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Abstract

The aim of this thesis is to extend existing work and �nd new discrete scaling and wavelet

�lters with quaternion coe�cients and the �rst with Cli�ord Cl(1, 1) and Cl(2, 0) coe�cients;

and then to demonstrate the use of these �lters by �nding hypercomplex wavelet transforms

of colour vector images. We solve certain symbolic matrix equations simultaneously to

�nd our scaling �lter coe�cients and then use a numerical method involving paraunitary

completion of the polyphase matrix to �nd related wavelet �lter coe�cients. We �nd that

our symbolic solutions include full and `partial' transposes of each other. Now complex

numbers are isomorphic to each of the three two-dimensional subalgebras of the quaternions

and some two-dimensional subalgebras of Cl(1, 1) and Cl(2, 0), Cl(1, 0) being isomorphic to

the rest: thus, we may use the values of the coe�cients from complex and Cl(1, 0) scaling and

wavelet �lters in the appropriate places of further quaternion, Cl(1, 1) and Cl(2, 0) scaling

and wavelet �lters. We use the cascade algorithm on all our �lters and illustrate the resulting

hypercomplex scaling and wavelet functions with plots of all possible projections onto two

and three dimensions. We then use our �lters to �nd hypercomplex wavelet transforms of

some colour test images represented as arrays of pure hypercomplex numbers, ones with no

scalars. To do this, for each one we place copies of one pair of �lters down the leading diagonal

of a zero matrix to produce a banded matrix. We pre-multiply a colour vector test image by

this banded matrix and post-multiply by its conjugate transpose. This results in an array

of full hypercomplex numbers. We then extract the approximation plus horizontal, vertical

and diagonal detail images from the scalar (black and white) and vector (colour) parts of the

result separately and illustrate them side by side, each arranged in the conventional format.
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Chapter 1

Introduction

This thesis is concerned with the theory and numerical implementation of discrete hypercom-

plex wavelets, i.e. wavelet �lters with hypercomplex coe�cients, applied to the processing of

digital images, in particular, colour images. These require three components per pixel: each

pixel may be represented as a four dimensional hypercomplex number with the coe�cients

of the three imaginary parts being the values of red, green and blue and the coe�cient of

the scalar as zero.

We �rst introduce the origin and concept of hypercomplex numbers, which are an extension

of the complex numbers to 2n dimensions where n ≥ 1 (a complex number being a particular

hypercomplex number), and we then introduce the concept of wavelets as localised basis

functions for representing a signal or image. We list our main contributions and �nish this

chapter by giving the structure of the rest of the thesis.

1
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1.1 Background

We begin by introducing the �rst component of this thesis.

Rotations of points in the plane about some origin may be performed by multiplying certain

2 × 2 matrices by the co-ordinates of the points represented as length two column vectors.

It is well known that an alternative way of doing the same rotations is to write the set of

points, together with the rotations, as complex numbers. Multiplication of 2 × 2 rotation

matrices then becomes multiplication of complex numbers.

In the same way, rotations of points in three dimensions about some axis may be performed

by multiplying certain 3× 3 matrices by the co-ordinates of the points represented as length

three column vectors. The three basic 3 × 3 rotation matrices actually have 2 × 2 rotation

matrices embedded. Each one is designed so as to rotate points in all planes parallel to one

of: the x-y, x-z and y-z planes, i.e. around the z, y or x axis respectively. Multiplying these

matrices together then gives a compound rotation in parallel planes perpendicular to, in gen-

eral, a fourth axis at some angle 6= π/2 to each of the other three. The quaternions were the

�rst hypercomplex algebra and were introduced speci�cally to be the analogue of complex

numbers in the representation of rotations, but in three dimensions instead of two: multi-

plication of 3 × 3 rotation matrices then becomes multiplication of quaternions. Of course,

complex numbers have many other applications and quaternions have found many other

uses as well. The quaternions are actually a four-dimensional algebra; no three-dimensional

algebra exists that can be used to model rotations in three dimensions.

The Cli�ord algebras are a collection of hypercomplex algebras. The simplest way of thinking

of them is as a generalisation of real and complex numbers and quaternions, these three

algebras becoming, or rather being isomorphic to, particular Cli�ord algebras. Each lower



Chapter 1. Introduction 3

dimensional Cli�ord algebra is isomorphic to several subsets of the higher dimensional ones.

We now introduce the second component of this thesis.

Wavelets, literally `little waves', localised periodic disturbances, were originally developed

to analyse seismic waves. They were later developed further and introduced to the wider

signal processing community. They have found many applications, e.g. data and image

compression (the JPEG 2000 standard uses wavelets), solving partial di�erential equations,

transient detection, pattern recognition, texture analysis, noise reduction and others. In the

same way that sines and cosines are the usual basis functions for the Fourier transform,

wavelets are the basis functions for the wavelet transform: a Fourier transform decomposes

a signal into its component frequencies and a wavelet transform does likewise as the wavelets

are stretched and compressed; but thanks to the localisation of the wavelets, the wavelet

transform also encodes when or where those frequencies occurred. Wavelet transforms exist

in both continuous and discrete forms but we shall only be interested in the latter. Brie�y, a

wavelet �lter extracts the high frequency part of a signal at a certain resolution and a scaling

�lter extracts the low frequency part; the latter may then be analysed at a �ner resolution

by being put through further wavelet and scaling �lters; and so on. This is multiresolution

analysis.

Discrete wavelets have been generalised to complex, analytic, monogenic, matrix-valued and

so-called quaternion wavelets. We have added `so-called' to the last of these because we

would argue that, since apparently all but one, or maybe two, of the practical quaternion

wavelets that have been developed so far are actually the basis functions for two-dimensional

short-time Fourier transforms, these should be called something else. One exception, which

was certainly the only one when we began research for this thesis, was presented in chapter

�ve of Paul Ginzberg's PhD thesis [61, p. 169] (repeated in condensed form slightly earlier

in [62]). This was the �rst one to truly marry quaternions to wavelets. However, Ginzberg
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did not do anything with his �lters, a single quaternion scaling �lter and a single quaternion

wavelet �lter: this omission provided the main motivation for this thesis.

1.2 Contributions

The contributions of this thesis are:

1. extensions of Ginzberg's work to �nd more quaternion and the �rst Cli�ord scaling

and wavelet �lters;

2. a way of visualising complex and hypercomplex scaling and wavelet functions by mul-

tiple projections onto two and three dimensions;

3. the �rst ever `true' quaternion and Cli�ord wavelet transforms of colour vector images;

4. re-use of the coe�cients of existing complex-valued scaling and wavelet �lters in certain

quaternion and Cli�ord scaling and wavelet �lters.

We de�ne colour vector images fully in Section 2.6.

1.3 Structure of this Thesis

In Chapter 2, we expand on what we said in Section 1.1 about hypercomplex algebras, giving

a short history of them, full de�nitions and an example of colour vector image processing

not involving wavelets. In Chapter 3, we expand on what we said in Section 1.1 about real

wavelets. Chapter 4 is based on slightly expanded versions of Sections 4 and 5 of our review

article [44], wherein we review the literature on quaternion wavelet transforms. Chapter 5
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is taken from our article on the subject of hypercomplex scaling and wavelet �lters [43]. We

explain how Ginzberg found his quaternion scaling and wavelet �lters and adapt his method

to �nd more quaternion and the �rst Cli�ord scaling and wavelet �lters. We list all the

�lter coe�cients we found and �nd and illustrate all the corresponding scaling and wavelet

functions. In Chapter 6 we use most of our �lters, as well as hypercomplex �lters using

complex �lter coe�cients, to �nd hypercomplex wavelet transforms of a few colour vector

images. This chapter will form the basis of a future article on the subject. In Chapter 7 we

present our conclusions and consider how our work could be developed further.



Chapter 2

Hypercomplex Algebras and Colour

Vector Images

In this chapter we introduce quaternions and Cli�ord algebras, which we use in the rest

of the thesis. In Section 2.1, we give a brief history of complex numbers and quaternions;

the quaternions were the �rst hypercomplex numbers and in Section 2.2 we give their main

properties. In Section 2.3 we give a brief history of Cli�ord algebras and in Section 2.4 we

give their main properties. In Section 2.5 we give matrix representations of complex num-

bers, quaternions and Cli�ord algebras up to four dimensions. In Section 2.6 we introduce

representations of colour pixels in hypercomplex algebras. We mention quaternion Fourier

transforms in Section 2.7 and give an example of colour vector image processing not involving

wavelets in Section 2.8. We give a summary of the chapter in Section 2.9.

6
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2.1 A Brief History of Complex Numbers

and Quaternions

We start by brie�y outlining the history of the original sources of complex numbers, namely

solutions of cubic and, only later, quadratic equations. We then discuss how complex num-

bers were discovered and gradually came to be accepted. Finally, we explain how hyper-

complex numbers came from generalisations of complex numbers and not from solutions of

particular equations. Until the introduction of abbreviations for `things' (i.e. independent

variables), squares, cubes, roots, etc., everything had to be written out in words.

The earliest quadratic equation for which we have evidence was solved by an Ancient Egyp-

tian sometime between 1900BC and 1800BC. This sole example is on Berlin Papyrus 6619

[45, �2.3a, p. 81]. In modern notation, the problem is x2 +
(
3
4
x
)2

= 100. The Babyloni-

ans, strictly the Mesopotamians (Babylon was a city in Mesopotamia), co-existed with the

Egyptians but used clay tablets instead of papyri to record their writings and mathematical

problems. Most tablets that have been excavated date from the time of Hammurabi (c.

1792BC to 1750BC) [157]. The mathematical ones, �ve hundred or so out of a total of sev-

eral hundred thousand, fall broadly into two categories, table texts and problem texts [40,

�1.4]. The table texts list, e.g., squares, reciprocals, cubes, cube roots and sums of squares

and cubes. The Babylonians' quadratics arose from geometry and in modern notation may

generally be written as the simultaneous equations x − y = b and x2 + y2 = c. They could

also solve a limited number of cubics, ones of the form x3 + x2 = a in modern notation.

In all cases, solutions were found by reference to the tables. The Greeks found a way to

solve quadratics of the form a(x− b) = x2, examples of which also appeared on some of the

Babylonian problem texts. They also studied cubics and some higher powers, but left no

general methods of solution. In all cases, only positive roots were sought or considered in
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any way real.

Brahmagupta's Brahmasphutasiddhunta of c. AD628 included, for the �rst time, a general

method to solve all quadratic equations, the one used today, and also for the �rst time,

negative roots of quadratics were accepted as real solutions. Those whose roots involved the

square roots of negative numbers were still discarded as insoluble.

During the next 800 years, solutions to some special cases of cubics were found and Umar

ibn Ibrahim al-Khayyami (1048�1131) proved that any third-order equation can be solved

geometrically by �nding the intersection of two conic sections [67, p. 9], but he could not

translate his solution into words.

In sixteenth century Italy, academic appointments were temporary, often for only one year

at a time [42, p. 24]. Professorships could be won and lost at public problem-solving

contests, so if a professor or an aspiring professor found a way to solve forms of equations

that had not been solved before, he kept them secret until such time as they felt it right to

publish. Sometime before 1515, Scipione del Ferro (1465�1526) found the general solution

of x3 + cx = d: one solution is given by

x =
3

√√√√√( c
3

)3

+

(
d

2

)2

+
d

2
− 3

√√√√√( c
3

)3

+

(
d

2

)2

− d

2
(2.1)

and factorisation then reduces the problem to solving a quadratic. This cubic is now known

as the depressed cubic and all other cubics may be transformed into this form by certain

substitutions, but that was not known at the time. Before his death, he passed his method

onto his student Antonio Maria del Fiore and his son-in-law Annibale della Nave. The

latter became his successor as professor at Bologna. With del Ferro's death, del Fiore felt

able to exploit del Ferro's solution and when Niccolò Tartaglia (1499�1557), a Venetian

mathematician, engineer, surveyor and bookkeeper, announced he could solve x3 + ax2 = b,
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del Fiore challenged him to a public contest, the loser to pay for 30 dinners for the winner

and his friends. Two months before the day of the contest in 1535, each gave the other 30

problems to solve. Del Fiore was not a good mathematician and could only solve equations

of the form x3 + cx = d; all of the problems he gave to Tartaglia were of this form. Tartaglia

independently rediscovered del Ferro's method and del Fiore could not solve the more general

mathematical problems that Tartaglia had set: Tartaglia won.

Gerolamo Cardano (1501�1576) found fame as a physician, but was also interested in physics,

mathematics and gambling. He heard of the contest between del Fiore and Tartaglia and

in return for introducing Tartaglia to the Spanish Governor of Milan, a possible source of

�nance for Tartaglia's research in military science, Tartaglia revealed his method of solving

x3 + cx = d, conditional on Cardano's promising not to show it to anyone else. When

Cardano and his secretary and pupil, Ludovico Ferrari (1522�1565), prepared to publish a

major work on algebra, they were going to omit the solution of x3 + cx = d because of

Cardano's promise. However, della Nave showed del Ferro's papers to them. Cardno felt

able to forget his promise to Tartaglia and included the solution. The Ars Magna appeared

in 1545; this deals with 13 separate cases in great detail, the depressed cubic being one,

as well as quartics. The Ars Magna was the most comprehensive text on algebra for the

next century. However, Equation (2.1) can give some, to Cardano and his contemporaries,

strange results. For example, given x3 = 15x + 4, so that c = −15 and d = 4 (this would

have been a special case separate from Equation (2.1), but we get the same result), we

�nd x = 3
√

2 +
√
−121 + 3

√
2−
√
−121. Cardano could not make sense of this. We can

recognise the complex numbers (this name for them came later) and this is actually equal

to 2 + i+ 2− i = 4. Factorising using this root then gives a quadratic, which is easily solved

to give 2±
√

3; thus, complex numbers have appeared in an intermediate step, but the three

roots are in fact all real. The Ars Magna did however contain the �rst ever calculation with

complex numbers: (5+
√
−15)×(5−

√
−15) = 25−(−15) = 40. No previous mathematician
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would have contemplated doing anything involving the square root of a negative number.

L'Algebra of 1572, by Rafael Bombelli (1526�1572), gave a thorough account of all algebra

then known and was the �rst book to give complete and correct rules for the arithmetic

manipulation of complex numbers [80, p. 222].

Mathematicians gradually came to accept that
√
−1 had its uses in the solution of some

polynomials, but it was still regarded as something rather strange; René Descartes (1596�

1650) described the square roots of negative numbers as `imaginary' in 1637 and wrote �For

any equation one can imagine as many roots (as its degree would suggest), but in many cases

no quantity exists which corresponds to what one imagines" [13], so it would appear that

around this time, mathematicians were close to accepting the role of complex numbers in the

roots of those quadratic equations not having real roots. A few mathematicians eventually

started to study complex numbers in their own right, without reference to polynomials, and

Caspar Wessel (1745�1818) gave
√
−1 a geometric interpretation in 1799. His paper was

generally unknown until 1895, but in the meantime, Jean-Robert Argand (1768�1822) had

introduced his diagrams of the complex plane in 1806 and Carl Friedrich Gauss (1777�1855)

had proposed using the symbol i (`imaginary') to represent
√
−1 in 1831, de�ning i2 = −1

[116]. He also coined the term `complex number' in 1832 for numbers like a+ bi.

Sir William Rowan Hamilton (1805�1865), who became Andrews Professor of Astronomy

at the University of Dublin and Royal Astronomer of Ireland, both in 1827 at the age of

22, was the �rst to consider complex numbers as ordered pairs of real numbers or `algebraic

couples', as he called them in 1833, with special rules of multiplication [70]: (a, b) · (c, d) =

(ac− bd, ad+ bc). He spent many years from around 1835 trying unsuccessfully to generalise

his ordered pairs to ordered triplets, the aim being to allow spatial rotations to be represented

algebraically, just as planar ones can with complex numbers. He could add triplets, but he

could not devise a way of multiplying them to give another triplet. It became an obsession

and it reached the stage where his children each morning would enquire, �Well, Papa can you
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multiply triplets?� to which the answer was always no. Then on Monday 16th October 1843,

Hamilton and his wife were walking along the Royal Canal in Dublin when, in his words,

�. . . there dawned on me the notion that we must admit, in some sense, a fourth dimension

of space for the purpose of calculating with triples [sic ]. [ . . . ] An electric circuit seemed to

close, and a spark �ashed forth� [115]. He could not resist carving Equation (2.2) into the

stone of Broome Bridge as they passed it and in 1958, the Royal Irish Academy unveiled

a plaque on the bridge to commemorate this act of vandalism. Hamilton named his new

objects quaternions from the Latin quaternio, meaning a set of four.

Apart from the pure mathematical interest, they came to be used widely in physics, e.g.,

James Clerk Maxwell (1831�1879) used them when developing his eponymous equations.

Vectors started to replace quaternions from the 1880s onwards and interest in quaternions

waned: vectors are conceptually easier and their notation is clearer. However, in the twen-

tieth century quaternions found new uses in physics, for example in: quantum mechanics,

relativity, string theory, super-symmetry and quantum gravity [38, p. 1]. In computer ani-

mation, quaternions are used for rotations because they take up less space in memory than

would the equivalent rotation matrices.

Nowadays the algebra of quaternions is denoted H in Hamilton's honour. In modern

terminology, quaternions are hypercomplex numbers and they form a four-dimensional, non-

commutative, normed division algebra over the real numbers.

2.2 Properties of Quaternions

These de�nitions can be found in a number of di�erent places, e.g., Ell et al. [37, pp. 1-6]

or Ginzberg [61, pp. 21-23].
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De�nition 2.2.1. The Cartesian form of a quaternion q ∈ H is given by

q =a+ bi+ cj+ dk,

where a, b, c, d ∈ R are its components and

i2 = j2 = k2 = ijk = −1, (2.2)

ij = −ji = k, jk = −kj = i, ki = −ik = j.

Remark 2.2.2. If we had a, b, c, d ∈ C, then q would be a biquaternion.

De�nition 2.2.3. The conjugate of q is

q = a− bi− cj− dk.

De�nition 2.2.4. The modulus of q is

|q| =
√
qq =

√
a2 + b2 + c2 + d2.

Remark 2.2.5. Di�erent authors have di�erent de�nitions of the norm ‖·‖: some would

write ‖q‖ = |q|2 and others would write ‖q‖ = |q|1. To avoid any ambiguity, we shall only

refer to the modulus or modulus squared as appropriate.

De�nition 2.2.6. Provided q 6= 0, the inverse of q is

q−1 =
q

|q|2
,

1This is actually the de�nition of the 2-norm.
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De�nition 2.2.7. The real and imaginary parts of q are

<(q) = a =i(q) = b, =j(q) = c, =k(q) = d.

De�nition 2.2.8. The scalar and vector parts of q are respectively

S(q) = <(q) and V(q) = bi+ cj+ dk.

Remark 2.2.9. The conjugate can therefore be written q = S(q)−V(q).

De�nition 2.2.10. The set of pure quaternions is

P = {q ∈ H : q = V(q)} .

De�nition 2.2.11. The set of unit quaternions is

S = {q ∈ H : |q| = 1} .

Remark 2.2.12. If µ ∈ P ∩ S, then µ2 = −1. In the representation of a quaternion as

q = S(q) +V(q) = S(q) + |V(q)|µ,

µ is usually referred to as the axis. Note that for µ ∈ P ∩ S, it is true that µ = −µ−1.

De�nition 2.2.13. An involution f : H→ H is such that for all q,p ∈ H,

f(f(q)) = q,

f(p+ q) = f(p) + f(q),

f(pq) = f(p)f(q).
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De�nition 2.2.14. Given a quaternion q, its three canonical involutions are

q i = a+ bi− cj− dk = −iqi,

q j = a− bi+ cj− dk = −jqj,

qk = a− bi− cj+ dk = −kqk.

Remark 2.2.15. The most general de�nition of involution is

qµ = −µqµ,

where µ ∈ P ∩ S.

Remark 2.2.16. Note that in De�nition 2.2.14, we e�ectively �nd `partial conjugates',

negating two imaginary parts at a time. We can also just negate one imaginary part at a

time.

De�nition 2.2.17. The partial conjugates of a quaternion, negating one imaginary part at

a time, are

−conj(iqi) = a− bi+ cj+ dk

−conj(jqj) = a+ bi− cj+ dk

−conj(kqk) = a+ bi+ cj− dk.

De�nition 2.2.18. The exponential of a pure quaternion p ∈ P is

ep = cos |p|+ p

|p|
sin |p|.

De�nition 2.2.19. The exponential of a full quaternion q ∈ H is, using Remark 2.2.12,

eq = eS(q)eV(q),

where eV(q) is given by De�nition 2.2.18.
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Remark 2.2.20. Note that with pure quaternions p, r ∈ P, in general

eper 6= ep+r

unless p = r.

Remark 2.2.21. Note that with full quaternions q, s ∈ H, in general

eqes 6= eq+s

unless V (q) = V (s).

2.3 A Brief History of Cli�ord Algebras

Quaternions were the �rst hypercomplex numbers, but they were not the last.

In 1844, Hermann Grassmann (1809�1877) published his Die lineale Ausdehnungslehre or

The Theory of Linear Extension; this was re-released in revised form in 1862 [65]. What

Grassmann did was to invent linear algebra [41]: he de�ned free linear spaces, subspaces,

independence, span, dimension, etc. In an article of 1855 [64], which he incorporated into the

second edition of Die lineale Ausdehnungslehre, he introduced the exterior or outer product

and from that derived the inner product. In modern terminology, the exterior product of two

vectors u and v is called the wedge product and is written u ∧ v and the well-known inner

product of modern vector analysis, also called the scalar product or dot product, is written

u•v. Grassmann called u and v, `extensive quantities'. In three dimensions, |u∧v| = |u×v|,

but u ∧ v is a directed area called a bivector, 2-vector or 2-blade, and u× v is just another

vector perpendicular to u and v. In the same way that u × v = −v × u and u × u = 0,

the wedge product satis�es u ∧ v = −v ∧ u and u ∧ u = 0, but the wedge product is more
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general: u ∧ v ∧ w is well de�ned and is, assuming u, v and w are linearly independent

of each other, the directed volume of the parallelepiped formed by the three vectors. This

is called a trivector, 3-vector or 3-blade and the modulus is the normal volume. The cross

product of three vectors is unde�ned, unless we write either (u × v) × w or u × (v × w),

and both of these are zero if the three vectors are mutually perpendicular or if the pair in

the brackets are linearly dependent; otherwise we just have another vector. Unlike the cross

product, the wedge product is also well de�ned in space of dimension greater than three.

We now come to the contribution of William Kingdon Cli�ord (1845�1879).

Relevant details of an un�nished article by Cli�ord [27] of 1876 are given in [33, �6] (pub-

lished in 1882). Cli�ord uses Grassmann's general de�nition of a product: �A product of two

extensive quantities u and v is either de�ned as an extensive quantity or a scalar.� He consid-

ers n basis elements ι1, ι2, . . . , ιn that each satisfy ι2j = ±1, a scalar using Grassmann's inner

product, and where ιiιj = −ιjιi, an extensive quantity using Grassmann's outer product,

provided i 6= j. All possible products must either be of odd order, (products of 22m−1,m ≥ 1,

distinct basis elements) or of even order (products of 22m,m ≥ 1, distinct basis elements, or

of none, with m = 0). With n basis elements, there is nC0 = 1 term of order 0, nC1 = n of

order 1, nC2 = 1
2
n(n− 1) of order 2, . . . , nCn = 1 of order n, so 2n terms in total. He uses

the symbol Vr for the subspace containing all terms of order r = 0, 1, . . . , n. He also writes

ω = ι1ι2 · · · ιn and �nds the value of

ω2 = ι1ι2 · · · ιnι1ι2 · · · ιn.

Changing the order of multiplication of any two adjacent unequal elements changes the sign



Chapter 2. Hypercomplex Algebras and Colour Vector Images 17

of the product, so if after r interchanges the result is

ω2 = (−1)rι21ι
2
2 · · · ι2n =


(−1)r if ι2j = +1

(−1)r+n if ι2j = −1,

then

r = 1 + 2 + · · ·+ (n− 1) =
1

2
n(n− 1)

r + n = 1 + 2 + · · ·+ (n− 1) + n =
1

2
n(n+ 1).

Both are odd if n (mod 4) = 2, both are even if n (mod 4) = 0, the �rst is even and the

second is odd if n (mod 4) = 1 and the �rst is odd and the second is even if n (mod 4) = 3.

Cli�ord then considers products of the form ιjω and ωιj and discovers that ωιj = +ιjω if n

is odd and ωιj = −ιjω if n is even. The sign of ι2j is irrelevant.

In a later article of 1878 [26], which was published in its own right, Cli�ord joins quaternions

with Grassmann's algebra. In three dimensions, he takes four points ι0, ι1, ι2 and ι3 with ι1,

ι2 and ι3 at in�nite distances from ι0 in three mutually perpendicular directions. He notes

that the quaternion i, j and k can be thought of as operators that turn a �gure through

90°in the y-z, x-z and x-y planes respectively. Then considering the lines ι0ι1, ι0ι2 and ι0ι3,

we have

iι0ι2 = ι0ι3

jι0ι3 = ι0ι1

kι0ι1 = ι0ι2.

In a sense, the operators e�ectively translate the points at in�nity ι2 → ι3, ι3 → ι1 and
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ι1 → ι2 along the lines ι2ι3, ι3ι1 and ι1ι2 respectively. If we use bivector representations and

write i = ι2ι3, j = ι3ι1 and k = ι1ι2 and use Cli�ord's versions of Grassmann's inner and

outer product de�ned earlier, we also have

ι0ι3 = ι2ι3ι0ι2 = −ι22ι0ι3

ι0ι1 = ι3ι1ι0ι3 = −ι23ι0ι1

ι0ι2 = ι1ι2ι0ι1 = −ι21ι0ι2,

so we must have ι21 = ι22 = ι23 = −1. Cli�ord found that 1, ι2ι3, ι3ι1 and ι1ι2 satis�ed exactly

the rules of multiplication of the quaternion 1, i, j and k respectively. Thus the quaternions

are isomorphic to an even subalgebra, where the three basis elements each square to −1.

Cli�ord went on to consider quaternions with complex coe�cients and then with quaternion

coe�cients.

It is not clear exactly when or where the geometric product of two vectors �rst appeared, but

Cli�ord is credited with introducing it: if a and b are two vectors in n-dimensional space,

then the geometric product is de�ned as

ab = a • b+ a ∧ b,

so we also have

ba = b • a+ b ∧ a = a • b− a ∧ b,

which leads to

a • b =
1

2
(ab+ ba) and a ∧ b =

1

2
(ab− ba).
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As an example of the usefulness of Cli�ord's geometric algebra, it is used in [25] to greatly

simplify Maxwell's equations. In this article, the authors show how the equations

∇ • E =
ρ

ε0
(Gauss's law)

∇×B− 1

c2
∂E

∂t
= µ0J (Ampère's circuital law with Maxwell's addition)

∇× E+
∂B

∂t
= 0 (Faraday's law of induction)

∇ •B = 0 (Gauss's law of magnetism)

may be reduced to

∂F = J,

where

∂ =
1

c

∂

∂t
+∇

F = E+ jcB

J =
ρ

ε0
− cµ0J.

Here, j = e1e2e3 where the ej is modern notation for Cli�ord's ιj; E is the electric �eld

vector E1e1 +E2e2 +E3e3, B is the magnetic �eld vector B1e1 +B2e2 +B3e3 so that jB is

e1e2e3(B1e1 +B2e2 +B3e3), which is the bivector B1e2e3 +B2e3e1 +B3e1e2, ρ is the charge

density scalar and J is the current density vector J1e1 + J2e2 + J3e3.

Apart from the obvious simplicity of ∂F = J , the geometric algebra formulation has some

other advantages over the conventional vector notation. The electric and magnetic �elds are

two quantities with di�erent physical properties and above, E is a vector and jB is a bivector:

the conventional notation represents both with the same type of mathematical object and we

have to remember that E is a polar vector and B is an axial vector. Complex numbers are

used in electrical engineering theory to allow a simple representation of sinusoidal alternating
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current; they also have applications to complex permittivity and permeability, etc. but they

lack physical justi�cation. Lastly, a single equation for electromagnetic theory matches

the single equation for Newton's law of universal gravitation and the single equation that

Einstein's �eld equations may be reduced to in general relativity.

2.4 Properties of Cli�ord Algebras

A good source for Cli�ord algebras is [151]; another, which better shows the relationships

between Cli�ord algebras and other areas of maths is [105].

Di�erent authors introduce Cli�ord algebras in di�erent ways. We shall use an approach

which is appropriate for our purposes, mirroring as far as possible Section 2.2.

De�nition 2.4.1. The basis elements of a Cli�ord algebra are written e1, e2, . . . and may

be called vectors, 1-vectors or 1-blades.

De�nition 2.4.2. The (geometric) product of any two basis vectors is written eαeβ = eαβ

and is called a bivector, 2-vector or 2-blade. A product of any three basis vectors is written

eαeβeγ = eαβγ and is called a trivector, 3-vector or 3-blade. Similarly, a product of n > 3

basis vectors is written eαeβeγeδ · · · = eαβγδ··· and is called an n-vector or n-blade.

De�nition 2.4.3. The multiplicative identity is e0 and is called the scalar: this is isomorphic

to 1 and commutes with all vectors, bivectors, etc.

De�nition 2.4.4. The signature of a Cli�ord algebra may be written Cl(p, q, r), where

e2α =


+e0 for α = 1, 2, . . . , p

−e0 for α = p+ 1, p+ 2, . . . , p+ q

0 for α = p+ q + 1, p+ q + 2, . . . , p+ q + r,
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so p is the number of basis vectors that square to +e0, q is the number that square to −e0

and r is the number that square to 0.

Remark 2.4.5. If r = 0, we write Cl(p, q).

De�nition 2.4.6. Basis vectors anticommute, so eαβ = −eβα. This property can be used

to simplify products of vectors, bivectors, etc.

Example 2.4.7. In Cl(4, 3), we can write

e7e156e26e235 = e715626235

= −e715(66)(22)35

= −e715(66)35 because e22 = +e0

= e71535 because e26 = −e0

= −e71(55)3

= e713 because e25 = −e0

= −e173

= e137.

It is usual to write bivectors, trivectors etc. with the basis vector factors in numerical order.

De�nition 2.4.8. The last element in a cli�ord algebra, the (p+ q+ r)-vector, is called the

pseudoscalar. This commutes with all vectors, bivectors, etc.

De�nition 2.4.9. For each Cli�ord algebra, the sum of two or more out of the set {scalar,

vectors, bivectors, . . . , pseudoscalar}, is called a multivector.

Example 2.4.10. In a four-dimensional algebra, a multivector may be written

m = ae0 + be1 + ce2 + de12,

where a, b, c, d ∈ R are its components.
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De�nition 2.4.11. A grade-r multivector is one formed solely of r-blades.

De�nition 2.4.12. The conjugate of m is

m = ae0 − be1 − ce2 − de12.

De�nition 2.4.13. The modulus of m is

|m| =
√
mm =

√
a2 + b2 + c2 + d2.

De�nition 2.4.14. The reverse of a multivector, denoted by a superscript †, reverses the

order of every product of vectors, so

e†α = eα, e†αβ = eβα = −eαβ, e†αβγ = eγβα = −eγαβ = eαγβ = −eαβγ, etc.

Remark 2.4.15. Some products are negated as above and some do not change sign, e.g.

e†αβγδ = eαβγδ and e
†
αβγδε = eαβγδε.

De�nition 2.4.16. Provided mm† 6= 0, the inverse of m is

m−1 =
m†

mm†
.

The component-wise representation of this is dependent upon the particular algebra in ques-

tion. This de�nition is su�cient for Cl(1, 1) and Cl(2, 0): higher dimensional algebras have

more complicated inverses [74].

Remark 2.4.17. We shall only be interested in Cl(1, 0), Cl(1, 1) and Cl(2, 0). We describe

the dimensions of these algebras as two, four and four respectively, but a mathematician

would only count the number of basis vectors and call the dimensions of these one, two and

two. Note that R ∼= Cl(0, 0), C ∼= Cl(0, 1) and H ∼= Cl(0, 2), where ∼= means `is isomorphic

to'.
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It is convenient to record products of the vectors and bivectors in multiplication tables, as

per Tables 2.1(a) and (b) and 2.2(a), (b) and (c). We include the complex numbers and

quaternions for completeness.

Table 2.1: Multiplication tables for the two-dimensional Cli�ord algebras

(a) Cl(0, 1) ∼= C

e0 e1

e0 e0 e1

e1 e1 −e0

(b) Cl(1, 0)

e0 e1

e0 e0 e1

e1 e1 e0

Table 2.2: Multiplication tables for the four-dimensional Cli�ord algebras

(a) Cl(0, 2) ∼= H

e0 e1 e2 e12

e0 e0 e1 e2 e12

e1 e1 −e0 e12 −e2
e2 e2 −e12 −e0 e1

e12 e12 e2 −e1 −e0

(b) Cl(1, 1)

e0 e1 e2 e12

e0 e0 e1 e2 e12

e1 e1 e0 e12 e2

e2 e2 −e12 −e0 e1

e12 e12 −e2 −e1 e0

(c) Cl(2, 0)

e0 e1 e2 e12

e0 e0 e1 e2 e12

e1 e1 e0 e12 e2

e2 e2 −e12 e0 −e1
e12 e12 −e2 e1 −e0
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2.5 Real Matrix Representations of Complex Numbers,

Quaternions and Cli�ord Algebras

Recall that complex numbers may be represented as real 2× 2 matrices with

1 7→

1 0

0 1

 and i 7→

0 −1

1 0

 . (2.3)

In a similar fashion, the basis elements of Cl(1, 0) may be represented as

e0 7→

1 0

0 1

 and e1 7→

0 1

1 0

 . (2.4)

Both quaternions and matrices are non-commutative and it turns out that a quaternion can

be represented as a 4 × 4 real matrix in a number of di�erent ways: Farebrother et al. [39]

found 48 distinct ordered sets of three 4 × 4 matrices which would serve as the imaginary

basis elements of a quaternion, the 4 × 4 identity matrix in each case being the �rst basis

element, representing the scalar part. The matrices we shall use are

1 7→ I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , i 7→Mi =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 ,

j 7→Mj =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , k 7→Mk =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 .

(2.5)
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By analogy with the relations between the basis elements of the quaternions in Equation

(2.2), we have

Q = aI4 + bMi + cMj + dMk

and

M2
i = M2

j = M2
k = MiMjMk = −I4,

MiMj = −MjMi = Mk, MjMk = −MkMj = Mi, MkMi = −MiMk = Mj.

We then have, for the q in De�nition 2.2.1,

q 7→ Q =


a −b −c −d
b a −d c

c d a −b
d −c b a

 ,

so that the �rst column gives the scalar and coe�cients of the imaginary parts of q in order.

De�nitions 2.2.3 to 2.2.14 have their matrix equivalents, with transpose replacing conjugate,

I4 replacing the 1, The modulus becoming the fourth root of the determinant times I4 and

the inverse, either the normal matrix inverse, or simply the transpose divided element-wise

by the square of the determinant. Any quaternion computation is equivalent to one with

the above 4 × 4 matrices: the �rst column of the result would give the coe�cients of the

equivalent quaternion result.

Quaternions also have representations as a group of four 2 × 2 complex matrices and as a

group of four 2× 2 real matrices, but we shall not discuss either of these.

All Cli�ord algebras where r = 0 have real matrix representations. We would expect the

basis elements of Cl(1, 1) and Cl(2, 0) to have many possible real 4×4 matrix representations,
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but the ones we shall use are, for Cl(1, 1),

e0 7→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , e1 7→


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,

e2 7→


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , e12 7→


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 ;

(2.6)

and for Cl(2, 0),

e0 7→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , e1 7→


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,

e2 7→


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 , e12 7→


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 .

(2.7)

It is straightforward to check that products of pairs of the matrices in each of Equations

(2.6) and (2.7) agree with the appropriate multiplication tables in Table 2.2.

We shall make use of these matrix representations of hypercomplex numbers in Chapter 5.
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2.6 Colour Vector Images

Colour images are stored as a two-dimensional (2-D) array of integer triplets, each integer

telling the computer how much red, green or blue to display in each pixel. However, colour

images are conventionally processed as three separate monochrome arrays. The Fourier

transform of a colour image is thus performed as three separate Fourier transforms of the

three separate monochrome images. Processing a colour image in this way does not take

into account correlations between primary colours that exist in secondary colours.

In 1993, Todd Ell [35] developed a continuous 2-D quaternion Fourier transform (QFT),

H[jω,kv] =

∫ ∞
−∞

∫ ∞
−∞

exp(−jωt)h(t, τ) exp(−kvτ)dtdτ,

with inverse

h(t, τ) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

exp(jωt)H[jω,kv] exp(kvτ)dvdω.

Stephen Sangwine realised that using this on a colour image, one treated as a single array of

quaternion-valued pixels, would result in a single frequency-domain representation instead of

the usual three. It should then be possible to �nd new types of �lter, speci�cally for colour

images. The transformation to an array of unit pure quaternions can be done by using the

normalised values of red, green and blue in each pixel as the coe�cients multiplying i, j and

k, i.e.,

f(n,m) = r(n,m)i+ g(n,m)j+ b(n,m)k,

where f(n,m) is the pure quaternion representation of the pixel at (n,m) and r(n,m), g(n,m)

and b(n,m) are the normalised numbers taken from the red, green and blue monochrome

arrays at the pixel. An image represented in this way, as an array of pure quaternions, i.e.
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an array of the vector parts of quaternions, is called a colour vector image or just vector

image, each pixel e�ectively being represented as a vector in the RGB colour cube of Figure

2.1. In going to a vector representation, the problem of processing a colour image becomes

a geometric one, something for which quaternions were originally developed.

For all practical purposes, any colour can be represented as a point inside or on the surface

of this cube. This includes grey, as the vector joining (0, 0, 0) to (1, 1, 1) goes through all

shades from black to white and is known as the grey axis.

Black (0,0,0)

Red (1,0,0)

Green (0,1,0)

Blue (0,0,1)

White (1,1,1)

Yellow (1,1,0)
Cyan (0,1,1)

Magenta (1,0,1)

x

y

z

Figure 2.1: The RGB colour cube.2

2Corrected with right-handed axes from the one at
https://stackoverflow.com/questions/29953652/drawing-3-d-rgb-cube-model-with-matlab

Accessed 20th June 2018.

https://stackoverflow.com/questions/29953652/drawing-3-d-rgb-cube-model-with-matlab
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By analogy with the pure quaternion representation of a colour pixel, we shall do the same

with the four-dimensional Cli�ord algebras Cl(1, 1) and Cl(2, 0) and write

f(n,m) = r(n,m)e1 + g(n,m)e2 + b(n,m)e12.

A mathematician would object to the equal treatment of two di�erent types of object, viz.

vectors and bivectors, but we justify the above by the fact that the quaternion i and j are

e�ectively Cli�ord vectors and the k, a Cli�ord bivector.

2.7 The Quaternion Fourier Transform

In 1996, Sangwine rewrote Ell's equations in discrete form [124], making it possible to turn

them into code. In 1998 he presented a new type of colour image edge detector for colour

images [125], using convolution with quaternion mask coe�cients. This was primarily to

show the potential of the new representation rather than an end in itself.

Sangwine's long-term aim for a number of years has been to develop linear methods for colour

image �ltering [126, p. 284]. Very simply, the output from a linear �lter is a linear function

of its input: halve the input and the output is halved. Such �lters obey the principle of

superposition. Suppose a signal sin is decomposed into two parts, each part is �ltered by a

copy of the same �lter F and the �ltered outputs are added together to give a signal sout,1.

Suppose also that sin is not decomposed, but �ltered by a single �lter F to give an output

signal sout,2. Only if F is linear, would it be found that sout,1 = sout,2. Sangwine did not

realise it at the time, but the 1998 edge detector was a linear �lter [126, p. 289].

In 1998, Sangwine and Ell [129] used a non-speci�c quaternion
√
−1, µ = V (q)/|V (q)|, to

rewrite Ell's QFT in a more general form, with a single exponential:
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F [u, v] =
1√
MN

M−1∑
m=0

N−1∑
n=0

exp
(
− µ2π(mv/M + nu/N)

)
f(n,m).

Recently, Ell et al. [37, p. 48] have given eight possible forms of the 2-D QFT.

2.8 An Example of Colour Vector Image Processing

In 2005, Sangwine and Le Bihan released their toolbox for MATLAB® [128], which has been

updated regularly since then. As an example of the use of this toolbox, we replicate the

results of Denis et al. [32], who devised a colour gradient edge detector based on Sangwine's

1998 one [125]. The method they used was to �lter the chosen image using four separate

pairs of masks to detect horizontal, vertical, diagonal and antidiagonal edges. These masks

were:

l =


1 1 1

0 0 0

R R R

 and r =


1 1 1

0 0 0

R R R

 ,

lT and rT ,

ldiag =


0 1 1

R 0 1

R R 0

 and rdiag =


0 1 1

R 0 1

R R 0

 ,

lTdiag and rTdiag,

where R = exp(µπ/2) and µ = (i+ j+ k)/
√

3, the greyscale axis.

For each pixel pun�lt(s, t) in Figure 2.2a and p�lt(s, t) in Figure 2.2b and each pair of masks
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above, with ∗ indicating convolution,

p�lt(s, t) = ([Left mask] ∗ pun�lt ∗ [Right mask]) (s, t),

giving four potential values p�lt(s, t) for each pixel.

The RGB colour system is not the only one, HSV being another, where H is hue, S is

saturation and V is value. In terms of a pure quaternion, S = 1/2|q + µqµ| and each pixel

making up the image in Figure 2.2b is the one with the maximum saturation of the four

potential potential values p�lt(s, t). Where the colour changes only gradually the saturation is

small, but where there is a colour edge and there is a sudden change in colour, the saturation

is large such that, as can be seen, the edges become clear. Our code is in Appendix A.

(a) Lena (b) Edge-�ltered Lena

Figure 2.2: Lena before and after �ltering using Denis et al.'s method.
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2.9 Chapter Summary

We started with a brief history of complex numbers, followed by quaternions and some

of their properties. We followed this with a brief history of Cli�ord algebras, followed by

some of their properties. We showed that complex numbers, quaternions and the Cli�ord

algebras we are mainly interested in are isomorphic to particular groups of real matrices. We

then introduced the colour cube and colour vector images and brie�y mentioned quaternion

Fourier transforms, before �nishing with an example of colour vector image processing not

involving wavelets.



Chapter 3

Real Wavelets and Discrete Wavelet

Transforms

In this chapter we introduce real wavelets and discrete wavelet transforms. In Section 3.1 we

brie�y cover the background to real wavelets and in Section 3.2 we give their basic properties.

In Section 3.3 we introduce multiresolution analysis and in Section 3.4, we show how each

level of analysis may be done in practice. In Section 3.5 we explain how real Daubechies

�lters can be calculated and in Section 3.6 we show how they may be used to �nd associated

continuous functions.

3.1 Background

The Fourier transform (FT) gives information about the frequency content of a signal, but

says nothing about where in time or space its di�erent constituent frequencies occur. In

some applications, for example with non-stationary signals, it might be desirable to know

33
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the distribution of frequencies over time or space, which led to the introduction of the short-

time Fourier transform (STFT) by Gabor [47]. A `sliding window' is introduced into the

FT, initially centred at time t, say; the signal is assumed to be approximately stationary in

the window and its FT is found. The window is then shifted by t and the FT of the new

section of signal is found, and so on until the whole signal has been covered. In continuous

time and frequency, the STFT in one dimension centred on time t can be expressed as

F
STFT

f(ω, t) =

∫ ∞
−∞

f(s)g(s− t)e−jωsds, (3.1)

where g(·) is the window function. In discrete time the STFT becomes

F
STFT

(ω, t) =
∞∑

m=−∞

f [m]g[m− t]e−jωm. (3.2)

The function g(·) or g[·] will always be even in practice and some authors would write

g(t − s) and g[t −m] above. Gabor experimented with a number of di�erent functions for

the window g(·) and found the best he could do was to use a Gaussian; the STFT with this

window function is now called the Gabor transform. We cannot know the exact frequency

at a given time and Heisenberg's Uncertainty Principle applies per Gabor [48]:

∆t∆ω >
1

2
, (3.3)

where ∆t is the uncertainty in time and ∆ω is the uncertainty in angular frequency. The

Gabor transform is optimal in the sense that this inequality theoretically becomes an equality

when g(·) is a Gaussian.

A major drawback of the STFT is that once the window is chosen its resolution is �xed,

whereas a wavelet transform has good time resolution at high frequencies and good frequency

resolution at low frequencies.
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Per Gao and Yan [58], Haar [69] developed a set of orthogonal rectangular basis functions,

with each basis function consisting of a short positive pulse followed immediately by a

short negative pulse:

ψ(t) :=


1 0 6 t 6 1

2

−1 1
2
< t 6 1

0 otherwise.

(3.4)

Later, after the development of wavelets, this rectangular pulse function was named the Haar

wavelet and an associated so-called scaling function was introduced:

φ(t) :=

 1 0 6 t 6 1

0 otherwise.
(3.5)

These two pulses form orthogonal basis functions, from which further basis functions are

derived: φα,β(t) := 2−
α
2 φ(2−αt− β) and ψα,β(t) := 2−

α
2ψ(2−αt− β), where α, β ∈ {0} ∪ Z+.

The terms multiplying φα,β(·) and ψα,β(·) are to ensure that |φα,β(·)| = 1 and |ψα,β(·)| = 1.

The scaling function φ(t) is sometimes called the father wavelet and ψ(t), the mother wavelet

with the ψα,β(t) functions, daughter wavelets; α is a scale parameter and β is a translation

parameter.

There was little interest in Haar's rectangular pulse until it was picked up by Lévy [92]

as an improvement on the Fourier basis functions for studying the �ne detail of Brownian

motion: as demonstrated by Pinsky [119], Brownian motion can be expressed as a sum of

Haar wavelets.

A square pulse is not the only wavelet that can be used. Strömberg [142] started the

development of discrete wavelets beyond what Haar had done and Daubechies [28] introduced

families of orthogonal wavelets with compact support.
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3.2 Properties of Wavelets

Many wavelets have been developed, each with properties suited to particular applications,

but all have certain features in common: �nite support and localisation in space and time.

A wavelet having �nite support simply means that there is a �nite set of points at which

it is non-zero. A wavelet transform should be capable of analysing an image at di�erent

scales and so the underlying wavelets need to be localised in spatial frequency. It also needs

to encode where in two dimensional space these frequencies occur and so the wavelets need

to be localised in two dimensions as well. A one dimensional example of space and time

localisation would be a music score, which shows what sound frequencies need to occur and

at what times. Wavelet analysis of the music would theoretically allow the music score to

be reconstructed, but Fourier analysis of the same music would not.

The wavelet functions are chosen from L1(R) ∩ L2(R), the space of measurable functions

that are absolutely and square integrable:

∫ ∞
−∞
|ψ(t)|dt <∞, and

∫ ∞
−∞
|ψ(t)|2dt <∞.

In addition, a wavelet must have mean zero and squared norm one, so:

∫ ∞
−∞

ψ(t)dt = 0 and

∫ ∞
−∞
|ψ(t)|2dt = 1.

We de�ne a wavelet as

ψa,b : R→ C, t 7→ 1√
a
ψ

(
t− b
a

)
,

where (a, b) ∈ R+ × R. Note that this de�nition of ψa,b is slightly di�erent from the one

we used for the ψα,β of the Haar wavelet above: if ψa,b were that Haar wavelet, we would
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have a = 2α and b = 2αβ. Both de�nitions are in use and we also call a and b the scale and

translation parameters respectively.

3.3 Multiresolution Analysis

Multiresolution analysis (MRA) was developed by Mallat [107] and Meyer [109] as a design

method for scaling functions and wavelets. We do not use MRA as a design tool, but rather

as a means of analysing images in Chapter 6. The idea is that a function (in our case image)

is viewed at the �nest resolution and decomposed into the detail at that resolution plus a

complementary approximation; this approximation is then viewed at a lower resolution and

decomposed into the detail at the new resolution plus a new approximation; and so on.

With MRA, we consider the spaces that the detail and approximation functions resulting

from a multilevel analysis have to belong to. We can then develop conditions that these

functions must obey. Let Vs be generated by the approximation bases {φk,s: 2−s/2φ(2−st −

k); k ∈ Z} and Ws by the detail bases {ψk,s: 2−s/2ψ(2−st − k); k ∈ Z} so that any function

xs(t) ∈ Vs, say, can be represented as a linear combination of φk,s for a �nite set of di�erent

k's and similarly for any function ys(t) ∈ Ws, say, and ψk,s. The approximation xs(t) and

detail ys(t) both come from the approximation xs−1(t) ∈ Vs−1.

In the following, we de�ne for a ∈ R+,

Da : ψ 7→ Daψ, Daψ(t) := ψ

(
t

a

)
.

Per Blatter [14, pp. 121/2] (and many other authors), a multiresolution analysis has the

following ingredients.

1. A bilateral sequence (Vj, j ∈ Z) of closed subspaces of L2(R). These Vj are ordered
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by inclusion,

{0} . . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ . . .Vj ⊂ Vj−1 ⊂ . . . ⊂ L2(R) (3.6)

(smaller values of j correspond to larger spaces Vj), and one has

⋂
j

Vj = {0} (separation axiom)

⋃
j

Vj = L2(R) (completeness axiom)

The time signals x ∈ Vj only comprise features (details) exhibiting a spread of size

> 2j on the time axis. The more negative j is, the �ner are the details that may occur

in an x ∈ Vj, and `in the limit' every single x ∈ L2(R) can be attained by functions

xj ∈ Vj.

2. The Vj are connected to each other by a rigid scaling property:

Vj+1 = D2(Vj) ∀j ∈ Z.

Referring to time signals x this can be expressed as follows:

x ∈ Vj ⇔ x(2j·) ∈ V0.

3. V0 contains one basis vector per base step 1. To be precise, there is a function

φ ∈ L2 ∩ L1 such that its translates (φ(· − k), k ∈ Z) form an orthonormal basis

of V0. This function φ is commonly called the scaling function of the MRA under

consideration; it is the determining element of the whole set-up.

Some authors reverse the ordering of the Vj in Equation (3.6).
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Each Vs is a proper subspace of Vs−1 and the remaining space in Vs−1 is called Ws, the

wavelet subspace, satisfying

Vs ∩Ws = {0} s ∈ Z

Vs ⊕Ws = Vs−1,

which leads to

Vs =
∞⊕

`=s+1

W`.

The {Vs} are nested and the {Ws} are mutually orthogonal and together satisfy

V` ∩ Vm = V`, ` > m

W` ∩Wm = {0}, ` 6= m

V` ∩Wm = {0}, ` > m.

The way Vs and Ws are related as s changes is illustrated in Figure 3.1.

V−1

V0 W0

V1 W1

V2 W2

...

...

Figure 3.1: Illustration of splitting of MRA subspaces, adapted from Goswami and Chan
[63, p. 97 Fig. 5.2].
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Referring to Figure 3.1, if our function is in V−1, then the �rst approximation is in V0 with

the detail removed at the �nest resolution inW0. The next approximation is in V1 with the

detail removed at the new, coarser resolution inW1. And so on. We see how the resolution

is made coarser at each level in the next subsection.

3.4 The Quadrature Mirror Filter

A wavelet can be viewed as a bandpass �lter and a discrete wavelet transform (DWT) and its

inverse can be implemented as a two-channel �lter bank with �nite impulse response �lters

(FIRs), as illustrated in Figure 3.2. The processing block in practice might perform e.g.,

signal compression by suppression of small components, but we assume here that it has been

removed and the outputs of the downsamplers (decimators) go straight into the upsamplers

(expanders). The H's are low-pass �lters, the G's are high-pass �lters and the tilde indicates

that the �lter's coe�cients have been reversed. Together the four �lters form a quadrature

mirror �lter (QMF). The passband of a �lter can never have a perfect cut-o� and where

�lter responses overlap, aliasing can occur. In a QMF, the aliasing that must occur in the

analysis bank is cancelled by the equal and opposite aliasing in the synthesis bank, leading

to a perfect reconstruction of the input signal, apart from a delay. The aliasing is actually

augmented by the decimators, but this makes it easier to remove.
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x[n]

G(z)

H(z)

↓2

↓2

P
ro
ce
ss
in
g

↑2

↑2

G̃(z)

H̃(z)

+ y[n]

Analysis Synthesis

Figure 3.2: The basic layout of a simple discrete wavelet transform.

In terms of z-transforms, with no additional processing between analysis and synthesis, we

�nd that

Y (z) =
1

2
X(z)[H(z)H̃(z) +G(z)G̃(z)] +

1

2
X(−z)[H(−z)H̃(z) +G(−z)G̃(−z)].

The second term is due to the decimation and expansion plus aliasing and we can make it

zero by choosing H̃(z) = G(−z) and G̃(z) = −H(−z).

As an example, let the coe�cients of H be h = (a, b, c, d) so that:

H(z) = a+ bz−1 + cz−2 + dz−3, H̃(z) = d+ cz−1 + bz−2 + az−3,

G(z) = d− cz−1 + bz−2 − az−3, G̃(z) = −a− bz−1 + cz−2 − dz−3.

Then after some calculation we �nd that

Y (z) = X(z)[(ac+ bd)z−1 + (a2 + b2 + c2 + d2)z−3 + (ac+ bd)z−5].

To four decimal places, if a = −0.1294, b = 0.2241, c = 0.8365 and d = 0.4830 then

ac + bd = 0.0000 and a2 + b2 + c2 + d2 = 1.0000, so that Y (z) = X(z)z−3, exactly the

same as the input but with a delay. These numbers were chosen from the Daubechies db2
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wavelet (see Example 3.5.1), but we could have chosen db3, . . ., the Mexican hat wavelet,

the Meyer wavelet, etc. The coe�cient vectors are always even-length and h and g, which

is (d,−c, b,−a) in this case, may be di�erent lengths.

For more an MRA, the �rst analysis stage's low-pass output after downsampling would form

the input to another analysis stage and the high-pass output would be saved; and so on to

whatever level of analysis is desired. The downsampling coarsens the resolution at each level

of analysis, hence `multi-resolution'.

For reconstruction, the two �nal analysis outputs would form the two inputs to the �rst syn-

thesis stage. The output of this would form the low-pass input to the second synthesis stage,

with the high-pass input being the last but one analysis high-pass output; and so on until

all analysis high-pass outputs have been added back and the original signal reconstructed.

Thus, at each stage of analysis, the detail at that scale is stripped o� and at each stage of

synthesis, the detail at that scale is added back in.

As an experiment to see how far it is possible to go with the two dimensional version of this

procedure, we decomposed a 512× 512 pixel monochrome image with wavelets and reduced

it to a single pixel through successive analysis and downsampling; we were then able to

reconstruct the original image perfectly through successive upsampling and synthesis.

In recent years, wavelet transforms have found applications in video and internet commu-

nications compression, object recognition and numerical analysis. As an example of image

compression, The JPEG2000 standard uses CDF 5/7 and CDF 9/7 wavelets, which are two

versions of the Cohen-Daubechies-Feauveau wavelet.



Chapter 3. Real Wavelets and Discrete Wavelet Transforms 43

3.5 Construction of Real Daubechies Scaling Filters

The Daubechies wavelets are perhaps the most popular family of wavelets. In the follow-

ing, we summarise Strang and Nguyen's approach [141, pp.164�9] to their derivation and

construction.

The two key properties of Daubechies �lters are:

1. orthogonality ;

2. maximum �atness at ω = 0 and ω = π.

We let the length of the �lters be 2N and the coe�cients in the lowpass �lter be c(0), c(1), . . . ,

c(2N − 1), with frequency response C(ω); we also let p(0), p(1), . . . , p(2N − 1) be the coe�-

cients of the centred even polynomial P (ω) = |C(ω)|2 with p(n) = p(−n). The 2N numbers

required come from N conditions for orthogonality and N conditions for �atness:

Orthogonality:

p(0) = 1, p(2) = p(4) = · · · = p(2N − 2) = 0

Flatness:

C(π) = C ′(π) = · · · = C(N−1)(π) = 0.

As Strang and Nguyen explain, these conditions have a number of consequences.

Because C(π) = 0, this means that
∑

(−1)nc(n) = 0 so that

∑
odd n

c(n) =
∑
even n

c(n)
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and from the other �atness conditions,

2N−1∑
n=0

(−1)nnkc(n) = 0 for k = 0, 1, . . . , N − 1.

We also have ∑
odd n

p(n) =
∑
even n

p(n) = p(0) = 1

so that ∑
all n

p(n) = P (0) = 2.

Then from P (ω) = |C(ω)|2, we get C(0) = ±
√

2 and

∑
all n

c(n) = C(0) =
√
P (0) =

√
2.

The p zeros at π mean that C(ω) has a factor (1 + e−iω) and

C(ω) =

(
1 + e−iω

2

)N
R(ω),

where R(ω) has degree N − 1, to bring the degree of C(ω) up to 2N − 1. The N coe�cients

of R(ω) satisfy the N orthogonality equations above.

Since P (ω) = |C(ω)|2 and |1 + e−iω|2/2 =
(
1 + cos(ω)

)
, we know that P (ω) has a factor

(
1 + cos(ω)

2

)N
.

We now �nd an equation for P (ω). The starting point suggested by Strang and Nguyen is

the polynomial BN(y), the binomial series for (1− y)−N truncated after N terms:

BN(y) = 1 +Ny +
N(N + 1)

2
y2 + · · ·+

(
2N − 2

N − 1

)
yN−1 = (1− y)−N +O(yN).

The coe�cient of yk is
(
N+k−1

k

)
.
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Strang and Nguyen then write

P̃ (y) = 2(1− y)NBN(y) = 2(1− y)N
[
(1− y)−N +O(yN)

]
= 2 +O(yN),

a polynomial of degree 2N − 1. It is the only polynomial with 2N coe�cients that satis�es

N conditions at each endpoint, i.e. P̃ (y) and its �rst p− 1 derivatives are zero at y = 0 and

y = 1, except that P̃ (0) = 2.

We now change to trigonometrical polynomials, taking 0 ≤ y ≤ 1 to 0 ≤ ω ≤ π by de�ning

y =
1− cos(ω)

2
or 1− y =

1 + cos(ω)

2
.

The polynomial P̃ (y) then becomes P (ω):

P (ω) = 2

(
1 + cos(ω)

2

)N N−1∑
k=0

(
N + k − 1

k

)(
1− cos(ω)

2

)k
.

We now make a second change of variables, to complex z:

z + z−1

2
= cos(ω) = 1− 2y

or y = (2− z − z−1)/4. We �nd that

P (z) = 2

(
1 + z

2

)N (
1 + z−1

2

)N N−1∑
k=0

(
N + k − 1

k

)(
1− z

2

)k (
1− z−1

2

)k
. (3.7)

This factors into P (z) = C(z)C(z−1). The N zeros at y = 1 and ω = π are now 2N zeros at

z = −1; half of them go into C(z). The N − 1 complex zeros of Bp(y) become 2N − 2 zeros

of P (z); again, half of them (the N − 1 zeros inside the circle |z| = 1 if we want minimum

phase) go into C(z). We can calculate C(z) as follows.
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1. Find the N − 1 roots of BN(y) = 0.

2. Equate each root in turn to (2− z − z−1)/4.

3. Solve the resulting quadratics and take the N − 1 values with |z| < 1.

4. Include N zeros at z = −1.

5. Expand the resulting polynomial, which will have 2N − 1 zeros and 2N coe�cients.

6. Divide each coe�cient of z by the square root of the sum of the squares of all the

coe�cients.

The resulting 2N numbers will be the required (real) �lter coe�cients, the squares of which

will sum to 1.

Example 3.5.1. We can �nd the scaling �lter coe�cients of db2 by setting N = 2. Then

B2 = 1 + 2y, the zero of which is at y = −1
2
, and

2− z − z−1

4
= −1

2

or

4− z − z−1

4
= 0,

giving z2 − 4z − 1 and z = 2±
√

3. Therefore

f(z) = (z + 1)2(z − [2−
√

3])

= z3 +
√

3z2 + (2
√

3− 3)z − (2−
√

3).

The sum of the squares of the coe�cients is 32 − 16
√

3, the square root of which may be

found in, for example, Maple� to be 2
√

2(
√

3 − 1). Dividing f(z) by this and simplifying

gives
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f(z)

2
√

2(
√

3− 1)
=

1

4
√

2

[
(1 +

√
3)z3 + (3 +

√
3)z2 + (3−

√
3)z − (

√
3− 1)

]
.

Evaluating the coe�cients gives the four values 0.4830, 0.8365, 0.2241, −0.1294 respectively,

to four decimal places. These are the �lter coe�cients of the db2 scaling �lter we mentioned

in Section 3.4 in connection with the QMF.

3.6 The Cascade Algorithm

For each scaling and wavelet �lter there exists an associated basis function, akin to the

sines and cosines of Fourier analysis. Unlike sines and cosines, these functions have compact

support and are not analytic. We may still however, for each function, generate a vector

of points that lie on it by using the cascade or two-scale dilation equation. If we generate

a su�cient number of points, we may plot them and obtain what is, to all intents and

purposes, a continuous curve. In this section we introduce the cascade algorithm and go on

to demonstrate its use on the real Daubechies db2 �lters.

Scaling and wavelet functions are re�nable functions (see e.g. [81, p. 3]), de�ned by

φ(t) =
√

2
∑
i

h[i]φ(2t− i) (3.8)

and

ψ(t) =
√

2
∑
i

g[i]φ(2t− i)

respectively, where h[i] and g[i] are called the recursion coe�cients.

Daubechies and Lagarias [30, 31] made an extensive study of Eqn. (3.8), which they called

a lattice two-scale di�erence equation. They proved the existence and uniqueness of L1
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solutions and that these are continuous and have compact support. They also found an

iterative method of approximating solutions, versions of which we meet in the next two

equations.

We can use the cascade algorithm (see e.g. [81, p. 231]) to �nd approximate point values of

φ(t) and ψ(t):

φk+1(t) =
√

2
2n∑
i=1

s[i]φk(2t− i) (3.9)

and

ψk+1(t) =
√

2
2n∑
i=1

w[i]φk(2t− i), (3.10)

where s[·] and w[·] are the �lter coe�cients and 2n is the length of the �lters in question.

The results of iterating these functions are vectors of samples of Φ(t) and Ψ(t) whose lengths

depend on the number of iterations.

An example of an implementation of this algorithm in MATLAB® is at http://people.

sc.fsu.edu/~jburkardt/m_src/wavelet/cascade.m (accessed 17th June 2019), although

MATLAB® provides functions to generate vectors of real samples automatically.

Example 3.6.1. If we run the following code, we obtain the top left plot in Figure 3.3;

changing the 2 in `db2' appropriately gives the other plots. Note that we have adjusted the

vertical scale in each case. In `dbN ', N is the number of vanishing moments and 2N is the

length of the �lters.

1 [phi ,psi ,xval] = wavefun('db2');

2 plot(xval ,phi ,'LineWidth ' ,1.5);

3 hold on

4 plot(xval ,psi ,'LineWidth ' ,1.5,'Color ','r');

5 hold on

6 yline (0);

7 hold off

8 axis square

http://people.sc.fsu.edu/~jburkardt/m_src/wavelet/cascade.m
http://people.sc.fsu.edu/~jburkardt/m_src/wavelet/cascade.m
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9 ylim ([ -1.6 ,2])

Length 18 (`db9') Length 86 (`db43')

Length 4 (`db2') Length 10 (`db5')

Figure 3.3: Scaling and wavelet functions using real Daubechies �lters.

The square waves of the Haar scaling and wavelet functions described in Equations (3.5) and

(3.4) respectively are clearly very di�erent from the functions in Figure 3.3, although the

Haar wavelet is actually a Daubechies wavelet, one with label db1. In the MATLAB® code

above, the 2 in db2 may be replaced with any integer up to 43: we have used the examples of

2, 5, 9 and 43 although in theory it may be any positive integer N . As N increases, we can

see the scaling and wavelet functions becoming smoother and developing more oscillations.

We give four examples of frequency response plots for Daubechies scaling and wavelet �lters
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in Figure 5.9, where it is apparent that as N increases, so does the �atness of the frequency

response.

3.7 Chapter Summary

We gave a brief introduction to real wavelets and the important concept of multiresolution

analysis (MRA). We showed how each level of an MRA may be performed with a quadrature

mirror �lter. We then went on to explain how Daubechies �lter coe�cients are calculated

and gave an example. We �nished by using the cascade algorithm on the �lter we had just

found, together with three others, and showed what some real scaling and wavelet functions

look like.

A large body of work exists on the subject of real wavelet analysis: for further details we

recommend the books by Strang and Nguyen [141] and Kova£evi¢ et al. [84].



Chapter 4

Prior Work on Quaternion Wavelets and

their Transforms

In this chapter we review the literature on quaternion wavelets and quaternion wavelet

transforms (QWTs). In our review article [44, Secs. 4�6], on which this chapter is based, we

attempted to cite the majority of articles whose author(s) did anything at all with what they

called a `quaternion wavelet' or `quaternion wavelet transform'. Since our review article was

published, more has appeared on the subject, but very few recent articles report anything

signi�cant or novel. However, in order to be consistent with our review article, we have still

tried to cite as many as possible.

4.1 Review of the Literature

In this section we review the literature on QWTs. The search terms used in Google Scholar

were `quaternion wavelet' and `quaternionic wavelet'. There are a number of di�erent def-

51
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initions and we shall look in detail particularly at those from the most-cited papers per

the Web of Science1: Bayro-Corrochano [11] with 31 citations as at 17th May 2015, Zhou

et al. [169] with 25 and Chan et al. [24] with 51. As at 24th September 2018, the �gures are

67, 28 and 72 respectively. These totals actually include articles where these references are

mentioned only in passing, so we omit those in what follows. We could have also used search

terms like `vector wavelet' or `hypercomplex wavelet', but the point with this document is

to concentrate speci�cally on QWTs at this stage.

We have not split up this section into separate subsections for continuous and discrete QWTs

and quaternion MRAs, but we have attempted to group papers together in a logical fashion,

roughly chronologically.

4.1.1 Early Papers

Mitrea [110, ch. 2] introduced Cli�ord wavelets and a Cli�ord multiresolution analysis purely

as an academic exercise: the Cli�ord Algebra Cl(0, 2) is isomorphic to the quaternions. As a

speci�c example, he constructed theoretical Haar Cli�ord wavelets. This appears to be the

earliest mention of any sort of hypercomplex wavelet and dates from 1994.

Traversoni [146] represented the four components of a quaternion as real wavelets and pro-

posed using this formulation in Navier Stokes problems to express vorticity using all four

dimensions. The energy would then be expressed as wavelets and low energy turbulence

could be �ltered out by suppressing the corresponding wavelets. This idea was not devel-

oped further and in [147], he used the ideas of Mitrea to obtain a quaternion multiresolution

analysis and Haar quaternion wavelet, the latter based on a cubic representation of the Haar

square pulse in 3-D. In [148], he applied his Haar quaternion wavelets to image analysis,

1http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=

GeneralSearch&SID=T22VaVxxnQmgWlBUKFE&preferencesSaved=

http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=GeneralSearch&SID=T22VaVxxnQmgWlBUKFE&preferencesSaved=
http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=GeneralSearch&SID=T22VaVxxnQmgWlBUKFE&preferencesSaved=
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creating a 3-D representation of a collection of 2-D tomography data.

Bülow [17] developed a quaternion Hilbert transform and used the polar representation of a

quaternion in a quaternionic Gabor �lter, on which a large body of research has been based.

We review this research in Subsections 4.1.2, 4.1.3 and 4.1.4.

4.1.2 QWTs Based on a Quaternion Gabor Transform

Bayro-Corrochano [11] introduced a 2-D quaternion MRA, a `wavelet pyramid', which is also

covered in Moya-Sánchez and Bayro-Corrochano [112]:

f(x, y) = Anf(x, y) +
n∑
j=1

[Dj,1f(x, y) +Dj,2f(x, y) +Dj,3f(x, y)],

where the Approximations A and detail D are de�ned as

Ajf(x, y) =
∞∑

k=−∞

∞∑
`=−∞

aj,k,`Φj,k,`(x, y),

Dj,pf(x, y) =
∞∑

k=−∞

∞∑
`=−∞

dj,p,k,`Ψj,p,k,`(x, y)

with

Φj,k,`(x, y) =
1

2j
Φ

(
x− k

2j
,
y − `

2j

)
, (j, k, `) ∈ Z3,

Ψj,p,k,`(x, y) =
1

2j
Ψ

(
x− k

2j
,
y − `

2j

)
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and

aj,k,`(x, y) = 〈f(x, y),Φj,k,`(x, y)〉,

dj,p,k,` = 〈f(x, y),Ψj,p,k,`(x, y)〉.

He also decomposed the scaling and wavelet functions into 1-D functions:

Φ(x, y) = φ(x)φ(y),

Ψ1(x, y) = φ(x)ψ(y),

Ψ2(x, y) = ψ(x)φ(y),

Ψ3(x, y) = ψ(y)ψ(x).

The way this wavelet pyramid works is that given a 2-D image f(x, y), for each level j we

have four matrices Aj, Dp, p = 1, 2, 3 with elements Aj(k, `) = aj,k,` andDj,p(k, `) = dj,p,k,`.

For his QWT, Bayro-Corrochano [11] used two quaternionic modulated Gabor �lters in

quadrature:

hq =
1

σh
√

2π
exp

(
−x

2 + (εy)2

σ2
h

)
exp

(
i
ChH ωhH x

σh

)
exp

(
j
ChV ωhV εy

σh

)
= hqee + hqoei+ hqeoj+ hqook

(4.1)

and

gq =
1

σg
√

2π
exp

(
−x

2 + (εy)2

σ2
g

)
exp

(
i
CgH ωgH x

σg

)
exp

(
j
CgV ωgV εy

σg

)

= gqee + gqoei+ gqeoj+ gqook, (4.2)
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where ε is the aspect ratio, the σ's are standard deviations, the ω's are modulation frequen-

cies, CaB = ωaB σa with a = h or g for low- or high-pass and B = H or V for horizontal or

vertical, ee means even-even, eo means even-odd, oe means odd-even and oo means odd-odd.

These last four come from the cosine and sine products of the equations' expansions. These

�lters are quaternionic versions of the low-pass �lter H and high-pass �lter G of �gure 3.2.

Bayro-Corrochano gives conditions on the frequencies as follows:

ωhH + ωhV = π, ωhH > ωhV , ωhH = 3ωgH , ωhH =
5π

6
and ωgH =

π

6
.

We have changed some of the notation to avoid using tildes to indicate di�erent constants

and to give more meaning to the subscripts.

This quaternion wavelet also appeared in [10] and a joint conference paper by Bayro-

Corrochano and de La Torre Gomora [12] and while he did include Bülow [17] in these

two articles' and his earlier article's references, he did not explicitly state that Equations

(4.1) and (4.2) came directly from Bülow's Equation (3.40) for a quaternionic Gabor �lter.

Despite all the citations, only a few researchers have actually done anything with this QWT.

Naouai et al. [113] used it in the extraction of road map information from high resolution

remotely sensed images: conventional methods for updating road maps rely on human in-

tervention and are expensive and time consuming. Ding et al. [34] used it in the analysis

of black and white images in preparation for colourisation. Wang et al. [155] used it in

a watermarking algorithm applicable to colour images, but which used QWTs of greyscale

images at one stage of the process. Han et al. [71] also used it in a watermarking algorithm,

but they found the QWT of the luminance channel of an image to give four approximation

subimages and then added a watermark to two of them at random, using a discrete cosine

transform.
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4.1.3 QWTs for Phase-Based Stereo Matching

Xu et al. [160] worked on phase-based stereo matching for uncalibrated images. They revised

and expanded their work in [161], [149] and [169], extending the work of Bayro-Corrochano to

symmetric/asymmetric biorthogonal wavelet bases in order to build linear-phase quaternion

wavelet �lters (LPQWFs). Given the scale function φ`,m(x) and the wavelet base ψ`,m(x) of

a biorthogonal wavelet where ` denotes the scale factors 2`, ` = 0, 1, . . . , K and m ∈ Z, the

discrete positions, four corresponding 1-D analytic wavelets ψH`,m(x), ψV`,m(y), φH`,m(x) and

φV`,m(y) can be built as:

ψH`,m(x) = ψ`,m(x) + iHx(ψ`,m(x))

ψV`,m(y) = ψ`,m(y) + jHy(ψ`,m(y))

φH`,m(x) = φ`,m(x) + iHx(φ`,m(x))

φV`,m(y) = φ`,m(y) + jHy(φ`,m(y)),

where Hx(·) and Hy(·) denote the partial Hilbert transforms along the x-axis and y-axis and

H and V refer to horizontal and vertical respectively.

The 2-D scale function Φq(x, y) and its three associated quaternion wavelet functions Ψq
H(x, y),

Ψq
V (x, y) and Ψq

D(x, y) can then be built as:

Φq(x, y) = φ`,m(x)φ`,m(y)

Ψq
H(x, y) = φH`,m(x)ψV`,m(y)

Ψq
V (x, y) = ψH`,m(x)φV`,m(y)

Ψq
D(x, y) = ψH`,m(x)ψV`,m(y),

where D refers to diagonal. Φq(x, y) is a real 2-D scale function and expanding the three
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wavelet equations leads to 12 products that can be written succinctly as:

Ψq
P (x, y) = ψP (x, y) + iHx(ψ

P (x, y)) + jHy(ψ
P (x, y)) + kHxy(ψ

P (x, y)), P ∈ {H,V,D},

where Hxy(·) denotes the total Hilbert transform and ψP (x, y), P ∈ {H, V,D} is a general

2-D real wavelet with di�erent orientations. Thus each quaternion wavelet consists of a

Hilbert quadruple and is suited to the construction of 2-D analytic signals.

Zhou et al. developed a practical technique for constructing their LPQWFs using real biorthog-

onal bases. They used a cost function approach, minimisation of which avoided false matches

in their stereo matching algorithm.

Despite the relatively high number of citations mentioned in the introduction, all the papers

citing Zhou et al. [169] appear to report something other than any extension to or application

of their QWT.

4.1.4 The Dual Tree Quaternion Wavelet Transform

The dual tree QWT was introduced in 2004 by Chan et al. [21]. It went through several

re�nements in [20], [22] and [23], culminating in 2008 with [24]. In Table 4.1, we analyse by

application all the articles up to 2018 that make use of this version of the QWT. Chan et al.

themselves used it for edge geometry estimation and image disparity estimation and have

made their MATLAB® code for the latter, including that for their QWT, available on the

website of the Digital Signal Processing Group at Rice University.2 This QWT is based on

the 2-D analytic signal of Bülow [17]:

2https://web.archive.org/web/20160512013513/http://dsp.rice.edu:80/software/qwt, accessed
24th September 2018

https://web.archive.org/web/20160512013513/http://dsp.rice.edu:80/software/qwt
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De�nition 4.1.1. Let f be a real-valued 2-D signal. the 2-D quaternion analytic signal is

de�ned as

f qA(x, y) = f(x, y) + ifHi1(x, y) + jfHi2(x, y) + kfHi(x, y),

where

fHi1(x, y) = f(x, y) ∗∗ δ(y)

πx
, fHi2(x, y) = f(x, y) ∗∗ δ(x)

πy
and fHi(x, y) = f(x, y) ∗∗ 1

π2xy
,

with Hi1(·) and Hi2(·) being the partial Hilbert transforms and Hi(·), the total Hilbert

transform; δ(x) and δ(y) are impulse sheets along the y and x axes respectively and ∗∗

denotes 2-D convolution.

Per Bow [15, pp. 422/3], an impulse sheet is de�ned to be in�nite in one direction and to

have as its cross-section, the usual 1-D δ-function.

This QWT is constructed by simply arranging the four components of a 2-D complex wavelet

as a quaternion, using appropriate �lters for the calculation of the coe�cients. The basis

functions are shifted and scaled copies of the following; the superscripts H, V and D label

the horizontal, vertical and diagonal sub-bands respectively.

f qA0
(x, y) = φ(x, y) = φh(x)φh(y) + iφh(x)φg(y) + jφg(x)φh(y) + kφg(x)φg(y)

f qA1
(x, y) = ψH(x, y) = ψh(x)φh(y) + iψh(x)φg(y) + jψg(x)φh(y) + kψg(x)φg(y)

f qA2
(x, y) = ψV (x, y) = φh(x)ψh(y) + iφh(x)ψg(y) + jφg(x)ψh(y) + kφg(x)ψg(y)

f qA3
(x, y) = ψD(x, y) = ψh(x)ψh(y) + iψh(x)ψg(y) + jψg(x)ψh(y) + kψg(x)ψg(y)

(4.3)

Chan et al.'s QWT function has four arguments: the image to be analysed, the level of

analysis required J and four pairs of �lter coe�cients, two pairs Faf{1} Lo and Hi and

Faf{2} Lo and Hi for the �rst level and two pairs af{1} Lo and Hi and af{2} Lo and Hi for

subsequent levels. It returns the wavelet coe�cients for each of levels 1 to J and the scaling
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coe�cients at level J + 1.

Table 4.1: Summary of research by application which has used the QWT formulation of
Chan et al. [24].

Application Research articles

Image disparity
and optical �ow

Chan et al. [24], Wang et al. [153, 154], Kumar et al. [85], Liu
et al. [97]

Edge geometry Chan et al. [24]

Texture
recognition

Soulard and Carré [137, 139], Sathyabama et al. [132], Gai et al.
[56], Li et al. [93]

Image coding
Soulard and Carré [138], Kheli� et al. [83], Madhu and Anant
Shankar [106]

Feature extraction
and object
recognition

Gai et al. [52, 53, 54, 55], Li et al. [94], Greenblatt et al. [66],
Priyadharshini and Arivazhagan [121], Sangeetha et al. [123],
Katunin [79], Shen et al. [133], Mosquera-Lopez et al. [111], Gai
and Luo [50], Gai [49], Agaian et al. [1], Wang et al. [156], Ari-
vazhagan et al. [3], Ren et al. [122]

Speckle reduction Jin et al. [76], Liu et al. [99], Wu et al. [158]

Image denoising
Yin et al. [162], Kadiri et al. [77, 78], Gai et al. [57], Yu et al.
[164], Gai and Luo [51], Zhang [165], Liu et al. [104], Malleswari
and Madhu [108], Umam and Yunus [150]

Image fusion
Liu et al. [100, 102, 103], Yin et al. [163], Geng et al. [59, 60],
Zheng et al. [168], Chai et al. [19]

Scale saliency Le Ngo et al. [88, 89]

Image quality
metrics

Liu et al. [101], Traoré et al. [144, 145], Liu and Du [98], Tang
et al. [143]

Watermarking Lei et al. [90, 91], Han et al. [71, 72]

Image sharpening Kumar et al. [86]
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The way this function works is to use one �lter on each column and downsample by two and

then use another �lter on each row and downsample by two a second time. For the four scalar

terms in equations (4.3), Faf{1} (af{1} from level 2 onwards) �lters are used in the order

Lo-Lo, Lo-Hi, Hi-Lo, Hi-Hi. The i-terms use Faf{1} and Faf{2} (af{1} and af{2} from

level 2 onwards) respectively in the order Lo1-Lo2, Lo1-Hi2, Hi1-Lo2, Hi1-Hi2, the subscript

indicating the source of the �lter. The j-terms use Faf{2} and Faf{1} (af{2} and af{1}

from level 2 onwards) respectively in the order Lo2-Lo1, Lo2-Hi1, Hi2-Lo1, Hi2-Hi1. Finally,

the k-terms use Faf{2} (af{2} from level 2 onwards) respectively in the order Lo-Lo, Lo-Hi,

Hi-Lo, Hi-Hi.

Chan et al. do not actually mention anything in their articles about the �lters they used,

although they do say in the comments on their code that the Faf �lters are �Farras �lters

organized for the dual-tree complex DWT� and that the af �lters are �Kingsbury Q-shift

�lters for the dual-tree complex DWT�. Each one consists of 10 coe�cients, including a few

zeros.

4.1.5 Other Novel QWTs

Peng and Zhao [118] succeeded in designing three symmetric quaternion scaling �lters but

as shown in Ginzberg [61, pp. 130/1], they were in fact trivial.

Shi [135, pp. 49-51] suggested a `quaternion' Haar wavelet transform, starting from a real

Haar wavelet transform in one dimension:

l ∗X(r) =
X(r) +X(r − 1)

2
mod N

h ∗X(r) =
X(r)−X(r − 1)

2
mod N,
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where l and h are low- and high-pass �lters respectively and X(r) is some 1-D signal of

length N . If Cl and Ch are the above results downsampled by 2, then

X = (Cl + Ch)⊕ (Cl − Ch).

Then doing the above convolutions along the rows and columns of a colour image would give a

QWT, which could easily be used to reconstruct the original signal. As Shi admits, this would

be equivalent to three separate monochrome QWTs and therefore not truly quaternionic.

Carré and Denis [18] seem to have been the �rst to think of trying to develop a QWT to use

for processing colour images represented as pure quaternions. We explain this representation

further in Subsection 4.2.4. They considered the two-channel �lter bank with perfect recon-

struction in Figure 3.2, but with quaternion input and output and quaternion coe�cients.

They found that the conditions on the �lters for perfect reconstruction are exactly the same

as for �lter banks with real coe�cients, except that the order of the elements is important.

The only example they tried was a Shannon QWT, for which the �lter coe�cients turned

out to be real. This was a conference paper and the follow-up peer-reviewed paper did not

mention the �lter banks.

Zhao and Peng [167] de�ne a continuous quaternion wavelet ψ ∈ L2(R,H) as

ψa,θ,b(x) = a−1ψ
(
a−1r−θ(x− b)

)
r−θ(x) = (x1 cos(θ)− x2 sin(θ), x1 sin(θ) + x2 cos(θ)) ,where

0 6 θ 6 2π, a > 0, b ∈ R2.

They then de�ne their QWT as

Wψ : L2
(
R2,H

)
→ L2

(
IG(2),H, a−3dadθdb

)
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f(x) 7→ Wψ(a, θ, b) = C
− 1

2
ψ 〈ψa,θ,b, f〉

= C
− 1

2
ψ

∫
R2

ψa,θ,b(x)f(x)dx, (4.4)

IG(2) = {(a, rθ, b) , a > 0, θ ∈ [0, 2π], b ∈ R2
}

and Cψ =

∫
R2

|ψ̂(ξ)|2

|ξ|2
dξ.where

Thus the signal is decomposed by rotated as well as scaled and translated copies of the mother

wavelet. This QWT apparently �rst appeared in 2001 in Birkbeck College Mathematical

Research Unit's Journal of Natural Geometry.

Bahri et al. [7] de�ne their 2-D continuous QWT as:

Tψ : L2
(
R2,H

)
→ L2

(
R2,H

)
f 7→ Tψf(a, θ, b) = 〈f, ψa,θ,b〉L2(R2,H)

=

∫
R2

f(x)
1

a
ψ

(
r−θ

(
x− b
a

))
dx, (4.5)

where

r−θ(z) = (z1 cos(θ) + z2 sin(θ),−z1 sin(θ) + z2 cos(θ)) , 0 6 θ 6 2π.

This QWT is very similar to Zhao and Peng's in equation (4.4) and although Bahri et al. do

not cite Zhao and Peng [167], they do cite the earlier paper mentioned below this equation

in passing. It also appears in Bahri [6], Bahri et al. [8] and [9]. In the last of these, the

authors de�ne a quaternion Fourier transform as

Fq[f(x)](ω) = f̂(ω) =

∫
R2

f(x) exp(−µ[ω • x])dx,
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where µ =
i+ j+ k√

3
. They then use this to rewrite equation (4.5) as

Tψf(a, θ, b) =
1

(2π)2

∫
R2

af̂(ω) exp(−µ[ω • b])ψ̂(ar−θ(ω))dω.

They go on to establish some theorems involving this formulation of their 2-D QWT.

Guo et al. [68] de�ne their quaternion curvelet transform in virtually the same way as

Bahri et al. de�ne their 2-D QWT and use it in colour image fusion. They recognise that

treating the R, G and B channels holistically as described in Subsection 4.2.4 reduces blur,

preserving the greatest amount of colour information, and use colour images represented as

pure quaternions but do not describe exactly how they evaluate their transform. However,

Pang et al. [117], which has two authors in common with Guo et al. [68], do explain how

their QWTs are computed. They use low- and high-pass decomposition �lters φd and ϕd

and low- and high-pass reconstruction �lters φr and ϕr, which they de�ne as:

φd = {0.0000 − 0.1768 0.3536 1.0607 0.3536 − 0.1768} exp(µπ/4),

ϕd = {0.0000 0.3536 − 0.7071 0.3536 0.0000 0.0000} exp(µπ/4),

φr = {0.0000 0.3536 0.7071 0.3536 0.0000 0.0000} exp(µπ/4),

ϕr = {0.0000 0.1768 0.3536 − 1.0607 0.3536 0.1768} exp(µπ/4),

where µ = (i + j + k)/
√

2, although presumably
√

2 should read
√

3. Guo et al. do not

explain where these �lter coe�cients come from. They report an improvement on previous

methods of colour image fusion.

Hogan and Morris [75] developed some theory for quaternionic signals using the Cli�ord-

Fourier transform of Brackx et al. [16] for C`(0, 2), which is a quaternion Fourier transform

(QFT). They used this QFT in the proof of a quaternionic analogue of the QMF condition:

a quaternionic orthonormal scaling function must necessarily satisfy this. They went on to
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�nd conditions to be satis�ed by the corresponding quaternion wavelet functions. These

conditions can be expressed as a matrix equation and they found an equivalent system

of quadratic equations that it would be possible to solve numerically. They then found

conditions that would be su�cient to guarantee a quaternion scaling function would have

compact support. They were not, however, able to actually construct a quaternion wavelet

basis from a QFT series and conclude that their theory must be incomplete. They were,

however, able to construct a quaternionic biorthogonal wavelet basis and give an example of

such a wavelet basis and illustrate the resulting wavelets.

Xia and Suter [159] introduced vector-valued wavelets for the analysis of vector-valued sig-

nals. Their MRA is similar to that in Subsection 3.3, except that L2(R) is replaced by

L2(R,CN×N). Matrix valued wavelets (MVWs), as they are most commonly called, have

since been studied in their own right. He and Yu [73] appear to have been the �rst to con-

sider quaternion MVWs and an associated quaternion-valued MRA analysis, using the 2× 2

complex matrix representation of quaternions. However, they tried to design �lters in the

frequency domain and forgot the noncommutativity of matrices, resulting in their method

only working for trivial scaling and wavelet �lters. Bahri [5] did something very similar to

He and Yu with 2 × 2 complex matrices and did not notice a similar noncommutativity

problem. Ginzberg and Walden [62] constructed some novel families of non-trivial 2× 2 and

4× 4 MVWs. As per Ginzberg [39, p. 122], �We de�ne an n× n MVW to be trivial if it can

be decomposed into independent lower-dimensional MVWs (in some appropriate orthogonal

basis of Rn). Every MVW is then composed of one or more non-trivial MVWs�. They went

on to construct a 4 × 4 non-trivial symmetric quaternion wavelet with compact support,

speci�cally a length 10 Daubechies quaternion scaling �lter together with a corresponding

wavelet �lter. Daubechies wavelets are characterised by maximal vanishing moments for a

given length of �lter: the low- and high-frequency passbands can be made as �at as one

wishes by increasing the lengths of the �lters. We postpone full discussion of these �lters to
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Chapter 5.

Augereau and Carré [4] found a `hypercomplex polynomial wavelet-�lter bank transform'.

They began by de�ning a Quaternion Bivariate Polynomial (QBP) of x = (x1, x2) ∈ R2, of

degree d = max(d1 + d2) ∈ Z+
0 , as

P (x) =
∑

(d1,d2)∈[0;d]2
d1+d2≤d

qd1,d2x
d1
1 x

d2
2 ,

where qd1,d2 ∈ H. They then took D = {(d1, d2)} = {0, 1, . . . , N1} × {0, 1, . . . , N2} to

be a �nite set of pairs of integers and let ED be the set of QBPs such that qe1,e2 ≡ 0 if

(e1, e2) 6∈ D. Thus they had a �nite set of QBPs and using these, they went on to use the

Gram-Schmidt process to construct a discrete orthonormal basis with respect to a non-zero

reference quaternion µd1,d2,x. With appropriate combinations of elements of ED, they were

then able to approximate any bivariate quaternion function, e.g. a colour vector image, with

respect to µd1,d2,x. This reference direction would commonly be the grey axis, but it need not

be. They showed that their polynomial �lters gave perfect reconstruction; and since they

are normalised, they would have a squared norm of 1. They do say that their �lters can be

symmetric or antisymmetric, but only the latter would guarantee a mean of zero. Thus they

are not exactly quaternion wavelets, which is something they do not claim anyway. However,

they do describe their �lters as being wavelet-like and because they were quaternion-valued,

they deserve a mention here.

4.2 Discussion

We mentioned one piece of research dealing with Cli�ord wavelets, that of Mitrea [110].

As with this, the dozen or so other articles on Cli�ord wavelets (which we do not cite), as
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opposed to quaternion wavelets, all deal just with the continuous case and o�er little insight

into exactly how to construct practical (discrete) Cli�ord wavelets.

We discussed several possible approaches to wavelet transforms for quaternionic, (i.e. not

real-valued or general Cli�ord-valued) signals, and we now consider the rami�cations of these

ideas and how they relate to each other. We also consider how classical �lter theory can be

extended to complex and vector-valued wavelets and this leads us to the question of what

makes a truly quaternionic wavelet.

4.2.1 Short Time Fourier Transform Approaches

The STFT approach developed from Gabor's ideas is a form of wavelet transform, but it

is based on Fourier transforms, which use sinusoidal basis functions. This type of wavelet

transform is not based on basis functions with �nite support. As we have seen, there are

wavelet transforms based on wavelets which do have �nite support and we make a distinc-

tion between the two in what follows. It is not surprising that the STFT-based approach

to de�ning wavelet transforms has been adopted by many researchers to provide quaternion

STFT/wavelet transforms. The Fourier transforms needed already existed (including nu-

merical implementations) and the use of Gaussian or other window functions presented no

problems because they are real-valued.

Extending the theory for a complex wavelet transform to a quaternion wavelet transform

seems an obvious thing to try to do, but in the same way that the dual-tree complex wavelet

transform has little to do with complex numbers, so the dual-tree QWT of Chan et al.

[24] has little to do with quaternions as we saw. However, due to the apparent �xation a

great many researchers have on this particular formulation, the name `quaternion wavelet

transform' will very likely remain attached to it.
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4.2.2 Generalising Classical Wavelets

Turning to the more di�cult problem of generalising classical wavelet transforms based

on wavelets with �nite support (e.g. Haar or Daubechies), there are signi�cant research

questions still to be studied. This can be seen even in the complex case. Putting aside the

dual-tree approaches to wavelets as not being truly complex, let us consider the complex

case in some detail, partly for its own sake and partly because it provides a simpler model

to work with initially than the quaternions. Consider a complex signal and a truly complex

discrete wavelet transform. Referring to Figure 3.2, an immediate problem is how to de�ne

analysis and synthesis �lters which process complex signals (and which therefore presumably

must have complex �lter coe�cients). We do not know of any signi�cant theoretical work

done on the concept of frequency response for such �lters, nor on the frequency content of

a signal. As an example of the problems here, consider how the classical Fourier transform

represents a real signal using positive and negative frequency complex exponentials, whose

imaginary parts cancel out. What is a negative frequency? In the real case it appears to

be a mathematical artefact due to the use of complex exponentials, but in the complex

case it is simply explained: a negative frequency exponential rotates in the complex plane

in the negative sense (that is clockwise, by mathematical convention), whereas a positive

frequency exponential rotates in the positive sense. Now, a complex signal can clearly have

both positive and negative frequency content (being composed of exponentials rotating in

either sense) and a Fourier transform of a complex signal will, in general, have no conjugate

symmetry, unlike the real case. We believe that the concept of frequency response needs to

represent the response of a �lter to positive and negative frequencies independently.
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4.2.3 Filter Theory, etc.

Noting that there is a gap in knowledge in the area of complex �lter theory, we then note

that the same gap occurs with vector-valued signals, whether represented by quaternions or

by vectors in the linear algebra sense or by elements of other hypercomplex algebras. We

know that oscillation at a single frequency in a vector-valued signal is con�ned to a planar

ellipse, regardless of the dimensionality of the vector space [127], but we do not know how to

design �lters to handle such signals, even for such apparently simple tasks as separation of

oscillations in di�erent planes or in di�erent senses of rotation (polarization). The problem

becomes even harder if we consider a modulated ellipse, as described by Lilly [95]. We have

seen in Subsection 4.1.5 that Carré and Denis attempted to generalise the classical QMF

representation of a DWT to a QWT by using �lter banks with quaternion-valued coe�cients,

but did not actually demonstrate a �lter with quaternion coe�cients. Ginzberg and Walden

overcame the problem by using the matrix representation of quaternions. Augereau and

Carré took an entirely new approach and it will be interesting to see how this develops in

the future.
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4.2.4 What Makes a QWT Truly Quaternionic?

The majority of the QWTs we have looked at could have been implemented using DWTs

or CWTs without reference to quaternions, so should these ones really be called QWTs?

Alfsmann et al. [2] give the main reason for the use of hypercomplex algebras in signal

processing:

�The holistic, compact processing of vector-valued signals that are a function of

one or more independent parameters (e.g., time, location, physical quantities).

Here, the dimension of the algebra must be chosen in compliance with the di-

mension of the signal vector. This means that each vector-sample is treated as

a whole rather than treating its components separately. Classically, the reason

for this is that the sample as a whole conveys information (direction in vector

space) that is lost if the components of the sample are processed independently.�

(our emphasis).

We contend that the `quaternion' in `quaternion wavelet' and `quaternion wavelet transform'

should refer to a (pure or full) quaternion-valued signal. In colour image processing this would

mean that the proportions of the three primary colours of each pixel would be the factors

multiplying a quaternion's three imaginary parts. In RGB colour space, these would be the

co-ordinates of the end of each pixel's colour vector. This representation would thus not

lose the potentially useful information that might be contained in the correlation between

di�erent primary colours in an individual pixel.

Instead of treating each primary colour separately as illustrated diagrammatically in Figure

4.1a, a true QWT should treat each pixel holistically rather as in Figure 4.1b, where each of

R′, G′ and B′ depends on all of R, G and B. This is what the quaternion Fourier transform
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of Ell and Sangwine [36] achieves.

B

G

R R′

G′
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FR
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(a) Colour image processing with each

primary colour processed separately.

B

G

R R′

G′

B′

FRGB

(b) Processing of colour images represented

as quaternions.

Figure 4.1: Diagrams illustrating the essential di�erence between `conventional' colour
image processing and with quaternion or vector images.

4.3 Chapter Summary

We saw how QWTs came about and how few researchers look beyond the dual-tree formula-

tion of Chan et al. [24], which is actually closer to a CWT than a QWT. However, once the

term `QWT' had been invented, it was only a matter of time before someone realised that

it was a misnomer. In recent years a few researchers have envisioned the development of a

`true' QWT, one that was not equivalent to several separate DWTs or CWTs in parallel. In

particular, Carré and Denis [18] apparently understood the problem, but their QWT had

real �lter coe�cients and so was equivalent to three separate DWTs; Hogan and Morris [75]

had some success with implementing a biorthogonal QWT; and Ginzberg and Walden [62]

and Ginzberg [61] introduced `true' quaternion wavelet �lters. It remains to be seen what

will become of Augereau and Carré's approach [4].

Our way ahead in Chapter 5 will be to study and develop Ginzberg's methods further.



Chapter 5

Hypercomplex Scaling and Wavelet

Filters and Functions

In this chapter we extend Paul Ginzberg's methods, [62] and [61, ch. 5], which we men-

tioned in Subsection 4.1.5, and �nd more discrete scaling and wavelet �lters with quaternion

coe�cients and the �rst with Cli�ord Cl(1, 0), Cl(1, 1) and Cl(2, 0) coe�cients.

In Section 5.1 we give Ginzberg's matrix equations, which we solve to �nd our scaling

�lters. We also explain how we �nd associated wavelet �lters. In Section 5.2, we list some

solutions and in Section 5.3, we give some illustrations of functions calculated from the �lter

coe�cients. We �nd the frequency responses of our �lters in Section 5.4, which show that

the �lters we �nd are truly hypercomplex scaling and wavelet �lters, and we discuss our

results in Section 5.5.

71
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5.1 Ginzberg's Equations

In this section we present the equations on which this whole thesis rests. To begin with,

however, we say a few words about our notation. There is no single accepted notation for

all scaling and wavelet �lters and their coe�cients, for example Keinert [81] uses hk and gk

respectively and also sk and dk, Kova£evi¢ et al. [84] use gk and hk and Strang and Nguyen

[141] use h0(k) and h1(k). Rather than adopt one of these, we shall use the more intuitive

Sk and Wk for matrix-valued scaling and wavelet coe�cients, s and w for quaternion and

Cli�ord scaling and wavelet �lters with s[1], s[2], s[3], . . . and w[1], w[2], w[3], . . . for the actual

�lter coe�cients. For quaternion and Cli�ord scaling and wavelet functions we shall use

the conventional Φ(t) and Ψ(t), which we de�ne iteratively in Equations (3.9) and (3.10)

respectively.

5.1.1 Scaling Filters

Ginzberg [61, ch. 5] was the �rst to bring the following equations together and to solve

them for matrix representations of quaternions and thus �nd a discrete scaling �lter with

quaternion coe�cients:

Omnidirectional balancing
L−1∑
k=0

Sk =
√

2 In (5.1)

L/2 vanishing moments
L−1∑
k=0

(−1)kkdSk = 0n d = 0, 1, . . . , L/2 (5.2)

Orthogonality
L−1−2m∑
k=0

SkS
T
k+2m = δ0,mIn m = 0, 1, . . . , L/2, (5.3)
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where the Sk are 4×4 real matrices with their elements arranged so that they are isomorphic

to quaternions, n = 4 so that In and 0n are the 4× 4 identity and zero matrices respectively

and δ0,m is the Kronecker delta. Each Sk was the sum of the four matrices in Equations

(2.5), in turn multiplied by coe�cients whose four numerical values Ginzberg found for each

Sk. He had L = 10 and thus found 40 real numbers, being the coe�cients of s, i, j and k in

ten quaternions. Each quaternion was then a scaling �lter coe�cient.

Ginzberg [61, Sec. 5.4] explains how Equations (5.1) and (5.3), Ginzberg's (5.10) and (5.11)

respectively, are derived, although he was not the �rst to do this: e.g. [152] has these as

Equations (2.5) and (2.3) respectively. Equation (5.2), Ginzberg's (5.12), comes from [141,

Sec. 7.1].

5.1.2 A Simpli�cation for Quaternion Scaling Filters

Ginzberg found a way to reduce the number of real unknowns in his equations by three: this

is not insigni�cant, as we found when we came to solve the equations. To do this, he used

orthogonal similarity [61, pp. 145/6]: two matrix �lters {Gk} and {Jk} are orthogonally

similar if Gk = OJkO
T, ∀k ∈ Z, with O being an orthogonal matrix.

We do not actually need O to �nd orthogonally similar �lters. Consider two vectors in 3-D

space, neither of them along any of the axes and with a �xed non-zero angle 6= π between

them. We may rotate the plane formed by these two vectors so that it coincides with the x-z

plane. The y co-ordinates of both vectors will be reduced to zero. In the x-z plane, we may

then rotate the two vectors about the y-axis so that one of them coincides with the x-axis.

The z co-ordinate of this one will also be reduced to zero. In other words, if (b, c, d) and

(f, g, h) are our two vectors before rotating, our rotation results in (b, c, d) 7→ (b′, 0, d′) and

(f, g, h) 7→ (f ′, 0, 0). Now suppose that our 3-D space is embedded in a 4-D space, so that
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our 3-D vectors can be considered the vector parts of full quaternions with non-zero scalars

a and e respectively. Then we can write the rotations we described as

(a+ bi+ cj+ dk) 7→ (a+ b′i+ d′k) and (e+ f i+ gj+ hk) 7→ (e+ f ′i).

Note that a and e are not changed.

What this means is that in Ginzberg's equations, we may assume that the coe�cient of j in

one quaternion and those of j and k in a second quaternion, in their real matrix representa-

tions, are zero. This small change makes the equations much easier to solve. After �nding

one solution, other orthogonally similar �lters could be found by rotating all the quaternion

�lter coe�cients in 4-D space (strictly any 3-D subset) in exactly the same manner, but we

shall not do this.

5.1.3 Methods of Solution for Matrix-Valued Scaling Filters

In Maple�, we �rst assign all the Sk to di�erent symbolic matrices, each one being the sum

of the four matrices in Equation (2.5), in turn multiplied by symbols for which we want to

�nd the numerical values. We �nd all the matrix sums in Equations (5.1) and (5.2) and

sums of products in Equations (5.3); the total number depends on the length of �lter we are

trying to �nd. We then take all the polynomials in the �rst columns of the sums and solve

them simultaneously. The linear equations are straightforward, because we can eliminate one

unknown per equation by simply expressing it in terms of other unknowns: the results are

carried forward to subsequent equations. Complications arise with the nonlinear equations.

Ginzberg found the Gröbner bases, see e.g. Fröberg [46], using Maple� functions, and was

able to solve the resulting equations for a length 10 �lter. He did not assume symmetry, but

his �lter was symmetric. We assumed symmetry. We found that with some longer �lters,
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even with symmetry and hence fewer unknowns, sometimes the Gröbner bases were just not

a simplication and at other times Maple� just crashed. We found one solution by using

Newton's multivariate method with a random initial vector (our �rst length 14 quaternion

scaling �lter), but this method was generally unsuccessful. We had much more success

using a genetic algorithm (GA) approach, see e.g. Poli et al. [120]: a GA uses ideas from

genetics (mutation, crossover and selection) to allow a population of random trial solutions

to `evolve' towards an optimum solution over several generations. We give an example of

the MATLAB® code we used in Appendix C.

The Maple� function that Ginzberg wrote to �nd his scaling �lter is in [61, App. C.2, pp.

213�220]. However, some errors crept in when he transferred it to his thesis and this does

not work. One of our (working) Maple� scripts can be found in Appendix B to illustrate

our basic method.

5.1.4 Wavelet Filters from Scaling Filters

We use the same method as does Ginzberg for �nding matrix-valued wavelet �lters from the

corresponding matrix-valued scaling �lters, namely paraunitary completion of the polyphase

matrix. This was �rst suggested by Xia and Suter [159] and Ginzberg's implementation is

described in Ginzberg and Walden [62, Sec. VII]. Ginzberg wrote a MATLAB® function

for doing the necessary calculations, available at [61, App. C.1, pp. 211�212], which in turn

used functions from the mw toolbox of Keinert [82]. We adapted Ginzberg's code to take

matrix-valued scaling �lters with coe�cients of sizes other than 4× 4 and our functions are

in Appendix D, with an example of a script to call them.
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5.1.5 Complex, Quaternion and Other Hypercomplex Solutions

If we take each Sk in Equations (5.1) to (5.3) as the sum of the two matrices in Equations

(2.3), each in turn multiplied by constants to be determined, and n = 2, then Ginzberg's

equations may be solved to give numerical values for the real and imaginary parts of the

coe�cients of a complex scaling �lter. We did this for lengths 6 and 10 and found exactly

the same �lter coe�cients as those listed by Zhang et al. [166], who give complex �lters up

to length 26: all were solutions of Ginzberg's equations. Sherlock and Kakad [134] provide

a MATLAB® script for generating longer complex scaling �lters, but we do not use it. All

these �lters had lengths that were twice odd numbers; the reason for this is explained in

Lawton [87] and Lina and Mayrand [96].

Since the basis of complex numbers, {1, i}, is isomorphic to subsets {1, i}, {1, j} and {1,k} of

the quaternion basis, complex scaling �lters may be extended to quaternion scaling �lters by

simply replacing the complex i with the quaternion i, j or k. In a similar fashion, complex

scaling �lters may be extended to any Cli�ord algebra where at least one basis element,

bivector or trivector, etc., squares to −e0. Such �lters would be expected to also have

lengths that are twice odd numbers. In fact we could not �nd quaternion or Cli�ord scaling

�lters with full quaternions or full multivectors that were not twice odd numbers in length.

Quaternions are isomorphic to the even subalgebra of Cl(0, 3), so quaternion scaling �lters

could therefore be extended to Cli�ord scaling �lters in this algebra. Subalgebras of other

Cli�ord algebras involving three bivectors and the scalar can be found that are also isomor-

phic to the quaternions. For example, a glance at the multiplication table for Cl(0, 8) reveals

that e267 = e268 = e278 = −e0, e67e68 = e78, e68e78 = e67 and e78e67 = e68, so that 1 7→ e0,

i 7→ e67, j 7→ e68 and k 7→ e78, so we could construct a scaling wavelet �lter in this algebra

if we wished.
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Instead of using real matrices isomorphic to complex numbers or quaternions, we can very

easily use the Cl(1, 0), Cl(1, 1) or Cl(2, 0) patterns of real matrices given in Equations (2.4),

(2.6) and (2.7) respectively. Solutions for these algebras could then be extended to other,

larger, Cli�ord algebras as we have just described for complex and quaternion solutions. A

complication arises with the scaling �lters in these algebras when writing down Ginzberg's

equations: where the basis vector or bivector squares to −e0, the �lter is symmetric in that

component and where it squares to +e0, it is antisymmetric. As we have mentioned, the

quaternion scaling �lters are symmetric and we can see that this is related to the fact that

the basis vectors each square to −1.

Alternatively, we could start o� with 2n×2n, n = 3, 4, . . . , matrices in Ginzberg's equations,

using appropriate patterns for the basis elements of higher algebras, but solving the equations

would be di�cult.

5.2 Scaling and Wavelet Filter Coe�cients

In this section we give some discrete scaling and wavelet �lters with quaternion and Cli�ord

valued coe�cients, which we found by solving Ginzberg's equations using real matrices in

the appropriate patterns as explained in Section 5.1, and then extracting the scalar and

imaginary parts from the �rst column of each matrix.

In each of the explanations we give in Sections 5.2.1 and 5.2.2, the length of the �lter in

question is 2n with n odd and the coe�cient at 2n + 1 − k is given in terms of the one at

k < n.
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5.2.1 The Complex and Cl(1, 0) Cases

For the complex case, Zhang et al. [166] list all the scaling �lters up to length 26. They give

two sets of coe�cients for all the lengths, apart from length 6 which only has one. These

�lters are all symmetric, so if s[1], s[2], . . . , s[n] are the coe�cients they have listed, the full

scaling �lter is of the form

s = s[1], s[2], . . . , s[k], . . . , s[n], s[n], . . . , s[k], . . . , s[2], s[1].

They do not list the corresponding wavelet �lters, but the polyphase matrix method gave

antisymmetric �lters which, in terms of s[1], s[2], . . . , s[n] can be written

w = −s[1], s[2], . . . , (−1)ks[k], . . . ,−s[n], s[n], . . . , (−1)k+1s[k], . . . ,−s[2], s[1],

the overlines indicating complex conjugates.

In Tables 5.1 to 5.6 we list the coe�cients from the �rst halves of some Cl(1, 0) scaling

�lters. We found that these �lters are symmetric in the coe�cients of e0 and antisymmetric

in the coe�cients of e1, so that each scaling �lter in terms of the coe�cients we have listed

is of the form

s = s[1], s[2], . . . , s[k], . . . , s[n], s[n], . . . , s[k], . . . , s[2], s[1],

the overline now indicating the Cli�ord conjugate. The polyphase matrix method gave

wavelet �lters that were antisymmetric in the coe�cients of e0 and symmetric in the coe�-

cients of e1. In terms of s[1], s[2], . . . , s[n], these can be written

w = −s[1], s[2], . . . , (−1)ks[k], . . . ,−s[n], s[n], . . . , (−1)k+1s[k], . . . ,−s[2], s[1].
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Table 5.1: Our length 6 Cl(1, 0) �lter coe�cients.

s[1] = 0.1839484224e0 − 0.1487221305e1
s[2] = 0.3607251177e0 − 0.4461663916e1
s[3] = 0.1624332411e0 − 0.2974442611e1

Table 5.2: Our �rst length 10 Cl(1, 0) �lter coe�cients.

s[1] = 0.0234359755e0 + 0.0038970928e1
s[2] = 0.0042088285e0 + 0.0253106625e1
s[3] = −0.1072311696e0 + 0.0680969203e1
s[4] = 0.1079998199e0 + 0.0913977141e1
s[5] = 0.6786933269e0 + 0.0447143635e1

Table 5.3: Our second length 10 Cl(1, 0) �lter coe�cients.

s[1] = 0.0817190616e0 − 0.0783833363e1
s[2] = 0.2956242589e0 − 0.3082050109e1
s[3] = 0.3590335191e0 − 0.3652750093e1
s[4] = 0.1079998199e0 − 0.0304283260e1
s[5] = −0.1372698783e0 + 0.1050250087e1

Table 5.4: Our �rst length 14 Cl(1, 0) �lter coe�cients.

s[1] = 0.0071536266e0 + 0.0048617927e1
s[2] = 0.0069650392e0 + 0.0102483371e1
s[3] = −0.0415173043e0 − 0.0233906992e1
s[4] = −0.0218335411e0 − 0.0422977487e1
s[5] = 0.2024804052e0 + 0.1577380557e1
s[6] = 0.3404553362e0 + 0.4414662571e1
s[7] = 0.2134032194e0 + 0.2702076963e1

Table 5.5: Our second length 14 Cl(1, 0) �lter coe�cients.

s[1] = 0.0064749956e0 + 0.0037931811e1
s[2] = 0.0014814300e0 + 0.0025288149e1
s[3] = −0.0602222706e0 − 0.0475859671e1
s[4] = −0.0547658636e0 − 0.0852813768e1
s[5] = 0.1782611626e0 + 0.1103684691e1
s[6] = 0.3591057410e0 + 0.4086585760e1
s[7] = 0.2767715861e0 + 0.2593303310e1
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Table 5.6: Our third length 14 Cl(1, 0) �lter coe�cients.

s[1] = 0.0094805793e0 − 0.0078958241e1
s[2] = 0.0258220330e0 − 0.0310047220e1
s[3] = 0.0230000235e0 − 0.0357572214e1
s[4] = 0.0921193064e0 − 0.0454175577e1
s[5] = 0.2866656119e0 − 0.2231870515e1
s[6] = 0.2761793805e0 − 0.4553694978e1
s[7] = −0.0061601534e0 − 0.2649516806e1

5.2.2 The Quaternion, Cl(1, 1) and Cl(2, 0) Cases

In Tables 5.7 to 5.12 we list the coe�cients from the �rst halves of some quaternion scaling

�lters and each one's associated wavelet �lter. It will be noticed that some of these have zero

j parts: this is a consequence of choosing two of them to be zero as per Subsection 5.1.2 and

the subsequent algebraic manipulations. We found that the scaling �lters were symmetric

and the wavelet �lters were antisymmetric, so

s = s[1], s[2], . . . , s[k], . . . , s[n], s[n], . . . , s[k], . . . , s[2], s[1]

and

w = w[1], w[2], . . . , w[k], . . . , w[n],−w[n], . . . ,−w[k], . . . ,−w[2],−w[1].

We can not now express w in terms of s[1], s[2], . . . , s[n].

In Table 5.13 we list the �rst halves of a Cl(1, 1) scaling �lter and its associated wavelet

�lter. The scaling �lter was symmetric in e0 and e2 and antisymmetric in e1 and e12: if

we represent s[k] = ake0 + bke1 + cke2 + dke12 as the ordered quadruple (ak, bk, ck, dk) for

clarity, then

s = (a1, b1, c1, d1), (a2, b2, c2, d2), . . . , (ak, bk, ck, dk), . . . , (an, bn, cn, dn),
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(an,−bn, cn,−dn), . . . , (ak,−bk, ck,−dk), . . . , (a2,−b2, c2,−d2), (a1,−b1, c1,−d1).

The wavelet �lter was antisymmetric in e0 and e2 and symmetric in e1 and e12, the opposite

of the scaling �lter.

It is at this stage that we can now make some observations on the symmetry and antisym-

metry of our scaling �lters:

� The complex i squares to −1 and the imaginary part of Zhang et al.'s scaling �lters

were all symmetric.

� The quaternion i, j and k each square to −1 and the vector parts of Ginzberg's and

our scaling �lters were symmetric.

� The e1 of Cl(1, 0) squares to +e0 and our scaling �lters were antisymmetric in e1.

� The e1 and e12 of Cl(1, 1) each square to +e0, the e2 squares to −e0 and our scaling

�lters were antisymmetric in e1 and e12 and symmetric in e2.

� All scaling �lters are symmetric in e0 or 1 (the latter if we specialise to complex or

quaternion algebras).

We can see that the symmetry and antisymmetry of Cli�ord scaling �lters is intricately

dependant on the signature of the particular algebra: we hypothesise that if a component

(vector, bivector, trivector, etc.) of an algebra squares to −e0 (+e0), any scaling �lter in

this algebra is symmetric (antisymmetric) in this component.

In Tables 5.14 and 5.15, we list the coe�cients from the �rst halves of two Cl(2, 0) scaling

�lters and each one's associated wavelet �lter. We found that the simpli�cation in Subsection

5.1.2 for quaternions works with this algebra too, hence the zero e2 parts. From the above,
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since the e1 and e2 of Cl(2, 0) each square to +e0 and the e12 squares to −e0, we expect

these �lters to be antisymmetric in e1 and e2 and symmetric in e0 and e12: this is what we

�nd, since the coe�cients of e2 are zero anyway. In terms of the quadruples used above,

s = (a1, b1, c1, d1), (a2, b2, c2, d2), . . . , (ak, bk, ck, dk), . . . , (an, bn, cn, dn),

(an,−bn,−cn, dn), . . . , (ak,−bk,−ck, dk), . . . , (a2,−b2,−c2, d2), (a1,−b1,−c1, d1).

The wavelet �lter was antisymmetric in e0 and e12 and symmetric in e1 and e2, again, the

opposite of the scaling �lter.

Table 5.7: Ginzberg's length 10 quaternion �lter coe�cients.

s[1] = 0.0231096867i
s[2] = −0.0276213586 + 0.0231096867k
s[3] = −0.0386699021− 0.1617678066i + 0.0693290600k
s[4] = 0.1933495105− 0.1155484333i + 0.0231096867k
s[5] = 0.5800485314 + 0.2542065532i − 0.1155484333k
w[1] = 0.0214246053i+ 0.0020140574j− 0.0084254066k
w[2] = −0.0276213586 + 0.0084254066i− 0.0100702870j+ 0.0190173463k
w[3] = 0.0386699021− 0.1752484571i+ 0.0161124592j+ 0.0019258072k
w[4] = 0.1933495105 + 0.1155484333i − 0.0231096867k
w[5] = −0.5800485314 + 0.2777976916i− 0.0281968036j+ 0.0024072590k

Table 5.8: Our length 10 quaternion �lter coe�cients.

s[1] = −0.0115088994− 0.0200400312i
s[2] = −0.0391302581 + 0.0224723305i + 0.0166753392k
s[3] = 0.0073656956 + 0.2076972100i + 0.0500260177k
s[4] = 0.2393851082 + 0.1226724866i + 0.0166753392k
s[5] = 0.5109951348− 0.3328019959i − 0.0833766962k
w[1] = 0.0115088994− 0.0193286077i+ 0.0007856106j− 0.0052336021k
w[2] = −0.0391302581− 0.0260294481i− 0.0039280528j+ 0.0094926715k
w[3] = −0.0073656956 + 0.2133885981i+ 0.0062848845j+ 0.0081572006k
w[4] = 0.2393851082− 0.1226724866i − 0.0166753392k
w[5] = −0.5109951348− 0.3427619251i− 0.0109985479j− 0.0101062662k
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Table 5.9: Our �rst length 14 quaternion �lter coe�cients.

s[1] = 0.0008726799 + 0.0051745314i
s[2] = −0.0034248375 + 0.0005775956i + 0.0106706344k
s[3] = −0.0277961071− 0.0483604296i− 0.0034163721j+ 0.0181899480k
s[4] = −0.0382273962− 0.0440624205i− 0.0170818603j− 0.0797804100k
s[5] = 0.0603628899 + 0.1000047973i− 0.0273309765j− 0.2279526191k
s[6] = 0.2708947155 + 0.1051995865i − 0.0640238062k
s[7] = 0.4444248367− 0.1185336607i+ 0.0478292089j+ 0.3428962529k
w[1] = −0.0010074032 + 0.0027633983i+ 0.0011659825j− 0.0041864781k
w[2] = −0.0027512208 + 0.0081218935i− 0.0057253119j+ 0.0044285439k
w[3] = 0.0269877671− 0.0393339930i+ 0.0028473183j+ 0.0339035658k
w[4] = −0.0395746296− 0.0438162635i+ 0.0307290983j− 0.0729154060k
w[5] = −0.0564559129 + 0.2404073634i− 0.0633410837j+ 0.0159527059k
w[6] = 0.2696822054− 0.1067627257i+ 0.0098662386j+ 0.0613447773k
w[7] = −0.4492748771− 0.3462938645i+ 0.0941978079j− 0.0528118784k

Table 5.10: Our second length 14 quaternion �lter coe�cients.

s[1] = 0.0052476038i
s[2] = − 0.0113708959k
s[3] = −0.0096674755− 0.0526307873i − 0.0245744726k
s[4] = −0.0372888342− 0.0532497837i + 0.0590619712k
s[5] = 0.0932188760i + 0.2013855752k
s[6] = 0.2320194126 + 0.1101996803i + 0.0682253753k
s[7] = 0.5220436783− 0.1027855891i − 0.2927275533k
w[1] = 0.0000019848 + 0.0027914221i− 0.0000045798j+ 0.0044435665k
w[2] = −0.0000099238 + 0.0096286485i− 0.0000043007j− 0.0060486598k
w[3] = 0.0096793841− 0.0488020568i+ 0.0001629185j− 0.0315010126k
w[4] = −0.0372689866− 0.0217049757i− 0.0005625900j+ 0.0765409580k
w[5] = −0.0000575580 + 0.2201456083i+ 0.0007040049j− 0.0282416724k
w[6] = 0.2320372754− 0.1163917550i+ 0.0001219796j− 0.0570229387k
w[7] = −0.5219722270− 0.3026030559i− 0.0013072548j+ 0.0687684780k
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Table 5.11: Our third length 14 quaternion �lter coe�cients.

s[1] = 0.0052476038i
s[2] = − 0.0059188911k
s[3] = −0.0096674755− 0.0436491641i − 0.0073956026k
s[4] = −0.0372888342− 0.0083416676i + 0.0577242451k
s[5] = 0.1650718619i + 0.1479963688k
s[6] = 0.2320194126 + 0.1101996803i + 0.0355133468k
s[7] = 0.5220436783− 0.2285283143i − 0.2279194669k
w[1] = −0.0000029730 + 0.0043083101i+ 0.0000131791j+ 0.0029959351k
w[2] = 0.0000148650 + 0.0033791830i+ 0.0000033533j− 0.0048594405k
w[3] = 0.0096496375− 0.0400639282i− 0.0004056673j− 0.0188293991k
w[4] = −0.0373185642− 0.0260796925i+ 0.0014475190j+ 0.0520606396k
w[5] = 0.0000862171 + 0.2199743729i− 0.0018364197j− 0.0271139706k
w[6] = 0.2319926556− 0.1107496109i− 0.0002968811j− 0.0337579941k
w[7] = −0.5221507064− 0.3176688753i+ 0.0033828991j+ 0.0563906396k

Table 5.12: Our length 18 quaternion �lter coe�cients.

s[1] = 0.0006230677− 0.0010535900i
s[2] = −0.0000356563− 0.0000210863i − 0.0028442993k
s[3] = −0.0064750150 + 0.0137100703i− 0.0025876009j− 0.0060006527k
s[4] = −0.0036872768 + 0.0139636957i− 0.0112913827j+ 0.0222795608k
s[5] = 0.0125687167− 0.0499570230i− 0.0039992540j+ 0.0711446181k
s[6] = −0.0196163538− 0.0978839453i+ 0.0571618185j+ 0.0038337494k
s[7] = −0.0404858759− 0.0120836135i+ 0.1096194778j− 0.1615686050k
s[8] = 0.1949326422 + 0.0788793402i+ 0.0134086782j− 0.1004103109k
s[9] = 0.5692825324 + 0.0544461519i− 0.1623117370j+ 0.1735659396k
w[1] = −0.0007442939− 0.0003676904i+ 0.0002656821j+ 0.0008593653k
w[2] = 0.0004726395− 0.0020079097i− 0.0019526825j+ 0.0001539350k
w[3] = 0.0066749539 + 0.0071682822i+ 0.0021090994j− 0.0133071235k
w[4] = −0.0077749905 + 0.0188996896i+ 0.0126157855j+ 0.0177058801k
w[5] = −0.0070348284− 0.0695802235i− 0.0352783032j+ 0.0425690412k
w[6] = −0.0134698405− 0.0075083629i+ 0.0140024315j− 0.1197473888k
w[7] = 0.0208299860 + 0.1928419305i+ 0.0476425268j+ 0.0756371013k
w[8] = 0.2013427742− 0.1073662726i− 0.0425174369j+ 0.0614701231k
w[9] = −0.5462620162− 0.2280451544i− 0.0325909074j− 0.1461758348k
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Table 5.13: Our length 10 Cl(1, 1) �lter coe�cients.

s[1] = −0.0334224383e0 − 0.0010756804e1 − 0.0390293010e2 − 0.0458817067e12
s[2] = −0.0594285069e0 − 0.0058111869e1 − 0.1174129287e2 − 0.1430317142e12
s[3] = 0.0998657209e0 − 0.0129207280e1 − 0.0790336789e2 − 0.0269329698e12
s[4] = 0.3286545535e0 − 0.0146518669e1 + 0.0777335765e2 + 0.3185743083e12
s[5] = 0.3714374520e0 − 0.0064666454e1 + 0.1577423321e2 + 0.2483572707e12
w[1] = 0.0334281090e0 + 0.0031716775e1 − 0.0385025671e2 − 0.0453405887e12
w[2] = −0.0594568605e0 − 0.0135660893e1 + 0.1147792589e2 + 0.1403554617e12
w[3] = −0.0998203552e0 + 0.0202552839e1 − 0.0748198071e2 − 0.0216684779e12
w[4] = 0.3286545535e0 − 0.0110860911e1 − 0.0777335765e2 − 0.3237214495e12
w[5] = −0.3715168419e0 + 0.0012252189e1 + 0.1503680566e2 + 0.2503750544e12

Table 5.14: Our �rst length 10 Cl(2, 0) �lter coe�cients.

s[1] = −0.0231096867e0
s[2] = − 0.0334814623e1 + 0.0667879660e12
s[3] = 0.2059619804e0 − 0.1674073114e1 + 0.2003638981e12
s[4] = 0.3365193024e0 − 0.3013331606e1 + 0.0667879660e12
s[5] = 0.1877351851e0 − 0.1674073114e1 − 0.3339398301e12
w[1] = 0.0252705635e0 − 0.0103054229e1 + 0.0006167757e2 + 0.0014277227e12
w[2] = −0.0108043842e0 + 0.0383946623e1 + 0.0277146118e2 − 0.0739265796e12
w[3] = −0.1886749656e0 − 0.0373919674e1 − 0.1478246947e2 + 0.2117856798e12
w[4] = 0.3365193024e0 − 0.0151378423e1 + 0.2710186563e2 − 0.0667879660e12
w[5] = −0.2179874609e0 + 0.0244405703e1 − 0.1515253491e2 − 0.3539279481e12

Table 5.15: Our second length 10 Cl(2, 0) �lter coe�cients.

s[1] = −0.0370958744e0 + 0.0290180337e1
s[2] = −0.0613368978e0 + 0.0784114417e1 − 0.0508981554e12
s[3] = 0.1198546011e0 − 0.0432132968e1 − 0.1526944663e12
s[4] = 0.3451133432e0 − 0.3099282038e1 − 0.0508981554e12
s[5] = 0.3405716091e0 − 0.2173214989e1 + 0.2544907772e12
w[1] = 0.0352845243e0 − 0.0096312903e1 − 0.0248865744e2 + 0.0010785653e12
w[2] = −0.0522801474e0 + 0.0163843250e1 + 0.0658104825e2 + 0.0455053291e12
w[3] = −0.1343454017e0 + 0.0625477296e1 + 0.0442462040e2 − 0.1440659442e12
w[4] = 0.3451133432e0 − 0.1896362357e1 − 0.2787357629e2 + 0.0508981554e12
w[5] = −0.3152127079e0 + 0.1203354714e1 + 0.1935656507e2 + 0.2393908635e12
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5.3 Scaling and Wavelet Functions

We introduced the cascade algorithm in Section 3.6, Equations (3.9) and (3.10), and demon-

strated its use with real Daubechies �lters. It was devised with real scaling and wavelet

�lters in mind but as we shall see, it works perfectly well with hypercomplex �lters, al-

though we cannot use the wavefun function. Instead, we coded the cascade algorithm using

functions from the Cli�ord multivector toolbox [130], described in [131], and the quaternion

toolbox [128], and used it to �nd the complex and Cl(1, 0) plots of Subsection 5.3.1 and the

quaternion, Cl(1, 1) and Cl(2, 0) plots of Subsection 5.3.2. We give an example of our code

in Appendix E.

Complex and Cl(1, 0) numbers are two dimensional (treating the Cli�ord e0 and e1 equally)

but if we add the t from the cascade algorithm, we get three dimensions. Similarly, quater-

nion, Cl(1, 1) and Cl(2, 0) numbers are four dimensional (treating the Cli�ord e0, e1, e2 and

e12 equally) but if we add the t from the cascade algorithm, we get �ve dimensions. We can

display these objects by projecting them onto two and three dimensions.

5.3.1 The Complex and Cl(1, 0) Cases

Since we have three dimensional objects, we have three two dimensional projections and one

three dimensional plot for each scaling function and each wavelet function. In Figures 5.1,

5.2 and 5.3 (the last for comparison with the quaternion plots), we show the scaling function

in blue on the left and the wavelet function in red on the right. The t gives the position along

the vectors of samples from the cascade algorithm, s is the scalar and x is the real-valued

coe�cient of i or e1. We discuss these plots in Section 5.5. Similar plots for the remaining

Cl(1, 0) �lters and for lengths 10 and 14 complex �lters may be found in our article [43].
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Figure 5.3: Complex length 14 case 1.

5.3.2 The Quaternion, Cl(1, 1) and Cl(2, 0) Cases

On the following �ve pages, we give the scaling and wavelet functions for out length 10, our

�rst length 14 and our length 18 quaternion �lters and our Cl(1, 1) and �rst Cl(2, 0) Cli�ord

�lters.
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Figure 5.4: Projections of quaternion scaling and wavelet functions onto 2-D and 3-D using
our length 10 �lters.
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Figure 5.5: Projections of quaternion scaling and wavelet functions onto 2-D and 3-D using
our �rst length 14 �lters.
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Figure 5.6: Projections of quaternion scaling and wavelet functions onto 2-D and 3-D using
our length 18 �lters.
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Figure 5.7: Projections of Cli�ord scaling and wavelet functions onto 2-D and 3-D using
our length 10 Cl(1, 1) �lters.
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Figure 5.8: Projections of Cli�ord scaling and wavelet functions onto 2-D and 3-D using
our �rst length 10 Cl(2, 0) �lters.
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5.4 Frequency Response of Hypercomplex Filters

A common way of characterising a real digital �lter is by its frequency response, de�ned as

the spectrum of the output signal divided by the spectrum of the input signal. The input

signal needs to contain as many frequencies as possible, hence an impulse would be used.

We don't actually need to perform this experiment and calculation because the frequency

response is equivalently given by the �lter's transfer function H(z) evaluated on the unit

circle in the z plane, i.e. H(ejωT ), j being the complex
√
−1, ω the angular frequency and

T the time. The transfer function is de�ned in terms of the �lter's coe�cients. MATLAB®

provides a function freqz1 that may be used to calculate a vector of samples from the

impulse response of a �lter thus:

1 [LoD ,HiD] = wfilters('db3');

2
3 [H1 ,W1] = freqz(LoD);

4
5 figure

6 plot(W1,abs(H1),'b','Linewidth ' ,2);

7 hold on

8
9 [H1 ,W1] = freqz(HiD);

10
11 plot(W1,abs(H1),'r','Linewidth ' ,2);

12 hold off

13 xlim ([0 3.1]);

Here we have taken the Daubechies length 6 scaling and wavelet �lters LoD and HiD and

found and plotted the impulse response of each �lter together on the same graph. The result

is illustrated in the top left of Figure 5.9. We have also shown similar plots in this �gure

for lengths 10, 14 and 18 for comparison with each other and with our later plots in this

section. For each one, the response of the scaling �lter is red and that of the wavelet �lter

1https://uk.mathworks.com/help/signal/ref/freqz.html

https://uk.mathworks.com/help/signal/ref/freqz.html
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is blue. As we expect, the scaling �lters are low-pass and the wavelet �lters are high-pass.

The increasing �atness of the responses as the lengths of the �lters increase is apparent.

Length 14 (`db7') Length 18 (`db9')

Length 6 (`db3') Length 10 (`db5')

Figure 5.9: Frequency responses of a few of Daubechies' real �lters.

We now use the above code, but with our own �lter values for LoD and HiD.

Let {a1, a2} each be vectors of the real coe�cients of {e0, e1}, similarly with {a1, a2, a3, a4}

and {s, i, j,k} or {e0, e1, e2, e12}, in our scaling and wavelet �lters. In the left-hand plots

of Figures 5.10 to 5.15, we show the frequency responses of our Cl(1, 0) �lters, plotting the

responses of a1 and a2 separately against sqrt(abs(a1).^2+abs(a2).^2). The responses

of the a1 parts of the scaling �lters are blue and those of the a2 parts are light blue; and the
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responses of the a1 parts of the wavelet �lters are red and those of the a2 parts are pink.

In the right-hand plots we show the frequency responses of sqrt(abs(a1).^2+abs(a2).^2)

against sqrt(abs(a1).^2+abs(a2).^2). The responses of the scaling �lter are blue and

those of the wavelet �lter are red. In Figures 5.16 to 5.24 we show the frequency responses

of our quaternion, Cl(1, 1) and Cl(2, 0) �lters, plotting the responses of {a1, a2, a3, a4}

separately against sqrt(abs(a1).^2+abs(a2).^2+abs(a3).^2+abs(a4).^2) in the left-

hand plots and the responses of sqrt(abs(a1).^2+abs(a2).^2+abs(a3).^2+abs(a4).^2)

against sqrt(abs(a1).^2+abs(a2).^2+abs(a3).^2+abs(a4).^2) in the right-hand plots.

In the left-hand plots, we show the responses of a3 and a4 in lighter shades of red or blue.

Figure 5.10: Frequency response of our length 6 Cl(1, 0) �lters.

Figure 5.11: Frequency response of our �rst length 10 Cl(1, 0) �lters.
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Figure 5.12: Frequency response of our second length 10 Cl(1, 0) �lters.

Figure 5.13: Frequency response of our �rst length 14 Cl(1, 0) �lters.

Figure 5.14: Frequency response of our second length 14 Cl(1, 0) �lters.
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Figure 5.15: Frequency response of our third length 14 Cl(1, 0) �lters.

Figure 5.16: Frequency response of Ginzberg's length 10 quaternion �lters.

Figure 5.17: Frequency response of our length 10 quaternion �lters.
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Figure 5.18: Frequency response of our �rst length 14 quaternion �lters.

Figure 5.19: Frequency response of our second length 14 quaternion �lters.

Figure 5.20: Frequency response of our third length 14 quaternion �lters.
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Figure 5.21: Frequency response of our length 18 quaternion �lters.

Figure 5.22: Frequency response of our length 10 Cl(1, 1) �lters.

Figure 5.23: Frequency response of our �rst length 10 Cl(2, 0) �lters.
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Figure 5.24: Frequency response of our second length 10 Cl(2, 0) �lters.

5.5 Discussion

As would be expected, the scaling and wavelet functions have �nite support, that is they are

of zero amplitude outside a limited range of time/index values. Further, also as expected,

they have greater amplitude in the middle of the support, decaying smoothly either side.

The complex and quaternion scaling and wavelet functions show oscillatory form of a partic-

ular type in the projections onto three dimensions; this is more apparent in the higher-order

cases. The functions oscillate approximately helically in one sense, as they build up to max-

imum amplitude, then oscillate approximately helically in the opposite sense (which could

be expressed as unwinding) as they decay. This is not unexpected, since a wavelet has a

notional `frequency' content, which is represented by the helical oscillation. For example,

Figure 5.3 shows a complex case length 14 and it is readily seen that both the scaling and

wavelet functions exhibit the helical oscillatory behaviour just outlined in the three dimen-

sional plots. Figure 5.5 for a quaternion case length 14 shows similar behaviour in the s-x-t,

s-y-t, s-z-t, x-z-t and y-z-t scaling function projections and the s-z-t, x-y-t, x-z-t and y-z-t
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wavelet function projections. We surmise that the complex and quaternion cases would be

very similar if the latter were plotted with the correct (as yet unknown) projection.

In the Cli�ord (i.e. not complex or quaternion) cases, for example Figure 5.8 for Cl(2, 0), it

is clear that the oscillatory behaviour is not as simple as in the complex and quaternion cases.

Note that the scalar and bivector parts of the scaling function, plotted in two dimensions

against t at the top left of the �gure, are symmetric, whereas the two vector parts are

antisymmetric; and that this is reversed in the wavelet function plots against t at the top

right. We have already explained this earlier with reference to the scaling and wavelet �lters.

A problem here is that the theory of a Cli�ord multivector signal is not yet known: what does

it mean to have a discrete-time signal with Cli�ord multivectors as samples? The di�erent

grades of a multivector (scalar, vector, bivector, etc.) are di�erent types of mathematical

object. Does it make sense to plot these components as if they were numeric co-ordinates

in an n-dimensional Euclidean space, as we have done? What else could we do to visualise

them? For higher-order algebras, for example with a three dimensional vector part, we

could plot the separate grades independently, using projections where the grade has more

than three numeric components. This would result in a larger number of plots, but it might

be more physically meaningful. The quaternions are isomorphic to Cl(0, 2) but there is no

problem treating i, j and k equally, because they are also isomorphic to the even subalgebra

of Cl(0, 3), i.e. a set of three bivectors, each of which square to −e0.

The frequency responses of our �lters, as we have calculated and plotted them on the right

of Figures 5.10 to 5.24, are virtually identical to those of the real Daubechies �lters in

Figure 5.9, for each length of �lter. This is evidence that our �lters are indeed genuine

Daubechies hypercomplex scaling and wavelet �lters and therefore that their use in �ltering

hypercomplex signals, using an arrangement such as that in Figure 3.2 for example, would

indeed result in a hypercomplex wavelet transform. The plots on the left of Figures 5.10

to 5.24 simply re�ect the di�erences between di�erent �lters. However, some are perfectly
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symmetrical and some are not. Would this be related in some way to the `quality' of each

pair of �lters? We have no way of quantifying �lter quality and we cannot even say if this is

a meaningful question to ask.

5.6 Chapter Summary

We extended Ginzberg's work and found �ve more quaternion scaling �lters as well as six

Cli�ord Cl(1, 0), one Cl(1, 1) and two Cl(2, 0) scaling �lters. From these and Zhang et al.'s

complex �lters, we found associated wavelet �lters. We are not aware of any discrete Cli�ord

scaling and wavelet �lters ever having been found before. We listed the �lter coe�cients

(except the complex ones) and used the cascade algorithm on some of the �lters to �nd the

related scaling and wavelet functions, which we illustrated using projections onto two and

three dimensions. It was natural for Zhang et al. and Ginzberg to use the conventional two

dimensional plot from real scaling and wavelet functions to illustrate theirs [166, p. 1043]

and [61, p. 171], but we believe our method is more informative and that this is the �rst

time that such plots have been used. Lastly, we found a way to show the frequency responses

of our �lters that made comparison with those of real Daubechies scaling and wavelet �lters

possible. These showed that our �lters really are hypercomplex scaling and wavelet �lters.

In the next chapter we use some of our �lters to �nd the �rst `true' quaternion wavelet

transforms and the �rst Cli�ord wavelet transforms of colour vector images.



Chapter 6

Some Hypercomplex Wavelet Transforms

In this chapter we use some of our scaling and wavelet �lters from Chapter 5, in the form

of vectors of hypercomplex numbers, to �nd quaterion and Cli�ord wavelet transforms of

four test images. Our aim is to demonstrate one potential use of these �lters; they may �nd

other applications later.

In Section 6.1 we explain how we apply our �lters to colour vector images. In Section 6.2

we present our results, split into quaternion wavelet transforms, Cli�ord Cl(1, 1) wavelet

transforms, Cli�ord Cl(2, 0) wavelet transforms and lastly real wavelet transforms for com-

parison. Within the hypercomplex wavelet transforms subsections, we use our length 10, our

�rst length 14 and our length 18 quaternion �lters; our length 10 Cl(1, 1) and our �rst length

10 Cl(2, 0) Cli�ord �lters; and length 6 complex and our Cl(1, 0) �lter values as appropriate

in quaternion, Cl(1, 1) and Cl(2, 0) �lters. We discuss our results in Section 6.3.

103
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6.1 Hypercomplex Wavelet Transforms of Colour

Vector Images

We begin by considering exactly how to apply scaling and wavelet �lters to an array of pixels.

The obvious way of doing this is to arrange the �lters in a square banded matrix, the same

size as the (square) image whose wavelet transform we wish to �nd, and multiply. Then the

question arises, exactly how should the �lters be arranged? Is there a `best' way? There

is a limited number of possibilities for the design of a banded matrix, but Strang [140] did

indeed �nd what we consider to be the `best' way. We illustrate this for length 6 �lters:



w4 w5 w6 0 0 0 0 0 0 0 0

s2 s3 s4 s5 s6 0 0 0 0 0 0 · · ·

w2 w3 w4 w5 w6 0 0 0 0 0 0

0 s1 s2 s3 s4 s5 s6 0 0 0 0 · · ·

0 w1 w2 w3 w4 w5 w6 0 0 0 0

0 0 0 s1 s2 s3 s4 s5 s6 0 0 · · ·

0 0 0 w1 w2 w3 w4 w5 w6 0 0

...
...

...
...

...
. . .



,

with s1, s2, . . . , s6 being the scaling �lter coe�cients and w1, w2, . . . , w6 being the wavelet

�lter coe�cients.

For general length 2n �lters, we put the right-hand half of the wavelet �lter on the top

row of a square matrix of zeros, starting in the top left-hand corner. We then construct

a 2 × 2n submatrix, with the scaling �lter on the top row and the wavelet �lter is on the

bottom, and place copies of this down the leading diagonal, each submatrix being o�set two

places to the right relative to the previous one. We truncate this submatrix where it would
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otherwise overlap the edge of our zero matrix. As we shall see, this arrangement lends itself

to multiresolution analysis and automatically gives us the down-sampling by two that we

expect from a wavelet transform.

The beauty of this particular banded matrix arrangement is that the inverse is also a banded

matrix: if one requires the inverse scaling and wavelet �lters, they may be read from the

inverse matrix (away from the corners). In fact, with random numbers in place of the �lter

coe�cients, the inverse matrix still has exactly the same pattern.

Let Q be our banded matrix with hypercomplex scaling and wavelet �lters arranged as just

described, J our colour vector image with each pixel scaled so that saturated red, green

and blue would each have the value 1 and u = 1 + i + j + k or u = e0 + e1 + e2 + e12 as

appropriate. We �nd the hypercomplex wavelet transform of our vector image thus:

R = Q(J − 0.5u)QH + 0.5u, (6.1)

where the superscript H denotes the conjugate transpose1.

The −0.5u moves the origin of co-ordinates for each pixel to the centre of a four-dimensional

unit hypercube. The idea is to con�ne as many of the quaternions or multivectors resulting

from the matrix product to the interior of this hypercube: we actually �nd that a few end

up outside this hypercube, so we truncate these ones. The +0.5u restores the origin to its

correct position at the black vertex of the colour cube subspace.

Now consider what was involved in calculating each element ofR: in the following, we ignore

the e�ect of edges.

Let s and w be length L hypercomplex scaling and wavelet �lters respectively and let pu,v

1as per Wolfram MathWorld http://mathworld.wolfram.com/ConjugateTranspose.html.

http://mathworld.wolfram.com/ConjugateTranspose.html
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be the length L column vector of (origin-adjusted) hypercomplex-valued pixels inside the

image with its top pixel at (u, v). Then elements of R at positions (2k + 1, 2m + 1) for

integer k,m, i.e. those on odd rows and odd columns, are products of the form

(
w • p2k+1,2m+1,w • p2k+1,2m+2, . . . ,w • p2k+1,2m+L

)
•wT ;

elements of R at positions (2k + 1, 2m), i.e. those on odd rows and even columns, are

products of the form

(
w • p2k+1,2m,w • p2k+1,2m+1, . . . ,w • p2k+1,2m+L−1

)
• sT ;

elements of R at positions (2k, 2m + 1), i.e. those on even rows and odd columns, are

products of the form

(
s • p2k,2m+1, s • p2k,2m+2, . . . , s • p2k,2m+L

)
•wT ;

and elements of R at positions (2k, 2m), i.e. those on even rows and even columns, are

products of the form

(
s • p2k,2m, s • p2k,2m+1, . . . , s • p2k,2m+L−1

)
• sT .

In the above, we used • to indicate the scalar product.

The multiplications to �nd quaternions or multivectors at the intersections of even-numbered

rows and even-numbered columns of R only involved scaling �lters and their conjugates. If

(after restoring the origin) we extract these and view the scalar or vector part, we see an

approximation to the original image. If we do the same with even-numbered rows and odd-

numbered columns, these products involved only scaling �lters and conjugates of wavelet

�lters and we see evidence of vertical detail. With odd-numbered rows and even-numbered
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columns, these products involved only wavelet �lters and conjugates of scaling �lters and

we see evidence of horizontal detail. With odd-numbered rows and odd-numbered columns,

these products involved only wavelet �lters and their conjugates and we see evidence of

diagonal detail. We summarise these observations in Table 6.1.

Table 6.1: Detail of the content of R.

Rows of Q Columns of QH Element of R

Even, s Even, s Approximation

Odd, w Even, s Horizontal detail

Even, s Odd, w Vertical detail

Odd, w Odd, w Diagonal detail

The R in Equation (6.1) gives the �rst level of analysis. If we replace J with the approxi-

mation from R, we can perform a second level of analysis (with a new Q matrix a quarter

of the size of the �rst one). And we can do the same with the second approximation, to

perform a third level of analysis. Every time we do this, the approximation and three detail

image results are each a quarter of the starting image in size: we assume that the sidelength

H1

D1V1

H2

D2V2

H3

D3V3

A3

Figure 6.1: Display arrangement for our results.
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of the original square image is a power of two. In this way, we perform a two-dimensional

multiresolution analysis of the image. We could continue like this down to the last four

pixels, but this would not be informative due to the results being swamped by edge e�ects

well before we reached that level. We shall settle for three levels of analysis of 512×512 test

images and use the conventional format of wavelet transforms of images as in Figure 6.12: A

is for approximation, H for horizontal detail, V for vertical detail and D for diagonal detail

with the subscripts indicating the level of analysis.

Figure 6.2: Our fourth test image, which we shall refer to as P & O.

We shall use four test images to illustrate the use of our �lters: Lena, the mandrill, the

sailboat on lake (which we call a yacht) and Figure 6.2. The last of these is Southern

Railway Merchant Navy class 4-6-2 no. 35006, `Peninsular & Oriental S. N. Co.', with a

sponsored headboard, at Toddington on the Gloucestershire Warwickshire Railway in 2017,

courtesy of Pete Collings, c/o the 35006 Locomotive Society.

2This arrangement appears to have been introduced by Stéphane Mallat in 1989 [107] as a means of
analysing the information content of images.
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6.2 Results

The original test images start as arrays of pure hypercomplex numbers (one with no scalar

components), but the wavelet transforms are arrays of full hypercomplex numbers. We use

the approximations in this form as the inputs for subsequent transforms and where we use

a full quaternion or Cli�ord �lter, we display the scalar and vector parts of the detail in

two copies of Figure 6.1, side by side. We also give the standard deviation (σ), skewness

(γ1) and kurtosis (β2) of the red component in the horizontal level one detail and show a

third copy of Figure 6.1, but with our estimate of the amount of detail that our wavelet

transform has extracted from the starting image, at each level and orientation. For our

estimates of the detail, we �nd the length of the deviation from the mean in four dimensions

by calculating
√

(s− s)2 + (x− x)2 + (y − y)2 + (z − z)2 for each pixel and summing these

lengths over all pixels in the starting image and each approximation and detail region. We

know that the �rst level approximation and detail regions must contain exactly the same

amount of detail in total as the starting image, so we force this to be the case in terms of our

detail estimates by scaling their lengths appropriately. We do the same with the second and

third level approximation and detail regions, using the �rst and second level approximations

respectively as the starting images. Finally we express the detail in each analysed region as

a percentage of that in the original image. Where we do not use a full quaternion or Cli�ord

�lter, we only show a copy of Figure 6.1 with the vector part of the wavelet transform. An

example of our code is in Appendix F.

6.2.1 Quaternion Wavelet Transforms

6.2.1.1 Full Quaternions

In Figures 6.3 to 6.26, we use our length 10, �rst length 14 and length 18 quaternion �lters.
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Figure 6.3: QWT of Lena as a colour vector image, using our length 10 full quaternion
�lters.

In the red component of the level one horizontal detail, σ = 0.0083, γ1 = −0.2992 and

β2 = 35.0635.

4.63

3.756.34

4.64

3.296.69

5.09

3.508.34

53.73

Figure 6.4: Analysis of extracted detail, 46.27% of that in the original image.
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Figure 6.5: QWT of the mandrill as a colour vector image, using our length 10 full
quaternion �lters.

In the red component of the level one horizontal detail, σ = 0.0361, γ1 = 0.0164 and

β2 = 7.1681.

13.75

7.629.76

9.29

5.757.39

5.40

3.705.45

31.89

Figure 6.6: Analysis of extracted detail, 68.11% of that in the original image.
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Figure 6.7: QWT of the yacht as a colour vector image, using our length 10 full quaternion
�lters.

In the red component of the level one horizontal detail, σ = 0.0164, γ1 = −3.0960 and

β2 = 54.6000.

5.79

4.605.33

5.95

2.996.17

6.55

3.506.97

52.15

Figure 6.8: Analysis of extracted detail, 47.85% of that in the original image.
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Figure 6.9: QWT of P & O as a colour vector image, using our length 10 full quaternion
�lters.

In the red component of the level one horizontal detail, σ = 0.0369, γ1 = −0.0398 and

β2 = 12.2762.

9.12

4.278.56

7.83

4.417.32

6.68

3.385.92

42.51

Figure 6.10: Analysis of extracted detail, 57.49% of that in the original image.
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Figure 6.11: QWT of Lena as a colour vector image, using our �rst length 14 full
quaternion �lters.

In the red component of the level one horizontal detail, σ = 0.0103, γ1 = −0.0094 and

β2 = 23.7615.

4.66

3.756.38

4.66

3.316.65

5.06

3.528.30

53.71

Figure 6.12: Analysis of extracted detail, 46.29% of that in the original image.
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Figure 6.13: QWT of the mandrill as a colour vector image, using our �rst length 14 full
quaternion �lters.

In the red component of the level one horizontal detail, σ = 0.0345, γ1 = −0.0302 and

β2 = 6.3382.

13.84

7.569.70

9.39

5.747.37

5.52

3.645.37

31.87

Figure 6.14: Analysis of extracted detail, 68.13% of that in the original image.
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Figure 6.15: QWT of the yacht as a colour vector image, using our �rst length 14 full
quaternion �lters.

In the red component of the level one horizontal detail, σ = 0.0179, γ1 = −0.4586 and

β2 = 24.7724.

5.85

4.595.30

6.02

3.016.20

6.56

3.536.95

51.99

Figure 6.16: Analysis of extracted detail, 48.01% of that in the original image.
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Figure 6.17: QWT of P & O as a colour vector image, using our �rst length 14 full
quaternion �lters.

In the red component of the level one horizontal detail, σ = 0.0285, γ1 = 0.0309 and

β2 = 10.3607.

9.29

4.278.63

7.86

4.427.37

6.67

3.375.86

42.26

Figure 6.18: Analysis of extracted detail, 57.74% of that in the original image.
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Figure 6.19: QWT of Lena as a colour vector image, using our length 18 full quaternion
�lters.

In the red component of the level one horizontal detail, σ = 0.0084, γ1 = −0.0091 and

β2 = 16.9072.

4.60

3.776.33

4.64

3.306.58

4.99

3.498.23

54.07

Figure 6.20: Analysis of extracted detail, 45.93% of that in the original image.
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Figure 6.21: QWT of the mandrill as a colour vector image, using our length 18 full
quaternion �lters.

In the red component of the level one horizontal detail, σ = 0.0372, γ1 = 0.0266 and

β2 = 6.5159.

13.77

7.589.67

9.43

5.757.25

5.46

3.655.34

32.10

Figure 6.22: Analysis of extracted detail, 67.90% of that in the original image.
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Figure 6.23: QWT of the yacht as a colour vector image, using our length 18 full
quaternion �lters.

In the red component of the level one horizontal detail, σ = 0.0172, γ1 = −0.1342 and

β2 = 18.1739.

5.79

4.595.26

5.96

3.006.03

6.43

3.506.76

52.68

Figure 6.24: Analysis of extracted detail, 47.32% of that in the original image.
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Figure 6.25: QWT of P & O as a colour vector image, using our length 18 full quaternion
�lters.

In the red component of the level one horizontal detail, σ = 0.0371, γ1 = −0.0603 and

β2 = 12.0254.

9.22

4.268.61

7.84

4.437.19

6.63

3.385.83

42.61

Figure 6.26: Analysis of extracted detail, 57.39% of that in the original image.
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In Figures 6.27 and 6.28, we investigate the e�ect of using full and partial conjugates (see

De�nitions 2.2.14 and 2.2.17 for those of a single quaternion) of Ginzberg's length 10 and

our �rst length 14 quaternion �lters.

Figure 6.27: QWT of the mandrill as a colour vector image, using partial conjugates of
Ginzberg's length 10 full quaternion �lters.



Chapter 6. Some Hypercomplex Wavelet Transforms 123

Figure 6.28: QWT of P & O as a colour vector image, using partial conjugates of our �rst
length 14 full quaternion �lters.
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6.2.1.2 Complex Values in Quaternion Filters

In Figures 6.29 to 6.32, we try using complex scaling and wavelet �lter values and their

conjugates in the scalar and, separately, the i, j and k parts of quaternion �lters.

Figure 6.29: QWT of Lena as a colour vector image, using complex length 6 quaternion
�lters.
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Figure 6.30: QWT of the mandrill as a colour vector image, using complex length 6
quaternion �lters.
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Figure 6.31: QWT of the yacht as a colour vector image, using complex length 6
quaternion �lters.
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Figure 6.32: QWT of P & O as a colour vector image, using complex length 6 quaternion
�lters.

6.2.2 Cli�ord Cl(1, 1) Wavelet Transforms

In Subsubsection 6.2.2.1, Figures 6.33 to 6.40, we use our length 10 full Cli�ord Cl(1, 1)

scaling and wavelet �lters on each test image to �nd the �rst ever Cli�ord wavelet transforms

(CWTs). We follow these in Subsubsection 6.2.2.2 with Figures 6.41 to 6.44, wherein we use

length 6 complex and our Cli�ord Cl(1, 0) scaling and wavelet �lter values in the appropriate

parts of Cli�ord Cl(1, 1) scaling and wavelet �lters.

6.2.2.1 Full Multiwavelets
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Figure 6.33: CWT of Lena as a colour vector image, using length 10 full Cl(1, 1) �lters.

In the red component of the level one horizontal detail, σ = 0.0094, γ1 = 0.4832 and

β2 = 9.7104.

4.63

3.846.26

4.28

3.206.31

4.62

3.417.66

55.79

Figure 6.34: Analysis of extracted detail, 44.21% of that in the original image.
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Figure 6.35: CWT of the mandrill as a colour vector image, using our length 10 full
Cl(1, 1) �lters.

In the red component of the level one horizontal detail, σ = 0.0427, γ1 = 0.0565 and

β2 = 6.4093.

14.10

7.639.66

9.11

5.597.06

5.28

3.575.22

32.78

Figure 6.36: Analysis of extracted detail, 67.22% of that in the original image.
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Figure 6.37: CWT of the yacht as a colour vector image, using our length 10 full Cl(1, 1)
�lters.

In the red component of the level one horizontal detail, σ = 0.0240, γ1 = 0.1656 and

β2 = 20.2576.

6.01

4.605.31

5.75

2.915.83

6.39

3.306.56

53.34

Figure 6.38: Analysis of extracted detail, 46.66% of that in the original image.
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Figure 6.39: CWT of P & O as a colour vector image, using our length 10 full Cl(1, 1)
�lters.

In the red component of the level one horizontal detail, σ = 0.0363, γ1 = 0.0855 and

β2 = 11.0939.

9.41

4.308.34

7.49

4.167.02

6.35

3.375.57

43.99

Figure 6.40: Analysis of extracted detail, 56.01% of that in the original image.
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6.2.2.2 Complex and Cl(1, 0) Values in Cl(1, 1) Fliters

For our Cl(1, 1) �lters in each of Figs. 6.41 to 6.44, from left to right we used the values

from length 6 Cl(1, 0) �lters in the e0 and e1 positions, the values from length 6 complex

�lters in the e0 and e2 positions and the values from length 6 Cl(1, 0) �lters in the e0 and

e12 positions.

Figure 6.41: CWT of Lena as a colour vector image, using values from length 6 complex
and Cl(1, 0) �lters in Cl(1, 1) �lters.

Figure 6.42: CWT of the mandrill as a colour vector image, using values from length 6
complex and Cl(1, 0) �lters in Cl(1, 1) �lters.
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Figure 6.43: CWT of the yacht as a colour vector image, using values from length 6
complex and Cl(1, 0) �lters in Cl(1, 1) �lters.

Figure 6.44: CWT of P & O as a colour vector image, using values from length 6 complex
and Cl(1, 0) �lters in Cl(1, 1) �lters.

6.2.3 Cli�ord Cl(2, 0) Wavelet Transforms

In Subsubsection 6.2.3.1, Figures 6.45 to 6.52, we use our �rst length 10 full Cli�ord Cl(2, 0)

scaling and wavelet �lters on each test image. We follow these in Subsubsection 6.2.3.2 with

Figures 6.53 to 6.56, wherein we use length 6 complex and our Cli�ord Cl(1, 0) scaling and

wavelet �lter values in the appropriate places of Cli�ord Cl(2, 0) scaling and wavelet �lters.
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6.2.3.1 Full Multiwavelets

Figure 6.45: CWT of Lena as a colour vector image, using length our �rst length 10 full
Cl(2, 0) �lters.

In the red component of the level one horizontal detail, σ = 0.0096, γ1 = 0.4029 and

β2 = 10.9633.

4.69

3.836.46

4.47

3.346.65

4.63

3.588.06

54.37

Figure 6.46: Analysis of extracted detail, 45.63% of that in the original image.



Chapter 6. Some Hypercomplex Wavelet Transforms 135

Figure 6.47: CWT of the mandrill as a colour vector image, using our �rst length 10 full
Cl(2, 0) �lters.

In the red component of the level one horizontal detail, σ = 0.0457, γ1 = 0.2904 and

β2 = 7.1101.

14.07

7.649.89

9.31

5.677.20

5.36

3.515.25

32.10

Figure 6.48: Analysis of extracted detail, 67.90% of that in the original image.
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Figure 6.49: CWT of the yacht as a colour vector image, using our �rst length 10 full
Cl(2, 0) �lters.

In the red component of the level one horizontal detail, σ = 0.0231, γ1 = −1.0433 and

β2 = 16.5627.

5.97

4.615.46

5.93

2.975.89

6.46

3.366.83

52.52

Figure 6.50: Analysis of extracted detail, 47.48% of that in the original image.
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Figure 6.51: CWT of P & O as a colour vector image, using our �rst length 10 full Cl(2, 0)
�lters.

In the red component of the level one horizontal detail, σ = 0.0411, γ1 = 0.0359 and

β2 = 12.2651.

9.41

4.398.85

7.79

4.417.32

6.48

3.275.76

42.32

Figure 6.52: Analysis of extracted detail, 57.68% of that in the original image.
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6.2.3.2 Complex and Cl(1, 0) Values in Cl(2, 0) Fliters

Figure 6.53: CWT of Lena as a colour vector image, using values from length 6 complex
and Cl(1, 0) �lters in a Cl(1, 1) �lter.

Figure 6.54: CWT of the mandrill as a colour vector image, using values from length 6
complex and Cl(1, 0) �lters in a Cl(1, 1) �lter.

Figure 6.55: CWT of the yacht as a colour vector image, using values from length 6
complex and Cl(1, 0) �lters in a Cl(1, 1) �lter.
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Figure 6.56: CWT of P & O as a colour vector image, using values from length 6 complex
and Cl(1, 0) �lters in a Cl(1, 1) �lter.

6.2.4 Real Wavelet Transforms for Comparison

In this subsection, we use real Daubechies length 10 scaling and wavelet �lters in the scalar

parts of quaternion �lters, leaving the imaginary parts zero, on each test image. We also do

as we did with the results from full quaternion and Cli�ord �lters and in each case give the

standard deviation, skewness and kurtosis of the red component of the �rst level horizontal

detail and an analysis of all the detail extracted from the original image.

We obtained the �lters from MATLAB® by using

1 [LoD ,HiD] = wfilters('db5')

LoD being the scaling �lter, HiD the wavelet �lter and db5 the label for length 10 Daubechies

�lters.
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Figure 6.57: Wavelet transform of Lena, using Daubechies' real length 10 �lters.

In the red component of the level one horizontal detail, σ = 0.0081, γ1 = −1.5921 and

β2 = 22.6430.

4.39

3.675.96

4.20

3.106.02

4.48

3.217.32

57.65

Figure 6.58: Analysis of extracted detail, 42.35% of that in the original image.
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Figure 6.59: Wavelet transform of the mandrill, using Daubechies' real length 10 �lters.

In the red component of the level one horizontal detail, σ = 0.0472, γ1 = 0.5014 and

β2 = 8.7681.

13.32

7.459.47

8.72

5.386.98

5.10

3.435.17

34.98

Figure 6.60: Analysis of extracted detail, 65.02% of that in the original image.
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Figure 6.61: Wavelet transform of the yacht, using Daubechies' real length 10 �lters.

In the red component of the level one horizontal detail, σ = 0.0158, γ1 = 0.0258 and

β2 = 7.5389.

5.51

4.535.06

5.38

2.825.54

5.95

3.176.31

55.73

Figure 6.62: Analysis of extracted detail, 44.27% of that in the original image.
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Figure 6.63: Wavelet transform of P & O, using Daubechies' real length 10 �lters.

In the red component of the level one horizontal detail, σ = 0.0453, γ1 = 0.1010 and

β2 = 12.6881.

8.28

3.877.77

7.14

3.936.61

6.01

3.155.36

47.88

Figure 6.64: Analysis of extracted detail, 52.12% of that in the original image.
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6.3 Discussion

All the wavelet transforms of each test image in turn are visually similar to each other. This

is to be expected, as the real wavelet transform of an image does not vary greatly as the

�lters are changed for other real scaling and wavelet �lters. Application of a (real, complex or

hypercomplex) scaling �lter to an image e�ectively �nds a `weighted average' of local pixels,

the weights depending on the particular family and length of �lter; the wavelet �lter �nds

`weighted di�erences' such that the sum of the results leaves just the original pixel. These

sums and di�erences have their origins in the Haar wavelet, which we mentioned in Subsection

3.1. The di�erences in colours, between the wavelet transforms of each test image in turn,

can be accounted for by the fact that full and partial conjugates of our chosen `original �lters'

are also valid scaling and wavelet �lters: there are no preferred `original �lters' and ours are

just the �rst ones we found after making some arbitrary decisions, speci�cally whether to

take the positive or negative square root when solving quadratic equations in our Maple�

scripts to �nd our `original �lters'. Then using the opposite sign gave a partial conjugate as

another solution of Ginzberg's equations.

We �rst look closely at Figure 6.3, the wavelet transforms of Lena using our length 10

quaternion �lters. In the scalar image horizontal detail, �rst level, we can identify Lena's

eyes, nose, mouth and the top of her shoulder. There is a little evidence of the feathers and

the top of the hat, but it is not very sharp. The second level is clearer. In the vertical detail,

�rst level, we can see the feathers, her hair, the rim of the hat and part of the top of the

hat, her eyes and the vertical part of her shoulder. The second level is much the same. In

the diagonal detail, �rst level, we can just discern the rim of her hat and the edge of the

feathers, but it is very blurred. At the second level, the rim and the feathers are much more

obvious. The third level details appear similar to the second level. Our comments about

the scalar detail also apply to the vector detail, except that the colours against the grey



Chapter 6. Some Hypercomplex Wavelet Transforms 145

background make the details easier to see. The contrasts in colour in the background of the

original image only seem to appear at the second level in the diagonal and vertical detail

in both the scalar and vector images. A little of the background is apparent in all six third

level detail parts.

We now look closely at Figure 6.5, the wavelet transforms of the mandrill, also using our

length 10 quaternion �lters. The texture of the fur is obvious, being brightest in the scalar

image �rst level horizontal detail. Close inspection of the original image reveals that most

fur in the upper half of the image, to the left and right of the eyes, is indeed horizontally

aligned. The outline of the red snout is clearest in the scalar image vertical detail parts; in

the vector image vertical detail parts, the colours towards the bottom merge somewhat with

the surrounding colours, although the vertical edges of the snout are obvious. The vertical

whiskers at the bottom of the original image stand out in the vertical detail parts, perhaps

moreso in the vector one. The outline of the cheeks can be seen in all of the vector detail

parts and the scalar horizontal and diagonal detail parts. They cannot be distinguished in

the scalar vertical detail. A rippling e�ect is evident in all three �rst level scalar detail parts

and which is clearest in the diagonal detail. Rippling can also be seen in the vector vertical

detail only. We cannot de�nitively explain these e�ects. Could they somehow be the results

of aliasing?

Next, we look closely at Figure 6.15, the wavelet transforms of the yacht using our �rst

length 14 �lters. The tree trunks are clear in both the scalar and vector vertical detail parts,

moreso at the second and third level. The yacht can be identi�ed in all the horizontal and

vertical detail images, but it is barely perceptible in the two level one diagonal detail parts.

The edge of the sky/treetops is clearly de�ned in all the detail images, but it is sharper in

the horizontal and vertical detail parts. Evidence of the clouds can just be seen in all the

scalar detail parts, except perhaps the second level diagonal detail part. They are virtually

invisible in all the vector detail parts except the level one diagonal detail. The grass on the
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opposite side of the lake can be seen in the vector �rst and second level horizontal detail

part and the line separating the grass from the trees is visible in the vertical vector detail

part. This line is also visible in the scalar horizontal and vertical detail parts at levels one

and two and in the second level diagonal detail part. A di�erence between the grass and the

trees beyond can just be perceived in the two level one diagonal detail parts, but the grass

and the trees are so similar that the horizontal dividing line is not sharp. There is some

evidence of rippling again in the two level one diagonal detail parts and perhaps a little in

the two level one vertical detail parts.

Finally, we look closely at Figure 6.25, the wavelet transforms of P & O using our length

18 �lters. All the scalar and vector horizontal and vertical detail parts contain a lot of

information, except perhaps that in the third level parts less detail is actually identi�able.

The scalar image appears to be more or less simply a greyscale version of the vector image.

The smokebox numberplate and the headboard are clear in all six horizontal detail parts.

The crossbar at the top of the telegraph pole is really just clear at level one, but the signal

box window, running plate and bottom of the tender can be seen at levels one and two. The

bu�erbeam is apparent in the scalar horizontal detail third level and to a lesser extent at levels

two and one, but only the top edge is clear in the vector detail at level one. The windows

of the signal box, top part of the telegraph pole, smokebox numberplate and headboard are

clear in both the scalar and vector vertical detail levels one and two. The lamp at the top

of the smokebox can also just be seen. The scalar and vector diagonal detail parts do not

really highlight anything in particular. The fact there is some diagonal detail is obvious, but

that is all we can say about it. In all the detail images, the sky is plain grey and is clearly

delimitated.

We mentioned above that the colours vary as we take full and partial conjugates. In order

to investigate this further, we worked our way through the full and all partial conjugates

of Ginzberg's length 10 �lters with the mandrill image in Figure 6.27 and similarly with
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our �rst length 14 �lters and the P & O image in Figure 6.28. The most noticeable thing

about the mandrill wavelet transforms is that there are apparently two versions of the �rst

level horizontal detail, one predominantly purple and the other, yellow. When we talk of

di�erences between the detail parts, we shall only be referring to the colours. The same

appears to be true for the �rst level vertical detail, although these ones do not appear as

bright. Similar di�erences are apparent with the second level detail. The third level detail

is a bit small, but varies in a similar fashion. There appears to be slightly more variability

between the colours of the detail images for the P & O wavelet transforms. There seems

to be three main sorts of �rst level horizontal detail and either two or three sorts of �rst

level vertical detail. At the second level, there are three clear sorts of horizontal detail and

three or maybe four sorts of vertical detail. There are also di�erences between the third level

detail images. The diagonal detail in all the cases seems more or less the same.

In Figures 6.29 to 6.32, we looked at length 6 complex �lter values in quaternion �lters. In

these �gures we can see a greater variation of colours between the horizontal detail parts

of each image and likewise with the vertical and diagonal detail parts, as compared with

Figures 6.27 and 6.28, but less colour variation within each detail part. In Figures 6.41 to

6.44 and 6.53 to 6.56, where we used length 6 complex and Cl(1, 0) �lter values in Cl(1, 1)

and Cl(2, 0) scaling and wavelet �lters, we can also see markedly less variation in colours

within each detail part.

Figures 6.57 to 6.63 (odd numbers), the wavelet transforms using real Daubechies length 10

�lters, show even less colour variation within each detail part than those using complex or

Cl(1, 0) values. In fact the detail parts of Figure 6.63 are almost greyscale apart from a few

hints of colour in the second and third level horizontal detail.

We have attempted to show that our wavelet transforms do actually di�er between di�erent

�lters, for each test image, by �nding the standard deviation (σ), skewness (γ1) and kur-
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tosis (β2) of the red component in the �rst level horizontal detail where we have used full

quaternion, Cli�ord and real �lters; no two �lters result in exactly the same three �gures.

We also ran our code in Appendix F using the �lters whose wavelet transforms we have not

presented, together with lengths 14 and 18 real Daubechies �lters, and noted down these

statistics. We give the ranges of the values we obtained in Table 6.2.

Table 6.2: Ranges of σ, γ1 and β2 in the red component of the �rst level horizontal detail,
over all wavelet transforms from full �lters.

Lena Mandril Yacht P & O
σ [0.0080, 0.0128] [0.0351, 0.0472] [0.0158, 0.0240] [0.0285, 0.0453]
γ1 [−1.5921, 8.9353] [−0.0302, 0.5014] [−3.4253, 3.2203] [−0.0398, 0.3485]
β2 [9.7104, 124.4129] [6.3118, 8.7681] [7.5389, 56.1722] [10.3607, 15.8714]

We could do the same for the blue and green in this region and all three primary colours in

the other detail regions, but we believe that the fact that the values of these statistics for

the red component di�er in this region, between di�erent �lters, is su�cient to infer that

our wavelet transforms do indeed di�er between di�erent �lters.

What wavelet �lter is optimal for a particular application? Ngui et al. [114] discuss this

question and conclude that more work is needed to give a de�nitive answer. In our case

we chose to look at the amount of detail extracted by each of our wavelets. If wavelet A

extracts more detail from the starting image than wavelet B, it seems reasonable to claim

that wavelet A is better than wavelet B for this particular application, in this particular

case; wavelet B may be better than wavelet A for other signal processing tasks. When we

ran our code in Appendix F a number of times (with di�erent �lters and images) in order

to construct Table 6.2, we also noted the total detail extracted in each case; we give the

ranges of the percentages in Table 6.3. We can see that the amount of detail extracted is

strongly dependent on the actual test image. For each one, the ranges of detail extraction for

the quaternion and Cli�ord �lters overlap, but the quaternion �lters are generally slightly

better: but both are clearly better than Daubechies' real �lters, assuming that our method
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of measuring the detail is valid.

Table 6.3: Ranges of detail extracted, expressed as percentages of the total detail present
in each test image.

Lena Mandrill Yacht P & O
Quaternion �lters [45.44, 46.29] [67.61, 68.13] [46.88, 48.01] [56.51, 57.74]
Cli�ord �lters [44.21, 45.66] [67.22, 67.90] [46.66, 47.48] [56.01, 57.68]
Real �lter [41.45, 42.35] [63.43, 65.02] [43.58, 44.27] [52.12, 52.33]

6.4 Chapter Summary

We began by considering how to apply vectors of �lter coe�cients to a matrix of pixels and

introduced the pattern of banded matrix that we used. We then explained how we found

the wavelet transform of each image, how the approximation and three detail images could

be extracted from this transform and how we could display the results. We then went on

to �nd wavelet transforms using some of our full �lters on each of four test images in turn

and did the same with quaternion, Cl(1, 1) and Cl(2, 0) �lters constructed using the values

from length 6 complex and Cl(1, 0) �lters. We investigated di�erences between transforms

found using full and partial conjugates and compared our hypercomplex wavelet transforms

to real wavelet transforms of the same four test images. We showed that our hypercomplex

�lters appeared to extract more detail from the test images than real �lters.
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Conclusions

7.1 Summary of Thesis

We began by introducing quaternions and Cli�ord algebras and then real wavelets and

wavelet transforms. We went on to investigate how other authors have combined these two

topics and looked at the di�erent de�nitions of quaternion wavelets and quaternion wavelet

transforms.

In the most-cited article, by Chan et al. [24], the authors used what was e�ectively a two

dimensional short-time Fourier transform based on the quaternionic Gabor transform of

Bülow [17]. This `dual tree quaternion wavelet transform', as the authors called it, can be

used to analyse a monochrome image only and quaternions enter into the frame simply as

a means to separate an approximation to the original image (scalar or s component) from

horizontal (i component), vertical (j component) and diagonal (k component) detail images.

Thus we can see where the name `quaternion wavelet transform' came from, but we would

argue that the term is a misnomer because the quaternion s, i, j and k here are merely

150
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labels: no properties of quaternions are used at all. The articles that have made use of this

`quaternion wavelet transform', as other authors have continued to call it, reported a number

of di�erent applications, with some appearing in several di�erent articles as authors tweaked

their and others' work.

A couple of authors attempted to generalise the basic equation for a continuous one dimen-

sional wavelet transform to a continuous quaternion wavelet transform, but these were just

examples of interesting mathematics and have no practical use.

Augereau and Carré [4] de�ned a `hypercomplex polynomial-wavelet transform'. Using poly-

nomials with quaternion coe�cients to derive orthogonal basis functions is an unusual way to

proceed and the resulting functions do not quite satisfy the conditions to be called `wavelets',

but the authors only claim that they are `wavelet-like' and the fact they are quaternion-valued

led us to include this article.

By solving certain matrix equations symbolically, using real matrix representations of quater-

nions, Ginzberg [61] was able to �nd discrete Daubechies quaternion scaling �lters. He then

used a numerical method to �nd associated wavelet �lters. He did not actually do anything

with his �lters other than list the coe�cients.

Ginzberg's �lters were 10 coe�cients in length. His symbolic method appeared to be unnec-

essarily complicated in our opinion. We took a simpler approach to solving his equations

and as a result, discovered that the full and partial conjugates of his solution were also so-

lutions. We extended our simpli�ed method to other lengths and found further quaternion

scaling �lters. By using appropriate real matrix representations, we also found some Cli�ord

Cl(1, 0), Cl(1, 1) and Cl(2, 0) scaling �lters. In each case, Ginzberg's numerical method,

adapted to cater for any type of scaling �lter whose coe�cients are real square matrices,

gave us related wavelet �lters. We found that the lengths of all of our �lters are always twice
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an odd number. In order to check that our �lters are likely to be genuine scaling and wavelet

�lters, we found a couple of real and complex scaling and wavelet �lters using Ginzberg's

method and con�rmed that they do agree with published examples found by other methods.

In addition, we found the frequency response of scalar, i, j and k and scalar, vector and

bivector parts as if they were real �lters and then by taking the square root of the sum of

the squares of the two or four parts for each �lter, we were able to demonstrate that the

scaling �lters are low pass and the wavelet �lters are high pass. In fact the total frequency

responses were virtually identical, visually, to those of real Daubechies scaling and wavelet

�lters of the same length.

We then used the cascade algorithm and found vectors of samples from complex, quaternion

and Cli�ord Cl(1, 0), Cl(1, 1) and Cl(2, 0) scaling and wavelet functions. With real �lters,

the resulting functions are easily viewed in two dimensions and there is only one possible

vantage point for each function. However, with a vector of four dimensional samples (or even

just a two dimensional one), viewing each component separately cannot allow one to fully

appreciate the complexity of the scaling or wavelet function. Hence we visualised our four

dimensional functions using all possible projections onto two and three dimensions, giving 20

plots altogether for each one; for the two dimensional functions there were four plots each.

Finally, we demonstrated an application of our �lters by �nding hypercomplex wavelet trans-

forms of four colour vector test images.

7.2 Contributions

We extended what Ginzberg did and found more quaternion and the �rst Cli�ord scaling and

wavelet �lters. Ours are ones that make use of the multiplicative properties of quaternions
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and Cli�ord algebras, rather than simply using the quaternion 1, i, j and k as mere labels,

as the most popular `quaternion wavelet transform' does. We discovered that �lters whose

coe�cients are full and partial conjugates of other valid scaling and wavelet �lters, are also

valid scaling and wavelet �lters. We showed that the frequency responses of our �lters are

virtually identical to those of real Daubechies �lters of the same length, which is evidence

that our �lters really are indeed genuine hypercomplex Daubechies scaling and wavelet �lters.

We found a way of visualising the functions, derived from our �lters from using the cascade

algorithm, that showed the complexity of these �ve dimensional objects; these dimensions

are four spatial plus a �fth, that would be time if we used our �lters to analyse a time-

varying hypercomplex signal. We plotted these objects using all possible projections onto

two and three dimensions, 20 altogether for each �lter. The conventional way of visualising

them would be to plot the scalar and three imaginary parts separately against time, only

four plots in total. Our method revealed some interesting shapes that could be related to

the symmetry or asymmetry, or a combination of the two, of the related �lter. Most of the

functions show a helical form, winding �rst in one sense and then unwinding in the opposite

sense. All displayed �nite support, as expected of scaling and wavelet functions.

Using our scaling and wavelet �lters arranged in a certain way inside banded matrices, we

found the very �rst hypercomplex wavelet transforms of four separate colour test images.

We represented these as colour vector images, which are simply matrices of pure quaternions,

or the Cli�ord equivalents, where the numbers multiplying the imaginary part are the red,

green and blue values from the colour image. The product of our banded matrices with the

colour vector images were matrices of full quaternions, from which we extracted the scalar

and vector parts and then for each one, the approximation, horizontal, vertical and diagonal

detail images. We displayed the scalar and vector results side by side.

The complex numbers and the Cli�ord Cl(1, 0) algebra are isomorphic to certain two di-
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mensional subalgebras of the quaternions and Cli�ord Cl(1, 1) and Cl(2, 0) algebras. This

observation would allow us to generate many more hypercomplex scaling and wavelet �lters

with four dimensional �lter coe�cients, by using the values of complex and Cl(1, 0) �lter

coe�cients in the scalar and one appropriate imaginary part of the four dimensional �lter

coe�cients. We actually demonstrated wavelet transforms only using the values from length

6 complex and Cl(1, 0) �lters, due to the large number of �lters that resulted: to do the

same with longer lengths would have resulted in an excessive number of images, many of

which would be visually very similar to each other.

This thesis could have been written before the advent of the quaternion toolbox by Sangwine

and Bihan [128] and the Cli�ord multivector toolbox by Sangwine and Hitzer [130], both

for MATLAB®, in which case we would have had to use real matrix representations of

hypercomplex numbers. An n × n pixel image (an n × n × 3 real array) would then be

represented as a real 4n × 4n matrix instead of a hypercomplex n × n matrix and our

hypercomplex n × n banded matrices in Chapter 6 would then become 4n × 4n banded

matrices formed of the matrix-valued scaling and wavelet �lters we found in Chapter 5.

However, thanks to the two toolboxes, we avoided the additional complications that would

have ensued.

7.3 Limitations

Solving Ginzberg's equations symbolically for length 18 quaternion and length 14 Cli�ord

Cl(1, 0) scaling �lters was not possible and we had to resort to a genetic algorithm for most

of the nonlinear equations; see Appendix B, eqn7 to eqn11 and f1 to f5 in the Maple�

code and the �tness function in Appendix C for examples of the sort of nonlinear equations

we are talking about. There is always a danger that with only sixteen digits of precision
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available in MATLAB®, that the values found for the unknown variables, when put back

into the original nonlinear equation, will give a result close to zero, but not identically zero.

Then we would not have true solutions to the equations. For example, the complex scaling

�lters of Zhang et al. [166] seem to come in pairs after the length 6 one and this suggests

that perhaps Cl(1, 0) might also come in pairs: but we found three apparently genuine

length 14 Cl(1, 0) scaling �lters. With longer �lters, the number of nonlinear equations to

solve simultaneously increases and compounds the problem as the number of possible false

`solutions' also increases.

Comparing wavelet transforms of colour images, found using di�erent lengths of �lters, is

perhaps not the best way to demonstrate the e�ects of varying the �lters' lengths. As we saw,

visually the wavelet transforms found using length 10 �lters are virtually indistinguishable

from the wavelet transform found using length 18 �lters. Wavelets are ideally suited to

analysing signals varying in time and frequency, neither of which are directly related to two

dimensional arrays of static data, i.e. colour images. However, we are not aware of any

quaternion signals, never mind ones that vary in time and frequency, so we are left with

colour images to analyse.

7.4 Suggestions for Future Research

Going forward, we should like to explain why the lengths of all our �lters were twice odd

numbers. A number of articles on complex wavelet �lters state that �lter lengths are 2J + 2,

J ∈ 2Z+, but do not explain why that is. A simple explanation is given by Sherlock and

Kakad [134]: it is a direct result of �nding complex solutions of the frequency response

equation that Daubechies used. It may be shown, e.g. Smith and Barnwell [136] or Zhang
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et al. [166], that Equation (3.7) may be factored into

P (z) = C(1 + z−1)N
M∏
m=1

(z−1 − rm)(z−1)
J∏
j=1

(z−1 − cj)(z−1 − c−1j )(z−1 − cj)(z−1 − c−1j ),

where the rm are the real zeros (which Daubechies was interested in), the cj are the complex

zeros and 2M + 4J = N − 2. Using the notation of Section 3.5, we get 2N − 2 values

zi = 1 − 2yi ±
√

(1− 2yi)2 − 1. Of these, we keep the (2N − 2)/4 roots that have |zi| > 1

and positive real part and sort them in order of increasing real part. We take the conjugate

of every second root and add the inverses to give a total of N − 1 roots. Finally, we add N

roots at z = −1 to give a total of 2N − 1. Then the 2N complex coe�cients of the resulting

polynomial are also those of a complex scaling �lter. For (2N − 2)/4 to be an integer, N

must be odd. Hence complex scaling (and wavelet) �lters must be twice an odd number in

length. Daubechies was interested only in minimum phase and kept just the real solutions.

Could a similar method, or some other method, be devised to �nd hypercomplex scaling

�lters from which the length restriction was obvious?

Are there tighter restrictions on lengths of higher dimensional full scaling �lters, or are

they all twice an odd number in length? Of course, putting complex �lter values into higher

dimensional �lters ensures that the lengths are always twice an odd number, but is this always

true if instead we have non-zero vectors, bivectors, trivectors and higher order multivector

elements, according to the exact Cli�ord signature?

We know that the shortest real scaling and wavelet �lters are those of the Haar wavelet,

which is length 2, the shortest complex and Cl(1, 0) ones are length 6 and the shortest

full quaternion, Cl(1, 1) and Cl(2, 0) ones are length 10. Would the shortest full Cl(0, 3),

Cl(1, 2), Cl(2, 1) Cl(3, 0) scaling and wavelet �lters be length 14 and for general Cl(p, q),

would the shortest full scaling and wavelet �lters be length 4(p+ q) + 2?
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Can a deeper theory of hypercomplex wavelets be derived, akin to Daubechies' `Ten Lectures

on Wavelets' [29] for real wavelets, to answer the above questions?

We mentioned in Section 7.3 a drawback of using MATLAB®'s genetic algorithm function

with only 16 digits of precision available. There is no genetic algorithm available in Maple�,

but there is the Optimization Package, which we have not yet fully investigated. Maple�

can do calculations with many more than just 16 digits of precision and it would remove the

need to duplicate everything in MATLAB®.

A programme that takes the Cli�ord signature and length of �lter required as inputs and

returns one or more hypercomplex scaling �lters and associated wavelet �lters as output(s)

would be something to aim for. Exactly how it would work we cannot yet say, but it is

something that could be a possibly long-term goal.

We have only used our �lters to �nd wavelet transforms of colour vector images. What other

uses can we �nd for them? Could we use them for one or more of the applications listed in

Table 4.1? Would our �lters actually be an improvement or would they make no di�erence?

The reason there are three primary colours is that the responses of the photoreceptors in

the retina of the human eye peak at wavelengths of 564nm, 534nm and 420nm, i.e. red,

green and blue. Could we use our �lters to analyse signals outside the visible spectrum? It

is not immediately obvious how three wavelengths could be chosen, nor what the wavelet

transform of such a signal would tell us. If it were useful, perhaps full Cli�ord Cl(p, q) �lters

where p+ q > 2 might �nd a practical use.

Could octonion scaling and wavelet �lters be found? Ginzberg's equations could not be used

in matrix form, but simply using octonions with symbolic coe�cients should be possible. The

nonlinear equations would only involve products of two octonions, so it might be possible to
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�nd an octonion scaling �lter. However, the method we have used to �nd quaternion and

Cli�ord wavelet �lters relies on the fact that the scaling �lters can be represented as vectors

of real matrices, so another way of �nding wavelet �lters would be required for the octonion

case. We are assuming, of course, that Ginzberg's equations would actually be soluble.
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Appendix A

MATLAB® for the Edge Detection Filter of Denis et al.

MATLAB® for Figure 2.2b:

1 % Code for the edge detector of Denis et al.

2
3 qlena = cast(imreadq('Lena.tiff'),'double ');

4
5 mu = unit(quaternion (1,1,1));

6
7 R = exp(mu.*pi./2);

8
9 % Left and right horizontal masks

10
11 left = [quaternion(ones (1,3));quaternion(zeros (1,3));R R R];

12 right = conj(left);

13
14 % Left and right diagonal masks

15
16 diagleft = [quaternion (0) quaternion (1) quaternion (1);R...

17 quaternion (0) quaternion (1); R R quaternion (0)];

18 diagright = conj(diagleft);

19
20 % Convolve the image with each pair of masks; "h" for

horozontal ,

21 % "v" for vertical , "l" for left , "r" for right

22
23 fqlenah = conv2({left ,right},qlena);
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24 fqlenav = conv2({left ',right '},qlena);

25 fqlenadl = conv2 ({diagleft ,diagright},qlena);

26 fqlenadr = conv2 ({diagleft ',diagright '},qlena);

27
28 % Find the saturations

29
30 dqlenah = 0.5.* abs(fqlenah+mu.* fqlenah .*mu);

31 dqlenav = 0.5.* abs(fqlenav+mu.* fqlenav .*mu);

32 dqlenadl = 0.5.* abs(fqlenadl+mu.* fqlenadl .*mu);

33 dqlenadr = 0.5.* abs(fqlenadr+mu.* fqlenadr .*mu);

34
35 % Use maximum saturations for image

36
37 im1 = max(dqlenah ,dqlenav);

38 im2 = max(im1 ,dqlenadl);

39 im = max(im2 ,dqlenadr);

40
41 % Display filtered image

42
43 image(im)

44
45 % remove tickmarks and axis labels

46
47 set(gca ,'XTickLabel ' ,[]);

48 set(gca ,'YTickLabel ' ,[]);

49 set(gca ,'XTick ' ,[]);

50 set(gca ,'YTick ' ,[]);



Appendix B

Example of Maple� for Scaling Filters

An example of our Maple� code, in this case for our length 10 quaternion scaling �lter:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> restart; 
> interface(rtablesize=100): 
> Digits:=16: 

> with(LinearAlgebra): 

############################################################################# 
>  

Real 4×4 matrix representations of the quaternion s, i, j and k 
>  

############################################################################# 
> Is:=<1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1>: 

> Ii:=<0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0>: 
> Ij:=<0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0>: 
> Ik:=<0,0,0,-1;0,0,-1,0;0,1,0,0;1,0,0,0>: 

############################################################################# 
>  

The ten quaternion scaling filter coefficients we are after, each represented as a 4 × 4 matrix 
>  

We assume symmetry and also that the coefficients of j and k in G[0] and the coefficient of j in 

G[1] are zero 
>  

############################################################################# 
> G[0]:=A0*Is+B0*Ii:  

> G[1]:=A1*Is+B1*Ii+D1*Ik: 
> G[2]:=A2*Is+B2*Ii+C2*Ij+D2*Ik: 
> G[3]:=A3*Is+B3*Ii+C3*Ij+D3*Ik: 
> G[4]:=A4*Is+B4*Ii+C4*Ij+D4*Ik:  
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> G[5]:=G[4]: 
> G[6]:=G[3]: 
> G[7]:=G[2]: 

> G[8]:=G[1]: 
> G[9]:=G[0]: 

############################################################################# 
>  

Ginzberg's equations for a length 10 filter 
>  

############################################################################# 
> eqn1:=sum(G[k],k=0..9)-sqrt(2)*Is: 
> eqn2:=sum((-1)^k*G[k],k=0..9): 
> eqn3:=sum((-1)^k*k*G[k],k=1..9): 

> eqn4:=sum((-1)^k*k^2*G[k],k=1..9): 
> eqn5:=sum((-1)^k*k^3*G[k],k=1..9): 
> eqn6:=sum((-1)^k*k^4*G[k],k=1..9):  
> eqn7:=G[0].Transpose(G[2])+G[1].Transpose(G[3]) 

+G[2].Transpose(G[4])+G[3].Transpose(G[5])+G[4].Transpose(G[6]) 

+G[5].Transpose(G[7])+G[6].Transpose(G[8])+G[7].Transpose(G[9]): 
> eqn8:=G[0].Transpose(G[4])+G[1].Transpose(G[5]) 

+G[2].Transpose(G[6])+G[3].Transpose(G[7])+G[4].Transpose(G[8]) 

+G[5].Transpose(G[9]): 
> eqn9:=G[0].Transpose(G[6])+G[1].Transpose(G[7]) 

+G[2].Transpose(G[8])+G[3].Transpose(G[9]): 

> eqn10:=G[0].Transpose(G[8])+G[1].Transpose(G[9]): 
> eqn11:=G[0].Transpose(G[0])+G[1].Transpose(G[1]) 

+G[2].Transpose(G[2])+G[3].Transpose(G[3])+G[4].Transpose(G[4]) 

+G[5].Transpose(G[5])+G[6].Transpose(G[6])+G[7].Transpose(G[7]) 

+G[8].Transpose(G[8])+G[9].Transpose(G[9])-Is: 

############################################################################# 
>  

We solve the linear equations first: because of the symmetry, some of the equations are 

identically zero 
>  

############################################################################# 
> A0:=solve(eqn1[1,1]=0,A0); 

 

> B0:=solve(eqn1[2,1]=0,B0); 

 

> C4:=solve(eqn1[3,1]=0,C4); 

 

> D4:=solve(eqn1[4,1]=0,D4);  

 

> eqn2[1..4,1]; 
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> A1:=solve(eqn3[1,1]=0,A1); 

 

> B1:=solve(eqn3[2,1]=0,B1); 

 

> C3:=solve(eqn3[3,1]=0,C3); 

 

> D1:=solve(eqn3[4,1]=0,D1);  

 

> eqn4[1..4,1]; 

 

> A2:=solve(eqn5[1,1]=0,A2); 

 

> B2:=solve(eqn5[2,1]=0,B2); 

 

> C2:=solve(eqn5[3,1]=0,C2); 

 

> D2:=solve(eqn5[4,1]=0,D2);  

 

> eqn6[1..4,1]; 

 

> f1:=expand(eqn7[1,1]); 

 

> eqn7[2..4,1]; 
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> f2:=expand(eqn8[1,1]); 

 

> eqn8[2..4,1]; 

 

> f3:=expand(eqn9[1,1]); 

 

> eqn9[2..4,1]; 

 

> f4:=expand(eqn10[1,1]); 

 

> eqn10[2..4,1]; 

 

> f5:=expand(eqn11[1,1]); 

 

############################################################################# 
>  

To solve the nonlinear equations, we simplify the task by finding the Gröbner basis 
>  

############################################################################# 
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> F:=[f1,f2,f3,f4,f5]: 
> J:=Groebner:-Basis(F,plex): 
> J[1]; 

 

> A3:=solve(J[1]=0,A3); 

 

> normal(J[5]); 

 

> B3:=solve(J[5]=0,B3); 

 

> normal(J[2]); 
 

> solve(32768*A4^2-23680*A4*sqrt(2)+7245=0,A4); 

 

> A4:=(185/512)*sqrt(2); 

 

> normal(J[3]); 

 

> s1:=solve(J[3]=0,B4); 

 

############################################################################# 
>  

Case 1: negative B4 and positive D3 
>  

############################################################################# 
> B4:=s1[1]; 

 

> normal(J[4]); 
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> s2:=solve(J[4]=0,D3); 

 

> D3:=s2[1]; 

 

> eqn1[1..4,1],eqn2[1..4,1],eqn3[1..4,1],eqn4[1..4,1], 

eqn5[1..4,1],eqn6[1..4,1],eqn7[1..4,1],eqn8[1..4,1], 

eqn9[1..4,1],eqn10[1..4,1],eqn11[1..4,1]; 

 

> G[0][1..4,1],G[1][1..4,1],G[2][1..4,1],G[3][1..4,1], 

G[4][1..4,1],G[5][1..4,1],G[6][1..4,1],G[7][1..4,1], 

G[8][1..4,1],G[9][1..4,1]; 
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> map(evalf,G[0][1..4,1]),map(evalf,G[1][1..4,1]), 

map(evalf,G[2][1..4,1]),map(evalf,G[3][1..4,1]), 

map(evalf,G[4][1..4,1]),map(evalf,G[5][1..4,1]), 

map(evalf,G[6][1..4,1]),map(evalf,G[7][1..4,1]), 

map(evalf,G[8][1..4,1]),map(evalf,G[9][1..4,1]); 
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############################################################################# 
>  

Case 2: negative B4 and negative D3 
>  

############################################################################# 
> B4:=s1[1]; 

 

> D3:=s2[2]; 

 

> eqn1[1..4,1],eqn2[1..4,1],eqn3[1..4,1],eqn4[1..4,1], 

eqn5[1..4,1],eqn6[1..4,1],eqn7[1..4,1],eqn8[1..4,1], 

eqn9[1..4,1],eqn10[1..4,1],eqn11[1..4,1]; 

 

> G[0][1..4,1],G[1][1..4,1],G[2][1..4,1],G[3][1..4,1], 

G[4][1..4,1],G[5][1..4,1],G[6][1..4,1],G[7][1..4,1], 

G[8][1..4,1],G[9][1..4,1]; 
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> map(evalf,G[0][1..4,1]),map(evalf,G[1][1..4,1]), 

map(evalf,G[2][1..4,1]),map(evalf,G[3][1..4,1]), 

map(evalf,G[4][1..4,1]),map(evalf,G[5][1..4,1]), 

map(evalf,G[6][1..4,1]),map(evalf,G[7][1..4,1]), 

map(evalf,G[8][1..4,1]),map(evalf,G[9][1..4,1]); 
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############################################################################# 
>  

Case 3: positive B4 and positive D3 
>  

############################################################################# 
> B4:=s1[2]; 

 

> D3:=s2[1]; 

 

> eqn1[1..4,1],eqn2[1..4,1],eqn3[1..4,1],eqn4[1..4,1], 

eqn5[1..4,1],eqn6[1..4,1],eqn7[1..4,1],eqn8[1..4,1], 

eqn9[1..4,1],eqn10[1..4,1],eqn11[1..4,1]; 

 

> G[0][1..4,1],G[1][1..4,1],G[2][1..4,1],G[3][1..4,1], 

G[4][1..4,1],G[5][1..4,1],G[6][1..4,1],G[7][1..4,1], 

G[8][1..4,1],G[9][1..4,1]; 
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> map(evalf,G[0][1..4,1]),map(evalf,G[1][1..4,1]), 

map(evalf,G[2][1..4,1]),map(evalf,G[3][1..4,1]), 

map(evalf,G[4][1..4,1]),map(evalf,G[5][1..4,1]), 

map(evalf,G[6][1..4,1]),map(evalf,G[7][1..4,1]), 

map(evalf,G[8][1..4,1]),map(evalf,G[9][1..4,1]); 
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############################################################################# 
>  

Case 4: positive B4 and negative D3 
>  

############################################################################# 
> B4:=s1[2]; 

 

> D3:=s2[2]; 

 

> eqn1[1..4,1],eqn2[1..4,1],eqn3[1..4,1],eqn4[1..4,1], 

eqn5[1..4,1],eqn6[1..4,1],eqn7[1..4,1],eqn8[1..4,1], 

eqn9[1..4,1],eqn10[1..4,1],eqn11[1..4,1]; 

 

> G[0][1..4,1],G[1][1..4,1],G[2][1..4,1],G[3][1..4,1], 

G[4][1..4,1],G[5][1..4,1],G[6][1..4,1],G[7][1..4,1], 

G[8][1..4,1],G[9][1..4,1]; 
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> map(evalf,G[0][1..4,1]),map(evalf,G[1][1..4,1]), 

map(evalf,G[2][1..4,1]),map(evalf,G[3][1..4,1]), 

map(evalf,G[4][1..4,1]),map(evalf,G[5][1..4,1]), 

map(evalf,G[6][1..4,1]),map(evalf,G[7][1..4,1]), 

map(evalf,G[8][1..4,1]),map(evalf,G[9][1..4,1]); 
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>  
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Appendix C

Example of our Genetic Algorithm in MATLAB® for

Scaling Filters

An example of our genetic algorithm code in MATLAB® code, in this case for our length
10 Cli�ord Cl(1, 1) scaling �lter:

1 close all

2 clear all

3
4 % Choose seed for random number generator

5
6 rng (2171201)

7
8 % Random start for seven unknowns , which may lie between

9 % -1 and +1

10
11 x = 2.* rand (1,7) -1;

12
13 % The fitness function of the seven unknowns that we want to

14 % minimise

15
16 fit = @(x) Cl_1_1_fit10(x);

17
18 % Options for the ga function

19
20 options = gaoptimset('PlotFcns ', @gaplotbestf ,'generations ',...

21 1000,'crossoverFcn ', {@ crossoverheuristic , 1.3},...

22 'InitialPopulation ',x,'InitialScores ',[fit(x)],...

23 'MutationFcn ' ,{@ mutationadaptfeasible ,0.01 ,0.6} ,...

24 'populationsize ' ,50000,'elitecount ',10,'tolfun ',1e-60,...

193
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25 'UseParallel ',true);

26
27 % The actual ga function

28
29 [r,fval ,exitflag ,output ,population ,scores] = ga(fit ,7,...

30 [],[],[],[],-1,1,[], options);

31
32 % Termination condition

33
34 if exitflag == 1

35 disp('Terminated due to tolerance?')

36 end

37
38 % The 'best ' values

39
40 best = find(scores ==min(scores))

41 x = population(best (1) ,:)

42 fit(x)

43
44 % Now put x back into the equations from Maple and check what

45 % Ginzberg 's equations evaluate to

46
47 % Assign x to unknowns from Maple

48
49 A4 = x(1);

50 B3 = x(2);

51 B4 = x(3);

52 C3 = x(4);

53 C4 = x(5);

54 D3 = x(6);

55 D4 = x(7);

56
57 % The first nonlinear equation , which we could not do anything

with

58
59 A3 = -(1/5376*(1792* A4*sqrt (2) +73728* B3^2 -196608*B3*B4...

60 +131072* B4 ^2+73728* D3^2...

61 -196608*D3*D4 +131072* D4^2 -2205))*sqrt (2);

62
63 % The solutions of the linear equations from Maple , eliminating

64 % one unknown at a time by expressing it in terms of other

65 % unknowns

66
67 D2 = (15/7)*D3 -(20/7)*D4;
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68 B2 = (15/7)*B3 -(20/7)*B4;

69 C2 = (1/7)*C3 -(4/7)*C4;

70 A2 = (1/7)*A3 -(4/7)*A4 +(3/16)*sqrt (2);

71 D1 = (7/4)*D2 -(9/4)*D3 +(5/2)*D4;

72 B1 = (7/4)*B2 -(9/4)*B3 +(5/2)*B4;

73 C1 = -(1/4)*C2 -(3/4)*C3 -(1/2)*C4;

74 A1 = -(1/4)*A2 -(3/4)*A3 -(1/2)*A4 +(9/32)*sqrt (2);

75 D0 = D1-D2+D3-D4;

76 B0 = B1-B2+B3-B4;

77 C0 = -C1-C2 -C3-C4;

78 A0 = -A1-A2 -A3-A4 +(1/2)*sqrt (2);

79
80 % Matrix basis elements

81
82 m0 = [1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1];

83 m1 = [0,1,0,0;1,0,0,0;0,0,0,1;0,0,1,0];

84 m2 = [0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];

85 m12 = m1*m2;

86
87 % Matrices to use in Ginzberg 's equations

88
89 G0 = A0*m0+B0*m1+C0*m2+D0*m12;

90 G1 = A1*m0+B1*m1+C1*m2+D1*m12;

91 G2 = A2*m0+B2*m1+C2*m2+D2*m12;

92 G3 = A3*m0+B3*m1+C3*m2+D3*m12;

93 G4 = A4*m0+B4*m1+C4*m2+D4*m12;

94 G5 = A4*m0 -B4*m1+C4*m2 -D4*m12;

95 G6 = A3*m0 -B3*m1+C3*m2 -D3*m12;

96 G7 = A2*m0 -B2*m1+C2*m2 -D2*m12;

97 G8 = A1*m0 -B1*m1+C1*m2 -D1*m12;

98 G9 = A0*m0 -B0*m1+C0*m2 -D0*m12;

99
100 % Ginzberg 's equations

101
102 eqn1 = G0+G1+G2+G3+G4+G5+G6+G7+G8+G9 -sqrt (2)*m0;

103 eqn2 = G0-G1+G2 -G3+G4-G5+G6-G7+G8-G9;

104 eqn3 = -G1+2*G2 -3*G3+4*G4 -5*G5+6*G6 -7*G7+8*G8 -9*G9;

105 eqn4 = -G1+4*G2 -9*G3+16*G4 -25*G5+36*G6 -49*G7+64*G8 -81*G9;

106 eqn5 = -G1+8*G2 -27*G3+64*G4 -125*G5+216*G6 -343* G7 +512*G8 -729*G9;

107 eqn6 = -G1+16*G2 -81*G3+256*G4 -625*G5 +1296*G6 -2401* G7 +4096* G8...

108 -6561*G9;

109 eqn7 = G0*G2 '+G1*G3 '+G2*G4 '+G3*G5 '+G4*G6 '+G5*G7 '+G6*G8 '+G7*G9 ';

110 eqn8 = G0*G4 '+G1*G5 '+G2*G6 '+G3*G7 '+G4*G8 '+G5*G9 ';

111 eqn9 = G0*G6 '+G1*G7 '+G2*G8 '+G3*G9 ';
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112 eqn10 = G0*G8 '+G1*G9 ';

113 eqn11 = G0*G0 '+G1*G1 '+G2*G2 '+G3*G3 '+G4*G4 '+G5*G5 '+G6*G6 '...

114 +G7*G7 '+G8*G8 '+G9*G9 '-m0;

115
116 % Now display the values in Ginzberg 's equations: they should

117 % all be 'small ' (theoretically zero if we had the exact roots)

118
119 eqn1 (1:4 ,1),eqn2 (1:4 ,1),eqn3 (1:4 ,1),eqn4 (1:4 ,1),eqn5 (1:4 ,1),...

120 eqn6 (1:4 ,1),eqn7 (1:4 ,1),eqn8 (1:4 ,1),eqn9 (1:4 ,1),...

121 eqn10 (1:4 ,1),eqn11 (1:4 ,1)

The �tness function whose value we want to minimise:

1 function y = Cl_1_1_fit10(x)

2
3 % Assign x to unknowns from Maple

4
5 A4 = x(1);

6 B3 = x(2);

7 B4 = x(3);

8 C3 = x(4);

9 C4 = x(5);

10 D3 = x(6);

11 D4 = x(7);

12
13 % The first nonlinear equation , which we could not do anything

14 % with

15
16 A3 = -(1/5376*(1792* A4*sqrt (2) +73728* B3^2 -196608*B3*B4...

17 +131072* B4 ^2+73728* D3^2...

18 -196608*D3*D4 +131072* D4^2 -2205))*sqrt (2);

19
20 % The solutions of the linear equations from Maple , eliminating

21 % one unknown at a time by expressing it in terms of other

22 % unknowns

23
24 D2 = (15/7)*D3 -(20/7)*D4;

25 B2 = (15/7)*B3 -(20/7)*B4;

26 C2 = (1/7)*C3 -(4/7)*C4;

27 A2 = (1/7)*A3 -(4/7)*A4 +(3/16)*sqrt (2);

28 D1 = (7/4)*D2 -(9/4)*D3 +(5/2)*D4;

29 B1 = (7/4)*B2 -(9/4)*B3 +(5/2)*B4;

30 C1 = -(1/4)*C2 -(3/4)*C3 -(1/2)*C4;
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31 A1 = -(1/4)*A2 -(3/4)*A3 -(1/2)*A4 +(9/32)*sqrt (2);

32 D0 = D1-D2+D3-D4;

33 B0 = B1-B2+B3-B4;

34 C0 = -C1-C2 -C3-C4;

35 A0 = -A1-A2 -A3-A4 +(1/2)*sqrt (2);

36
37 % Equations that we want to be zero , from the first columns of

38 % equations eqn7 to eqn11

39
40 f1 = -(82/49)*C3 ^2 -(52/49)*C4^2 -(82/49)*A3 ^2+(222/49)*B3^2...

41 +(222/49)*D3^2 -(52/49)*A4 ^2 -(100/49)*B4 ^2 -(100/49)*D4^2...

42 +(5/14)*A3*sqrt (2) +(29/112)*A4*sqrt (2) +15/256...

43 +(96/49)*A3*A4 -(368/49)*B3*B4 +(96/49)*C3*C4 -(368/49)*D3*D4;

44 f2 = (2/7)*C3^2 -(6/7)*C4 ^2+(2/7)*A3^2 -(30/7)*B3^2...

45 -(30/7)*D3^2 -(6/7)*A4 ^2+(26/7)*B4 ^2+(26/7)*D4^2...

46 +(3/8)*A3*sqrt (2) +(5/8)*A4*sqrt (2) -(24/7)*A3*A4...

47 +(24/7)*B3*B4 -(24/7)*C3*C4 +(24/7)*D3*D4;

48 f3 = -(46/49)*A3 ^2+(32/49)*A3*A4 -(1/14)*A3*sqrt (2)...

49 +(20/49)*A4 ^2 -(45/112)*A4*sqrt (2) +45/256 -(50/7)*B3^2...

50 +(144/7)*B3*B4 -(100/7)*B4^2 -(46/49)*C3 ^2+(32/49)*C3*C4...

51 +(20/49)*C4^2 -(50/7)*D3 ^2+(144/7)*D3*D4 -(100/7)*D4^2;

52 f4 = (55/98)*A3 ^2+(18/49)*A3*A4 -(65/224)*A3*sqrt (2)...

53 +(5/98)*A4^2 -(5/56)*A4*sqrt (2) +75/1024 -(15/14)*B3^2...

54 +(26/7)*B3*B4 -(45/14)*B4 ^2+(55/98)*C3 ^2+(18/49)*C3*C4...

55 +(5/98)*C4 ^2 -(15/14)*D3 ^2+(26/7)*D3*D4 -(45/14)*D4^2;

56 f5 = (173/49)*C3 ^2+(143/49)*C4 ^2+(173/49)*A3 ^2+(781/49)*B3^2...

57 +(781/49)*D3 ^2+(143/49)*A4 ^2+(1551/49)*B4^2...

58 +(1551/49)*D4 ^2 -315/512 -(83/112)*A3*sqrt (2)...

59 -(11/14)*A4*sqrt (2) +(44/49)*A3*A4 -(1980/49)*B3*B4...

60 +(44/49)*C3*C4 -(1980/49)*D3*D4;

61
62 f6 = 2*A0+2*A1+2*A2+2*A3+2*A4-sqrt (2);

63 f7 = 2*C0+2*C1+2*C2+2*C3+2*C4;

64 f8 = 2*B0 -2*B1+2*B2 -2*B3+2*B4;

65 f9 = 2*D0 -2*D1+2*D2 -2*D3+2*D4;

66 f10 = 7*A1 -5*A2+3*A3-A4 -9*A0;

67 f11 = -9*B1+9*B2 -9*B3+9*B4+9*B0;

68 f12 = 7*C1 -5*C2+3*C3-C4 -9*C0;

69 f13 = -9*D1+9*D2 -9*D3+9*D4+9*D0;

70 f14 = 63*A1 -45*A2+27*A3 -9*A4 -81*A0;

71 f15 = -65*B1+53*B2 -45*B3+41*B4+81*B0;

72 f16 = 63*C1 -45*C2+27*C3 -9*C4 -81*C0;

73 f17 = -65*D1+53*D2 -45*D3+41*D4+81*D0;

74 f18 = 511*A1 -335* A2 +189*A3 -61*A4 -729* A0;
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75 f19 = -513*B1+351*B2 -243*B3+189*B4+729* B0;

76 f20 = 511*C1 -335* C2 +189*C3 -61*C4 -729* C0;

77 f21 = -513*D1+351*D2 -243*D3+189*D4+729* D0;

78 f22 = 4095*A1 -2385* A2 +1215*A3 -369*A4 -6561* A0;

79 f23 = -4097*B1 +2417*B2 -1377* B3 +881*B4 +6561* B0;

80 f24 = 4095*C1 -2385* C2 +1215*C3 -369*C4 -6561* C0;

81 f25 = -4097*D1 +2417*D2 -1377* D3 +881*D4 +6561* D0;

82
83 % Since some equations above could be negative , we add the

84 % squares of each one

85
86 y = f1^2+f2^2+f3^2+f4^2+f5^2+f6^2+f7^2+f8^2+f9^2+f10 ^2+f11^2...

87 +f12^2+f13 ^2+ f14^2+f15 ^2+f16^2+ f17 ^2+f18^2+ f19^2+f20^2...

88 +f21^2+f22 ^2+ f23^2+f24 ^2+f25^2;

89
90 end
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MATLAB® for a Wavelet Filter from a Scaling Filter

Our version of Ginzberg's MATLAB® script, in this case to �nd wavelet �lter coe�cients

corresponding to our length 10 scaling �lter:

1 close all

2 clear all

3
4 % Script for running the rewritten G2GH function of Ginzberg

5 % 15/07/2017

6
7 % Length of filter

8
9 L = 10;

10
11 % My new length 10 quaternion scaling filter coefficients

12 % (filter is symmetric , so only one half)

13
14 a{1} = [ -(25/3072)*sqrt (2) , -(1/3222528)*sqrt (4170519790) ,0,0];

15 a{2} = [ -(85/3072)*sqrt (2),...

16 (425/1221338112)*sqrt (4170519790) ,0 ,(1/72768)*sqrt (1472415) ];

17 a{3} = [(1/192)*sqrt (2) ,(491/152667264)*sqrt (4170519790) ,0,...

18 (1/24256)*sqrt (1472415) ];

19 a{4} = [(65/384)*sqrt (2) ,(145/76333632)*sqrt (4170519790) ,0,...

20 (1/72768)*sqrt (1472415) ];

21 a{5} = [(185/512)*sqrt (2) , -(1/194048)*sqrt (4170519790) ,0,...

22 -(5/72768)*sqrt (1472415) ];

23

199
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24 % Basis quaternions as real 4 x 4 matrices

25
26 s = eye(4);

27 i = [0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0];

28 j = [0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];

29 k = [0,0,0,-1;0,0,-1,0;0,1,0,0;1,0,0,0];

30
31 % 3-D array of zeros to take the scaling filter coefficients

32
33 S = repmat (0,[4,4,L]);

34
35 % Fill S with the scaling filter coefficients

36
37 for m = 1:L/2

38 v = a{m};

39 M = v(1)*s+v(2)*i+v(3)*j+v(4)*k;

40 S(1:4 ,1:4,m) = M(1:4 ,1:4);

41 S(1:4 ,1:4,L+1-m) = M(1:4 ,1:4);

42 end

43
44 % Find the wavelet filter coefficients: the result will be L

45 % (4 x 4) matrices

46
47 [S,W] = G2GH(S);

48
49 % Display W

50
51 format long

52
53 W

Our version of Ginzberg's G2GH, G2polyphase and polyphase2GH functions.

1 function [G,H] = G2GH(G)

2
3 % INPUT: a matrix -valued scaling filter G as an (n x n x L) 3-D

4 % array

5
6 % OUTPUT: A matrix -valued scaling filter G and a corresponding

7 % matrix -valued wavelet filter H as (n x n x L) 3-D arrays

8
9 [G,H] = polyphase2GH(G2polyphase(G));

10
11 end



Appendix D 201

12
13
14
15 function P = G2polyphase(G)

16
17 % This uses function from Keinert 's mw toolbox , available from

18 % http :// orion.math.iastate.edu/keinert/book.html

19
20 % INPUT: a matrix -valued scaling filter G as an (n x n x L) 3-D

21 % array

22
23 % OUTPUT: a (2n x 2n) polyphase matrix P of class mpoly

24
25 [n,m,L] = size(G);

26
27 % Write the (n x 2n) top half of the polyphase matrix as an

28 % mpoly object P1

29
30 Pg = zeros(n,2*n,L/2);

31
32 for k = 1:L/2

33 Pg(1:n ,1:2*m,k) = [G(1:n,1:m,2*k-1),G(1:n,1:m,2*k)];

34 end

35
36 P1 = mpoly(Pg ,0,'polyphase ' ,2,2);

37
38 % Find the projection factorisation of the polyphase matrix

39
40 F = projection_factorization(P1);

41
42 % Find the full (2n x 2n) polyphase matrix from the

43 % factorisation by unitary completion of the constant

44 % coefficient.

45
46 lf = length(F);

47
48 P = [eye(n),eye(n);-eye(n),eye(n)]/sqrt (2);

49
50 for k = 2:lf

51 P = P*F{k}; % This is mpoly multiplication , not ordinary

52 % MATLAB multiplication

53 end

54
55 % This last P will be a (2n x 2n x L/2) 3-D array of class
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56 % mpoly

57
58 end

59
60
61
62 function [G,H] = polyphase2GH(P)

63
64 % INPUT: a polyphase matrix P as a (2n x 2n x L/2) 3-D array

65
66 % OUTPUT: an (n x n) matrix -valued scaling filter G and wavelet

67 % filter H as (n x n x L) arrays

68
69 P = P.coef;

70
71 L = 2*size(P,3);

72
73 n = size(P,1)/2;

74
75 G = zeros(n,n,L);

76
77 H = G;

78
79 for k = 1:L/2

80 G(:,:,2*k-1) = P(1:n,1:n,k);

81 G(:,:,2*k) = P(1:n,n+1:2*n,k);

82 H(:,:,2*k-1) = P(n+1:2*n,1:n,k);

83 H(:,:,2*k) = P(n+1:2*n,n+1:2*n,k);

84 end

85
86 end
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Example of MATLAB® for Scaling and Wavelet Functions

An example of our MATLAB® code for using the cascade algorithm to calculate quaternion

scaling and wavelet functions and display them using all possible projections onto two and

three dimensions.

1 close all

2 clear all

3
4 % Scaling filter

5
6 s1 = quaternion ( -(25/3072)*sqrt (2),...

7 -(1/3222528)*sqrt (4170519790) ,0,0);

8 s2 = quaternion ( -(85/3072)*sqrt (2),...

9 (425/1221338112)*sqrt (4170519790) ,0 ,(1/72768)*sqrt (1472415));

10 s3 = quaternion ((1/192)*sqrt (2),...

11 (491/152667264)*sqrt (4170519790) ,0 ,(1/24256)*sqrt (1472415));

12 s4 = quaternion ((65/384)*sqrt (2),...

13 (145/76333632)*sqrt (4170519790) ,0 ,(1/72768)*sqrt (1472415));

14 s5 = quaternion ((185/512)*sqrt (2),...

15 -(1/194048)*sqrt (4170519790) ,0 , -(5/72768)*sqrt (1472415));

16
17 s = [s1,s2,s3 ,s4,s5,s5 ,s4,s3,s2,s1];

18 v = s;

19
20 s = cascade (17,s,v,v);

21 S = s;

203



Appendix E 204

22 sz = 12; % size of each circle

23
24 u = length(s);

25 U = u;

26 max_s = max(abs(s.s));

27 max_i = max(abs(s.x));

28 max_j = max(abs(s.y));

29 max_k = max(abs(s.z));

30 max_a = max(max_s ,max_i);

31 max_b = max(max_j ,max_k);

32 m = max(max_a ,max_b);

33 m1 = m;

34 t = 1:u;

35
36 figure

37 scatter(t,s.s,sz,'b','filled '); % 1

38 axis square

39 xlim([0,u]);

40 los = min(s.s);

41 his = max(s.s);

42 ylim([los ,his]);

43 xticks ([0,u]);

44 xticklabels ({});

45 yticks ([]);

46
47 figure

48 scatter(t,s.x,sz,'b','filled '); % 2

49 axis square

50 xlim([0,u]);

51 lox = min(s.x);

52 hix = max(s.x);

53 ylim([lox ,hix]);

54 xticks ([0,u]);

55 xticklabels ({});

56 yticks ([]);

57
58 figure

59 scatter(t,s.y,sz,'b','filled '); % 3

60 axis square

61 xlim([0,u]);

62 loy = min(s.y);

63 hiy = max(s.y);

64 ylim([loy ,hiy]);

65 xticks ([0,u]);
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66 xticklabels ({});

67 yticks ([]);

68
69 figure

70 scatter(t,s.z,sz,'b','filled '); % 4

71 axis square

72 xlim([0,u]);

73 loz = min(s.z);

74 hiz = max(s.z);

75 ylim([loz ,hiz]);

76 xticks ([0,u]);

77 xticklabels ({});

78 yticks ([]);

79
80 figure

81 scatter(s.s,s.x,sz ,'b','filled '); % 5

82 axis square

83 xlim([los ,his]);

84 ylim([lox ,hix]);

85 xticks ([los ,his]);

86 yticks ([lox ,hix]);

87 xticklabels ({});

88 yticklabels ({});

89
90 figure

91 scatter(s.s,s.y,sz ,'b','filled '); % 6

92 axis square

93 xlim([los ,his]);

94 ylim([loy ,hiy]);

95 xticks ([los ,his]);

96 yticks ([loy ,hiy]);

97 xticklabels ({});

98 yticklabels ({});

99
100 figure

101 scatter(s.s,s.z,sz ,'b','filled '); % 7

102 axis square

103 xlim([los ,his]);

104 ylim([loz ,hiz]);

105 xticks ([los ,his]);

106 yticks ([loz ,hiz]);

107 xticklabels ({});

108 yticklabels ({});

109
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110 figure

111 scatter(s.x,s.y,sz ,'b','filled '); % 8

112 axis square

113 xlim([lox ,hix]);

114 ylim([loy ,hiy]);

115 xticks ([lox ,hix]);

116 yticks ([loy ,hiy]);

117 xticklabels ({});

118 yticklabels ({});

119
120 figure

121 scatter(s.x,s.z,sz ,'b','filled '); % 9

122 axis square

123 xlim([lox ,hix]);

124 ylim([loz ,hiz]);

125 xticks ([lox ,hix]);

126 yticks ([loz ,hiz]);

127 xticklabels ({});

128 yticklabels ({});

129
130 figure

131 scatter(s.y,s.z,sz ,'b','filled '); % 10

132 axis square

133 xlim([loy ,hiy]);

134 ylim([loz ,hiz]);

135 xticks ([loy ,hiy]);

136 yticks ([loz ,hiz]);

137 xticklabels ({});

138 yticklabels ({});

139
140 figure

141 scatter3(s.s,s.x,t,sz,'b','filled '); % 11

142 xlim([-m,m]);

143 ylim([-m,m]);

144 zlim([0,u]);

145 xticks([-m,0,m]);

146 xticklabels ({'','',''});

147 yticks([-m,0,m]);

148 yticklabels ({'','',''});

149 zticks ([0 u/3 2*u/3 u]);

150 zticklabels ({'','','',''});

151 ax=gca;

152 ax.GridLineStyle = '-';

153 ax.GridColor = 'k';



Appendix E 207

154 ax.GridAlpha =0.25;

155
156 figure

157 scatter3(s.s,s.y,t,sz,'b','filled '); % 12

158 xlim([-m,m]);

159 ylim([-m,m]);

160 zlim([0,u]);

161 xticks([-m,0,m]);

162 xticklabels ({'','',''});

163 yticks([-m,0,m]);

164 yticklabels ({'','',''});

165 zticks ([0 u/3 2*u/3 u]);

166 zticklabels ({'','','',''});

167 ax=gca;

168 ax.GridLineStyle = '-';

169 ax.GridColor = 'k';

170 ax.GridAlpha =0.25;

171
172 figure

173 scatter3(s.s,s.z,t,sz,'b','filled '); % 13

174 xlim([-m,m]);

175 ylim([-m,m]);

176 zlim([0,u]);

177 xticks([-m,0,m]);

178 xticklabels ({'','',''});

179 yticks([-m,0,m]);

180 yticklabels ({'','',''});

181 zticks ([0 u/3 2*u/3 u]);

182 zticklabels ({'','','',''});

183 ax=gca;

184 ax.GridLineStyle = '-';

185 ax.GridColor = 'k';

186 ax.GridAlpha =0.25;

187
188 figure

189 scatter3(s.x,s.y,t,sz,'b','filled '); % 14

190 xlim([-m,m]);

191 ylim([-m,m]);

192 zlim([0,u]);

193 xticks([-m,0,m]);

194 xticklabels ({'','',''});

195 yticks([-m,0,m]);

196 yticklabels ({'','',''});

197 zticks ([0 u/3 2*u/3 u]);
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198 zticklabels ({'','','',''});

199 ax=gca;

200 ax.GridLineStyle = '-';

201 ax.GridColor = 'k';

202 ax.GridAlpha =0.25;

203
204 figure

205 scatter3(s.x,s.z,t,sz,'b','filled '); % 15

206 xlim([-m,m]);

207 ylim([-m,m]);

208 zlim([0,u]);

209 xticks([-m,0,m]);

210 xticklabels ({'','',''});

211 yticks([-m,0,m]);

212 yticklabels ({'','',''});

213 zticks ([0 u/3 2*u/3 u]);

214 zticklabels ({'','','',''});

215 ax=gca;

216 ax.GridLineStyle = '-';

217 ax.GridColor = 'k';

218 ax.GridAlpha =0.25;

219
220 figure

221 scatter3(s.y,s.z,t,sz,'b','filled '); % 16

222 xlim([-m,m]);

223 ylim([-m,m]);

224 zlim([0,u]);

225 xticks([-m,0,m]);

226 xticklabels ({'','',''});

227 yticks([-m,0,m]);

228 yticklabels ({'','',''});

229 zticks ([0 u/3 2*u/3 u]);

230 zticklabels ({'','','',''});

231 ax=gca;

232 ax.GridLineStyle = '-';

233 ax.GridColor = 'k';

234 ax.GridAlpha =0.25;

235
236 figure

237 scatter3(s.s,s.x,s.y,sz ,'b','filled '); % 17

238 xlim([-m,m]);

239 ylim([-m,m]);

240 zlim([-m,m]);

241 xticks([-m,0,m]);
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242 xticklabels ({'','',''});

243 yticks([-m,0,m]);

244 yticklabels ({'','',''});

245 zticks([-m,0,m]);

246 zticklabels ({'','',''});

247 ax=gca;

248 ax.GridLineStyle = '-';

249 ax.GridColor = 'k';

250 ax.GridAlpha =0.25;

251
252 figure

253 scatter3(s.s,s.x,s.z,sz ,'b','filled '); % 18

254 xlim([-m,m]);

255 ylim([-m,m]);

256 zlim([-m,m]);

257 xticks([-m,0,m]);

258 xticklabels ({'','',''});

259 yticks([-m,0,m]);

260 yticklabels ({'','',''});

261 zticks([-m,0,m]);

262 zticklabels ({'','',''});

263 ax=gca;

264 ax.GridLineStyle = '-';

265 ax.GridColor = 'k';

266 ax.GridAlpha =0.25;

267
268 figure

269 scatter3(s.s,s.y,s.z,sz ,'b','filled '); % 19

270 xlim([-m,m]);

271 ylim([-m,m]);

272 zlim([-m,m]);

273 xticks([-m,0,m]);

274 xticklabels ({'','',''});

275 yticks([-m,0,m]);

276 yticklabels ({'','',''});

277 zticks([-m,0,m]);

278 zticklabels ({'','',''});

279 ax=gca;

280 ax.GridLineStyle = '-';

281 ax.GridColor = 'k';

282 ax.GridAlpha =0.25;

283
284 figure

285 scatter3(s.x,s.y,s.z,sz ,'b','filled '); % 20
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286 xlim([-m,m]);

287 ylim([-m,m]);

288 zlim([-m,m]);

289 xticks([-m,0,m]);

290 xticklabels ({'','',''});

291 yticks([-m,0,m]);

292 yticklabels ({'','',''});

293 zticks([-m,0,m]);

294 zticklabels ({'','',''});

295 ax=gca;

296 ax.GridLineStyle = '-';

297 ax.GridColor = 'k';

298 ax.GridAlpha =0.25;

For the wavelet function, we repeat the same code, but using the wavelet �lter, and choose

r in place of b as a colour option in the scatter and scatter3 functions.

The cascade function used in our script above:

1 function s = cascade (n,t,c,x)

2
3 % The cascade function as written by John Burkardt in 2011, as

4 % modified by us: in the code below , x has to be defined as a

5 % quaternion array before we can do anything with it, hence the

6 % extra input x

7
8 % The original function (accessed 20/08/2018):

9 % http :// people.sc.fsu.edu/~ jburkardt/m_src/wavelet/cascade.m

10
11 s = t;

12
13 for i = 1 : n

14 nx = length(s)*2-1;

15 x(1:2: nx) = s;

16 x(2:2:nx -1) = 0;

17 s = conv(x,c);

18 end

19
20 % Force S to be a column vector.

21
22 s = s(:);
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23
24 return

25
26 end

With the Cl(1, 1) scaling and wavelet functions, we modify our quaternion script thus:

1 close all

2 clear all

3
4 clifford_signature (1,1);

5
6 % Scaling filter

7
8 s1 = -0.033422438260461*e0 -0.001075680435047* e1...

9 -0.039029301042422*e2 -0.045881706741888* e12;

10 s2 = -0.059428506929067*e0 -0.005811186899868* e1...

11 -0.117412928715765*e2 -0.143031714180422* e12;

12 s3 = 0.099865720860175*e0 -0.012920727973642* e1...

13 -0.079033678850327*e2 -0.026932969773814* e12;

14 s4 = 0.328654553494030*e0 -0.014651866872188* e1...

15 +0.077733576496353* e2 +0.318574308342227* e12;

16 s5 = 0.371437452021874*e0 -0.006466645363360* e1...

17 +0.157742332112162* e2 +0.248357270677511* e12;

18 s6 = 0.371437452021871* e0 +0.006466645363363* e1...

19 +0.157742332112161*e2 -0.248357270677505* e12;

20 s7 = 0.328654553494028* e0 +0.014651866872180* e1...

21 +0.077733576496354*e2 -0.318574308342237* e12;

22 s8 = 0.099865720860176* e0 +0.012920727973644* e1...

23 -0.079033678850328* e2 +0.026932969773813* e12;

24 s9 = -0.059428506929068* e0 +0.005811186899869* e1...

25 -0.117412928715766* e2 +0.143031714180426* e12;

26 s10 = -0.033422438260462* e0 +0.001075680435049* e1...

27 -0.039029301042421* e2 +0.045881706741886* e12;

28
29 s = [s1,s2,s3 ,s4,s5,s6 ,s7,s8,s9,s10];

30 v = s;

31 SZ = 12;

32
33 s = cascade_Cl_p_q (15,s,v,v);

34
35 ss = part(s,1);

36 sx = part(s,2);

37 sy = part(s,3);
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38 sz = part(s,4);

39
40 u = length(s);

41 max_e0 = max(abs(ss));

42 max_e1 = max(abs(sx));

43 max_e2 = max(abs(sy));

44 max_e12 = max(abs(sz));

45 m1 = max(max_e0 ,max_e1);

46 m2 = max(max_e2 ,max_e12);

47 m = max(m1,m2);

48 t = 1:u;

49
50 figure

51 scatter(t,ss,SZ,'b','filled '); % 1

52 axis square

53 xlim([0,u]);

54 los = min(ss);

55 his = max(ss);

56 ylim([los ,his]);

57 xticks ([0,u]);

58 xticklabels ({});

59 yticks ([]);

. . . and so on.

Our revised cascade function cascade_Cl_p_q makes use of a very slightly edited version of

the quaternion conv function in the qtfm toolbox, which we have called convc: this replaces

lines 76 to 80 of conv with

1 if LRS(1)==1

2 C = zeros(1,m+n-1)*e0; % L or R or both is/are a row

vector

3 else

4 C = zeros(m+n-1,1)*e0; % L or R or both is/are a column

vector

5 end

where the two *e0 cause C to be a zero multivector.
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Example of MATLAB® for Wavelet Transforms

Code for �nding quaternion wavelet transforms of colour vector images, in this case using

our length 10 quaternion �lters:

1 close all

2 clear all

3
4 % Test image

5
6 L = cast(imreadq('Lena.tiff'),'double ')./255;

7 %L = cast(imreadq('Mandrill.tiff '),'double ') ./255;

8 %L = cast(imreadq('Yacht.tiff '),'double ') ./255;

9 %L = cast(imreadq('PO.PNG '),'double ') ./255;

10
11 N = size(L,1);

12
13 % Original image:

14
15 figure

16 image(L)

17 axis off

18 axis square

19
20 A0 = L;

21
22 % A number to scale up the results slightly , to make them a bit

213
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23 % brighter

24
25 sd = max(max(std2(L.x),std2(L.y)),std2(L.z));

26
27 % Move the original to the centre of the unit 4-D cube

28
29 L = quaternion(L.s-0.5,L.x-0.5,L.y-0.5,L.z-0.5);

30
31 % Scaling filter

32
33 s1 = quaternion ( -(25/3072)*sqrt (2),...

34 -(1/3222528)*sqrt (4170519790) ,0,0);

35 s2 = quaternion ( -(85/3072)*sqrt (2),...

36 (425/1221338112)*sqrt (4170519790) ,0 ,(1/72768)*sqrt (1472415));

37 s3 = quaternion ((1/192)*sqrt (2),...

38 (491/152667264)*sqrt (4170519790) ,0 ,(1/24256)*sqrt (1472415));

39 s4 = quaternion ((65/384)*sqrt (2),...

40 (145/76333632)*sqrt (4170519790) ,0 ,(1/72768)*sqrt (1472415));

41 s5 = quaternion ((185/512)*sqrt (2),...

42 -(1/194048)*sqrt (4170519790) ,0 , -(5/72768)*sqrt (1472415));

43
44 s = [s1,s2,s3 ,s4,s5,s5 ,s4,s3,s2,s1];

45
46 % Wavelet filter

47
48 w1 = quaternion (0.011508899433375 , -0.019328607701528 ,...

49 0.000785610562363 , -0.005233602142379);

50 w2 = quaternion ( -0.039130258073474 , -0.026029448073557 ,...

51 -0.003928052811814 ,0.009492671472039);

52 w3 = quaternion ( -0.007365695637360 ,0.213388598131364 ,...

53 0.006284884498903 ,0.008157200580536);

54 w4 = quaternion (0.239385108214196 , -0.122672486581195 ,0 ,...

55 -0.016675339239856);

56 w5 = quaternion ( -0.510995134841841 , -0.342761925084588 ,...

57 -0.010998547873079 , -0.010106266205973);

58
59 w = [w1,w2,w3 ,w4,w5,-w5 ,-w4,-w3,-w2 ,-w1];

60
61 % The (2 x 2n) submatrix for the leading diagonal of the banded

62 % matrix

63
64 P = [s;w];

65
66 % Four levels of quaternion wavelet transform analysis
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67
68 [App1 ,Horiz1 ,Vert1 ,Diag1] = QWT_2D_total(L,P,N);

69
70 [App2 ,Horiz2 ,Vert2 ,Diag2] = QWT_2D_total(App1 ,P,N/2);

71
72 [App3 ,Horiz3 ,Vert3 ,Diag3] = QWT_2D_total(App2 ,P,N/4);

73
74 [App4 ,Horiz4 ,Vert4 ,Diag4] = QWT_2D_total(App3 ,P,N/8);

75
76 % Approximations

77
78 A1 = App1;A2 = App2;A3 = App3;A4 = App4;

79
80 % Greyscale approximations

81
82 A1s = A1.s+1; A2s = A2.s+1;A3s = A3.s+1;A4s = A4.s+1;

83 SA1 = quaternion(A1s ,A1s ,A1s);

84 SA2 = quaternion(A2s ,A2s ,A2s);

85 SA3 = quaternion(A3s ,A3s ,A3s);

86 SA4 = quaternion(A4s ,A4s ,A4s);

87
88 % Colour approximations

89
90 A1 = quaternion(A1.x+0.5,A1.y+0.5,A1.z+0.5);

91 A2 = quaternion(A2.x+0.5,A2.y+0.5,A2.z+0.5);

92 A3 = quaternion(A3.x+0.5,A3.y+0.5,A3.z+0.5);

93 A4 = quaternion(A4.x+0.5,A4.y+0.5,A4.z+0.5);

94
95 % Horizontal detail

96
97 H1 = Horiz1;H2 = Horiz2;H3 = Horiz3;H4 = Horiz4;

98 H1 = H1./sd;

99 H2 = H2./sd;

100 H3 = H3./sd;

101 H4 = H4./sd;

102
103 % Greyscale horizontal detail

104
105 H1s = H1.s+0.5; H2s = H2.s+0.5; H3s = H3.s+0.5; H4s = H4.s+0.5;

106 SH1 = quaternion(H1s ,H1s ,H1s);

107 SH2 = quaternion(H2s ,H2s ,H2s);

108 SH3 = quaternion(H3s ,H3s ,H3s);

109 SH4 = quaternion(H4s ,H4s ,H4s);

110
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111 % Colour horizontal detail

112
113 H1 = quaternion(H1.x+0.5,H1.y+0.5,H1.z+0.5);

114 H2 = quaternion(H2.x+0.5,H2.y+0.5,H2.z+0.5);

115 H3 = quaternion(H3.x+0.5,H3.y+0.5,H3.z+0.5);

116 H4 = quaternion(H4.x+0.5,H4.y+0.5,H4.z+0.5);

117
118 % Vertical detail

119
120 V1 = Vert1;V2 = Vert2;V3 = Vert3;V4 = Vert4;

121 V1 = V1./sd;

122 V2 = V2./sd;

123 V3 = V3./sd;

124 V4 = V4./sd;

125
126 % Greyscale vertical detail

127
128 V1s = V1.s+0.5; V2s = V2.s+0.5; V3s = V3.s+0.5; V4s = V4.s+0.5;

129 SV1 = quaternion(V1s ,V1s ,V1s);

130 SV2 = quaternion(V2s ,V2s ,V2s);

131 SV3 = quaternion(V3s ,V3s ,V3s);

132 SV4 = quaternion(V4s ,V4s ,V4s);

133
134 % Colour vertical detail

135
136 V1 = quaternion(V1.x+0.5,V1.y+0.5,V1.z+0.5);

137 V2 = quaternion(V2.x+0.5,V2.y+0.5,V2.z+0.5);

138 V3 = quaternion(V3.x+0.5,V3.y+0.5,V3.z+0.5);

139 V4 = quaternion(V4.x+0.5,V4.y+0.5,V4.z+0.5);

140
141 % Diagonal detail

142
143 D1 = Diag1;D2 = Diag2;D3 = Diag3;D4 = Diag4;

144 D1 = D1./sd;

145 D2 = D2./sd;

146 D3 = D3./sd;

147 D4 = D4./sd;

148
149 % Greyscale diagonal detail

150
151 D1s = D1.s+0.5; D2s = D2.s+0.5; D3s = D3.s + 0.5; D4s = D4.s+0.5;

152 SD1 = quaternion(D1s ,D1s ,D1s);

153 SD2 = quaternion(D2s ,D2s ,D2s);

154 SD3 = quaternion(D3s ,D3s ,D3s);
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155 SD4 = quaternion(D4s ,D4s ,D4s);

156
157 % Colour diagonal detail

158
159 D1 = quaternion(D1.x+0.5,D1.y+0.5,D1.z+0.5);

160 D2 = quaternion(D2.x+0.5,D2.y+0.5,D2.z+0.5);

161 D3 = quaternion(D3.x+0.5,D3.y+0.5,D3.z+0.5);

162 D4 = quaternion(D4.x+0.5,D4.y+0.5,D4.z+0.5);

163
164 % We have found all the approximation and detail pure

165 % quaternion arrays , but we only display the analysis to three

166 % levels

167
168 % Greyscale analysis

169
170 SC3 = [[[SA3 ,SH3;SV3 ,SD3],SH2;SV2 ,SD2],SH1;SV1 ,SD1];

171
172 % Lines between detail images and approximation in the

173 % greyscale analysis

174
175 SC3(N/2+1 ,1:N) = quaternion (1,1,1);

176 SC3 (1:N,N/2+1) = quaternion (1,1,1);

177 SC3(N/4,1:N/2) = quaternion (1,1,1);

178 SC3 (1:N/2,N/4+1) = quaternion (1,1,1);

179 SC3(N/8,1:N/4) = quaternion (1,1,1);

180 SC3 (1:N/4,N/8+1) = quaternion (1,1,1);

181
182 % Greyscale analysis to level three

183
184 figure

185 image(SC3)

186 axis off

187 axis square

188
189 % Colour analysis

190
191 I3 = [[[A3 ,H3;V3,D3],H2;V2,D2],H1;V1,D1];

192
193 % Lines between detail images and approximation in the colour

194 % analysis

195
196 I3 (257 ,1:512) = quaternion (1,1,0);

197 I3 (1:512 ,257) = quaternion (1,1,0);

198 I3 (128 ,1:256) = quaternion (1,1,0);
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199 I3 (1:256 ,129) = quaternion (1,1,0);

200 I3(65 ,1:128) = quaternion (1,1,0);

201 I3(1:128 ,65) = quaternion (1,1,0);

202
203 % Colour analysis to level three

204
205 figure

206 image(I3)

207 axis off

208 axis square

209
210 % Standard deviation (t), skewness (s) and kurtosis (k) of red

211 % in Horiz1

212
213 r = Horiz1.x;

214 t = std2(r);

215 r = reshape(r,[],1);

216 s = skewness(r);

217 k = kurtosis(r);

218
219 % Total detail in original image

220
221 a0 = image_detail(A0);

222
223 % Detail in first level

224
225 a1 = image_detail(App1);

226 h1 = image_detail(Horiz1);

227 v1 = image_detail(Vert1);

228 d1 = image_detail(Diag1);

229
230 % Force sum to be a0

231
232 e = a0/(a1+h1+v1+d1);

233 a1 = e*a1;

234 h1 = round(e*h1 *100/a0 ,2);

235 v1 = round(e*v1 *100/a0 ,2);

236 d1 = round(e*d1 *100/a0 ,2);

237
238 % Detail in second level

239
240 a2 = image_detail(App2);

241 h2 = image_detail(Horiz2);

242 v2 = image_detail(Vert2);
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243 d2 = image_detail(Diag2);

244
245 % Force sum to be a1

246
247 f = a1/(a2+h2+v2+d2);

248 a2 = f*a2;

249 h2 = round(f*h2 *100/a0 ,2);

250 v2 = round(f*v2 *100/a0 ,2);

251 d2 = round(f*d2 *100/a0 ,2);

252
253 % Detail in third level

254
255 a3 = image_detail(App3);

256 h3 = image_detail(Horiz3);

257 v3 = image_detail(Vert3);

258 d3 = image_detail(Diag3);

259
260 % Force sum to be a2

261
262 g = a2/(a3+h3+v3+d3);

263 h3 = round(g*h3 *100/a0 ,2);

264 v3 = round(g*v3 *100/a0 ,2);

265 d3 = round(g*d3 *100/a0 ,2);

266
267 % Detail in remaining approximation

268
269 a3 = 100-(h3+v3+d3+h2+v2+d2+h1+v1+d1);

The image_detail function used in the above script:

1 function detail_total = image_detail(Im)

2
3 % Assume input image is a full quaternion

4
5 S = Im.s;

6 R = Im.x;

7 G = Im.y;

8 B = Im.z;

9
10 S = S-mean(mean(S));

11 R = R-mean(mean(R));

12 G = G-mean(mean(G));

13 B = B-mean(mean(B));

14
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15 detail_total = sum(sum(sqrt(S.^2+R.^2+G.^2+B.^2)));

16
17 end
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