but does have 

limitations. The SMALP nominal maximal diameter is ~15 nm (188) which requires that 

protein molecular mass cannot be more than ~400 kDa (188, 193).   
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Indeed, the use of SMALPs limits the types of membrane proteins that can be isolated. To 

overcome issues in heterologous membrane protein expression, it is also paramount to 

understand their behaviour in vivo. The functions of membrane proteins range from acting 

as ion channels, ATPases, transporters, electron carriers and more (20). Integral inner 

membrane proteins are either β-barrel or α-helical bundles (20). The α-helical membrane 

proteins can exist monomerically or as oligomers and possess membrane spanning helices 

that are either re-entrant, curved, straight or kinked (20). In prokaryotes, membrane protein 

expression consists of targeting the protein to the correct membrane location, topogenesis 

to properly integrate the membrane protein which could involve structural folding of loops 

or multiple subunits brought together to form an oligomeric membrane protein complex 

(20). This process is referred to as membrane protein biogenesis which has been widely 

studied in E. coli (195) and involves a series of complex steps (Fig. 6.2). The first step involves 

targeting the membrane protein which takes place before or during protein synthesis (20). A 

signal recognition particle (SRP) plays a role by interacting with the newly synthesised 

membrane protein as it appears from the ribosome and forming an SRP-ribosome-nascent 

chain complex (20). This complex is transported to a receptor, FtsY which is stationed on the 

membrane (20). The complex becomes disassembled, a process that is energetically 

supported by GTP hydrolysis by binding to FtsY and SRP and overall releases the membrane 

protein (20). The FtsY breaks away from GFP and SRP and interacts with the SecYEG 

translocation channel to transport the membrane protein (20). The next step involves 

 

Figure 6.2 - Membrane protein insertion diagram and the function of translocases. (a) Transmembrane 
(TM) fragments are partitioned into the lipid phase by SecYEG (b) The insertion and integration of TM 
subunits is mediated by SecYEG and YidC. TM segments are inserted into the Sec channel and before 
entering the lipid phase, these segments are transferred to YidC. TM segments are regulated by YidC 
whereby multiple fragments can dock onto YidC for assembly whereby they are released as a fully 
fabricated α-helix bundle. (c) YidC functions independently as an insertase. (d) SecYEG and YidC function in 
unison for membrane protein insertion. In this diagram, YidC insertase mediates the insertion of the N-
terminal region of the protein whereas the insertion of the C-terminus is controlled by SecYEG. Diagram 
taken from (20). 
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insertion of the membrane protein into the membrane which is aided by Sec translocase (20). 

This translocase protein consists of SecA which a peripheral membrane component and two 

membrane embedded complexes known as SecDFyajC and SecYEG (20). The role of each 

subunit is essential to the membrane protein integration process. SecA is a motor ATPase 

which translocate membrane proteins by moving their polypeptide chains through SecYEG 

which is a protein channel (20).  

The topology and insertion of membrane proteins into the membrane bilayer is 

influenced by their amino acid composition. The possession of positively charged residues in 

the cytoplasmic loops of bacterial membrane proteins is a positive-inside characteristic (20). 

This configuration is found in systems such as the endoplasmic reticulum (20, 196), 

chloroplasts’ thylakoid (20, 197) and mitochondrial membranes (20, 198). Overall, the 

positioning of the transmembrane region is dictated by the contiguous positively charged 

residues that are found in the cytoplasm – this is the positive-inside law (20).  

6.1.1 A putative transmembrane protein from S. lividans 
In conjunction with the up-regulation of the slcsp3 gene under Cu stress in S. lividans the 

neighbouring gene, SLI_RS17250, was also found to be upregulated to a similar level and 

expresses a putative transmembrane protein, SLI_RS17250 which belongs to the functionally 

uncharacterised DUF4396 family. The amino acid sequence for SLI_RS17250 is shown in Fig. 

6.3.  

This chapter is aimed at firstly creating Escherichia coli over-expression constructs to produce 

SLI_RS17250, test over-expression and assess whether SLI_RS17250 can be characterised in 

vitro. The function of SLI_RS17250 is entirely unknown, but this protein is part of a developing 

theory of a new Cu resistance system that also involves a translationally coupled Na+/H+ 

antiporter (SLI_RS17245) and a cytosolic copper storage protein (SlCsp3) (see Chapters 3-5). 

Initially it was believed that the only Cu homeostatic mechanism present in S. lividans was 

CsoR/CopZ/ATPase system (17, 18, 108, 112). But the structural and biochemical data 

collected for SlCsp3 as well as in vivo studies have suggested a second layer of Cu resistance 

when excess levels of Cu seem too overwhelming for the CsoR system to cope.  

 

MDHSTHHSAP EDDGPGHPHG HGHLHGPGHP HGHVHVHGTT WATAMQATLH 

CLTGCAIGEI LGMVIGTALM WGNVPTMVLA IALAFVFGYS LTLFAVVRAG 

VSMKAAIKVA LAADTVSIAV MELVDNGIIA LVPGAMEAHL SDGLFWYALL 

GGFAVAFVIT TPVNKWMIGR GKGHAVVHAY H 

Figure 6.3 – Full amino acid sequence of SLI_RS17250 derived from S. lividans. 
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6.2 Methods and Materials 
6.2.1 Cloning procedure for SLI_RS17250 
The SLI_RS17250 gene (568 bp) was amplified from S. lividans 1326 and ligated into plasmid 

pTZ19R with NdeI-BamHI restriction sites. Three constructs were made to test 

overexpression in E. coli. The first construct was prepared by ligating the SLI_RS17250 gene 

into a pET21a plasmid (Novagen) with the original restriction sites (NdeI-BamHI) to ensure 

the absence of any purification tag. Primers for PCR were designed for the next two 

constructs (Table 6.1). The second pET21a construct was designed with NdeI-XhoI restriction 

sites, so that on insertion a C-terminal (His)6-tag was present. The pET26b (Novagen) 

construct was designed with BamHI-XhoI restriction sites, so that the construct would 

possess a C-terminal (His)6-tag. The PCR conditions and reagents used to make both 

constructs are shown in Tables 6.2 and 6.3. The amplified products were ligated using T4 DNA 

Ligase (Thermo Scientific), the plasmids were used to transform Escherichia coli XLI-Blue 

competent cells and transformants selected for DNA sequencing following a mini-prep 

(Thermo Scientific). Sequencing data are reported in Appendix 4. 

 

Table 6.2 - PCR cycles – bold text indicates these steps were repeated 35 times and other steps only once. 

Temperature (OC) Time (minutes) 

95 3.0 

95 1.0 

60 (Annealing temperature) 1.0 

72 2.0 

72 7.5 (Final Extension) 

4 Finish  

 

 

 

 

Table 6.1 - Forward and reverse primers used to amplify SLI_RS17250 gene via PCR to insert into plasmids 
pET21a and pET26b. Restriction sites underlined. 

Plasmid 

and 

restriction 

sites 

Forward primers Tm 

(Cͦ) 

Reverse primers Tm 

(Cͦ) 

pET21a 

(NdeI, 

XhoI) 

5’-GAATT CATATG 

GACCACAGCACGCACCACTC-3’ 

61 5’-AATAA CTCGAG 

GTGGTAGGCGTGGACGACGG-

3’ 

 

62 

pET26b 

(BamHI, 

XhoI) 

5’-GAATT GGATCCG 

ATGGACCACAGCACGCACCACTC-

3’   

 

64 5’-AATAT CTCGAG 

GTGGTAGGCGTGGACGACGG-

3’ 

 

62 
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6.2.2 Protein expression and purification 
The SLI_RS17250_pET21a construct with a C-terminal (His)6-tag was used to transform BL21-

C43 E. coli cells for overexpression studies. Overnight cultures were made by selecting 

individual colonies from the transformation plate and inoculating 3 ml of LB (Luria Broth) 

medium (Melford) containing 100 mg ml-1 Amp. These cultures were incubated at 37 oC with 

shaking at 225 rpm for 16 h. Then 100 mg ml-1 Amp was added to 1 L of LB media in 2 L flasks 

and these were inoculated with 3 ml of the pre-culture, followed by further incubation at 37 

oC with shaking (220 rpm) until an optical density at 600 nm (OD600) of 0.6 was reached. At 

this point IPTG (Melford) was added a to final concentration of 0.5 mM and temperature 

reduced to 25 oC and shaking continued for 16 h. Cells were harvested by centrifugation at 

3,501 g (F8-6x1000y rotor) using a Sorvall Evolution RC Superspeed centrifuge for 20 min at 

4 oC. The resulting pellets were re-suspended in lysis buffer (50 mM Tris/HCl pH 7.5, 300 mM 

NaCl, 10% glycerol). To the resuspension, 1 µl of 1 M MgCl2 was added to every 1 ml and 

stirred at 4 oC for 35 min. The cell suspension was passed through an EmulsiFlex-C5 cell 

disrupter (Avestin), equilibrated with lysis buffer, to lyse the cells. The lysate was centrifuged 

at 38,724 g (SS-34 rotor) using a Sorvall RC-5 centrifuge for 20 min at 4 oC. The resulting 

supernatant was subjected to ultracentrifugation at 108, 864 g (JA 30.50 Ti rotor), for 2 h at 

4 oC in Beckman Coulter Avanti JXN-30 centrifuge. For the solubilisation of the membrane 

protein, the resulting pellet was resuspended in 25ml 50 mM Tris/HCl pH 7.5, 1 mM DTT, 10 

mM PMSF and n-Dodecyl-β-D-Maltoside (DDM) detergent was added to a final concentration 

of 1% (v/v). The solubilisation step was carried out at room temperature with endo rotation 

for 2h. The resuspension was then centrifuged at 108, 864 g (JA 30.50 Ti rotor), in a Beckman 

Coulter Avanti JXN-30 centrifuge for 15 min at 4 oC. The soluble fraction was collected and 

applied to two 1 ml HiFliQ Ni-NTA columns (Generon) attached together equilibrated in 

Buffer A (50 mM Tris/HCl pH 7.5, 500 mM NaCl, 10 mM imidazole, 0.05% DDM) to bind the 

(His)6-tagged SLI_RS17250 protein. The Ni-NTA column was attached to an AKTA-Prime and 

Table 6.3 – The reagents and volumes used to amplify SLI_RS17250 gene  

Reagent Concentration Volume (µl) 

Plasmid DNA N/A 2.5 

Forward Primer - 1.0 

Reverse Primer - 1.0 

dNTP’s 10 mM 2.5 

10 x Buffer Pfu + MgSO4 - 5.0 

Sterile, deionized water - 39.0 

Pfu DNA polymerase - 0.5 

Total - 50.0 
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washed extensively with Buffer A followed by elution with 100% Buffer B (Buffer A with 500 

mM imidazole).  

6.2.3 Western Blot 
For Western Blot analysis, samples were prepared using cracking buffer (Appendix 5) and 

were separated by SDS-PAGE (Appendix 5). The samples in the SDS-PAGE were transferred 

onto a nitrocellulose membrane by electrophoresis at 66 Volts for 66 min. A blocking agent 

was applied to the membrane, 3% BSA (Thermo Fischer) and incubated at room temperature 

for 1 h. Then, the primary antibody was added, Anti (His)6-tag antibody (100 µg at 0.1 mg/ml) 

- alkaline phosphatase (Abcam), to 3% BSA buffer in a 1:5000 dilution which was applied to 

the membrane. The antibody was incubated with the membrane for 1 h at room 

temperature. Finally, the membrane was developed chromogenically by adding one 

BCIP/NBT tablet (Sigma Fast) dissolved in 10 ml sterile water and incubated for 15 min at 

room temperature. 

6.2.4 Mass Spectrometry - MALDI 
Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry was carried out. This 

involved excising a gel fragment from an SDS-PAGE gel which were of the correct predicted 

molecular mass (18.92 kDa, predicted by Expasy (www.expasy.com)). The gel slice was 

subsequently treated and reduced, followed by digestion into peptides using protease 

trypsin. An Orbitrap Elite MS/MS spectrometer equipped with liquid chromatography device 

(nano-flow LC system with reverse phase column) was used to separate peptides, determine 

their size and amino acid sequence. These sequences are compared against those in a protein 

database to confirm identity of the protein. All MALDI analyses and sample preparation were 

carried out at University of Birmingham, Advanced Mass Spectrometry Facility Services (199). 

6.3 Results 
The phylogenetic distribution of SLI_RS17250 was discussed previously in Chapter 2 whereby 

various species possessed potential homologues of this membrane protein across the Tree 

of Life. It was deduced that SLI_RS17250 originated from a last common ancestor (LCA) in 

bacteria as many homologous proteins were found in prokaryotes. It is worth noting there 

were fewer species found that possessed homologues of SLI_RS17250 compared to 

phylogenetic analyses of Ccsp and SLI_RS17245 (the Na+/H+ antiporter). Also, the lack of 

known homologous structures suggests SLI_RS17250 to be a unique transporter type protein.  

6.3.1 Cloning of expression constructs of SLI_RS17250 

http://www.expasy.com/
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The first expression construct involved ligation of the SLI_RS17250 gene insert into pET21a 

plasmid (Fig. 6.4). Restriction digest (NdeI-

BamHI) of both components was carried out 

beforehand to ensure successful ligation (Fig. 

6.4). The production of two remaining 

expression constructs involved amplification of 

the SLI_RS17250 DNA from the pTZ19R vector 

using the primers reported in Table 6.1 was 

successful based on the size of the visualised 

PCR products (~568 bp) on an agarose gel (Fig. 

6.5A). These bands were excised, gel purified 

and subjected to restriction digest depending 

on the plasmid. For ligation into a pET21a vector, restriction digest was carried out with NdeI 

and XhoI enzymes before ligation into this plasmid. For ligation into a pET26b vector, 

restriction digest was carried out with BamHI and XhoI enzymes before ligation into this 

plasmid. Transformants following ligation were checked for the correct insert by performing 

a restriction digest with the corresponding restriction enzymes (Fig. 6.5B & C) and DNA 

sequencing confirmed the correct sequence (Appendix 4). 

 

 

 

 

Figure 6.4 – (A) Agarose gel image of restriction 
digested SLI_RS17250 insert (568 bp) and 
pET21a plasmid. (B) Agarose gel confirming the 
gene insert ligated into pET21a plasmid as a 
NdeI/BamHI fragment. 
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6.3.2 Over-expression of 
the C-terminal His-tagged 
SLI_RS17250 
The expression and 

purification of 

SLI_RS17250 involved a 

crucial step of membrane 

protein solubilisation using 

the detergent DDM (Fig. 

6.6). DDM is a commonly 

used non-ionic detergent 

that is considered more 

gentle than other 

detergents and effective at preserving protein activity (200). The concentration of detergent 

added was 1 % (v/v) and observations would be made by 15 % SDS-PAGE analysis if this 

concentration was effective in solubilising SLI_RS17250. The success in detergent 

solubilisation of membrane proteins would be apparent if the protein has not precipitated 

out of solution. The purpose of utilising the detergent would be to prevent this and to 

hopefully visualise a protein band of correct molecular weight on the SDS-PAGE, in the 

detergent solubilised fractions. The SDS-PAGE image in Fig. 6.7 revealed a distinct band 

between 15-20 kDa, and thus in the area of the predicted mass (18.92 kDa) of the C-terminal 

(His)6-tagged SLI_RS17250 protein. The solubilisation of the membrane protein appeared to 

be successful as a clear band can be seen in post solubilisation supernatant (Fig. 6.7). 

However, the expression band is also seen in the post solubilisation pellet suggesting that 

not the entirety of the protein has been solubilised (Fig. 6.7). The IMAC purification whereby 

100 % elution buffer was applied yielded a distinct peak after ~15 ml had passed through the 

column with an absorbance 

of ~100 mAU (Fig. 6.8A). The 

1 ml fractions were collected 

within this peak and were 

used for further analysis by 

SDS-PAGE whereby the 

expression band can be seen 

in all fractions collected (Fig. 6.8B). All SDS-PAGE samples were prepared by gentle heating 

 

Figure 6.5 – (A) Agarose gel image of PCR products of amplified 
SLI_RS17250 DNA; lane (1) corresponds to gene insert for ligation into 
pET26b plasmid whereas lane (2) is gene insert targeted for insertion into 
pET21a vector. (B) and (C) displays agarose gels confirming the gene 
insert ligated into both pET26b (BamHI/XhoI) and pET21a (NdeI/XhoI). 

 

 

 

 

 

 

Figure 6.6 – Chemical structure of DDM 
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in a 42  ͦC water-bath for ~30 min. It is noteworthy that in all SDS-PAGE, distinct high 

molecular weight bands were visible at the top of the gels (Fig. 6.7 & 6.8 (orange arrows)). 

This likely indicates the SLI_RS17250 protein did not fully enter the gels which is a common 

issue for analysing membrane proteins using this method. This is often due to aggregation 

because of hydrophobicity of membrane proteins (201) but also their behaviour in the 

presence of SDS detergent (202).  

 

 

Figure 6.8 – (A) Elution profile of (His)6-tagged SLI_RS17250 protein on a 1 ml His-trap FF Ni-NTA column, 
blue line represents Buffer B gradient (B) Coomassie stained 15 % SDS-PAGE analysis of fractions from the 
Ni-NTA column. Yellow dashed box highlights visible bands running between 15-20 kDa. The orange 
arrow indicates high molecular weight bands at the top of SDS-PAGE. 

 

Figure 6.7 - Coomassie stained 15 % SDS-PAGE analysis of fractions from the protein purification 
including solubilisation step with 1% DDM detergent. Yellow dashed box highlights a strong over-
expression band running between 15-20 kDa consistent with that of the C-terminal (His)6-tagged 
SLI_RS17250 protein. The orange arrow indicates high molecular weight bands at the top of SDS-
PAGE. 
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6.3.3 Western blot analysis is consistent with the presence of a His-tagged species  
A Western blot analysis was carried out to verify whether the clear over-expression band and 

the fractions eluted and collected from the Ni-NTA column were from SLI_RS17250. To check 

this, the simplest way was to detect the presence of the C-terminal (His)6-tagged that is fused 

to the SLI_RS17250 protein (Fig. 6.9). As shown in Fig. 6.9A, each lane of the immunoblot 

shows the detection of a band using the anti (His)6-tag antibodies that migrates at ~ 20 kDa. 

Based on a molecular weight of 18.92 kDa, predicted by Expasy (www.expasy.com) the band 

is consistent with where the solubilised (His)6-tagged SLI_RS17250 should migrate. Staining 

the immunoblot with Coomassie blue clearly indicates the presence of a protein band (Fig. 

6.9B), with the negative protein control, an LPMO from S. lividans, of similar molecular 

weight, but without a (His)6-tag now also visible (Fig. 6.9B).  Indeed, these bands show a 

positive presence of (His)6-tagged protein in the post solubilisation supernatant and IMAC 

purification fractions. Despite this, there was also protein detected in the post solubilisation 

pellet which suggests significant protein precipitation after the detergent solubilisation step. 

6.3.4 Proteomic analysis is not conclusive 
The results of the trypsin digest MALDI experiment carried out at the University of 

Birmingham did not yield convincing results (Table 6.4). Analysis of the sample provided gave 

a mixture of peptides belonging to two species of Streptomycetes: S. lividans and 

Streptomyces griseochromogenes (Table 6.4). However, the results from mass spectrometry 

did not detect any matching peptides to the SLI_RS17250 protein sequence. From the amino-

acid sequence of SLI_RS17250 shown in Fig. 6.3, it is apparent that the sequence lacks a 

sufficient number of Lys and Arg residues. In total there are four Lys and two Arg residues. 

Trypsin has specific protease activity at the carboxy side of these two positively charged 

amino acids which involves hydrolysing at the C-termini of these two amino acids during 

 

Figure 6.9 – (A) Western blot which shows positive (His)6 tag signal and (B) corresponding SDS-PAGE gel 
used for blot of SLI_RS17250 protein fractions. 

 

 

http://www.expasy.com)/
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proteolysis. MALDI involves separation of tryptic cleaved peptides by liquid chromatography 

which is combined with a mass spectrometer whereby the peptide masses are predicted. The 

identification of these peptides is carried out by MS/MS which is compared against a protein 

database. For the mass spectrometry method, a peptide fragment size of 6-20 amino acids is 

preferable for detection. Peptides that are larger or smaller than this range could be too 

difficult to detect by MS/MS (203, 204). The protein sequence of SLI_RS17250 was analysed 

via online webserver PeptideCutter (11) for specific trypsin cleavage sites (Fig. 6.10). This 

highlighted the issue of the size of resulting peptide fragments that were not in the ideal 

mass range.  

 

 

                                                                      

                                                                      

                                                                      

 

 

 

 

Figure 6.10 – Amino acid sequence of SLI_RS17250 analysis using PeptideCutter (11). The 
corresponding sites that are cleaved by Trypsin are highlighted (red coloured amino acids). There is 
a total of six cleavage sites that include four Lys residues and two Arg residues. These amino acid 
position numbers are the following; 98, 104, 108, 165, 170 and 172. Cleavage by trypsin occurs on 
the right side (C-terminal direction) of the marked amino acid. 
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6.3.5 Bioinformatic topology prediction of SLI_RS17250  
To gain some insight into the topology of SLI_RS17250 a web server TOPCONS 

(http://topcons.net/) (3, 4) was used. TOPCONS utilises a consensus approach whereby 

topology predictions are taken from various different predictor programs (Fig. 6.11A) to form 

a topology profile that is inputted into TOPCONS Hidden Markov Model (3, 4) to produce a 

final topology result (Fig. 6.11B) (3, 4). The FASTA amino acid sequence of SLI_RS17250 (Fig. 

6.3) was used as input for the web server topology predictor. TOPCONS was able to identify 

four transmembrane (TM) helices in SLI_RS17250 in the following amino acid positions: 49-

69 (TM1), 75-95 (TM2), 111-131 (TM3) and 143-163 (TM4) (Fig. 6.11). TM1 and TM3 are 

predicted to span in the membrane from the cell cytoplasm towards the extracellular 

environment (IN -> OUT) whereas TM2 and TM4 helices are presumed to be positioned (OUT-

Table 6.4 – Peptides detected for SLI_RS17250 in MALDI with trypsin digest 

Accession Description Sequence 

A0A076LW

T5 

Beta-lactamase OS=Streptomyces lividans 

TK24 GN=SLIV_00225 PE=4 SV=1 - 

[A0A076LWT5_STRLI] 

AVLTAGMASALVGFtRGP

tAASAPASR 

D6EHV2 Transcriptional regulatory protein 

OS=Streptomyces lividans TK24 

GN=SLIV_36875 PE=4 SV=1 - 

[D6EHV2_STRLI] 

GVHDLLDDEPDItVVGEA

ATVEqALVR 

A0A076M0

13 

Hydrolase OS=Streptomyces lividans TK24 

GN=SLIV_12985 PE=4 SV=1 - 

[A0A076M013_STRLI] 

AVNGLAFALPMLGAARG

AAAVWTSWTAGKLAGPt

GqnAVSSqDR 

D6ECN0 Uncharacterized protein 

OS=Streptomyces lividans TK24 

GN=SLIV_14160 PE=4 SV=1 - 

[D6ECN0_STRLI] 

VRTVAPGTPLFDATAGG

mGLtGVILtATLRLQPVET

ALmSVDTER 

M1GT27 Uncharacterized protein 

OS=Streptomyces griseochromogenes 

GN=ex-bls-5 PE=4 SV=1 - 

[M1GT27_9ACTN] 

yStSRSySENHAFRLSSQM

SIR 

A0A076LZX

1 

Uncharacterized protein 

OS=Streptomyces lividans TK24 

GN=SLIV_06460 PE=4 SV=1 - 

[A0A076LZX1_STRLI] 

TQAyFERRtQEGK 

A0A076MG

H7 

Uncharacterized protein 

OS=Streptomyces lividans TK24 

GN=SLIV_28780 PE=4 SV=1 - 

[A0A076MGH7_STRLI] 

AAVAVSATSAtVtGTGSR 
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> IN) in the membrane thus spanning from the extracellular environment towards the cell 

cytoplasm (Fig. 6.11B). This result is, in majority, supported by the other predictor programs 

(3, 4) showing the same outcome and particularly showing negative ΔG values TM2 and TM4 

suggests a high probability that this is the true topology for these regions (Fig. 6.11A). This is 

reflected in the final TOPCONS prediction in Fig. 6.11B whereby the reliability score for the 

positions of most of these TM helices is close to 1 except for TM3, lacking a reliability score. 

Despite this, the topology of other regions of SLI_RS17250 remain uncertain due to positive 

ΔG values (Fig. 6.11A) and lacking reliability scores (Fig. 6.11B). TOPCONS analysis shows 

majority of regions in SLI_RS17250 are predicted mainly to lie ‘inside’ the membrane, closer 

to the cytoplasmic space (Fig. 6.11B and C). TOPCONS predicts smaller regions to lie ‘outside’ 

the membrane which include amino acid positions 70-74 and 132-142 (Fig. 6.11B). This 

prediction is also supported by the following programs Philius, PolyPhobius and SCAMPI (Fig. 

6.11A) (3, 4).  But other predictor programs (OCTOPUS, SPOCTOPUS) (3, 4) reveal different 

results to this, differences in TM helices topology as well as a lack of TM3 in their consensus 

(Fig. 6.11A). This is insightful as the reliability score for TM3 in Fig. 6.11B reflects this 

uncertainty. Moreover, the overall positive ΔG scores for the non-TM helical regions in 

SLI_RS17250 reveal the unlikelihood of all predicted topologies (Fig. 6.11A). Overall the 

topology and amino acid position predictions of TM1, TM2 and TM4 in the final TOPCONS 

consensus result (Fig. 6.11B) show high reliability scores thus suggests a potential topology 

whereas existence and topology of TM3 remains unresolved (Fig. 6.11C).    
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Figure 6.11 - The amino acid sequence is analysed using webserver TOPCONS (3, 4) for certain regions that 
may be situated nearer the cell cytoplasm (inside) or towards the extracellular space (outside) (A) The figure 
also predicts amino acids that may form transmembrane (TM) helices and their orientation in the membrane 
based on the ‘positive inside’ law (9, 10). These predictions are further quantified for reliability with the ΔG 
(kcal/mol). TOPCONS prediction revealed four TM helices for SLI_RS17250, in the following amino acid 
positions 49-69 (TM1), 75-95 (TM2), 111-131 (TM3) and 143-163 (TM4). These TM helices have been 
labelled in (B) and are applicable for the same helices in (A). The figure in (B) reveals the final consensus 
result for topology based on the data in figure (A) showing reliability score on the y axis for topologies of 
certain amino acids. Figure (C) is a topology model of SLI_RS17250 based on the results shown in figure (B). 
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6.4 Discussion 
The expression of membrane proteins remains an ongoing challenge. 20-30% of all genes in 

pro- and eukaryotes encode membrane proteins (195) but there is a low abundance of these 

proteins naturally to extract for in vitro studies (195). The expression of helical bundle 

membrane proteins in prokaryotic systems has proven to be more difficult versus expression 

of β-barrel membrane proteins. E. coli is the most utilised bacterial expression host and β-

barrel membrane proteins can be synthesised as inclusion bodies in E. coli which can be easily 

extracted and refolded structurally (195, 205). In contrast, helical bundle membrane proteins 

are rarely extracted from inclusion bodies successfully (195). Helical bundle membrane 

proteins require to be properly inserted into the membrane followed by detergent extraction 

(195). Indeed, this has limited the amount of published structures available of helical bundle 

membrane proteins. There is a vast amount of methods available for improving expression 

yields of membrane proteins. This includes the engineering of various strains of E. coli to 

improve its capabilities in expressing membrane proteins. In addition, the existence of E. coli-

based cell-free protein production systems prevent the possible toxicity of membrane 

protein expression (195). The development of new E. coli strains includes C41(DE3) and 

C43(DE3) strains, also known as the Walker strains (195, 206, 207). The Walker strains (C43 

used in the present study) derive from the commonly used E. coli strain BL21 (DE3) in which 

its protein expression mechanism has been well established. Protein expression in BL21 (DE3) 

involves a mutant lacUV5 promoter which regulates expression of bacteriophage T7 RNA 

polymerase (T7 RNAP) and is superior to the wild type lac promoter (195, 208). T7 RNAP 

transcribes the gene of interest and is more rapid than E. coli RNAP (195). This expression 

system overall produces more protein due to more mRNA being made (195). The issues in 

membrane protein expression in E. coli derive from this fact as over-expression of membrane 

encoding genes can cause the Sec-translocon to become saturated during biogenesis (Fig. 

6.2) (195). The Walker strains can cope with toxic membrane protein expression due to 

mutations in the lacUV5 promoter (195, 207) but these strains do not demonstrate improved 

expression yields for every membrane protein (195, 206, 207). The mutations in the lacUV5 

promoter lead to a lower expression of T7 RNAP compared to BL21(DE3) thus leading to 

lower amounts of mRNA being produced thus does not limit the activity of the Sec-translocon 

of embedding proteins into the membrane (195, 207, 209, 210). 

The method described for the expression of SLI_RS17250 still requires some 

improvements. Indeed, a crucial component is the concentration of detergent used, in this 

case DDM. DDM is non-ionic and considered one of most utilised detergents due its 
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preservation of protein activity and low UV-Vis absorptivity (200). An excess of detergent is 

used in the primary solubilisation step of re-forming the membrane protein during protein 

expression and purification (185). Many studies investigate the interaction of detergents with 

membrane proteins and are essential in protein crystallisation. The key in resolubilising the 

membrane protein is using a suitable concentration of detergent as too high amounts could 

denature the protein or, while too little will cause aggregation/precipitation (200, 211, 212). 

This can be observed in Fig. 6.7 as a distinct band of the protein of interest can be seen in 

‘Post solubilisation pellet’ lane. This is an indication that perhaps not enough detergent was 

used to fully resolubilise SLI_RS17250 and has aggregated in the waste pellet. 

The SDS-PAGE results initially confirmed the expression of SLI_RS17250 which 

displayed a band of the correct size of around ~18.92 kDa (Figs. 6.7 & 6.8). This was further 

confirmed by Western blot (Fig. 6.9) using an Anti-(His)6 tag antibody. However, this positive 

confirmation by these two methods does reveal some issues in membrane protein 

expression. The hydrophobicity of membrane proteins causes aggregation thus leading to no 

separation on SDS-PAGE and minimal transfer from gel to blotting membrane for Western 

blots (201). This can be observed in Figs. 6.7 & 6.8 whereby much aggregation of protein is 

seen at the top of the SDS-PAGE. This also makes it difficult to quantify the amount of protein 

present. This aggregation may also be due to the behaviour of membrane proteins in the 

presence of SDS as it has been reported that SDS may not fully denature some membrane 

proteins (202). However, success in this area have been seen in other studies with using 

smaller transmembrane proteins that have fewer alpha helices (201, 213). Further 

confirmation about the identity of the ~18 kDa protein band was sought out through MALDI 

with trypsin digest. But the results from this analysis were not informative and the peptides 

(Table 6.4) did not match with the SLI_RS17250 protein sequence (Fig. 6.3). This again 

highlights the difficulties associated with transmembrane protein expression and the need 

for further research into this area. Further consideration into using MALDI again for 

proteomic analysis of SLI_RS17250 could involve utilising a different protease. An ideal 

proteolytic compound for future use on SLI_RS17250 could be cyanogen bromide (CNBr) as 

this compound can cleave the C-terminus of methionine. It is observable in the amino acid 

sequence of SLI_RS17250 (Fig. 6.3) there are an ideal number of Met residues that CNBr could 

act upon and produce ideal peptides for MALDI mass spectrometry. As highlighted in Fig. 

6.10, trypsin cleaves SLI_RS17250 peptides that are not suitable for MALDI.  

It would be interesting to determine the topology of SLI_RS17250. It is well known 

that transmembrane (TM) proteins embed themselves in the lipid bilayer in a specific 
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orientation. For instance, predictions can be made on whether their C- and N- termini are 

positioned outside of the cytosol (out) or pointing within the cell (in) (214). This is the case 

for alpha helical TMs whereby their helices are specifically orientated within the membrane 

(214). The attempt to predict the topology of SLI_RS17250 was carried out as shown in Fig. 

6.11 Indeed, the use of TOPCONS (3, 4) revealed an interesting outcome whereby four TM 

helices were identified in this novel protein. These were appropriately labelled TM1, TM2, 

TM3 and TM4. TM1 and TM3 were predicted to possess an ‘IN->OUT’ topology whereas TM2 

and TM4 were forecast to have a ‘OUT-> IN’ position in the membrane (Fig. 6.11B). Although, 

the topology prediction of TM3 remains questionable due to low reliability score (Fig. 6.11B) 

which this final consensus could be influenced by topology predictions of OCTOPUS and 

SPOCTOPUS (Fig. 6.11A). The topology of the non-helical regions of SLI_RS17250 remain 

vague due to conflicting topology predictions, low reliability scores and ΔG values of these 

results (Fig. 6.11). It is noteworthy that no matching homology structures were found in PDB 

(Fig. 6.11A). To determine topology, there are few techniques that can achieve this which are 

mainly computational simulations and very few biochemical analyses exist (25). There are 

protein tags that have been proven to determine C-terminal orientation such as green 

fluorescent protein (GFP) (214-217). GFP allows monitoring of the TM’s integrity as the GFP 

moiety will only fluoresce if the TM is folded properly and inserted into the membrane (201). 

This allows visualisation of the GFP-TM complex in intact cells and using in-gel fluorescence 

in SDS-PAGE gels as well as size-exclusion chromatography combined with a fluorescence 

detector (201, 212). But fewer methods exist to determine the orientation of the N-terminus 

(214). This is due to the N-terminus becoming first inserted into the plasma membrane during 

TM protein biogenesis in E. coli (214). Moreover, computer simulations rely on deposited TM 

protein structures which there are very few in the Protein Database. In addition, the 

predictive algorithms still rely on experimental evidence which without it, could result in 

incorrect predictions about the orientation and/or alignment of these helices (214).  

The work presented in this chapter provides a method of expressing and purifying 

SLI_RS17250 and appears to be soluble as seen in SDS-PAGE and Western blot despite lacking 

firm confirmation by MALDI. This provides a foundation for further work to be carried out 

with SLI_RS17250 in order to decipher its structural characteristics and possibly its function 

in vivo which remains unknown. Additional purification of SLI_RS17250 is still required such 

as size exclusion chromatography. Indeed, this would offer more information concerning its 

molecular mass but can prove problematic due to presence of detergent. In the study by 

Gimpl et al., it is discussed that the addition of detergent to the membrane protein would 
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form protein/detergent complexes (PDCs) (212). If high amounts of detergent are added, 

then these PDCs would be present with detergent monomers and other micelles which could 

affect the composition of these PDCs (212). The method of size exclusion chromatography 

(SEC) is useful in determining oligomeric state and homogeneity of soluble proteins but 

predicting these aspects of PDCs proves challenging (212). This is since the presence of 

detergent alters a protein’s elution performance which SEC is highly dependent on and can 

only provide an estimate on molecular mass, homogeneity and stability (212, 218). Thus, in 

order to improve understanding of PDCs conformation, an additional technique can be 

applied to SEC known as dynamic light scattering (DLS) which identifies aggregation in PDCs 

and offers information about their hydrodynamic radius (212, 219, 220). DLS has the 

drawback of being unable to distinguish between the effects of either protein or detergent 

to the overall hydrodynamic behaviour (212). However, other techniques exist that 

combined with SEC can better determine the overall conformation of PDCs. For instance, 

SEC-MALS (multi-angle light scattering) can differentiate and calculate molar masses of 

desired protein and the detergent micelles. SEC-MALS can achieve this through three main 

detectors which include ultraviolet (UV), MALS and refractive index (RI). The combination of 

these three components provides an effective method for separation and detection of 

different oligomeric species. SEC is crucial for the separation of these species though elution 

in SEC does not correspond to the molar masses of the species of interest. It is only important 

that these oligomers are separated from one another before passing through the MALS 

detector. 

Further work with SLI_RS17250 would include deciphering the X-ray crystal structure 

of this novel TM protein. The challenges associated with crystallisation of TM proteins have 

consequently led to very few solved structures being published. Since the first published 

structure in 1985 (221) there has been a gradual increase in this area but less than 1% of all 

entries in Protein Data Bank (PDB) consist of membrane protein structures (183). It is well 

established that the reasons for this include TM proteins are hydrophobic and are instable 

without presence of detergents. Additionally, the presence of the detergent affects the 

process of protein crystallisation (183). Thus, methods have been developed to overcome 

these issues which includes the use of lipidic cubic phase (LCP) crystallisation. LCP 

crystallisation (or in meso crystallisation) involves crystallising proteins in lipidic mesophases 

(222). The method of LCP involves two main steps. Firstly, lipid is mixed with the protein of 

interest followed by a lipidic cubic phase forming which creates a highly viscous gel like 

substance (223). Moreover, crystallisation can be improved by the addition of precipitants or 
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other enhancers (223). LCP provides an environment similar to the lipid bilayer which 

membrane proteins are naturally found thus facilitating their nucleation and crystal growth. 

The LCP method was first used to obtain a high-resolution structure of bacteriorhodopsin 

(bR) by Landau and Rosenbusch in 1997 (224). Thereafter, some of the most important 

membrane proteins used as drug targets include human G protein-coupled receptors (GPCRs) 

family (222, 225-229) which members have been successfully crystallised through LCP. 

However, as instrumental LCP has been in membrane protein crystallisation there were initial 

difficulties that included mixing and handling of the highly viscous cubic phase material (223). 

This set drawbacks in crystallisation especially when testing a high number of screening 

conditions. Thus, recent improvements in LCP include the development of automated 

instruments that facilitated mixing of protein and lipid to produce the cubic mesophase (223). 

Indeed, continuous research into membrane protein crystallisation will undoubtedly produce 

more solved structures in the future. 

Copper (Cu) is essential for the morphological development of S. lividans. Despite the 

detailed characterisation of the transcriptional response of the CsoR/CopZ/P1-type ATPase 

trafficking and efflux system, it is possible that this is not the only Cu homeostatic 

mechanism. What has been reported in transcriptional studies (RNA-Seq) during Cu stress 

were other genes that become up- and down-regulated (18). This data carried out in ΔcsoR 

and thus not regulated transcriptionally by CsoR (18) showed a 6-fold upregulation of 

SLI_RS17250 (DUF4396) (Fig. 2.2). Thus, revealing a possible new Cu resistance system but 

the exact function of DUF4396 remains unknown. The amino acid sequence of this novel 

protein was searched in BLAST against the PDB but did not yield any close homologues to 

SLI_RS17250 sequence that have been structurally characterised. It is possible that this 

transmembrane protein could be a member of a different protein family. There are however, 

some small similarities in the substrate binding S-subunits of the energy coupling factor (ECF) 

family which are micronutrient transporters (137). There are also connections to the 

SLC11/NRAMP family which have a role in the transport of transition metal ions (138, 139). 

Indeed, further investigation is required to establish if SLI_RS17250 is involved in metal ion 

transport and if it interacts with SlCsp3. 
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7 Chapter Seven 

7.1 Conclusion 
The intention of utilising Streptomyces lividans as an expression host on an industrial 

scale would involve growing large quantities of cell cultures in bioreactors. The overall 

importance of this is to be able to characterise each component involved in the overall 

development of S. lividans. By deciphering the biochemical pathways and proteins that 

catalyse them, steps can be taken to modify these pathways to limit the production of aerial 

hyphae when S. lividans is cultivated in liquid culture (12, 101, 103). This would inhibit the 

formation of pellets which otherwise would severely reduce the production of useful 

secondary metabolites (e.g. antibiotics) (12, 14). The importance of copper (Cu) to S. lividans 

development has been extensively discussed in this thesis, including the role of certain 

metalloproteins that handle Cu.  

The newly discovered SlCsp3 has been a main focus of this thesis. Indeed, the 

discovery of cytosolic storage proteins that store between 70-80 Cu(I) ions was 

unprecedented due to the belief that prokaryotes did not have a metabolic requirement for 

Cu in their cytosol and thus safeguard against the risk of Cu toxicity (1, 2, 19, 75). The first 

discovered Cu storage protein was Csp1, which is located in the bacterial periplasm and found 

in methanotroph Methylosinus trichosporium OB3b (1). Subsequently, other Csps have been 

characterised and cytosolic Csps have been associated with the family of Csp3 type protein 

(2, 75, 76). SlCsp3 is the first non-methanotrophic member of the Csp3 family to have been 

structurally characterised loaded with Cu(I) (19). SlCsp3 shares structural similarities with 

other Csp3 members including a ~50% similarity with MtCsp3 (169). The Cu(I) binding affinity 

of SlCsp3 reported in Chapter 3 is in line with those reported for other Csp3s such as BsCsp3 

and MtCsp3 (2, 19) but is the only member to demonstrate cooperative binding with the 

exception of MtCsp1 (19, 75). The mechanistic basis for this is most likely due to the [Cu4(µ2-

S-Cys)4] clusters being thermodynamically more favoured (19, 76). This was confirmed under 

low Cu(I) loadings of SlCsp3 whereby sites in the inner core remained empty (Chapter 4). In 

addition, the formation of a tetranuclear [Cu4(µ2-S-Cys)4(Nδ1-His)] cluster was formed in the 

outer core of SlCsp3 which contradicts findings of cluster formation in the inner core of 

MtCsp3 (75, 169).  

Indeed, structural studies of Cu(I) loading in SlCsp3 builds an elaborate picture of 

various Cu(I) cluster formations. Nonetheless, there is an importance of understanding the 

mechanism of Cu(I) capture and loading. This was investigated in Chapter 5 whereby kinetic 

studies of Cu(I) loading of the hydrophilic entry site (outer core) of SlCsp3 were carried out. 
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The data revealed the importance of His107 in the formation of transient ligand-exchange 

complex with [Cu(BCA)2]3- and the role of this residue in transferring Cu(I) to other sites within 

SlCsp3. The formation of a binding complex in SlCsp3 was not observed with free Cu(I) or 

[Cu(BCA)2]3- due to no linear dependence of kobs on Cu(I) concentration. The rapid metal ion 

binding and formation of transient ligand complexes is not uncommon in metalloproteins 

involved in metal transfer (163, 230) such as Cu(I) transfer studies carried out between 

CopZ3079 and SlCsp3 (Chapters 3 and 5). The overall outcome of the crystallographic and 

kinetic studies described in Chapters 4 & 5 was formulating a thermodynamic model to 

illustrate Cu(I) binding in terms of relative energy and the relative stabilities of Cu(I) binding 

sites in SlCsp3 (Fig. 5.6). 

Future investigations may include continuing kinetic studies with SlCsp3 to 

determine the mechanism of Cu(I) loading to the inner core. Indeed, this process of Cu(I) ions 

shuttling into the main core of the SlCsp3 helix remains uncertain and further enquiry is 

required to decipher this. This can prove challenging due to the number of potential binding 

sites (cognate and non-cognate) but is possible this could involve an internal ligand-exchange 

mechanism as Cu(I) ions pass from site to site within the Cys core. Further studies for this 

could involve site-directed mutagenesis of multiple Cys residues in the inner core of the 

protomer simultaneously and observing the kinetics of Cu(I) binding of these variants 

compared to wild-type SlCsp3.  

As discussed in Chapter 6, the expression of SLI_RS17250 (DUF4396) is deemed 

possible. Further work would include structural characterisation of this putative 

transmembrane protein. Indeed, traditional methods of crystallising proteins via X-ray 

crystallography have been insufficient in crystallising membrane proteins (183). Thus, other 

methods for this would include lipidic cubic phase (LCP) crystallisation as described in 

Chapter 6. The overall function of SLI_RS17250 remains unknown thus to obtain a structure 

would aid to infer its purpose. In addition, SLI_RS17250 requires a Na+/H+ antiporter to 

regulate the ion gradient across the cell membrane which is SLI_RS17245. This antiporter has 

not been studied in this thesis but future projects could include attempts to express this 

protein separately or in a co-expression system with SLI_RS17250 to obtain a soluble amount 

for structure determination, biochemical analyses and in vivo tests would be desirable. 

Previous transcriptional RNA-seq studies illustrated a 6-fold up-regulation of 

SLI_RS17250 when under Cu stress (18, 19) (Fig. 2.2). It seems to not be purely coincidental 

that under Cu stress, a clear growth phenotype of S. lividans was observed from in in vivo 

studies (Chapter 3). This was demonstrated with a knockout mutant of SlCsp3 in the presence 
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of a high concentration of Cu (> 200 µM and with media dependence) and it could also be 

inferred that SlCsp3 appears not to participate in the Cu trafficking pathway for CcO and GlxA 

metalation (Chapter 3). Moreover, SlCsp3 expression is not under the control of CsoR as 

demonstrated by the absence of a consensus CsoR binding site in the slcsp3 promoter region 

and expression induction in the csoR mutant (18). Indeed, these findings strongly suggest a 

second layer of Cu resistance in S. lividans that becomes active once the CsoR/CopZ/ATPase 

system becomes saturated (Chapter 3) (19).  

Whilst the up-regulation of slcsp3 may well be an act of last resort to survive, there 

remains several lines of future enquiry. One of these concerns whether SlCsp3 is simply acting 

in a storage capacity, taking delivery of Cu(I) from CopZ when the CsoR regulon becomes 

saturated. If this is the case then on returning to homeostasis there will be a large store of 

Cu in the cytosol for which its requirement is presently unclear. Future studies include testing 

if SlCsp3 could act as a donor to SLI_RS17250 (DUF4396), which through the coupled action 

with a Na+/H+ antiporter (SLI_RS17245), moves Cu(I) out of the cytosol. The taxonomic 

distribution discussed in Chapter 2 revealed that all three genes are present in 

representatives of five Bacteria groups. It is noted that one of these Bacterial groups is the 

proteobacteria, which possess numerous pathogens. It may therefore be that a role in the 

pathogen for SlCsp3 and the export system is to harness the host derived bactericidal Cu 

during infection (32, 75, 231, 232). The overall function of Csps to act as virulence factors in 

pathogens remains unverified and requires further study. Clearly there is a need for further 

structural and functional investigation of the DUF4396 domain to be able to establish 

whether a role in transporting metal ions, such as Cu(I) in the present case, is possible and if 

there is an interplay with SlCsp3. Finally, it will be paramount to discover the identity of the 

Cu sensitive regulator that acts to suppress the expression of SlCsp3 under homeostasis 

conditions and to determine whether it is the same regulator that governs the Cu responsive 

control of SLI_RS17245 and SLI_RS17250. 
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Appendix 1.1 - Phylogenetic trees of maximum likelihood (A) SlCsp3, (B) SLI_RS17245 

and (C) SLI_RS17250. The Bootstrap values are indicated at each node of all trees and 

the phyla of the three main kingdoms have been colour coded (green – Bacteria; red – 

Eukaryotes; blue – Archaea) – the branches of Eukaryotes have been highlighted also. 

 

 

 

 

 

 

 



142 
 

Appendix 2 

Appendix 2.1: Derivation of Equation 3.2 

Lt = total concentration of BCA added 

Lf = free BCA ligand 

Cu(L)2 = BCA-Cu(I) complex 

Cut
+

 = total concentration of Cu(I) added 

Cuf
+

 = free (unbound) Cu(I)  

CuP = Ccsp Cu(I) bound protein 

St = total concentration of copper binding sites in Ccsp 

Sf = sites on Ccsp that are unoccupied with Cu(I) 

Cu+S = binding sites in Ccsp occupied by Cu(I) 

Pt = total concentration of Ccsp protein 

P = apo Ccsp protein 

 

[Lt] = [Lf] + 2[Cu(L)2] 

[Cut
+] = [CuP] + [Cu(L)2] 

[St] = [Sf] + [Cu+S] 

[Pt] = [P] + [CuP] 

 

2Lf + Cuf
+  Cu(L)2                            𝐾𝐵𝐶𝐴 =  

[𝐿𝑓]2  [𝐶𝑢𝑓
+]

[𝐶𝑢(𝐿)2]
 

 

 

Sf + Cuf
+  Cu+S                                  𝐾𝐶𝑢 =  

[𝑆𝑓][𝐶𝑢𝑓
+]

[𝐶𝑢+𝑆]
 

  

 

                      [𝐶𝑢𝑓
+] =  

𝐾𝐵𝐶𝐴  [𝐶𝑢(𝐿)2]

[𝐿𝑓]2   =  
𝐾𝐶𝑢 [𝐶𝑢+𝑆]

[𝑆𝑓]
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[Lf]
2 = ([Lt] – 2 [Cu(L)2])

2 

[Sf] = [St] – [Cu+S] + [Cu(L)2] 

[Cu+S] = [Cut
+] – [Cu(L)2] 

 

𝐾𝐶𝑢 =  
𝐾𝐵𝐶𝐴  [𝐶𝑢(𝐿)2]

[𝐿𝑓]2
  ×  

[𝑆𝑡]

[𝐶𝑢+𝑆]
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Appendix 3 

  

 

Appendix 3.1 - Cu(I) titration to the SlCsp3 His variants H107A and H111A. A) UV-vis 
difference spectra upon titration of a stock solution of CuCl to 5-8 µM of the proteins 

revealing the appearance of (Cys)Sƴ→Cu(I) LMCT bands. B) Plots of absorbance versus 
the Cu(I):SlCsp3 (Ccsp) concentration ratio at selected wavelengths taken from (A). A 
break point in the absorbance is reached at ~18-20 Cu(I) equivalents. Experiments were 
performed at 20 oC in 10 mM MOPS pH 7.5, 150 mM NaCl. 
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Appendix 3.2 - Cu(I) titration to the SlCsp3 variants H113A and C41S. A) UV-vis difference 
spectra upon titration of a stock solution of CuCl to 5-8 µM of the proteins revealing the 

appearance of (Cys)Sƴ→Cu(I) LMCT bands. B) Plots of absorbance versus the Cu(I):SlCsp3 
(Ccsp)concentration ratio at selected wavelengths taken from (A). A break point in the 
absorbance is reached at ~18-20 Cu(I) equivalents. Experiments were performed at 20 oC 
in 10 mM MOPS pH 7.5, 150 mM NaCl. 
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Appendix 3.3 - Cu(I) titration to the SlCsp3 variant C57S. A) UV-vis difference spectrum 
upon titration of a stock solution of CuCl to 5-8 µM of the protein revealing the 

appearance of (Cys)Sƴ→Cu(I) LMCT bands. B) Plots of absorbance versus the Cu(I):SlCsp3 
(Ccsp) concentration ratio at selected wavelengths taken from (A). A break point in the 
absorbance is reached at ~18-20 Cu(I) equivalents. Experiments were performed at 20 oC 
in 10 mM MOPS pH 7.5, 150 mM NaCl. 
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Appendix 4 

SLI_RS17250_pET21a (C-terminal (His)6-tag) 

CATATGGACCACAGCACGCACCACTCCGCCCCCGAAGACGACGGGCCCGGACACCCCCACGGGCACGGG

CACCTCCACGGGCCCGGACACCCTCACGGGCACGTGCACGTGCACGGCACCACCTGGGCGACCGCCATGC

AGGCGACGCTGCACTGCCTCACCGGGTGCGCCATCGGCGAGATCCTCGGCATGGTCATCGGAACCGCGCT

GATGTGGGGCAACGTGCCGACCATGGTGCTGGCCATCGCCCTGGCCTTCGTCTTCGGCTACTCCCTCACCC

TCTTCGCGGTCGTGCGCGCCGGGGTGTCCATGAAGGCCGCGATCAAAGTGGCGCTGGCCGCCGACACCG

TCTCCATCGCGGTGATGGAGCTGGTCGACAACGGAATCATCGCCCTGGTCCCCGGCGCCATGGAGGCGCA

CCTGTCGGACGGGCTGTTCTGGTACGCCCTGCTCGGCGGCTTCGCCGTGGCGTTCGTGATCACCACGCCG

GTCAACAAGTGGATGATCGGTCGCGGCAAGGGCCACGCCGTCGTCCACGCCTACCACCTCGAGCACCACC

ACCACCACCACTGA 

 

SLI_RS17250_pET21a 

CATATGGACCACAGCACGCACCACTCCGCCCCCGAAGACGACGGGCCCGGACACCCCCACGGGCACGGG

CACCTCCACGGGCCCGGACACCCTCACGGGCACGTGCACGTGCACGGCACCACCTGGGCGACCGCCATGC

AGGCGACGCTGCACTGCCTCACCGGGTGCGCCATCGGCGAGATCCTCGGCATGGTCATCGGAACCGCGCT

GATGTGGGGCAACGTGCCGACCATGGTGCTGGCCATCGCCCTGGCCTTCGTCTTCGGCTACTCCCTCACCC

TCTTCGCGGTCGTGCGCGCCGGGGTGTCCATGAAGGCCGCGATCAAAGTGGCGCTGGCCGCCGACACCG

TCTCCATCGCGGTGATGGAGCTGGTCGACAACGGAATCATCGCCCTGGTCCCCGGCGCCATGGAGGCGCA

CCTGTCGGACGGGCTGTTCTGGTACGCCCTGCTCGGCGGCTTCGCCGTGGCGTTCGTGATCACCACGCCG

GTCAACAAGTGGATGATCGGTCGCGGCAAGGGCCACGCCGTCGTCCACGCCTACCACTGA 

 

 SLI_RS17250_pET26b (C-terminal (His)6-tag) 

CATATGAAATACCTGCTGCCGACCGCTGCTGCTGGTCTGCTGCTCCTCGCTGCCCAGCCGGCGATGGCCAT

GGATATCGGAATTAATTCGGATCCGATGGACCACAGCACGCACCACTCCGCCCCCGAAGACGACGGGCCC

GGACACCCCCACGGGCACGGGCACCTCCACGGGCCCGGACACCCTCACGGGCACGTGCACGTGCACGGC

ACCACCTGGGCGACCGCCATGCAGGCGACGCTGCACTGCCTCACCGGGTGCGCCATCGGCGAGATCCTCG

GCATGGTCATCGGAACCGCGCTGATGTGGGGCAACGTGCCGACCATGGTGCTGGCCATCGCCCTGGCCTT

CGTCTTCGGCTACTCCCTCACCCTCTTCGCGGTCGTGCGCGCCGGGGTGTCCATGAAGGCCGCGATCAAAG

TGGCGCTGGCCGCCGACACCGTCTCCATCGCGGTGATGGAGCTGGTCGACAACGGAATCATCGCCCTGGT

CCCCGGCGCCATGGAGGCGCACCTGTCGGACGGGCTGTTCTGGTACGCCCTGCTCGGCGGCTTCGCCGTG

GCGTTCGTGATCACCACGCCGGTCAACAAGTGGATGATCGGTCGCGGCAAGGGCCACGCCGTCGTCCACG

CCTACCACCTCGAGCACCACCACCACCACCACTGA 

Appendix 4.1 - DNA sequencing of three SLI_RS17250 (DUF4396) plasmid constructs. 

Nucleotide bases highlighted in yellow represent (His)6 -tag sequences and nucleotide 

bases highlighted in red show stop codons. Nucleotide bases that are underlined show 

the pelB leader sequence. 
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Appendix 5 

Appendix 5.1 - SDS-PAGE protocol 

The mini-protean tetra cell BioRad system was used to prepare the sodium dodecyl 

sulphate polyacrylamide gels (SDS-PAGE) (15 % w/v), see gel compositions in Table 4.1. The 

samples were prepared in cracking/loading buffer (1 % SDS, 25 % glycerol, 50 mM Tris/HCl 

pH 6.8, 0.05 % bromophenol blue and deionised water with a few crystals of DTT 

(dithiothreitol) added fresh) and heated at 95 oC for 10 minutes for cells and 3 minutes for 

pure protein. The size of protein bands was checked by loading a page-ruler protein marker 

(Fischer scientific) into the gel. The running conditions of the gel were 140 Volts for ~1 hour 

and afterwards stained with Coomassie brilliant blue (455 ml ethanol, 90 ml acetic acid, 455 

ml water, 2.5 g Coomassie brilliant blue) for 30 min then destained (450 ml ethanol, 450 ml 

water, 100 ml acetic acid) for 1-2 h until bands were clearly visible. 

 

 

 

 

 

Table 5.1 – Composition of 15 % w/v SDS-PAGE gels 

Material 15 % SDS gel (Resolving) Stacking gel 

0.5 M Tris (Fisher scientific) pH 

6.8 

- 1000 µL 

1.5 M Tris pH 8.8 2500 µL - 

dd H20 2300 µL 2250 µL 

Acrylamide (Sigma Aldrich) 5000 µL 666 µL 

10 % (w/v) SDS  100 µL 40 µL 

10 % (w/v) APS (Fisher 

scientific) 

100 µL 40 µL 

TEMED (Sigma Aldrich) 10 µL 5 µL 
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Material 15 % SDS gel (Resolving) Stacking gel 

0.5 M Tris (Fisher scientific) pH 

6.8 

- 1000 µL 

1.5 M Tris pH 8.8 2500 µL - 

dd H20 2300 µL 2250 µL 

Acrylamide (Sigma Aldrich) 5000 µL 666 µL 

10 % (w/v) SDS  100 µL 40 µL 


