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Abstract

Origami is the ancient Japanese art of paper folding [1]. It has inspired applica-

tions in industries ranging from Bio-Medical Engineering [2] to Architecture [3].

This thesis reviews ways in which Origami is used in a number of fields and in-

vestigates unexplored areas providing insight and new results which may lead to

better understanding and new uses.

The OSME conference series arguably covers most of the research activities in the

field of Origami and its links to Science and Mathematics. The thesis provides a

comprehensive review of the work that has been presented at these conferences

and published in their proceedings.

The mathematics of Origami has been explored before and much of the funda-

mental work in this field is presented in chapter 3. Here an attempt is made to
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push the bounds of this field by suggesting ways in which Origami can be used as

a mathematical tool for in-depth exploration of non trivial problems. A particular

problem we consider is the 4-colour theorem and its proof.

Looking at some well known methods for producing angles and lengths mathe-

matically the thesis also explores how accurate these might be. This leads to the

surprisingly unstudied field of error modelling in Origami. Errors in folding pro-

cesses have not previously been looked at from a mathematical point of view. The

thesis develops a model for error estimation in crease patterns and a framework

for error modelling in Origami applications. By introducing a standardised error

into alignments, uniform error bounds for each of the one-fold constructions are

generated. This defines a region in which a crease could lie in order to satisfy the

alignments of a given fold within a specified tolerance. Analysis of this method

on some examples provides insight into how this might be used in multi-fold con-

structions. An algorithm to that effect is introduced.
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1
Introduction: Origami, Art, Engineering and

Mathematics

Origami is the ancient Japanese art of paper folding [4]. In the last century it has

become popular around the world. As well as creating beautiful artistic models,

many have looked into the mathematics underpinning it and how it can be used

in real world applications.

There is now a vast array of applications utilising these age-old techniques and

the field is rapidly expanding. From collapsible stents [5] which provide a less

invasive surgery to optimised folding processes for car air-bags [6] and even folding

lenses and solar panels for use in the space industry, it is increasingly becoming a

ubiquitous tool in all sectors of industry.

This thesis reviews ways in which the art is being utilised in a rapidly expanding
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number of fields and investigates several previously unexplored areas providing

insight and new results which may lead to new research areas and applications.

The Origami, Science, Maths and Education conference series, OSME, arguably

covers most of the research activities in the field of Origami and its links to Science

and Mathematics. The thesis provides a comprehensive review of the work that

has been presented at these conferences and published in their proceedings. It

includes an overview of the framework which they developed starting in 1989 with

the first international meeting of Origami Science and Technology and concluding

with the 6th conference which was held in 2014. It reviews all of the papers

individually which are then separated into categories. A summary of each paper

is presented as well as an extensive list of references.

The mathematics of Origami has been explored before. This thesis attempts to

push the boundaries of this field by suggesting ways in which Origami can be used

as a mathematical tool for in depth exploration of problems such as the 4-colour

problem.

The thesis looks at some well known methods for producing angles and lengths

mathematically and how accurate these might be. This leads to the surprisingly

unstudied field of error modelling in Origami. Errors in folding processes have not

been looked at from a mathematical point of view. The thesis develops a model for

error estimation in crease patterns and a framework for error modelling in Origami

applications. By introducing a standardised error into alignments, uniform error
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bounds for each of the one-fold constructions are generated. This defines a region

in which a crease could lie in order to satisfy the alignments of a given fold within

a specified tolerance. Analysis of this method on some examples provides insight

into how this can be extended to cater for multi-fold constructions. An algorithm

that minimises the error state of compound creases is introduced for this purpose.

1.1 Motivation

The author has been an Origami enthusiast since childhood when he was given a

copy of Robert Harbin’s book “Origami 1: The art of Paper-Folding” [7]. At sec-

ondary school he worked to convince mathematics and art teachers that Origami

was both artistic and mathematical and need not be confined to one category.

Building on this he incorporated Origami in GCSE and AS level Art projects as

well as an Extended Project Qualification, EPQ, which focused on the applications

of Origami. It was this project which lead him to become a member of the British

Origami Society, BOS, and attend their conventions. Shortly after starting a BSc

in mathematics he founded the University of Essex Origami society and began an

Origami project with the Students Union’s volunteering team which runs weekly

Origami clubs teaching basic geometry through fun kinaesthetic activities in sev-

eral nearby schools. Interested in how things work from the most fundamental

levels, in 2013 as a final year undergraduate project he researched the mathe-
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matics of Origami which lead him to discover the OSME conference series [8].

This convinced him that investigating the mathematical concepts of Origami was

something he would attempt at the first opportunity. When some funding became

available in the Department of Mathematical Sciences of the University of Essex

he applied for funding to do a PhD on the mathematics of Origami.

In 2014 he attended the 6th OSME conference and the Japan Origami Academic

Society, JOAS, convention in Japan funded as a representative of the BOS. In

September 2015 he organised a BOS convention held at the University of Essex

where he was elected as the society librarian and trustee of the charity tasked with

leading an archiving project on the worlds largest library of Origami resources.

This library is now based near the university and has been an invaluable resource

for his work. He is now treasurer of the BOS and continues to help organising

conventions and leads with the library archive project.

The author became fascinated as to how a single uncut sheet of paper could be

made into incredibly complex and elegant shapes through only a finite number

of operations. At the back of his mind there has always been much more to

Origami than folding paper. To explore this further as a PhD student was the

main motivation behind this thesis.

The starting point was to see how Origami could solve difficult problems such as

trisecting angles proving some trigonometric identities and basic algebra. Later

it was to become clear that modern complex results such as the 4-colour theorem

4



could be examined again from the perspective of Origami. The 4-colour theorem

has been proved but the proof is not to the taste of many serious mathematicians

mainly because it relies too much on computers and codes [9]. Finding an easier

more succinct proof using Origami has been one of the driving questions of this

thesis.

Another idea which motivated this work is the idea that Origami constructions

of the same type are realised looking different. This is often due to the expertise

of the folder but there is more behind that: Errors. We know that all physical

manipulation cannot be done with perfect accuracy. Since Origami is now com-

monly used in manufacture it is essential that an estimate of errors likely to be

introduced in the final product be calculated. Such an error may, for example,

help the scheduling of the maintenance of machinery where the folds are machine

made. To illustrate, consider the boxes used in packaging Easter eggs. Errors

accumulated over many creases may be so great that the boxes would not stack

beyond a certain height. This is no good for transportation and displays in retail

surfaces. The investigation has lead to a model of errors incurred when making

creases.
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1.2 Thesis organisation

Chapter 2 is an extensive review of the literature on Origami with emphasis on

the proceedings of the OSME Conferences. Chapter 3 reviews the fundamental

concepts of folding. It presents the work that has been done to solve mathe-

matical problems using Origami constructions, comparing the scope of Origami

construction with that of straight edge and compass. Chapter 4 aims to show how

origami can be used as a mathematical tool and is not just limited to solving an-

cient problems which can be simply calculated using algebraic methods. It looks

at complex problems such as the 4-colour problem, to see whether Origami could

offer a viable solution approach. Through exploration of the problem it suggests

the possibility of a potential Origami inspired proof. Chapter 5 looks at error

modelling in Origami and provides novel methods to minimise errors in any appli-

cation of folding. Chapter 6 presents the conclusions and suggestions for possible

further research. The Thesis includes an extensive bibliography. Note that the

expressions ‘to crease’ and ‘to fold’ are often used loosely. This document will

refer to a fold as the action of bending a piece of paper which produces a crease;

thus a crease is the mark left in the material when a fold is pressed flat.
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2
A literature survey

There is a lot of written work on Origami as an Art form, more recently as an

industrial process, and a medium for education and therapy. Since our interests

are mainly on the mathematical side of it we shall concentrate on the OSME

conference proceedings and anything else that is closely relevant.

2.1 The OSME Conference Series

Origami is a word of Japanese origin [10]; however, the early history of paper

folding and where it began is somewhat unclear. There are records of paper

folding in both Japan and Egypt from the 1600’s and possibly earlier but it is also

possible that paper folding began in China where paper was invented before this

date [1]. Western and Eastern paper folding developed independently until 1945

7



when Gershon Legman began his studies of paper folding and brought together

paper folders from across the world. By 1958 the modern Origami movement had

begun and in 1967 the first members society, the British Origami Society, was

founded. There are now many Origami societies around the world from OUSA

(Origami USA) and BOS (British Origami Society) in the west to NOA (Nippon

Origami Association) and JOAS (Japanese Origami Academic Society) in the

East [11].

These organisations, in particular BOS, set up archives and libraries to preserve

and share knowledge of Origami and for many years their publications were some

of the only places where the mathematics of Origami was studied. Although their

publications are neither journals nor peer reviewed, many of the articles presented

in them laid the foundations for several fields of study within the mathematics of

Origami.

One of the earliest references to Origami applications in an academic journal can

be found in a New Scientist issue of 1981 with an article on the Miura Origami

map fold [12]. Some of the articles presented in the first conference have also been

published in the BOS magazine in the years following the conference [13–15]

There is now a large range of scientific books on Origami, some of their content

is similar to that presented at the OSME conferences. There are several notable

publications which in fact go further than the work in the OSME proceedings.

Some of particular note are; ‘Geometric Folding Algorithms’ By Demaine and
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O’Rourke which provides a comprehensive look at folding beginning with Link-

ages and working through Origami to folding polyhedra [16], this book goes further

in terms of Computational Origami than much of the work in the OSME series;

‘Origami Design Secrets’ by Lang which was one of the first books on Origami

design that builds from basic principles to complex design and optimisation algo-

rithms [17] and provides a considerable amount of additional work on designing

Origami; ‘Origamics’ by Haga which provides an in-depth exploration of Haga’s

theorems among others [18];‘Geometric Origami’ by Geretschlager which looks at

algorithms and computational Origami [19]; and ‘Roses, Origami and Maths’ by

Kawasaki which looks at much of the author’s work on generalising Orizuru [20].

Much of the work described above looks at mathematics and Origami. The ex-

isting graduate level literature [16] is not directly looking at ‘The Mathematics

of Origami’ as it is in the field of ‘Computational Origami’, and thus is primarily

concerned with computational complexity and if a computer can efficiently solve

those problems that arise from folding processes [21]. This work is not inherently

looking at the mathematics behind paper folding. There is no pre-established

graduate level literature providing definitions, notation or methodology and many

variations of these exist in the literature looked at in this survey.

The BOS, Origami USA and other organisations published magazines and articles

regarding paper folding which would eventually attract the attention of academics

from mathematicians and architects to biologists and teachers. In 1989 Humiaki
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Huzita (Humi) organised the first international meeting of Origami Science and

Technology. This was the first meeting of its kind and Humi later published the

proceedings from this conference himself [22]. Over the following years inter-

est from the scientific community grew significantly and there have since been a

further five conferences, seen in Table 2.1, with the proceedings from the latest

conference, 6OSME, being published by the American Mathematical Society in

2016 [23]. Table 2.1 provides details of the dates and locations of the OSME

conferences as well as the date the proceedings were published, the publisher and

the editors.
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Conference Date Publisher, Publication Date, Edi-
tors

Location

First International Meeting of Origami,
Science and Technology

6th - 7th
December 1989

Self published, 1990, H. Huzita [17] University of Padova,
Ferrara, Italy

Second International Meeting of
Origami, Science and Scientific
Origami

29th November
- 2nd December

1994

The Organising Committee, 1997,
K. Miura (Chief), T. Fuse, T.

Kawasaki, J. Maekawa [18]

Seian University of Art
and Design, Otsu, Japan

The Third International Meeting of
Origami, Science, Mathematics, and
Education (3OSME)

9th - 11th
March 2001

A K Peters, 2002,
Thomas Hull [19]

Asilomar, Pacific Grove,
California, USA

The Fourth International Conference
on Origami, Science, Mathematics, and
Education (4OSME)

8th - 10th
September 2006

A K Peters, 2009,
R. Lang [20]

California Institute of
Technology, Pasadena,
California, USA

The Fifth International Conference on
Origami, Science, Mathematics, and
Education (5OSME)

13th 15th July
2010

CRC press, 2011,
P. Wang-Iverson, R. Lang, M. Yim

[21]

Management University,
Singapore

The Sixth International Conference on
Origami, Science, Mathematics, and
Education (6OSME)

10th - 13th
August 2014

The American Mathematical Society,
2016,

K. Miura, T. Kawasaki, T. Tachi, R.
Uehara, R. Lang, P. Wang-Iverson [24]

University of Tokyo,
Tokyo Japan

The Seventh International Conference
on Origami, Science, Mathematics, and
Education (7OSME)

5th - 7th
September 2018

Not Published at time of thesis
submission

University of Oxford,
Oxford, UK

Table 2.1: A list of all OSME conferences including conference date, location and its proceedings’ publication details
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The OSME series is now a periodic academic conference which produces a series

of books of peer-reviewed papers shown in Figure 2.1. Although there are many

books and articles which are published outside of these conferences, this literature

review focuses specifically on the OSME proceedings because, in the author’s

opinion, they represent the most complete and accurate collection of knowledge

of Origami, science and mathematics.

Although many of the papers in the OSME series fit into multiple categories, in

this survey we will divide the papers into work in the following sub-fields. We will

focus on those which have the strongest mathematical ties.

• The mathematics of Origami

• Computational Origami deconstruction, design and diagramming

• Exploration, design and colouring of Origami polyhedra

• Origami applications in science and technology

• Origami applications in art and design

• Origami in education and/or therapy

• History, Language and Psychology of Origami

Because several different sets of categories have been used throughout the OSME

series we put each of the papers into one of these categories based not on where
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(a) Proceedings of the first
international meeting of
Origami Science and Tech-
nology

(b) Origami Science &
Art, proceedings of the
second international meeting
of Origami Science and
Scientific Origami

(c) Origami3 proceedings
of the third international
meeting of Origami Science,
Mathematics, and Education

(d) Origami4 proceedings of
the Fourth international con-
ference on Origami Science,
Mathematics, and Education

(e) Origami5 proceedings of
the fifth international con-
ference on Origami Science,
Mathematics, and Education

(f) Origami6 proceedings of
the sixth international con-
ference on Origami Science,
Mathematics, and Education

Figure 2.1: List of OSME proceedings with cover images
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they were placed in the proceedings, but on what seems most appropriate after

reviewing the contents. Where possible this survey briefly summarises the work

done in each of the papers. However, the first two proceedings contained papers in

several languages including French and Japanese. Thus a small number of papers

were not summarised. These are listed at the end.

In the first few conferences the terminology used was fluid and many of the

now well-known theorems were re-discovered by multiple folders working indepen-

dently. Mainly through the existence of these conferences, this has now greatly

reduced. However, many of the theorems have no one folder who can claim them

as their own and are named after multiple individual contributors.

2.1.1 The mathematics of Origami

Although the fields of mathematical sciences and Origami are well established it

is only in the last few decades that they have been linked. In the 1930’s Beloch

showed that paper folding is more powerful than straight edge and compass [25],

this is also looked at in a paper by Hull in the OSME series [26]. However, many

questions remain about how much Origami can actually do.

As the applications of Origami grew, the need for a definitive and complete model

for it has become more apparent. Many have tried to produce a model for Origami

and those which have succeeded consider only small areas or specific cases. The
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most well-known approach is taken through the one fold axioms which have been

discovered by many independently; the first reference to these is by Justin. Lang

later proved the completeness of this list of axioms. Alperin and Lang also take

this further by looking at multi-fold axioms.

Maekawa and Kawasaki provide us with flat folding conditions which are named

after them and others have looked at solving mathematical curiosities such as

Alhazen’s problem which was explored by Alperin, [27]. Table 2.2 summarises

OSME papers presented on the mathematics of Origami.

15



Conference Papers Summary
1st meeting “A possible example of system

expansion in Origami geometry”
H. Huzita [28]

Comparing Origami and Euclidean geometry. Unlike the latter, Origami
is an open system and therefore can be expanded to solve higher order
equations; it shows how Origami can theoretically be used to solve a
range of problems. However, the author concludes that computer aided
calculation is required to fully model these problems.

1st meeting “A problem in the Kawasaki theorem”
H. Huzita [29]

Looking at the Kawasaki problem, a condition which holds for any flat-
foldable vertex in a crease pattern, and addressing the converse problem,
that a vertex will always be flat-foldable when the Kawasaki condition is
true. It also tries to enumerate the number of solutions.

1st meeting “Arithmetic and analytic properties of
paper folding sequences”

M. Mendes france & A. Van Der
Poorten [30]

Looks at how folds produced in paper-folding can produce infinite se-
quences. They show that the Fourier series found are almost periodic
and thus are deterministic.

1st meeting “Arithmetic properties of the solutions
of a class of functional equations”

J. Loxton & A. Van Der Poorten [31]

The authors look at the possible randomness of digits in a series of func-
tions. This paper shows proofs for several theorems however it is not
obviously linked to Origami.

1st meeting “Aspects mathematiques du pliage de
papier”

J. Justin [32]

The title translates to ’Mathematical Aspects of Paper Folding’ and cov-
ers an introduction to many areas. It covers the mathematics behind
flexagons, mountain/valley assignments in folding strips of paper, geo-
metric constructions, symmetries and more.

1st meeting “Axiomatic development of Origami
geometry”

E. Frigerio & H. Huzita [33]

Presented is a proposal of 6 Origami axioms. Even without the 7th,
found later by Lang, this paper is still able to show through comparison
with Euclidean construction techniques that Origami is more powerful
and simpler.

Table 2.2 – continued on next page
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Continued from previous page
Conference Papers Summary
1st meeting “Complementary unit Origami - -

maximum volume with minimal
material - - More is less”

Y. Kajikawa [34]

Explores the problems of partitioning the surface of a sphere and con-
structing spheres using intersecting circles. The author also looks at
symmetries and dissymmetries of these partitions.

1st meeting “Crystallographic flat Origami”
T. Kawasaki & M. Yoshida [35]

An early attempt to mathematically model Origami tessellations. A
group of Origami tessellations named crystallographic flat Origami is
discussed.

1st meeting “Draw of a regular heptagon by
folding”

B. Scimemi [36]

A collection of notes by a secretary of the conference as the original paper
was not available. They were made from Scimemi’s presentation com-
paring Euclidean construction with folding, for construction of a regular
pentagon, a shape which is not constructible in Euclidean geometry.

1st meeting “Folding paper and thermodynamics”
M. Mendes France [37]

An unusual approach to Origami and mathematics by using moun-
tain/valley assignments formed when folding paper in half repeatedly
as an analogue for the Bakers transformation. When these 180 degree
folds are opened and folded at 90 degrees the curves produced are self-
avoiding and when made infinitely long they make fractal patterns which
it is shown can be modelled using equations from thermodynamics.

1st meeting “Folds!”
M. Dekking & M. Mendes France [38]

Dragon curves, the shapes made when folded strips of paper are unfolded
such that all folds are at right angles, are explored including the sequences
which can and cannot be dragon curves. Several well known sequences
are found and also the concept of a dual to a dragon curve is explored.

1st meeting “New relations in Origami geometry”
E. Frigerio [39]

Notes from a conversation between the author and H. Huzita regarding
some properties of triangles found by J. Justin. It looks at two folding
properties of triangles.

Table 2.2 – continued on next page
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Continued from previous page
Conference Papers Summary
1st meeting “On high dimensional flat Origamis”

T. Kawasaki [40]
A notation based geometric model of Origami in three or more dimen-
sions. For three dimensional Origami, creases are represented with faces
intersecting at vertices or edges.

1st meeting “On relation between mountain-crease
and valley-crease of flat Origami”

T. Kawasaki [41]

Notation for Origami and attempts to globalise foldability constraints for
flat-foldable Origami.

1st meeting “Origami and insanity”
T. Yenn [42]

The author discusses several Origami models they have folded and in-
cludes some mathematical background about the models. The paper also
looks at the definitions of Origami and insanity and makes comparisons
between the two.

1st meeting “Origami as an art of constraints”
J. Smith [43]

This paper seeks to describe Origami with a set of constraints. Many
types of Origami are considered. The properties of a bird base is included
and models which include cutting, modular and polyhedral flattening are
discussed.

1st meeting “Origami geometry: Old and new”
E. Frigerio [44]

Similar to Frigerio’s other paper, ‘New relations in Origami geometry’
in the same proceedings, Frigerio expands on that paper here to look at
rules for mountain valley assignments in crease patterns.

1st meeting “Recherches sur les moyens de
reconnaitre si un probleme de

geometrie peut se résoudre avec la
reègle et le compas”

M. Wansel [45]

This paper’s title translates as ‘Research on how to recognize if a geom-
etry problem can be solved with a ruler and compass’ it looks at solving
second degree equations and trigonometric functions.

Table 2.2 – continued on next page
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Continued from previous page
Conference Papers Summary
1st meeting “Resolution par le pliage de l’equation

du troisieme degree’ et applications
geometriques”
J. Justin [46]

This paper’s title translates as ‘Solution by folding to third degree equa-
tions and geometric applications’. It looks at the problems of trisecting
angles, solving cubic equations and constructing polygons. This is the
first paper referencing all 7 of the axioms.

1st meeting “The algebra of paper-folding”
H. Huzita & B. Scimemi [47]

An introduction to why Origami constructions are studied and how they
are of use. It shows how, with no tools other than a piece of paper, we
can create mathematical Origami constructions from trisecting angles
and solving polynomial equations to constructing polygons.

1st meeting “The elusive pentagon”
R. Morassi [48]

A comparison of several pentagon construction methods looking at their
precision, complexity and the size of the final pentagon. This work leads
to the construction of an exact maximal pentagon.

1st meeting “The Rudin-Shapiro sequence, Ising
Chan, and paper-folding”

M. Mendes France [49]

Looking at the dragon curves and sequences created through folding this
paper shows how the Rudin-Shapiro sequence can be formed.

1st meeting “The trisection of a given angle solved
by the geometry of Origami”

H. Huzita [50]

Looking at trisection of angles using H. Abe’s method. Expanding to
solving polynomial equations of degree three and providing a suggestion
that fourth degree equations may also be solvable.

2nd meeting “Artistic tiling problem by Origami”
P. Forcher [51]

Presents Origami tiling models including a fish which can be an element
of a mathematical tiling.

2nd meeting “Fold - its physical and mathematical
principles”

K. Miura [52]

A study into the geometry of a fold. It asks why folded structures are
characterised by rugged surfaces with convex and concave surfaces di-
vided by sharp folds.

2nd meeting “Four-dimensional Origami”
K. Miyazaki [53]

Theoretical 4-dimensional folding done either by folding a 2-dimensional
sheet or by folding a 3-dimensional shape through a 4-dimensional space
is discussed using a selection of theoretical examples.

Table 2.2 – continued on next page
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Continued from previous page
Conference Papers Summary
2nd meeting “Fujimoto successive method to obtain

odd-number section of a segment or
angle by folding operations”
H. Huzita & S. Fujimoto [54]

Two iterative methods by Fugimoto to divide an edge or an angle into
an odd number of equal segments are presented. The authors evaluate
the speed at which these methods approach a solution which is found to
be very rapid.

2nd meeting “R(y)-1”
T. Kawasaki [55]

Kawasaki concludes his study into the mathematics of Origami with the
symbolic representation R(y)-1 which is referred to as the essence of
Origami. A range of properties are shown to hold for several examples.
However there are still certain things which are possible in the abstract
model which cannot be realised in paper.

2nd meeting “Right angle billiard games and their
solutions by paper-folding”

H. Huzita [56]

Using a selection of imaginary billiard games, such as a game of billiards
where every collision with a cushion bounces back in a direction 90 de-
grees from its incoming one. This paper uses Origami to find solutions to
these problems. Finally, it applies the Origami methods shown to draw
a regular heptagon and also to trisect an angle.

2nd meeting “Similarity in Origami”
J. Maekawa [57]

Intended as a preface of the authors full study, the paper looks at simi-
larity in the geometric sense beginning with the geometry of paper sizes
and symmetries in traditional crease patterns and leading on to research
into fractal/infinite folds.

2nd meeting “Towards a mathematical theory of
Origami”

J. Justin [58]

This paper is a developed version of one of the earliest documents to
discuss a mathematical theory of Origami, a handwritten paper titled
“First ideas for a mathematical theory of paper folding”. Initially split-
ting Origami into 2D, 3D and Curved Folds, this paper focuses on the
first of these cases. It discusses the necessary and sufficient conditions
without being overly rigorous and looks at several conditions including
the non-crossing and no-twist conditions.

Table 2.2 – continued on next page
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Continued from previous page
Conference Papers Summary
2nd meeting “Tridimensional transformation of

paper by cutting and folding”
R. Razani [59]

Suggested is a way in which cutting and folding to produce pop up struc-
tures could be modelled.

3OSME “A mathematical model for non-flat
Origami”

S. Belcastro & T. Hull [60]

Based on the assumption that a fold is not necessarily flat the authors
look at the necessary and sufficient conditions for a crease pattern to be
foldable using a mapping from the two dimensional real plane to three
dimensions. Necessary conditions are found, sufficiency conditions are
shown to be more elusive.

3OSME “Fold paper and enjoy math:
Origamics”

K. Haga [61]

An exploration into mathematical properties of folded paper, focusing
initially on using a single fold on a square. Haga presents several special
cases known as Haga’s theorems and also looks at similar properties found
with rectangular paper.

3OSME “Just like young Gauss playing with a
square: Folding the regular 17-gon”

R. Geretschlager [62]

As a comparison between Euclidean and Origami constructions the au-
thor asks if it is possible to construct a regular 17 sided shape. A 17-gon is
constructible using straight edge and compass as it only requires solving
a quadratic equation; this paper shows it is also possible with Origami
and a mathematically accurate method for this is presented.

3OSME “Mathematical Origami: Another view
of Alhazen’s optical problem”

R. Alperin [27]

This paper looks at the power of Origami constructions. A method for
folding a heptagon and solving quartics is shown as well as an exploration
of Alhazen’s problem. The problem is to construct two lines, drawn from
two points in a circle to one point on the circumference, such that they
make equal angles with the normal vector at that circumference.

3OSME “Origami with trignoometric functions”
M. Kawamura [63]

Kawamura presents methods to accurately produce angles using Origami
as a trigonometric function calculator. It also shows how the complexity
of this can be simplified where approximate angle production will suffice.

Table 2.2 – continued on next page

21



Continued from previous page
Conference Papers Summary
3OSME “Paper-folding constructions in

Euclidean geometry: An exercise in
thrift”

B. Scimemi [64]

Exploring several classic geometric problems in Euclidean geometry. As
many have been previously shown Scimemi seeks solutions using Origami
which have a minimal number of steps in order to minimise error build-up
through folding and also to make the solutions more elegant.

3OSME “Square cycles: An introduction to the
analysis of flexagons”

E. Berkove & J. Dumont [65]

This paper analyses the structure of cycles in flexagons based on several
different methods for their creation. It poses open questions such as
whether there is a link between the folding pattern and the structure
diagrams and the task of enumeration of possible flexagons from a given
net.

3OSME “The combinatorics of flat folds: a
survey”

T. Hull [66]

Several classic results in the combinatorics of flat foldable Origami
crease patterns are presented and attempts are made at generalising
the Kawasaki and Maekawa theorems as well as counting valid valley-
mountain assignments.

3OSME “The definition of iso-area folding”
J. Maekawa [67]

A definition for iso-area folding is given, stating if a fold has n-bar sym-
metry and the rotation axis passes perpendicularly through the plane of
the unfolded paper, then the crease pattern has rotational symmetries
and should be seen as iso-area; these symmetries might inverse crease di-
rection. Maekawa’s paper then explores some properties of some known
and unpublished iso-area models.

4OSME “An Excel-based solution to the
one-cut folding problem”

A. Huang [68]

Huang presents a variation on the straight skeleton algorithm, based on
angle bisectors of adjacent sides and non-adjacent sides. This method is
said to be easy to implement.

4OSME “Configuration spaces for flat vertex
folds”

T. Hull [69]

This paper focuses on combinatorial issues with flat vertex folds. These
are also shown to hold for folded cones.

Table 2.2 – continued on next page
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Continued from previous page
Conference Papers Summary
4OSME “Concepts and modelling of a

tessellated molecule surface”
E. Halloran [70]

Focusing on the surface of You’s expandable Origami stent, this paper
explores the crease pattern and its folded polyhedral surface without
looking at its cylindrical structure.

4OSME “Facet ordering and crease assignment
in uniaxial bases”

R. Lang & E. Demaine [71]

This work provides the first simple algorithm for crease alignment in a
uniaxial base. A uniaxial base is a folded structure containing distinct
flaps protruding from the base perpendicular to a line referred to as the
axis of the base.

4OSME “Folding curves”
R. Geretschlager [72]

This paper looks at some basic results of curved crease folding. The
algebraic expressions involved are shown to be quite complex and require
a large amount of computing power for even the simplest of curves.

4OSME “Fujimoto, number theory, and a new
folding technique”
T. Veenstra [73]

In search of a complete Fujimoto division, dividing the paper into nths
providing divisions at all n, this paper looks at the numbers for which this
is possible and provides several different viewpoints. The mathematical
algorithm also provides an interesting application for expressing numbers
in different bases.

4OSME “Integer programming models for flat
Origami”

G. Konjevod [74]

The work tries to find bounds on the size of a k ∗ k chessboard which
could be constructed using a unit square. Using integer programming the
authors were able to define many constraints leading to a conjecture that
a reduction factor of 2k would be required for this, but more research is
required to prove it.

4OSME “On the fish base crease pattern and its
flat foldable property”

H. Azuma [75]

This introductory approach provides ways to apply conic sections to the
composition of flat foldable crease patterns. Several fish base patterns
are shown to exist and be foldable.

Table 2.2 – continued on next page
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Continued from previous page
Conference Papers Summary
4OSME “One-, two-, and multi-fold Origami

axioms”
R. Alperin & R. Lang [76]

The authors extend the axioms to allow folding of two creases at once.
Using the same approach as Lang’s proof for the completeness of the
seven 1-fold axioms, this paper finds 489 axioms and shows some math-
ematics which can be performed with them including solving a quartic.
The paper finally considers higher level axioms and uses three fold axioms
to solve a quintic.

4OSME “Origami, isometries, and multilayer
tangram”

E. Frigerio [44]

This paper provides several mathematical designs which can be used to
teach a variety of mathematics.

4OSME “Surface transitions in curved Origami”
J. Mosely [77]

With a mathematical focus based upon a sheet folding which must have
zero Gaussian curvature at all points Mosely shows how it is possible
to design models using curved creases where the folded shape can be
predicted instead of by the usual experimentation method.

4OSME “The method for judging rigid
foldability”

N. Watanabe & K. Kawaguchi [78]

Two methods are shown for judging rigid foldability, a diagram based
method and a numerical method. Necessary conditions are shown and
sufficient conditions are mentioned for future research.

4OSME “The power of multifolds: folding the
algebraic closure of the rational”

T. Chow & C. Fan [79]

This paper looks at what numbers are constructible with Origami. Us-
ing multi fold axioms the paper shows that the algebraic closure of the
rational numbers can be folded. It also shows irrational numbers cannot
be constructed using axiomatic construction.

5OSME “A combinatorial definition of 1D
flat-folding”

H. Kawasaki [80]

Using a combinatorial definition of one-dimensional Origami to provide
an improved, more rigorous, proof of a theorem that states that any one-
dimensional flat-foldable Origami can be folded using the local operations
of crimping and end fold.

Table 2.2 – continued on next page
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Continued from previous page
Conference Papers Summary
5OSME “A general method of drawing biplanar

crease patterns”
H. Cheng [81]

This paper provides a description of a prismatoid gadget algorithm to
fold polyhedra with vertices in two planes: biplanars.

5OSME “A note on operations of spherical
Origami construction”

T. Kawasaki [82]

This paper attempts to use set theory to describe Origami operations.
8 operations are found when Kawasaki creates operations to be used
in spherical Origami construction. This spherical form of Origami is
defined as folding a sphere in half through a great circle which divides
two hemispheres.

5OSME “Degenerative coordinates in 22.5
degree grid system”

T. Tachi & E. Demaine [83]

Tachi and Demaine characterize the degeneracy of points which are con-
structible in a proposed 22.5 degree grid system. They show that using
two types of operation any desired point in the grid system can be con-
structed.

5OSME “Every spider web has a simple flat
twist tessellation”

R. Lang & A. Bateman [84]

A review of the mathematics governing Origami tessellations and the
history of their development. It shows that every spider web, a graph
with an orthogonal interior dual with no edge crossings, can be turned
into a flat foldable shrink rotated tessellation using the vertices of the
orthogonal interior dual for centres of rotations.

5OSME “Flat vertex fold sequences”
T. Hull & E. Chang [85]

A flat vertex fold is referred to as a single vertex from a crease pattern,
as the mathematics of a flat vertex fold is almost fully understood the
authors ask if it is completely determined by the sequence of angles.

5OSME “Flat-unfoldability and woven Origami
tessellations”
R. Lang [86]

An algorithm used to create the effect of a woven structure is presented
and implemented in Mathematica. Several examples are also shown.

Table 2.2 – continued on next page
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Continued from previous page
Conference Papers Summary
5OSME “Introduction to the study of tape

knots”
J. Maekawa [87]

This paper describes a preliminary study of tape knots, shapes produced
when a strip of paper is tied in a knot. The paper shows the range
of shapes which can be created and enumerates the possible versions in
terms of layering.

5OSME “Origami alignments and constructions
in the hyperbolic plane”

R. Alperin [88]

Alperin defines axioms for Origami in the hyperbolic plane, these axioms
are used to solve several mathematical problems such as solving quartics
or quintics.

5OSME “Precise division of rectangular paper
into an odd number of equal parts

without tools: an Origamics exercise”
K. Haga [89]

Haga presents an alternative, independently generated, version of Lang’s
crossing diagonals technique. It enables a folder to find equal divisions of
a sheet. This method works for any rectangle and presents some notable
symmetries.

5OSME “Stamp foldings with a given
mountain-valley assignment”

R. Uehara [90]

Work is done on enumerating folded states, and the number of ways of
folding a crease pattern, is shown to be very large. Uehara proposes that
finding the optimal solution could be NP-hard.

5OSME “The speed of Origami constructions
versus other construction tools”

E. Tramuns [91]

Geometrography is the measure of the speed of Euclidean constructions.
This paper defines a method for comparison with Origami construction
which is done by creating an Origami tool.

5OSME “Two folding constructions”
R. Orndorff [92]

The author describes a folding method using Descartes’ construction of
a segment of length square root n. In addition a method is described
for folding segments of length equal to square roots of the reciprocal of
integers.

5OSME “Universal hinge patterns for folding
orthogonal shapes”

N. Benbernou, E. Demaine, M.
Demaine & A. Ovadya [93]

This paper presents an algorithmic proof that an n ∗n square tilling of a
simple hinge pattern can construct all face to face gluings of O(N) unit
cubes.

Table 2.2 – continued on next page

26



Continued from previous page
Conference Papers Summary
5OSME “Variations on a theorem of Haga”

E. Frigerio [94]
Frigerio presents work on Haga’s theorem, including use of multiple
creases or use of rectangles instead of squares.

6OSME “A survey and recent results about com-
mon developments of two or more boxes”
R. Uehara [95]

This paper summarises the work done on producing nets which can fold
in different ways to produce different boxes. All possible variations of
nets folding into 2 shapes with 30 squares are shown and the smallest
net for 3 different boxes found contains over 500 unit squares.

6OSME “A new scheme to describe twist-fold
tessellations”
T. Crain [96]

A language to describe simple twist fold arrangements is shown; this
method can be used to provide new designs. It is also shown that there
exists an infinite number of basket weave tessellations.

6OSME “Abelian and non-abelian numbers via
3D Origami”

J. Prieto & E. Tramuns [97]

This work aims to introduce folding axioms for 3D construction to in-
crease the range of constructions possible with the one fold axioms. Some
axioms are listed but the list is not comprehensive. These are shown to
construct Abelian numbers and those numbers whose Galois group is not
solvable.

6OSME “Characterization of curved creases and
rulings: Design and analysis of lens

tessellations”
E. Demaine, M. Demaine, D. Huffman,

D. Koschitz & T. Tachi [98]

Some mathematical modelling of curved crease Origami is proposed. A
general theory of curved Origami is stated. However, although still a long
way off this work should enable mathematical design of curved crease
works.

6OSME “Colour symmetry approach to the
construction of crystallographic flat

Origami”
L. De las Penas, E. Taganap & T.

Rapanut [99]

In this paper the authors consider the unassigned crease pattern that
is the orbit of its generating unit under a plane crystallographic group.
On a flat foldable crease pattern a folding assignment is created using a
colouring of the cease pattern.

Table 2.2 – continued on next page
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6OSME “Colouring connections with counting

mountain-valley assignments”
T. Hull [100]

A survey of recent approaches for enumerating valid mountain-valley
assignments which are linked to colouring problems. This is done for two
colourable flat Origamis.

6OSME “Equal division on any polygon side by
folding”

S. Chen [101]

‘The median boundary method’ is presented as an extension of the
crossing-diagonals method. Although there is no advantage when used
on a square, it can be expanded to any polygon.

6OSME “Geometric and arithmetic relations
concerning Origami”

J. Guardia & E. Tramuns [102]

Presented is a general purpose formal language for the approximation of
geometrical instruments. Introducing the concept of a tool formalises an
instrument as a set of axioms, the geometric and virtual equivalence of
tools is considered.

6OSME “Graph paper for polygon-packed
Origami design”

R. Lang & R. Alperin [103]

Formal conditions are proposed for doubly periodic graph paper which
is defined as ‘periodic graph paper on which any uniaxial base can be
designed with guaranteed non-dense axial conditions’. A new Origami
grid, the Sterling grid, is presented.

6OSME “Interactive construction and
automated proof in Eos system with
application to knot fold of regular

polygons”
F. Ghourabi, T. Ida & K.

Takahashi [104]

Presented are constructions of knot folds for the regular pentagon and
the regular heptagon which have been created by logically stating the
geometric properties of the knots.

6OSME “Locked rigid Origami with multiple
degrees of freedom”

Z. Abel, T. Hull & T. Tachi [105]

The authors look at the hypothesis that any triangular mesh origami can
be continuously folded from an unfolded state, as this is true for many
examples. They show that for one specific rigid origami model it is not
foldable and thus show that triangulating a non-rigid fold pattern is not
always enough to attain a rigid folding.

Table 2.2 – continued on next page
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6OSME “On pleat rearrangements in Pureland

tessellations”
G. Konjevod [106]

A class of Origami constructions is described which creates woven effects
in the paper from Pureland construction; a proposed folding sequence
optimisation method is shown to be NP-hard.

6OSME “Pentasia: An aperiodic Origami
surface”

R. Lang & B. Hayes [107]

A construction method for an aperiodic surface is presented. A section
of this surface, Pentasia, is folded to demonstrate this method.

6OSME “Rigid folding of periodic Origami
tessellations”
T. Tachi [108]

This paper shows that periodic triangulated crease patterns can be rigid
foldable to a cylindrical form. They are shown to have two degrees of
freedom, unlike the Miura-Ori fold which has one degree of freedom.

6OSME “Rigidly foldable Origami twists”
T. Evans, R. Lang, S. Magleby & L.

Howell [109]

An evaluation method for rigid foldability is given. It is shown that a
triangle twist cannot be rigidly foldable but a square twist can be. Also,
a method is given to calculate twist angles for rigidly foldable regular
polygonal twists.

6OSME “Scaling any surface down to any
fraction”

E. Demaine, M. Demaine & K.
Qaiser [110]

It investigates if any polyhedral surface can be scaled down by a specific
fraction such that the shape is not deformed. Individual faces on the
polyhedral structure are treated as connected thus pleats in the paper
must align. This paper provides a method for scaling any quadrilateral
but it is not known if this face can merge with other faces to solve the
whole problem.

6OSME “Spiderwebs, tilings, and flagstone
tessellations”
R. Lang [111]

Lang proposes an algorithm for the design of flagstone tessellations; this
algorithm has been implemented in Mathematica and produces crease
patterns and folded form rendering from a plane graph.

Table 2.2 – continued on next page
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6OSME “Thick rigidly foldable structures

realized by an offset panel technique”
B. Edmondson, R. Lang, M. Morgan, S.

Magleby & L. Howell [112]

The authors suggest an alternative solution to the tapered panels pro-
posed by Tachi. They suggest using offset panels which hinge such that
when they fold they have the same kinematics as the zero thickness mod-
els and the full range of motion. Several examples with advantages and
limitations are shown.

6OSME “Weaving a uniformly thick sheet from
rectangles”

E. Davis, E. Demaine, M. Demaine &
J. Ramseyer [113]

The problem of weaving an infinite sixed sheet from finite length strips
such that the resulting sheet has uniform thickness and the individual
pieces are locked together is considered. Some examples are shown.
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2.1.2 Computational Origami deconstruction, design and

diagramming

Origami initially consisted only of a small range of different foldable models. Dur-

ing the expansion of the field and due to the increased interest, designing Origami

has become more accessible. To assist, many have looked to computing to enable

more complex designs as well as to optimise designs for scientific applications.

Many traditional models are made from bases. These simple base shapes provide

a number of manipulatable flaps which can be folded into a wide variety of models.

The development of new bases was the key to unlocking the design potentials of

Origami. This is done using a range of techniques such as circle packing. This

area has been worked on by many Origamists most notably Lang with his software

TreeMaker [114].

An entirely new approach was found based on tucking molecules and is presented

by Tachi [115]. This provides a method which is hoped to be shown to be able to

produce any 3D shape with the program Origamizer [115].

More bespoke programmes have been developed for specific design applications

such as Tess, a tessellation design tool presented in 2001 at 3OSME by Bate-

man [116]. Others have looked at diagramming; Ida et al. presented Eos [117] at

4OSME in 2006 as a tool for diagram creation, at the same time as Fastag pre-
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sented eGami [118], a similar program. More recently Akitaya et al. [119] show

how they can generate diagrams direct from the crease patterns.

This area has received a particularly large amount of attention, the ‘Computa-

tional Origami Movement’ can be justified as starting with Bern and Hayes paper

‘The complexity of flat origami’ in the proceedings of the 7th Annual ACM-SIAM

Symposium on Discrete Algorithms [120]. This grew into a quest to answer ques-

tions revolving around ‘can a computer efficiently solve problems that arise from

folding processes?’. More recently in 2007, Demaine published a book ‘Geometric

Folding Algorithms’, this book is some of the only graduate level literature looking

at mathematics and Origami which focuses on Computational Origami [16].
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Conference Papers Summary
2nd meeting “The technique to fold free flaps of

formative art ‘Origami’”
F. Kawahata [121]

A method based on circle packing and similar to the tree method. The
circles are placed around the edges of the square which makes crease
patterns easier to work out. This method is similar to the tree method
in that it also allows points to emanate from locations on the tree other
than a central point.

2nd meeting “The tree method of Origami design”
R. Lang [114]

This paper presents the tree method, an extension of circle packing to
enable crease pattern design such that not all flaps are emanating from
a single location. The authors computer program is discussed which can
find a local optimum for a crease pattern using this method. This must
be one of the most important advances in computational Origami design.

3OSME “A disk-packing algorithm for an
Origami magic trick”

M. Bern, E. Demaine, D. Eppstein &
B. Hayes [122]

An algorithm using disk packing to find the crease patterns of solutions
to the one-straight-cut theorem. The solutions found are foldable but
the algorithm does not provide a folding method, the difficulty of finding
this depends on the complexity of the shape to be cut. The authors also
suggest simplifications to the method and its generalisation to cutting
out an entire planar graph as well as a possible application to the prob-
lem of inside-outside non-obtuse triangulation and conforming Delaunay
triangulation problems.

3OSME “Computer tools and algorithms for
tessellation design”
A. Bateman [116]

Using a pre-existing algorithm to construct representations of folded
states the author presents their software, ‘Tess’, an Origami tessella-
tion generation and design program and they discuss how it uses this to
generate the light pattern and crease lines of the folded state.

Table 2.3 – continued on next page
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3OSME “Recent results in computational

Origami”
E. Demaine & M. Demaine [123]

A comprehensive introduction and explanation of many computational
Origami theorems including a discussion of Robert Lang’s TreeMaker
software, which uses the tree method of Origami design, and several
of the theorems worked on extensively by the authors such as the one-
straight-cut theorem dating from 1721 and the silhouette folding problem
first formally stated by Bern and Hayes which was proved to always hold
by the authors in a previous paper. This paper also covers flattening
polyhedra, foldability and map folding.

3OSME “The foldinator modeller and document
generator”

J. Szinger [124]

The author presents their software ’Foldinator’ which can be used to cre-
ate folding instructions for Origami models. They include a discussion of
the development and use of the program which models 2D sheet materials
folding through a 3D space.

4OSME “3D Origami design based on tucking
molecules”

T. Tachi [115]

Here Tachi provides a method which is hoped to be shown to be able to
produce any 3D shape using pleats intersecting at tucking molecules.

4OSME “Computational complexity of a
pop-up book”

R. Uchara & S. Teramoto [125]

The authors present a model for the construction of pop-up books and
use this to show that the problems of opening and closing pop-up books
are NP-hard.

4OSME “Computational Origami system EOS”
T. Ida, H. Takahashi, M. Marin, A.

Kasem & F. Ghourabi [117]

This paper describes Eos, an E-Origami software environment for compu-
tational Origami. The software provides a simulation of the folds, shows
some geometric properties and is also available in a partial form through
a web browser.

Table 2.3 – continued on next page
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4OSME “Computer Origami simulation and the

production of Origami instructions”
T. Lam [126]

Based on a program for Origami simulation by S. Miyazaki this paper
presents an extension which enables automatic diagram generation. The
paper points out that the program cannot work on layers which are cov-
ered thus it is difficult to use this for complex models.

4OSME “Construction of 3D virtual Origami
models from sketches”

H. Shimanuki, J. Kato & T.
Watanabe [127]

Provides a method for three dimensional Origami design based on a two
dimensional drawing. It generates a tree from the diagram and uses
pre-existing algorithms to generate crease patterns.

4OSME “eGami: Virtual paper folding and
diagramming software”

J. Fastag [118]

The authors present their software eGami; this enables a user to sim-
ulate the sequential folding of flat Origami models in real time. The
programme simulates a real sheet of paper and comes with common in-
built folds such as sink or reverse.

4OSME “Graphics transformation of Origami
models”

L. Zamiatina [128]

The paper presents a method by which it is possible to use an Origami
model as a seed to a computer generated artistic image. This is done by
transforming the polygons in the image of the folded model.

4OSME “Recognition, modelling, and rendering
method for Origami using 2D bar

codes”
J. Mitani [129]

This paper proposes two methods for Origami modelling. The first con-
structs an Origami model and the second renders this to a screen by
slightly perturbing the geometry to make it easier to see the configura-
tion of the parts in the model.

4OSME “Simulation of rigid Origami”
T. Tachi [130]

It discusses the mathematics behind a proposed system for simulating
folding motion using projection on to the constrained space based on a
rigid Origami model using trajectories.
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5OSME “A CAD system for diagramming

Origami with prediction of folding
processes”

N. Tsuruta, J. Mitani, Y. Kanamori &
Y. Fukui [131]

Proposed is a Computer Aided Design (CAD) system for flat foldable
crease patterns. This programme also predicts possible future folds which
could be made at each step. The system is shown to be difficult with
complex Origami. However it predicts steps well with simpler models.

5OSME “A simulator for Origami-inspired
self-reconfigurable robots”

S. Gray, N. Zeichner, M. Yim & V.
Kumar [132]

The authors present a computer programme which can model Origami
for use in programmable matter structures. It allows crease patterns to
be viewed folding in real time, enabling identification of problems.

5OSME “Circle packing for Origami design is
hard”

E. Demaine, S. Fekete & R. Lang [133]

Presented is a proof stating, within the general tree method for Origami
design, the circle packing optimisation problem is NP-hard. This is shown
based on a reduction of the 3-partition. This paper also shows that it is
possible to guarantee the existence of a feasible solution if given a larger
piece of paper.

5OSME “Development of an intuitive algorithm
for diagramming and 3D animated
tutorial for folding crease patterns”

H. Akitaya, M. Ribeiro, C. Koike & J.
Ralha [134]

The authors describe their algorithm which folds a crease pattern gener-
ated using circle/river packing. It generates a vector image of the folded
state of the model which can be edited for diagramming purposes.

6OSME “Filling a hole in a crease pattern:
Isometric mapping from prescribed

boundary folding”
E. Demaine & J. Ku [135]

The authors show that the “hole” problem will always have a solution
for polygonal input boundaries folded at finitely many points if the input
folding is non-expansive. Proposed is a polynomial time algorithm for
finding isometric mappings consistent with prescribed boundary map-
pings.
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6OSME “Simple flat Origami exploration

system with random folds”
N. Tsuruta, J. Mitani, Y. Kanamori &

Y. Fukui [136]

In search of a design method for simple Origami models with only a
few folds the authors present a random fold generator tool which creates
a series of random Origami models from which specific designs can be
chosen.

6OSME “Unfolding simple folds from crease
patterns”

H. Akitaya, J. Mitani, Y. Kanamori &
Y. Fukui [119]

This is a concerned with generating folding sequences from crease pat-
terns. The authors identified methods for identifying possible instruc-
tions from a crease pattern including many simple folds such as outside
and inside reverse folds.

Table 2.3: Summaries of OSME papers presented in the area of: Computational Origami deconstruction, design and diagramming
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2.1.3 Exploration, design and colouring of Origami poly-

hedra

Polyhedra have been a mathematical curiosity for thousands of years with Pythago-

ras loosely credited for discovering the dodecahedron [137]. They require a high

level of spatial skill to visualise. Even the simplest are difficult to construct. How-

ever, the creation of polyhedra using Origami can be unexpectedly simple. This

enables them to be studied and explored with ease. Gurkewitz [138] presents ideas

linking to a mathematics curriculum and shows how, with an Origami polyhedron

model, it is possible to explore its properties to understand the geometric con-

cepts behind it. Ishihara [139] and Cuccia [140] also provide examples of using

polyhedra to better understand crystal and chemical structure respectively.

Many of the OSME papers present an analysis of a particular module to explore

which polyhedra can and cannot be made such as Strobl’s paper [141] on knotted

tape. This is often extended to explore if new and unknown polyhedra can be

created such as Horii’s work [142] on finding convex deltahedra. In particular,

Lang’s exploration [143] has led to a better understanding of polypolyhedra and

most recently work on using curved creases to create polyhedral structures for

architectural use.

Polyhedron flattening is also studied; in many real life situations polyhedra are

flattened, from folding away a paper bag to folding an airbag in a car. This is not

38



always possible using rigid Origami. However, Abel et al. [144] provide a possible

solution using cuts and, taking a more applied approach, Balkcom et al. [145]

analyse the folding of shopping bags.

The exploration of choosing aesthetically pleasing colourings for these polyhedra

leads Morrow [146] to graph theory applications, and work by Hull [147] even

suggests the possibility that Origami polyhedra may help in the search for a

shorter and more elegant proof of the four colour theorem [148].

Due to the physical properties of paper, it is also possible to create inaccurate

polyhedra in which the angles used are precise enough to construct the polyhedra

but in fact are not accurate; Mosely [149] explored some examples of this.
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Conference Papers Summary
2nd meeting “Finding convex deltahedron through

Origami”
Y. Horii [142]

Considering deltahedron, convex polyhedral shapes with only equilateral
triangles for faces, the author presents an analysis of their shape and how
to enumerate each of them using Origami.

2nd meeting “Modular Origami polyhedra”
R. Gurkewitz [138]

Looking at Origami made from multiple units and how it is possible to
adapt these units in a systematic way to make different polyhedra; this
paper also discusses how this can be incorporated into a curriculum.

2nd meeting “Molecular modelling of fullerenes with
modular Origami”

L. Cuccia, R. Lennox & F. Ow [140]

Some models of fullerenes made with modular Origami are considered.
They are used as a way to explain the complex arrangements of these
fullerene molecules.

2nd meeting “Origami model of crystal structure, II.
Spinel and corundum structures”

S. Ishihara [139]

Models of crystal structures are presented. They can be made simply
and demonstrate the complex nature of these structures in an easily
understandable, visual way.

2nd meeting “Planar graphs and modular Origami”
T. Hull [147]

An introduction to basic graph theory concepts, in particular on coloura-
bility of polyhedral graphs. It uses these to show how knowledge of planar
graph theory can lead to a deeper understanding of polyhedral structures
and modular Origami.

2nd meeting “Polyhedron Origami: a possible
formulation by ‘simple units’”

M. Kawamura [150]

Looks at units for modular Origami as belonging to several classes; one of
these is a ’simple unit’. It defines different simple units using two angles
and uses this to see the wide variety of polyhedra they can construct.

2nd meeting “Symmetry in two and
three-dimensional Origami with

knotted tape”
H. Strobl [141]

Looks at folding a long strip of paper to create polyhedral structures,
which appear woven in nature, based on creating a knot in the paper.

2nd meeting “The cube story told in
modular-Origami language”

T. Fuse [151]

This is a survey of the different ways to fold an Origami cube. It looks at
ways using two to six sheets and then also looks at more complex models
which make connected cubes or variations on cubes.

Table 2.4 – continued on next page
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2nd meeting “The platonic solids and its interrelated

solids”
S. Fujimoto [152]

Provides photos of a collection of models of Origami structures of the
platonic solids and molecular structures. The models are made from
similar units which make up edges in the polyhedra and bonds in the
molecular structures.

3OSME “Circular Origami: A survey of recent
results”

E. Knoll [153]

This is a deceptively short survey. It addresses the use of folding circular
sheets for both mathematics and education. Of note is the experimen-
tation on an Origami ’endo-pentakis-icosidodecahedron’, referred to as
Geraldine, upon which the research was initially based.

3OSME “Exploring the possibilities of a
module”

K. Burczyk & W. Burczyk [154]

This paper looks at polyhedral models made using R. Gurkewitz’s edge
module. Looking at variations of this module it asks which polyhedra
can and cannot be constructed using this and similar modules.

3OSME “Polypolyhedra in Origami”
R. Lang [143]

This is an exploration of Origami models of multiple intersecting polyhe-
dra with no intersecting edges called polypolyhedra. Through rigorous
mathematical modelling 54 polypolyhedra are found and some of their
properties are explored. The author also adapts a design for the five
intersection tetrahedra to produce Origami models of the 4 homo-orbital
polypolyhedra.

3OSME “The validity of the Orb, an Origami
model”

J. Mosely [149]

Analyses the mathematical accuracy of Origami models of mathematical
structures such as polyhedral models, looking specifically at a model of
intersecting cubes and an orb.

3OSME “Using graphs to colour Origami
polyhedra”

C. Morrow [146]

A method by which you can use Hamiltonian cycles in polyhedral graphs
to help choose colours for Origami models that will be aesthetically pleas-
ing.

Table 2.4 – continued on next page
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4OSME “Folding paper shopping bags”

D. Balkcom, E. Demaine, M. Demaine,
J. Ochsendorf & Z. You [145]

The authors provide a mathematical analysis of several folding methods
to flatten a paper shopping bag focusing on the durability of the bag
given a specific folding sequence.

4OSME “How many ways can you edge-colour a
cube?”

C. Morrow [155]

This paper looks at the problem of choosing colours for an Origami cube
made with edge units. The author systematically looks as possibilities
and categorises them based on their properties.

4OSME “One-dimensional Origami: polyhedral
skeletons in dance”

K. Schaffer [156]

Written due to the increasing interest in DNA-Origami, but based on
exploration of creation of polyhedra through dance routines, this paper
explores how one dimensional Origami can construct a range of polyhe-
dra.

4OSME “The Celes family of modular Origami”
M. Kawamura [157]

A discussion of Origami models of polyhedra made from strips of paper.
Initially joined at the ends and expanding to longer strips with multiple
connections, the paper presents a method for generating variations of
these models.

6OSME “Curve-folding polyhedra skeletons
through smoothing”

S. Chandra, S. Bhooshan & M.
El-Sayed [158]

The authors present their work on folding the skeletons (edges) of poly-
hedra using curved creases in metals. For these polyhedra they show
how several variables can change the output and describe the method by
which they are generated.

6OSME “Rigid flattening of polyhedra with
slits”

Z. Abel, R. Connelly, E. Demaine, M.
Demaine, T. Hull, A. Lubiw & T.

Tachi [144]

It is not always possible to flatten polyhedra in a rigid way; the authors
provide a solution for a tetrahedron using a small slit in the shape which
enables polyhedra flattening with one degree of freedom to be possible.

Table 2.4 – continued on next page
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6OSME “Symmetric colourings of

polypolyhedra”
S. Belcastro & T. Hull [159]

Through exploration and analysis of the polypolyhedra found by Lang,
the authors provide an analysis of some of the ways in which they can
be symmetrically coloured.

6OSME “Two calculations for geodesic modular
works”

M. Kawamura [160]

This paper looks at several colour combinations with implementation
methods for creating modular geodesic spheres; it also looks at enumer-
ating the number of edges of these polyhedra.

Table 2.4: Summaries of OSME papers presented in the area of: Exploration, Design and Colouring of Origami Polyhedra
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2.1.4 Origami applications in science and technology

The applications of Origami are vast in number and range from space science to

medicine. These applications use Origami techniques, to gain benefits in various

ways, including; increasing strength in 3D structures, enabling microscopic con-

structions, providing economic and environmental benefits, increasing production

speed and generating new shapes which provide better sound insulation.

Packaging is one of the most obvious and intuitive examples of an Origami appli-

cation. Several authors have looked at how the techniques used in Origami as an

art form can solve problems, such as the Eco-Origami pot design by Fuse [161],

which folds and locks into place without the use of glue, and curved designs for

packaging by Mitani [162], which can add both artistic design and strong structure

to packaging.

Origami techniques have been explored to produce many structural benefits rang-

ing from Filipov’s [163] mathematical analysis of stiffness and flexibility in Origami

structures to Klett [164] and Drechsler’s [165] analysis of how these structures

could be developed. Of special note is the Miura-Map fold which is an alternative

method for folding a map which enables it to be opened and closed by holding

only two opposite corners [166]. This turns out to have many applications as a

structural crease pattern including in space science and, in a simpler form, it can

be used to model biological folding of plants. This fold is also the catalyst for the
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study of rigid Origami which has been worked on by many including Tachi [167]

who proposed the concept of tapered panels enabling rigidity to be maintained in

thick Origami.

There has been much research into self-assembling autonomous folds for small

scale folding including Mehner’s work [168] on tissue engineering and the work of

Ghosh [169] on folding thin metal sheets.

In this area there have been many publications outside of the OSME conferences,

including in journals from engineering conferences and mathematical publications.

There have also been several other conferences similar to OSME but focused on

applications, one example being the workshop on Origami engineering held over

three days in 2014 at the University of Illinois [170] although this is still a much

smaller event than the OSME series.
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Conference Papers Summary
1st meeting “A note on intrinsic geometry of

Origami”
K. Miura [166]

Using mathematical modelling to explain the characteristics of the Miura
map fold. To do this the author looks at a spherical representation of a
vertex in a crease pattern and at convexity/concavity properties.

1st meeting “Map fold a La Miura style, its physical
character and application to the space

science”
K. Miura [171]

Analysis of the foldability and flexibility of the Miura map Origami fold
and discussion of its application in solar sails and membrane design.

1st meeting “Towards the realisation of the Miura
fold by machine”

W. Oosterbosch [172]

Comments about a Miura map folding machine created by the author
including comments on the speed of folding and possible future develop-
ments.

1st meeting “Wire bending”
M. Mendes France [173]

Work on three dimensional curves formed by iteratively bending a wire.
The paper proves that many of these curves are bounded and all are
aperiodic.

2nd meeting “Folded and unfolded Nature”
B. Kresling [174]

Analysis of the geometry of both biological folding (leaves and wings) and
folded structures used in space (sails) as well as several other examples in
an attempt to better understand morphological principles and to define
precise optimisation criteria in biology.

2nd meeting “Folding of uniform plane
Tessellations”
T.Tarnai [175]

Presents results from introductory research into the possible folded solu-
tions of the Origami (32̂.4.3.4) tessellation as an analogue for the buckling
patterns of axially compressed box columns.

2nd meeting “How the Origami model explains the
theory of Kikujutsu”

T. Iwasaki [176]

Kikujutsu is introduced as a traditional Japanese carpenter’s technique.
This paper shows an Origami model which can be used to explain the
theory behind this method.

2nd meeting “Origamic architecture”
M. Chatani [177]

This Japanese paper is presented with an English introduction describing
pop-up postcards; the paper then proceeds to analyse the mathematics
of pop-up structures.

Table 2.5 – continued on next page
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3OSME “Folded tubes as compared to Kikko

(“tortoise shell”) bamboo”
B. Kresling [178]

Research into the nature-inspired design of folded cylindrical hollow
structures for engineering purposes. By looking at bamboo which is ab-
normally grown and recreating these shapes in paper, it presents nature-
inspired rules for Origami design optimisation.

3OSME “Origami pots”
T. Fuse, A. Nagashima, Y. Ohara & H.

Okumura [161]

A design for a glue-free, folded paper pot, which has been created in order
to reduce waste and to replace the environmentally harmful polystyrene
pots used in the fast food industry.

3OSME “Self-assembling global shape using
concepts from Origami”

R. Nagpal [179]

The author suggests an Origami shape language for instructing a sheet
of identically programmed flexible autonomous cells which fold into three
dimensional structures. Some examples are also shown.

3OSME “The application of Origami science to
map and atlas design”

K. Miura [180]

A summary of two separate solutions to problems with map design. This
paper looks at the advantages of the Miura map fold for easy folding
and unfolding as well as an alternative solution which overcomes the
North-South navigation problem for multi-page maps.

3OSME “To fold or to crumple?”
B. DiDonna [181]

Through the observation that a crumpled sheet of paper follows the same
rules of methodically folded Origami, the paper explores the physics of
crumpling, using the geometry of a sheet and Hooke’s law of elastic de-
formation along with the principles of conservation of energy. The paper
attempts to show why crumpling and methodically folding produce sim-
ilar results.

4OSME “A brief history of Oribotics”
M. Gardiner [182]

Combining Origami and Robotics this paper explores the work that has
been done to create self-folding structures.

4OSME “Airbag folding based on Origami
mathematics”

C. Cromvik & K. Eriksson [183]

The development on an algorithm which models the accurate geometry
of a folded airbag is presented. Numerical examples and the mathematics
behind the model are discussed.

Table 2.5 – continued on next page
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4OSME “Expandable tubes with negative

Poisson ratio and their application in
medicine”

Z. You & K. Kuribayashi [184]

This paper presents work on an Origami stent design which exhibits
transverse expansion when stretched. Initially analysing a pre-existing
method this paper also looks at helical arrangements which improve de-
ployability.

4OSME “Origamic architecture in the cartesian
coordinate system”

C. Cheong, H. Zainodin & H.
Suzuki [185]

For the application of making paper models of buildings this paper de-
velops formulas for the Cartesian coordinates of points modelling the
creation of 3D Origami pop up constructions.

4OSME “Origami-Inspired self-assembly”
G. Pickett [186]

Looking at MMES, Micro-Electrical-Mechanical-Systems, this paper de-
velops self-folding Origami tessellation structures.

4OSME “The science of Miura-on: A review”
K. Miura [187]

A review of the mathematics and physics research that has been done
on the Miura-Origami map fold and other variants. It also looks at
successful applications including maps, space technology and biology.

5OSME “A design method for axisymmetric
curved Origami with triangular prism

protrusions”
J. Mitani [162]

A method for wrapping an object using curved crease Origami which can
be designed and visualised on a computer. This method can have many
applications from packaging to lamp shade design.

5OSME “Designing technical tessellations”
Y. Klett & K. Drechsler [165]

The authors present work on the development of tessellations for use in
structural applications from packaging to architecture, using both top
down and bottom up strategies. Several examples are shown and anal-
ysed.

Table 2.5 – continued on next page
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5OSME “Foldable parylene Origami sheets

covered with cells: Toward applications
in bio-implantable devices”

K. Kuribayashi-Shigetomi & S.
Takeuchi [188]

A description of a method to produce foldable micro-sized Origami struc-
tures by using poly p-xylyene which is biodegradable and flexible. These
are to be used in highly bio-compatible implantable medical devices to
minimise invasion in surgical procedures.

5OSME “Folding a patterned cylinder by rigid
Origami”

K. Wang & Y. Chen [189]

This paper looks at several possible solutions for a one degree of freedom
rigid foldable closed patterned cylinder. By mathematically modelling
the crease patterns vertices as a spherical linkage the rigid transforma-
tions of the sheet are modelled. The authors suggest the use of this in
applications in engineering such as energy absorbing devices.

5OSME “Hands free microscale Origami”
N. Bassik, G. Stern, A. Brafman, N.

Atuobi & D. Gracias [190]

This paper provides techniques for producing millimetre or microscale
Origami patterns which fold up autonomously and are made from thin
metal sheets. They show how using thousands of these units a global
shape can be achieved with greater complexity; however, production is
currently challenging.

5OSME “Origami folding: A structural
engineering approach”

M. Schenk & S. Guest [191]

Introduces folded textured sheets as a novel engineering application of
Origami. This paper aims to extend the range of structural engineering
applications of Origami. Some mechanics are explored for a pin jointed
bar framework model.

5OSME “Rigid-foldable thick Origami”
T. Tachi [108]

Presented is a method which enables kinetic behaviour of an ideal
Origami surface to be maintained in a rigid foldable Origami structure
with thick panels. This is done using tapered panels with predefined
maximum and minimum folding angles.

Table 2.5 – continued on next page
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5OSME “The Origami crash box”

J. Ma & Z. You [192]
Proposed is an Origami folding pattern for use as a high performance
tubular energy absorber. It is shown to have increased mean crushing
force and reduced peak crushing force when compared with conventional
square tubes.

6OSME “A study on crash energy absorption
ability of lightweight structures with

truss core panel”
Y. Yang, X. Zhao, S. Tokura & I.

Hagiwara [193]

This study looks at lightweight truss core panels and proposes the use of
an additional reinforced part which would be used to maximise the crash
energy absorption under a weight control condition. It is shown that
with this addition the structure is able to absorb more energy compared
with a structure of the same mass without the addition.

6OSME “Comparison of compressive properties
of periodic non-flat tessellations”

Y. Klett, M. Grzeschik & P.
Middendorf

Looking at the development of new core structures for application in
sandwich constructions the authors show the results from a series of tests
on the strength of these structures.

6OSME “Configuration transformation and
manipulation of Origami cartons”

J. Dai [194]

Presented is a matrix operation model relating distinct topological figu-
ration states during manipulation and folding of Origami cartons. The
work aims to improve automation in packing applications.

6OSME “Cosmological Origami: Properties of
cosmic-web components when a

non-stretchy dark-matter sheet folds”
M. Neyrinck [195]

Exploring dark matter using Origami, a polyhedral collapse model is
suggested in which nodes are created at the locations of galaxies and
twist folds cause overlapping regions.

6OSME “Demands on an adapted design
process for foldable structures”

S. Hoffmann, M. Barej, B. Gunther, M.
Trautz, B. Corves & J. Feldhusen [196]

Analysing student projects, in this paper, a summary of several chal-
lenges to the construction of deployable folds are presented. Although
deployable grid structures have been used for architecture, they are not
commonplace due to the difficulties of implementing them.

Table 2.5 – continued on next page
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6OSME “Deployable linear folded stripe

structures”
R. Maleczek [197]

Adapting the hexagonal network of folded strips, which is already in
use, this paper aims to create 3D structures. The paper finds that these
structures are rigid foldable only when the structures share one centre or
a pair of centres and parallel stripes with a single extrusion direction.

6OSME “Folding augmented: A design method
to integrate structural folding in

architecture”
P. D’Acunto & J. Gonzalez [198]

Formalising the operations around which the proposed design method is
built. The authors are able to minimise the complexity of the design
process and include the ability to explore the spatial possibilities while
controlling structural potentials.

6OSME “Gravity and friction-driven
self-organised folding”

G. Filz, G. Grasser, J. Ladinig & R.
Maleczek [199]

Ongoing research into self-organised folding of fibre cement and textile
concrete sheet elements using gravity and friction as guiding concepts.
This is shown to be similar to Origami.

6OSME “Magnetic self-assembly of
three-dimensional microstructures”

E. Iwase & I. Shimoyama [200]

Beginning with a look at the theory of how torque acts on magnetic mi-
croplates the authors present a method for the construction of microscale
3D structures including actuators and sensors.

6OSME “Numerical analysis of Origami
structures through modified frame

elements”
K. Fuchi, P. Buskohl, J. Joo, G. Reich

& R. Vaia [201]

A study looking at mechanical properties such as compression ratio and
mechanical energy of adaptive Origami structures.

6OSME “On the aesthetics of folding and
technology: Scale, dimensionality, and

materiality”
M. Gardiner [202]

Exploring several examples from folding in DNA to folds in space, this
paper is an exploration into how the scale, dimensionality and materiality
of Origami change the aesthetics of the folded structure.

Table 2.5 – continued on next page
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6OSME “ORICREATE: Modelling framework

for design and manufacturing of folded
plate structures”

R. Chudoba, J. Van Der Woerd & J.
Hegger [203]

By creating a generalised optimisation framework for the design of Ori-
create folded plate structures, the author’s show how it can be used to
support a wide range of designs.

6OSME “Planning motions for shape-memory
alloy sheet”

M. Ghosh, D. Tomkins, J. Denny, S.
Rodriguez, M. Morales & N.

Amato [169]

By adapting an existing motion planning algorithm the authors show it
can be used for modelling collision free, gravitationally stable motions of
shape metal alloys from a flat state to a three dimensional shape.

6OSME “Screw algebra based kinematic and
static modelling of Origami-inspired

mechanisms”
K. Zhang, C. Qiu & J. Dai [204]

Presented is an exploration of the kinematics and statics of Origami bases
using the characteristics of a single crease and modelling the motions of
panels and creases when folding using screw algebra.

6OSME “Sound-insulating performance of
Origami-based sandwich trusscore

panels”
S. Ishida, H. Morimura & I.

Hagiwara [205]

By introducing a theory of sound insulation this paper compares tra-
ditional insulating panels with Origami inspired ones. They are both
shown to have strengths in different areas.

6OSME “Structural engineering applications of
morphing sandwich structures”

J. Gattas & Z. You [206]

The authors present an overview of a set of prototypes which show the
capabilities of morphing sandwich structures. Covering the geometric
design, fabrication and deployment of these structures, focusing on struc-
tural engineering applications.

Table 2.5 – continued on next page
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6OSME “Thin-walled deployable grid

structures”
J. Ho & Z. You [207]

Presented is a new concept for deployable grid structures which uses the
Tachi-Miura polyhedron. Experimentation with this pattern is shown to
lead to several variations with a range of applications.

6OSME “Toward engineering biological tissues
by directed assembly and Origami

folding”
P. Mehner, T. Liu, M. Karimi, A.
Brodeur, J. Paniagua, S. Giles, P.
Richard, A.Nemtserova, S Liu, R.

Alperin, S. Bhatia, M. Culpepper, R.
Lang & C. Livermore [168]

Research is presented on the use of Origami to create 3D scaffolds with
high controllability for biological tissue engineering. Two new fold pat-
terns are shown which might provide structures suitable for representing
tissue in the liver.

6OSME “Toward optimization of stiffness and
flexibility of rigid, flat-foldable Origami

structures”
E. Filipov, T. Tachi & G. Paulino [163]

The authors present ideas for optimising stiffness of rigid foldable struc-
tures based on an expansion of an established model by Schenk and
Guest. This is used to study the rigidity of the Miura-Ori and is in-
tended to be a tool allowing researchers to optimise stiffness in Origami
systems.

Table 2.5: Summaries of OSME papers presented in the area of: Origami applications in science and technology
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2.1.5 Origami applications in art and design

To most folders Origami is an art. Thousands of people enjoy paper-folding simply

for its aesthetic qualities. Many papers from the OSME series are based on studies

which have primarily artistic goals. Often these are based on a mathematical

exploration of a model and its variations such as Demaine’s systematic method

for generating Origami mazes [208] or Mosely’s work on connected cubes [209].

One area which has received great attention is the exploration of variations on

the paper crane which have been mathematically modelled in several papers by

Kawasaki [210–213]. Unlike in the mathematical Origami explorations where the

aim is to push the boundaries of what can be created, many have explored how,

by imposing additional rules on folds, an artist can challenge creativity. Others,

however, have drawn from this mathematical understanding to design mathemat-

ically complex artworks such as Barreto’s work on ‘MARS’ [214] and Sternberg’s

curved crease work [215]. On a slightly different note Smith suggested a database

of all Origami designs [216] of which there are now several databases consisting

of tens of thousands of designs [217].
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Conference Papers Summary
2nd meeting “Art, Origami and education”

J. Smith [216]
Looking at Origami as an art of constraints, the author considers how
models could be categorised into a database of all Origami designs. It
also discusses the use of Origami in education.

2nd meeting “Block Origami system”
Y. Sato [218]

Written in Japanese, this paper presents the idea that folding one sheet
of paper is similar to producing a single Chinese character; which is
analogous to creating a word. If, however, we use multiple sheets the
possibilities will be more varied, such as putting letters in combinations
to make words. Using this, the paper aims to encourage the study and
use of multi-sheet folding.

2nd meeting “Breaking symmetry: Origami,
architecture, and the forms of Nature”

P. Engle [219]

Using asymmetric shapes found in Nature the author presents their ap-
proach to asymmetric Origami design. Four examples are given and
discussed for different ways in which the symmetrical design can be bro-
ken.

2nd meeting “Creative Origami ’snow crystals’:
Some new approaches to geometric

Origami”
K. Suzuki [220]

Studying several models of snowflakes folded from regular hexagons this
paper attempts to classify and describe them. It shows how a seemingly
infinite number of different snowflakes can be folded from a similar form.
Of note is a figure of 128 possible snowflakes including a notation system
to categorise them.

2nd meeting “Discrete symmetric Origami
structures: Dyssigami”

M. Litvnov [221]

Suggested is a new type of Origami-like structure in which the paper is
cut and then folded or transformed to make the final required shape. The
paper is followed by an unindexed note on terminology in Origami.

2nd meeting “Extruding and tessellating polygons
from a plane”

C. Palmer [222]

The author uses examples to show the similarities and differences between
four different types of Origami tessellations. These are twist, collapse,
iso-area and infinite progression.

Table 2.6 – continued on next page
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2nd meeting “Form of Origami”

Y. Momotani [223]
Origami models are folded to represent the basic shape of an object.
This suggests that a greater understanding of what shapes represent an
object might lead to better Origami design. Is it also suggested that this
‘primitive and instinctive’ ability is required to appreciate the model.

2nd meeting “Hakari-ori reflective folding”
J. Sadoka [224]

Defining methods for producing Hikari-Ori, the folding of crease patterns
into low relief shapes which reflect light and cast shadows differently
depending on location and viewpoint. Notably, they also state a folding
rule they have discovered; this is a special case of Maekawa’s theorem.

2nd meeting “Image game”
K. Kasahara [225]

A method for folding Origami models which are made by taking a crease
pattern, folding it completely and then unfolding part way to open out
the paper into a three dimensional model.

2nd meeting “Lines meeting on a surface the
“MARS” paper-folding”

P. Barreto [214]

Presents a method for producing flat foldable tessellation-like designs
based on grids which are not standard.

2nd meeting “Origami fractal”
K. Takei [226]

Presents the fundamentals of Origami and image engineering for gener-
ating fractals.

3OSME “A study of twist boxes”
N. Nagata [227]

Reviews several similar Origami box designs which are passed around a
twist design. By analysing the angle of the twist in the design the author
is able to categorise several families of boxes from their crease patterns.

3OSME “The geometry of Orizuru”
T. Kawasaki [210]

In-depth exploration of the mathematics behind the crease pattern of a
paper crane, more specifically a bird base, and how it can be altered and
still remain foldable.

4OSME “A crystal map of the Orizuru world”
T. Kawasaki [211]

The Orizuru world is defined as the set of all quadrilaterals with an
inscribed circle, thus they can be folded into cranes. By creating a visual
representation of the map of this set a crystal map is formed.

Table 2.6 – continued on next page
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4OSME “A geometrical tree of fortune cookies”

J. Maekawa [228]
Looks at the mathematics behind the shape of fortune cookies and prop-
erties such as being homeomorphic with a sphere and being a developable
surface; meaning, like Origami, the surface does not stretch or shrink in
the folding process.

4OSME “Constructing regular n-gonal twist
boxes”

S. Belcastro & T. Veenstra [229]

An exploration of boxes which are constructed with a twist. It looks
at the mathematical considerations needed to generalise these to any
number of sides and gives an example of a seventeen sided box.

4OSME “Curves and flats”
S. Sternberg [215]

A discussion of using curved creases. Unlike folds made using straight
creases, when you make curved creases you cannot flatten the model
without unfolding. The author suggests a method for gaining a relative
flatness using curved crease tessellations which notably can produce a
Gausian curvature. The paper then looks at the restrictions on further
folding when curved crease tessellations are used.

4OSME “Fractal crease patterns”
U. Ikegami [230]

A look at infinite folding models where the number of iterations of fold-
ing can, in theory, be increased infinitely. Starting with the Maekawa
pyramid this paper looks at variations which increase the complexity
further.

4OSME “Orizuru deformation theory for
unbounded quadrilaterals”

T. Kawasaki & H. Kawasaki [212]

Looking at several different deformations of the base of a paper crane
this paper mathematically analyses which variations are possible and
what their restrictions are. It shows that this is only possible if the
quadrilateral used has an inscribed circle.

4OSME “Paper nautili: A model for
three-dimensional planispiral growth”

A. Lommel [231]

A new design method for smoothly curved 3D models of logarithmic
spirals is presented. This paper also looks at some of the mathematics
behind creating variations of this model with different growth rates.
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5OSME “A systematic approach to twirl design”

K. Burczyk & W. Burczyk [232]
Exploring variations on a twirl design by Goubergen in which paper
tension is used to hold the structure of the shape. Many variations are
explored by changing a range of 11 parameters.

5OSME “Compression and rotational
limitations of curved corrugations”

C. Edison [233]

Through exploration of the properties of curved crease corrugations the
author looks at how changing these curves can affect the compression
and rotation ability of the folded structure.

5OSME “Folding any orthogonal maze”
E. Demaine, M. Demaine & J. Ku [208]

The authors present an algorithm to design a crease pattern for any
specific maze based on a square grid design.

5OSME “New collaboration on modular
Origami and LED”

M. Kawamura & H. Moriwaki [234]

The authors present a method to incorporate LEDs into Origami pieces
which illuminate them from the inside creating x-ray like effects.

5OSME “Oribotics: The future unfolds”
M. Gardiner [235]

Using technology to enhance art, this paper describes work on an inter-
active lighting display and its development.

5OSME “Polygon symmetry systems”
A. Hudson [236]

Proposing alternative grid structures for use in Origami crease patterns,
using a system for polygonal grids which are not the standard square,
triangle or hexagon it shows some examples of folds for hendecagonal
and decagonal crease patterns as well as a method for generalisation.

5OSME “Reconstructing David Huffman’s
legacy in curved-crease folding”
E. Demaine, M. Demaine & D.

Koschitz [237]

A practical exploration of both published and unpublished Origami art-
works, by the late David Huffman, which were made using curved creases.
Working towards the development of a theory for curved crease Origami
design.

5OSME “Simulation of nonzero Gaussian
curvature in Origami by curved-crease

couplets”
C. Leong [238]

The authors provide a method to produce curved creases as pleats which
deform the shape of paper in such a way that it can give the impression
of nonzero Gaussian curvature.
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5OSME “Using the Snapology technique to

teach convex polyhedra”
F. Goldman [239]

Focusing on its simplest forms the authors look at polyhedra created
from ribbons using the snapology technique. The paper also suggests
that they could be used to teach the geometry of polyhedra.

6OSME “A method to fold generalized bird
bases from a given quadrilateral
containing an inscribed circle”

T. Kawasaki [213]

Here Kawasaki continues his work on paper cranes, this time looking
at methods for folding cranes from a given quadrilateral containing an
inscribed circle. Folding sequences can be found but the centres found
are not always perfect centres for the shape given.

6OSME “Base design of a snowflake curve
model and its difficulties”

U. Ikegami [240]

This paper looks at a generalised crease pattern for constructing a fractal
snowflake model which is examined up to the 5th iteration. The number
of creases required, however, is shown to grow extremely rapidly.

6OSME “Crowdsourcing Origami sculptures”
J. Mosely [209]

A series of artworks produced with connected simple cube models are
presented. Models include a level three Menga-sponge and snowflake
sponge and were folded collaboratively.

6OSME “Design methods of Origami
tessellations for triangular spiral

multiple tilings”
T. Sushida, A. Hizume & Y.

Yamagishi [241]

The authors review three design methods of triangular spiral multiple
tilings and also present another design method which produces these
with one degree of freedom. A significant amount of mathematical effort
is used to create these structures.

6OSME “Extruding towers by serially grafting
prismoids”

H. Cheng [242]

This paper shows a design method by which a structure can be grafted
onto another using pleats such as those commonly used in Origami tes-
sellations. An example shown is of a house grafted onto the back of a
turtle.
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6OSME “Folding perspectives: Joys and uses of

3D anamorphic Origami”
Y. Klett [243]

Unlike traditional Origami where the folded shape creates a visual rep-
resentation as the primary impression of an Origami artwork, Klett pro-
poses and provides examples of the introduction of printing on surfaces
which can be viewed at multiple angles in a precisely engineered Origami
piece to provide multiple visual impressions.

6OSME “Master peace: An evolution of
monumental Origami”

K. Box & R. Lang [244]

Presenting a collection of examples this paper explores collaborative
Origami models which have evolved from paper into monumental works
enlarged, cast and fabricated in Origami.

6OSME “Modelling vaults in Origami: A bridge
between mathematics and architecture”
C. Cumino, E. Frigerio, S. Gallina, M.

Spreafico & U. Zich [245]

Working from a mathematical description of vaults, the authors success-
fully provide crease patterns for vaults which can be used to gain greater
understanding of these architectural shapes.

6OSME “Rotational Erection System (res):
Origami extended with cut”

Y. Miyamoto [246]

Exploring the geometry behind the creation of 3D structures which are
created simply by cutting onto a sheet and folding. The paper presents
several examples and design methods which can have a large range of
applications including jewellery and furniture.

6OSME “Wearable metal Origami”
T. De Ruysser [247]

The author presents a textile-Metal laminate, developed over 16 years, to
create tessellation Origami structures to be used in clothing. This paper
describes the design process and shows some examples.

Table 2.6: Summaries of OSME papers presented in the area of: Origami applications in art and design
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2.1.6 Origami in education and/or therapy

The act of folding paper is a kinaesthetic tactile process in which the shape of

an object is manipulated, whilst the folded model is a 3D object which can be

explored and manipulated further. Origami can be both a medium for exploration

of purely artistic design or tightly restricted to challenge creativity. The geometric

shapes created when folding provide a useful tool for mathematical investigation.

Furthermore, as already seen in this survey, there is a plethora of mathematical

treasures which can be studied and used in education. It is no wonder that

Origami has been used as a teaching tool.

In the OSME proceedings many authors including, Hall [248] and Frigerio [249]

provide lesson plans or work schemes designed to teach mathematics to a range of

different audiences while Carter [250] provides a wider viewpoint and surveys the

frequency of paper folding exercises in American mathematics textbooks. Due to

its versatility Origami has been used for teaching many subjects, from visualising

chemical structures to languages; Yee Ho [251] and Jackson [252] provide examples

of using Origami to teach English and design, respectively. Notably, Edison [253]

shows how Origami has also been used as a tool for engaging with disadvantaged

student groups and Paparo [254] provides a case study of how Origami has helped

drug addicts. This area had its own conference series COET, Conference on

Origami in Education and Therapy, organised by John Smith who used the first

OSME conference as a springboard for it [255]. Held in both 1991 and 1995, the
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proceedings of these, COET91 [256] and COET95 [257], provide a larger range of

materials in this specific area.
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Conference Papers Summary
1st meeting “Origami-therapy applied to a drug

addict”
M. Paparo [254]

This is a note instead of a paper, due to the ill health of the original
author. It follows the story of a boy, initially a drug addict with a limited
vocabulary, who through Origami was able to progress away from drugs
and subsequently enrol in the military.

2nd meeting “Hypergami: A computational system
for creating decorated paper

constructions”
M. Eisenberg & A. Nishioka [258]

Presented is an educational computer program designed to allow students
to design a simple model by adjusting elements and applying colours. The
results can be printed to enable real world construction.

2nd meeting “One crease Origami: Less is More”
P. Jackson [252]

An exploration of how Origami models with only one crease can be used
as a teaching tool for university students studying design. The one-crease
folds, which often include curves, are shown to be very varied in aesthetics
and physical properties of the final output.

2nd meeting “Origami as an aid to understanding
symmetry groups”

J. Nitta [259]

Several examples as a structure for teaching symmetry groups to students
using modular Origamis. These examples can be taught with almost no
budget and to a large group of students.

2nd meeting “Physically handicapped Origami”
S. Kase [260]

Facing the problem of an ageing population and an increasing number of
people with disabilities in Japan, this study looks at how Origami can
be used to help people with a range of disabilities and it provides advice
and guidance from the authors’ experiences.

2nd meeting “Teaching Origami to develop
visual/spatial perception”

J. Hall [248]

This paper looks at both why it is important to teach visual/spatial
skills and how this can be done using Origami providing discussion of
some examples.

3OSME “Application of Origami to the teaching
of sophisticated communication

techniques”
D. Foreman-Takano [261]

Several lesson ideas and teaching resources for using Origami to teach the
English language to students in Japan are presented. These have been
developed through the authors experiences teaching English to Japanese
university students.

Table 2.7 – continued on next page
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Continued from previous page
Conference Papers Summary
3OSME “In praise of the paper cup:

Mathematics of Origami at the
university”

E. Frigerio [249]

A review of a university course for future primary school teachers demon-
strating and exploring the mathematics which can be taught from a paper
cup model.

3OSME “Instances of Origami within
mathematical content texts for

preservice elementary school teachers”
J. Carter & B. Ferrucci [250]

A review of the frequency of paper folding activities, examples or exer-
cises in a selection of American school mathematics textbooks.

3OSME “Origami and the adult ESL learner”
L. Yee Ho [251]

Several lesson ideas and teaching structures for using Origami to teach
ESL (English as a Second Language) to learners in the US.

3OSME “Origami as a model for development
in organisms”

N. Budnitz [262]

Presenting an Origami analogue to the real-world series of events in ge-
netics, with a crease pattern as an expression of the genome, reference
folds represent genes used in early life which later do not play a part, and
step by step instructions represent the making of proteins. Of note is the
observation that similar crease patterns may fold into different models.

3OSME “Using triangular boxes from
rectangular paper to enrich
trigonometry and calculus”

V’Ann Cornelius & A. Tubis [263]

How quantitative mathematical analysis can be taught using Origami by
adjusting the design of a triangular box. This example is presented as
both an elegant Origami construction and also contains a fair amount of
high school mathematics in its creation.

4OSME “Modular Origami in the secondary
geometry classroom”

M. Cagle [264]

Motivated by a lack of attention given to 3D geometry in secondary
mathematics, Cagle uses polyhedral models to enable students to fully
understand this area as described by the Van Hiele model.

4OSME “On the effective use of Origami in the
mathematics classroom”

V’Ann Cornelius & A. Tubis [265]

The authors provide several examples of simple Origami models which
can be used to teach simple mathematics principles from algebraic ex-
perimentation with models to an introduction to geometry.

Table 2.7 – continued on next page
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Continued from previous page
Conference Papers Summary
4OSME “Origametria: A program to teach

geometry and to develop learning skills
using the art of Origami”

M. Golan & P. Jackson [266]

Looking at the Origametria program this paper explains how it can be
incorporated into a classroom setting and provides some examples.

4OSME “The impact of Origami mathematics
lessons on achievement and spatial
ability of middle-school students”

N. Boakes [267]

This study shows that in terms of spatial ability Origami had a positive
benefit to students. The study also looked at the effect of gender on this
and the effect of an Origami course on mathematical skill.

4OSME “Understanding the effect of Origami
practice, cognition, and language on

spatial reasoning”
M. Wilson, R. Flanagan, R. Gurkewitz

& L. Skrip [268]

This study seeks to use Origami as a solution to the lack of mathemat-
ical understanding in US schools. With a sample of 37 middle school
students, the study looked at factors including the students’ enjoyments
of Origami, their enjoyment of mathematics, their attitude towards math-
ematics and their attitude to Origami.

4OSME “Using Origami to promote problem
solving, creativity, and communication

in mathematics education”
S. Pope & T. Lam [269]

The authors provide a summary of their work teaching students mathe-
matics through three areas; whole class teaching where the whole group
folds a model, reverse engineering of a model in groups and design of an
Origami shape based on some basic geometric requirements.

5OSME “Close observation and reverse
engineering of Origami models”
J. Morrow & C. Morrow [270]

Ways in which Close Observation and Reverse Engineering, CORE, of
Origami models can be used to improve learning and problem solving
skills as well as to promote creativity.

5OSME “Hands-on geometry with Origami”
M. Winckler, K. Wolf & H. Bock [271]

A series of learning units for grade 8 students are discussed. The units
include work such as Haga’s theorem, trisecting angles and the Origami
axioms. The course was tested with mathematically gifted students who
responded well to the course.

Table 2.7 – continued on next page
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Continued from previous page
Conference Papers Summary
5OSME “My favourite Origamics lessons on the

volume of solids”
Shi-Pui Kwan [272]

A collection of examples, of how to find the volume of a solid, for use in
teaching. Ranging from a cubic box to antiprisms.

5OSME “Narratives of success: Teaching
Origami in low income urban

communities”
C. Edison [253]

A series of accounts collected by the author where Origami has been used
for disadvantaged students in inner city and or low income environments.
This includes examples of how students who had not engaged with the
education system, possibly having spent time in jail, can be taught to
follow instructions, build self-confidence and engage with learning.

5OSME “Origametria and the Van Hiele theory
of teaching geometry”

M. Golan [273]

Looking at Origametria, a programme of Origami in the curriculum in
Israeli preschools, this paper looks at how it follows the van Hiele theory
of geometric teaching.

5OSME “Origami and learning mathematics”
S. Pope & T. Lam [274]

Pope and Lam provide several examples of how mathematical principles
such as proofs by mathematical reasoning can be taught using Origami.

5OSME “Origami and spatial thinking of
college-age students”

N. Boakes [275]

Continuing the work by the author in 4OSME this paper presents results
from another study this time focusing on a course of 75 College age
students. The results show promising links between engaging in Origami
related study and spatial skills.

5OSME “Student teachers introduce Origami in
kindergarten and primary schools:

Froebel revisited”
M. Fiol, N. Dasquens & M. Prat [276]

This paper presents work from 10 years of exploration with teaching
teachers how to use Origami while teaching primary school mathematics.
It also reviews other work in this area.

6OSME “Area and optimization problems”
E. Frigerio & M. Spreafico [277]

Based on work on an ongoing 5 year program of Origami classes for
Italian elementary pupils, the authors provide lesson structures which
have engaged students who would not normally engage with the syllabus.
This is shown also to improve cooperation and concentration skills.

Table 2.7 – continued on next page
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Continued from previous page
Conference Papers Summary
6OSME “Mathematics and art through the

cuboctahedron”
Shi-Pui Kwan [278]

Looking specifically at several models of the cuboctahedron, Kwan looks
at the integration of mathematics, art and Origami.

6OSME “Origami-inspired deductive threads in
pre-geometry”
A. Tubis [279]

Tubis provides a rough preliminary outline of a programme incorporat-
ing Origami into pre-geometry mathematics education such as providing
folding verifications for the standard formulae for areas of shapes.

6OSME “The kindergarten Origametria
programme”

M. Golan & J. Oberman [280]

Working with the curriculum of the Israeli ministry of education, this
paper discusses the content of a course for kindergarten teachers on how
exploration of folding in Origami can be used as a learning tool.

6OSME “Using Origami to enrich mathematical
understanding of self-similarity and

fractals”
A. Bahmani, K. Sharif & A.

Hudson [281]

Presented is a programme developed for schools in Iran introducing and
covering concepts including infinity. These courses use Origami fractals
such as Palmer’s flower towers and Fujimoto’s hydrangea. Experiences
with this programme are also discussed.

6OSME “Using paper folding to solve problems
in school geometry”

Y. Huang & P. Lee [282]

Using the Origami Axioms, Huang and Lee present several Origami based
demonstrations of school geometry problems looking at parallel lines,
triangles, quadrilaterals and circles.

6OSME “Using the Fujimoto approximation
technique to teach chaos theory to high

school students”
L. Poladian [283]

Poladian shows how this Origami technique can capture a student’s in-
terest when studying chaos theory covering a range of mathematical prin-
ciples from manipulating simple fractions to some of the deepest results
in number and chaos theory.

Table 2.7: Summaries of OSME papers presented in the area of: Origami in education and/or therapy
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2.1.7 The study of the history, language and psychology

of Origami

Although the study of the history of paper-folding is not one of the aims of the

OSME conferences there have been several papers presented there exploring this

area. Here we look at those papers which concern either the study of the history,

language or psychology of Origami. Many of these are linked and look at questions

such as ‘Why did people in the past choose to fold paper?’ or ‘What is the history

of the word Origami?’

This area of research is made complex by the lack of a universally accepted and

consistent definition of Origami and the questionable reliability of supporting

evidence for some theories. Thus, there are many theories of the history of paper-

folding and its origins. Paper is often said to originate in China in the second

century BCE [11]. Although it is likely that the first to fold paper were those that

invented it, this should not be considered as Origami. Lister [4] and Hatori [11]

show us evidence to support the theory that it developed independently in both

the east and the west leading Hatori to conclude that “Origami has never been

a Japanese art” [11]. In contrast the word Origami is definitely Japanese, based

on ‘Ori’ meaning to fold and ‘kami’ meaning paper. Okamura [284] provides a

background on how and why the word was developed discussing the motivation

behind this choice.
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In addition, some researchers have looked at the more recent history of Origami

such as in Tateishi’s work, [285], analysing how cross-linguistic differences have

affected Origami instructions, while Tubis and Mills, [286], looked at myths in-

cluding Origami, such as the myth surrounding the origin of the five pointed stars

on the American flag.

Some authors have looked to the future. Early in the OSME series, Van Goubergen

suggested how a mix of computer aided design and traditional approaches would

be needed in order to not alienate folders [287]. Brill suggests that folders will

need to move away from traditions of the past such as using bases [288].

Of special note is a discussion of the psychology behind Origami design work by

Yoshizawa who is considered to be the grandmaster of Origami, credited with

creating over 50,000 models in his lifetime [289]. Yoshizawa’s paper is one of the

only mentions of the psychology of Origami and it may be that he is one of a very

few to look at this field.

There are many sources of information in this field outside of the OSME series.

Lister, a founding member of BOS, was perhaps the world’s leading Origami

historian and wrote many papers which have been made available through the

BOS website [290]. There is also a book “Notes on the History of Origami” [291]

by Smith which provides a more in-depth look at much of the history of Origami,

However, it dates from 1972 which is before many of the papers here. In addition

Lister has published a book “The History of Paper Folding in Britain” [292].
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Conference Papers Summary
2nd meeting “Another view of the word ‘Origami’”

M. Okamura [284]
Presented is the history of the word “Origami” based on evidence from
several sources. Showing references to paper-folding under different
names, the authors discuss how the word Origamizaiku was created as
a name for paper-folding based on its femininity, lack of homonyms and
that it conveyed the superiority of Japanese paper folding.

2nd meeting “Movement of nature, folding line
structures and others”

A. Yoshizawa [293]

Yoshizawa, the founder of modern Origami, presents a discussion of
the psychology behind Origami design. This paper describes how, for
Origami design, you need not only folding knowledge and skills but also
good observation skills as, when we make an Origami representation of a
flower we are not actually folding a flower, just something which captures
an abstracted geometry of a flower.

2nd meeting “Origami and motivation”
T. Yenn [42]

Beginning with a unique definition of some Origami terminology Yenn
recounts personal experiences with Origami and uses these to understand
why a person might choose to fold paper or study Origami.

2nd meeting “Some observations on the history of
paper-folding in Japan and the west - a

development in parallel”
D. Lister [4]

A summary of the history of paper-folding in Japan and in the west
explaining the need for evidence based sources. The author dismisses
some theories of paper-folding in Japan which are not based on evidence,
until such evidence can be found.

2nd meeting “The roots of Origami and its cultural
background”

K. Ohashi [294]

Provided is a somewhat different approach to the history of Origami
in Japan which looks at the atributes of the Japanese people and their
culture that may have made them decide to fold paper.

Table 2.8 – continued on next page
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Continued from previous page
Conference Papers Summary
2nd meeting “Thoughts of the future of Origami

design: Something old, something
new. . . ”

H. Van Goubergen [287]

A collection of possible future developments in Origami. Suggestions
ranging from computer based mathematical design to design through
creativity and exploration of shaping. The author warns that there is a
risk of these schools diverging as far as to alienate the folder and asks if
the future may hold more folds from the best of both schools or increased
use of restricted folding techniques, such as in Pureland Origami.

2nd meeting “Traditional and technical”
D. Brill [288]

Considering the use of traditional bases and the single uncut square in the
history of Origami design, this paper asks how these rules can be broken.
It leaves a final thought that folders should leave traditional prejudices
behind and in doing so greater possibilities of folds will emerge.

4OSME “Redundancy of verbal instructions in
Origami diagrams”
K. Tateishi [285]

Through several examples of both diagrammatic and verbal instructions
Tateishi shows how the diagram language used in Origami is sufficient
to provide all necessary instruction and is also better suited than word
instructions.

5OSME “Betsy Ross revisited: general fold and
one-cut regular and star polygons”

A. Tubis & C. Mills [286]

A critical look at the Origami related origin story of the 5 point star
on the (US) American flag and replication of the method to produce a
one straight cut solution. This method is then expanded to methods to
produce other stars.

5OSME “Deictic properties of Origami technical
terms and translatability:

cross-linguistic differences between
English and Japanese”

K. Tateishi [295]

A review of how cultural attitudes to language have made Origami in-
structions difficult to translate due to differing concepts of an instruction
in the English and Japanese languages.

Table 2.8 – continued on next page
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Continued from previous page
Conference Papers Summary
5OSME “History of Origami in the east and the

west before interfusion”
K. Hatori [11]

An evidence based review of different opinions on the beginnings and his-
tory of Origami presenting alternative viewpoints for both the argument
that Origami originated in China and that Origami is a Japanese art.

6OSME “Computational problems related to
paper crane in the Edo period”

J. Maekawa [296]

Maekawa provides evidence that the mathematical study of Origami is
at least 200 years old by providing examples of Origami problems found
in Japanese manuscripts and sangakus.

6OSME “Mitate and Origami”
K. Hatori [297]

Mitate, to liken something to something else, is stated as being essential
for Origami, where the geometric shape of the model is likened to the
geometric shape of the object it represents. The history of Mitate and
how it is used in almost all Origami is explored with a few examples of
early Origami which did not use Mirate.

Table 2.8: Summaries of OSME papers presented in the area of: The study of the history, language and psychology of Origami
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2.2 Summary

In this chapter we have reviewed the literature on Origami and its different aspects

and uses. We have concentrated on the papers presented in the OSME conference

series proceedings, of which there are six so far. The next OSME conference is

due this year taking place in September at Oxford University. This represents an

almost complete overview of the work in this field.

The next chapter recalls the mathematical background of Origami including the

One Fold Axioms. Basic but essential definitions are given before mathematical

questions are addressed. The most advanced question to be considered is an

attempt at devising an Origami-inspired alternative, and much more succinct

proof to the 4-colour theorem [148]. This will be the subject of the chapter after

next.

73



3
Mathematics of Origami

This chapter reviews the basic mathematical concepts which underpin Origami

constructions and attempts to show how these concepts can be used to tackle

serious mathematical questions. Background definitions are recalled and then

used to state the fundamental axioms of single fold Origami constructions. These

are then used to formulate solutions to some well known mathematical problems.

The chapter ends by revisiting and recalling popular and serious results, such as

Maekawa’s theorem, Kawasaki’s theorem and the One Straight Cut theorem due

to Demaine [122].

Serious work on the Mathematics of Origami has been done since the 1930’s, for

example the work of Beloch [25], however, much of this work had been done in

isolation, with many people reinventing work already done by others. It is only

in the last three decades that this has been more coordinated and attention paid
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to the work that had been done previously leading many to state that the serious

work in this field has been done in this time [16]. There is already a plethora

of information sources on the subject. Research has been and is being carried

out into many areas of Origami, to understand, for instance, the underlying rules

and properties that restrict Origami when making a single fold, such as work by

Alperin [76], and what is and what is not constructible using single fold axioms.

After presenting the fundamental Origami concepts, this chapter looks at the work

that has been done to solve mathematical problems using Origami constructions.

It then compares the scope of this construction approach with that of straight edge

and compass construction. In particular, it looks at the three ancient problems

of trisecting angles, doubling the cube, and squaring the circle.

Expanding on this, the chapter shows ways in which the restrictions of the single

fold Origami constructions can be removed by introducing multi-fold axioms. This

extension helps solve polynomial equations and uses curved creases to construct

transcendental numbers, for instance. It then explores the theorems underpinning

flat foldable Origami crease patterns including their colourability and expands the

colourability theorems to cover 3d constructions.
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3.1 Mathematical Origami construction

From now on it is assumed that the material properties of the piece of paper

to be folded are ignored. This concern is entirely with its representation as a

mathematical object. To this end, we begin by considering the one-fold construc-

tion approach and investigate its capabilities as a solution tool. First however,

we present the necessary mathematical foundations for our model similar to that

from Euclidean Geometry.

It is important to note that the expressions ‘to crease’ and ‘to fold’ are often used

loosely in literature. This thesis will refer to a fold as the action of bending and

pressing flat a piece of paper which produces a crease; thus a crease is the mark

left by the action of folding.

Following are some definitions that lead to the complete set of 1-Fold Origami

Axioms, also known as the Huzita-Justin Axioms (HJAs), [298].

Definition 3.1.1. Let a piece of paper represent a simply connected, bounded

subset of the R2 plane without holes and homeomorphic to a disk.

The edges of the paper are the boundaries of this disc. Making a fold produces a

crease in the paper equivalent to a line in the plane.

Definition 3.1.2. A straight line , L = (a, b, c), in the R2 plane is represented

by coefficients a, b and c of equation ax + by + c = 0. Lines represent either a
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crease or the edge of the paper.

We note here that similar to straight edge and compass constructions it is possible

to construct the reflected image of a line thus it is not necessary to define this

separately, however, we show this later on in this chapter and thus will allow the

existence of such reflections as lines or points to be assumed.

Intersections of lines produce points. Endpoints of lines need not be explicitly

defined; edges of the paper and other folds will inevitably create them. Note

that, in folding constructions, lines are primal. This means, lines, by intersecting,

define points, unlike in standard Euclidean Geometry, [16].

Definition 3.1.3. A point P = (X, Y ) is represented by its coordinates X and

Y in R2. Points are only created where lines intersect.

Having the concepts of point and line formally defined, another fundamental con-

cept, that of alignment, is now provided.

Definition 3.1.4. An alignment is the process of bringing together, i.e. aligning

or folding, a point to a point, a point to a line, or a line to a line, [19]. After the

paper is pressed flat a crease is produced. In other words, alignments are means

for deciding where a fold is going to be made.

When the paper is unfolded back to the original plane from which it was folded,

the crease is represented by a new line through the plane. Marked on the paper
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is the intersection of this infinite line and the paper.

Definition 3.1.5. An Origami Construction is produced as the piece of paper

has creases placed on it, it contains lines representing creases and the edges of the

paper as well as vertices where these intersect; together these separate the paper

into convex polygons forming faces such as on a map.

We now break down the alignments into different types. A line or a point can be

folded onto themselves, creating a fold along a line or through a point. Folding

along a line gives a fold line in the same place as the original line, thus not

constructing any new lines. This is, therefore, removed from our set of alignments.

This gives us four possible alignments [299].

A single alignment is not always enough to uniquely describe a crease as for

example there are an infinite number of folds which can be placed through a

single point. Thus in order to use these for one-fold constructions we must use

them in combination. To make a single fold in the plane, we combine alignments

in such a way that only a finite number of solutions exist, usually only one.

These combinations are commonly known as the Huzita-Justin one-fold axioms

or constructions, [19]. We note here that they are not axioms in the mathematical

sense as they are not always possible.

Definition 3.1.6. The Huzita-Justin 1-fold constructions are all possible

types of fold, generating a single crease that use a minimal combination of align-
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ments. There are seven such types giving the following constructions, [16]:

Axiom 1: Folding through 2 points: Given 2 points A and B, fold A onto A and

B onto B, Figure 3.1(a).

Axiom 2: Folding 2 points together: Given 2 points A and B, fold A onto B,

Figure 3.1(b).

Axiom 3: Folding a line onto another line: Given 2 lines a and b, fold a onto b,

Figure 3.1(c).

Axiom 4: Folding a line onto itself so that the crease intersects a point: Given

a point A, and a line b, fold A onto A and b onto b, Figure 3.1(d).

Axiom 5: Folding a point onto a line so that the resulting crease goes through

another point: Given 2 points A and B, and one line c, if possible fold A onto c

and B onto B, Figure 3.1(e).

Axiom 6: Folding 2 points onto 2 lines: Given 2 points A and B, and 2 lines c

and d, if possible fold A onto c and B onto d, Figure 3.1(f).

Axiom 7: Folding a point to a line so that the resulting crease is perpendicular

to another line: Given a point A, and 2 lines b and c, fold A onto b and c onto c,

Figure 3.1(g).

We note that Axiom 5 and 6 are not always possible however the other axioms
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are always possible given a large enough sheet of paper [16].

3.2 1-fold axiomatic Origami constructions

With the seven 1-fold axioms given above, we now have a basis for simple Origami

constructions. We ask what can be constructed with these axioms? Can we

construct/generate numbers, for instance? If so, which numbers? Integers? Irra-

tionals? Complex? In the following, these questions and others will be considered.

3.2.1 Constructing reflections

It is not clear from the existing literature if construction of reflections can always

be done using the axioms. However, this seems to be obvious in those sources

although they do not provide a formal statement to the effect. Here, we provide

such a statement in the form of a theorem followed by a proof.

Theorem 3.2.1. The reflection of any Origami constructable object, point or line,

with respect to another line is always constructable using the Origami construc-

tions.

Proof. First we note that to prove this theorem, it is sufficient to show that the

reflection of any point is always constructable. A separate proof for a line is
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Figure 3.1: Origami Axioms

81



Figure 3.2: Reflection of a line using the reflections of two points

not required since, if we can construct the reflection of a point with respect to

a line, lines will follow. Note, with Euclidean algebra any line can be defined

by two points; with an Origami construction approach a line can be constructed

which connects two points. Thus, given any line, two arbitrary points can always

be chosen on that line whereby the reflections of those points can be used to

construct the reflection of the original line. This is shown in figure 3.2 Where

given a line L1 and a reflection line, two arbitrary points, P1 and P2, on L1 are

chosen. The reflections of these points P ′1 and P ′2 respectively can be used to

produce the reflection of L1 which is shown as L′1.

We now proceed to construct the reflection of a point.

We note here that as Axioms 5 and 6 do not always have a solution, we must
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make the construction of a reflection of a point using the other five axioms. In

fact we will only need axioms 3 and 4. The following steps are shown in figure

3.3.

Step 1: Axiom 4 gives us that we can always fold through a point such that the

crease is perpendicular to a given line, thus we can construct such a line through

A and perpendicular to b, this is shown in subfigure 3.3a.

Step 2: Again using axiom 4, we can now construct a perpendicular line to the

line just constructed again through point A. This will be parallel to line b and is

shown in subfigure 3.3b.

Step 3, Using axiom 3, to fold a line onto a line, the two lines we have constructed

in steps 1 and 2 can be aligned with each other creating two angle bisectors. These

will intersect the line b at 45◦ as shown in subfigure 3.3c.

Step 4, We can again use axiom 4 to fold perpendicular lines to those just con-

structed passing through the points where those lines intersect b, this is shown in

subfigure 3.3d.

These final two lines will also be at 45◦ to the fold line, thus their intersection will

be at the location of the the reflection of point A, we shall call this A′.

This shows a method that is always possible for construction of the reflection of

as point. As this is possible it follows that the construction of the reflection of any
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Figure 3.3: Origami Construction of reflections

constructable object in the plane is constructable using the one fold axioms.

We note here that only one of the angle bisectors is needed as they will intersect

the first crease we made perpendicular to our reflection line b.

From here on we shall assume reflections of points or lines are constructable and

not show this in step by step instructions for a construction.
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3.2.2 Manipulating lengths

Trigonometry allows one to consider angles as equivalent to lengths, thus we can

manipulate numbers in Origami either as distances between two points or angles

between two lines. The initial dimensions of the paper are irrelevant. A unit

square for instance, will suffice. The interest is in dividing or multiplying the

angles and distances within it. This removes the need for measuring tools other

than the paper itself.

The HJAs allow us to create reference points in order to measure accurately. In

the 1970s, a group of mathematicians, John Montroll amongst them, [300], strived

to make Origami more precise. For instance, where many people would make

approximate folds or folds “to taste”, he tried to find precise folding sequences

that would give the desired result. However, where a crease needs to be made that

is not easily aligned with pre-existing landmarks, the folder has to create those

landmarks, using a sequence of folds which generate reference points that can be

used in future creases. An important landmark used is the mark corresponding

to a certain quotient along an edge or crease. This could be 1
3

or 1
7

of the way

along an edge. It is obvious that one can keep halving the edges to get 1
2n

. But

it is not immediately apparent if it is possible to get other fractions such as 1
3
, or

1
7
, Haga’s theorem is one such method producing a range of fractions precisely,

several methods to create landmarks can be found in [301]. Some of these can

become particularly complex and often simpler imprecise methods can be found
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which approximate solutions very closely, the Fugimoto method is one of these

iterative methods. The Fujimoto method and Haga’s theorems, are recalled in

the following sections [302].

3.2.2.1 Approximate methods using iterative approaches: the Fuji-

moto method

The Fujimoto method [54] is an iterative process. It is applied here to find thirds,

as illustrated in Figure 3.4:

1. Given edge AB of a piece of paper, fold through an arbitrary point C per-

pendicular to the edge;

2. Fold point B to meet point C producing point D;

3. Fold point A to meet point D producing point E;

4. Fold point B to meet point E producing point F .

In general, continue to fold alternating edges to point N to produce point N + 1

until the required level of precision is achieved.

Assuming that one edge of the paper is of unit length, in effect, you have split the

paper into X and 1 − X. Folding the other end of the edge to meet the crease

results in generating X and two lots of 1−X
2

. Folding the first edge to the last
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A BC DE F

Figure 3.4: The Fujimoto method

crease gives one edge of length 1−X
2

and two of length X+1
4

.

Continuing this process leads to a sequence which will tend to 1
3
. If we calculate

the errors at each step, given crease N is made with an initial error of ±ε, we

construct crease N + 1 with error ε
2
. Thus as we remake each crease the error is 1

4

of the previous error. This method tends to generate accurate solutions quickly.

The approach can be extended and combined with some other iterative methods

so that we can generate any odd fractional division [302], thus we can produce all

prime divisions of an edge. The resulting edge from a prime division can be divided

again to produce any rational division of an edge using combinations of these

methods. However, it becomes impracticable to generate more complex divisions.

A direct and, more importantly, accurate approach may be more practical.

3.2.2.2 Procedures based on Haga’s theorems

Can the ratio 1/3 be directly and accurately generated, i.e. without resorting

to an iterative process? Haga [301] first discovered that this can indeed be done

87



simply by placing one of the bottom corners on the centre mark of the top edge.

Theorem 3.2.2 (Haga’s first theorem [18]). By simply placing the lower left

vertex C of a square onto, D, the midpoint of the upper side, AB, and marking

all the intersections, each edge of the square is divided in a fixed ratio, as follows:

see Figure 3.5a.

1. 3
8

and 5
8

are produced thus the left edge is divided in the ratio 3 : 5

2. 4
6

and 2
6

are produced thus the right edge is divided in the ratio 2 : 1

3. 21
24

and 3
24

are produced thus the right edge is also divided in the ratio 7 : 1

4. 5
6

and 1
6

are produced thus the lower edge is divided in the ratio 1 : 5

In addition, the length of the crease produced through the page is
√
5
2

.

This fold results in three Pythagorean triangles with sides forming a Pythagorean

triple, making it a useful construction tool. From this one fold you can construct

sixths, eights and twentyfourths. Haga also proposed two other variations on this

fold which produce useful results and allow the instant creation of more ratios.

Theorem 3.2.3 (Haga’s second theorem [18]). Mark the midpoint of the upper

edge of a square piece of paper, and make a crease through its midpoint and the

lower right vertex. A right triangular flap is formed. If the line of the shorter

leg of the flap is extended to intersect the left edge of the square, the intersection
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point divides the left edge into two parts, the shorter part equals 1
3

of the whole

edge (see Figure 3.5b), .

This second theorem produces a lot of useful divisions:

1. 1
2

is produced by the intersection of the extension of BE and the left edge.

2. 1
3

and 2
3

are produced by the intersection of the extension of DE and the

left edge.

3. 1
4

and 3
4

are produced by the intersection of the extension of CE and the

left edge.

4. 1
5

and 4
5

are produced by the intersection of a vertical line through E and

the top edge.

5. 2
5

and 3
5

are produced by the intersection of a horizontal line through E and

the left edge.

Using this method one can produce in only a few folds any number of fifths; this

is much simpler than using straight edge and compass construction, [61]. Haga’s

third theorem is a variant on the first theorem.

Theorem 3.2.4 (Haga’s third theorem [18]). Mark the midpoint of the upper

edge of a square of paper. Fold the paper to place the lower right corner on the

left edge, then shift upward or downward until the right edge of the paper passes
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through the marked midpoint. Make a crease. The crease formed divides the left

edge into two parts, the shorter part being 1
3

of the whole edge. See Figure 3.5c.

In this variant of the first theorem, the fold brings a corner point to a given

point 1
3

of the way along an opposite edge. However, due to the 5th axiom we

can do this without first measuring to find 1
3
. This fold also produces three

Pythagorean triangles. From this one fold you can construct sixths, eights and

twentyfourths [18]. In addition, the length of the crease produced through the

page is
√
10
3

.

Haga’s first theorem fold has been extended in several ways including looking at

the same fold made on silver rectangles rather than squares [61] and explored

other variations, [94]. They have also been generalised by choosing an arbitrary

point of intersection with the top edge rather than the midpoint. See Figure 3.5d.

1. Take a square and label the corners ABCD clockwise;

2. Fold D up to an arbitrary point, E on line AB;

3. Mark the intersection of the folded position of DC with BC as F ;

4. In the resulting diagram, if the length AE is 1
n

then BF is 1
n+1

.

This method allows any rational division of an edge.

There are programs designed to give the simplest possible folding sequence to
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find reference points. One such program is Lang’s “Reference Finder”. Although

unlike the above method, not all of its solutions are exact. The program gives

an output sequence for folding to find the required reference point and provides

the necessary accuracy. This leads to the question of whether it is possible to

construct any irrational division of an edge.

3.2.2.3 Silver, bronze and gold ratios

It is perhaps not surprising that one can produce rational numbers with Origami.

What about irrational numbers? We have already seen that Haga’s first theorem

allowed to fold
√
5
2

. Further examples of constructions of irrational numbers are

provided below.

The bronze ratio is 1 :
√

3. It refers to the fact that when a bronze rectangle is cut

into thirds parallel to the short side, then the pieces are also bronze rectangles.

A procedure to construct a bronze rectangle [303] is as follows.

1. Fold a square in half with a horizontal crease creating AB;

2. Fold the top right corner to meet this fold, at C, such that the crease passes

through the lower right corner, mark the intersection of this crease with the

top edge as D;

3. Fold a crease through D perpendicular to the top edge;
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Figure 3.5: Haga’s theorems
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4. This fold defines the edge of a bronze rectangle, as shown in Figure 3.6a.

The silver ratio is 1 :
√

2. It refers to the fact that when a rectangle of silver

ratio is cut in half parallel to the shorter edge it will leave 2 rectangles that are

also of silver ratio. Paper in this ratio is referred to as the A-Paper; specific sizes

are referred to as A0, A1, ..., An, where An is 1
2

the area of A(n − 1). [304]. A

procedure to fold silver rectangles is given below [303]:

1. Fold the diagonal between 2 opposite corners of a square, A and B;

2. Fold a third corner, C, to meet this fold and mark the intersection with D;

3. Fold a crease through D perpendicular to the edge CB;

4. This fold defines the edge of a silver rectangle, as shown in Figure 3.6b.

The golden ratio is 1 : 1+
√
5

2
, which is possibly the most elegant of the three named

ratios shown here as when a rectangle of golden ratio has a square removed, the

remaining strip is also of golden ratio. A method to construct a rectangle of

golden ratio is given below [303]:

1. Fold a square in half with a vertical crease creating AB;

2. Fold a crease through the bottom left corner, we shall label this C, and A;

3. Fold the lower edge to meet this crease bisecting the angle at C;
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(a) Bronze rectangle

A

BC

D

(b) Silver rectangle

A

BC

D

(c) Golden rectangle

Figure 3.6: Construction of rectangles

4. Where this third crease intersects the edge of the paper at D make a hori-

zontal crease through D;

5. This fold defines the edge of a golden rectangle, as shown in Figure 3.6c.

We have shown 3 irrational ratios which can be constructed using the axioms. It

is easy to generalise this to produce other ratios. For example, given that we can

construct any rational number m
n

, we can therefore construct any rectangle with

rational edge lengths,m
n

and o
p
, thus the diagonal across this rectangle can be any

number of the format,
√

mp2+on2

np2
where m,n, o and p are integers. This can be

simplified to the square root of the sum of two quotients of two squares
√

m2

n2 + o2

p2
.

This alone is a large group of irrational numbers which can be produced. We note

here that we cannot construct every irrational number however we can construct

solutions to any quartic equation as shown in Hull [305]. A notable exception

which we cannot construct is Pi, this is not constructable using the axioms [299].
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We will however look at Pi again in section 4

3.2.3 Generating angles

In a similar way to generating lengths, angles can be produced. As with an

arbitrary length, we can perform some similar operations on an angle such as to

find 1
3

of it. We note this is not exactly the same as with lengths as we cannot

for example find 1
5

of an angle as we can with lengths. It is however more likely

that we would need to construct a specific angle. We can do this using operations

on 360◦ which we have at any point where creases meet. As an example, one

can create a 90◦ angle by folding a crease perpendicular to any other. Since, as

already seen, one can create lengths through creating rectangles with these edge

lengths, it is thus possible to create any angle using the expression tan−1( K
K′ )

where K and K ′ are constructible lengths. In fact, many of the methods which

are used to construct lengths can be used to construct angles including both

exact methods and approximate iterative ones. For example, an equivalent of the

iterative Fugimoto method can be used to produce divisions of angles [299].

3.2.4 Solving historical geometric problems

It has been known for a long time that angle trisection, doubling the cube and

squaring the circle cannot be solved with only a straight edge and compass, [306].
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Figure 3.7: Trisecting an angle

Let us see if Origami 1-fold constructions can fare any better.

3.2.4.1 Trisecting angles

Trisecting an angle is possible with Origami 1-fold constructions, [299], using the

following procedure illustrated in Figure 3.7. Here we look at the case of an acute

angle. This, however, can be generalised.

1. Start with a rectangle and mark the bottom corners as A and B. With an

arbitrary point, C, on the top edge of the paper, we provide the angle ABC

to be trisected;

2. First create a crease perpendicular to the vertical edge through another

arbitrary point, D,on the left edge, this uses axiom 4;

3. Then fold point D to B. Mark the intersections of this crease and the left
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edge with E, this uses axiom 2;

4. Using axiom 6, align D on line BC and simultaneously align B on the fold

line from E. The position of B when this fold is made is marked F , the

position of D becomes G, and the position of E becomes H when folded;

5. Finally point I is marked as the intersection of a vertical crease through F

and the bottom edge.

We now have three similar triangles, BGH, BHF and BFI, thus the three angles

at A must be similar and the angle is trisected [19, p. 33].

3.2.4.2 Doubling the cube

The problem can be described as follows. Given a cube of side length 1, construct

a length such that a cube with this side length would have double the volume of

the given cube. The Origami approach to solving this problem starts by splitting

the paper into thirds, then placing the bottom left corner on the top edge so that

the bottom of the left hand crease is laid on the right hand crease, (see Figure

3.8). This results in BF being the length the cube of which is twice the cube of

AE. This was originally shown by Messer, [307] and is also presented in several

other sources [16].
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C D

E

F

Figure 3.8: Doubling the cube

3.2.4.3 Pythagoras theorem

This is probably the most well known result in Mathematics. It has a number of

proofs (hundreds) including some using a straight edge and compass only, [308],

and indeed some based on Origami, [309]. Let us recall the proof due to Hisashi

Abe, [309], (see Figure 3.9).

1. Begin with a square and mark an arbitrary reference point, called E, on the

right hand edge;

2. Fold through the bottom left hand corner, B, and the arbitrary point E;

3. Fold through the top left corner, A, perpendicular to the line just made,

creating points D and F ;

4. Fold through the bottom right corner C perpendicular to the first crease;
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Figure 3.9: Pythagorean theorem

only part of this crease is needed. Mark the intersection with G.

By moving the triangles BCG and ABF we get a visual proof of the theorem. [309]

3.2.5 Trigonometry and algebra with Origami

Origami can be used to solve trigonometric equations. Kawamura’s methods, for

instance, uses the sine, cosine and tangent functions to compute specific angles

[63]. Equally, Origami can be used to solve algebraic equations. In [76] and

in [305] it has been shown that 1-fold constructions can solve quadratic and cubic

equations respectively. Note that it has been shown that it is not possible to

extend this to handle quintic equations [76].
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3.2.6 2-, multi-, and curved fold constructions

So far we have been limited in our construction methods to only using the well

defined 1-fold constructions. These construction are, however, far from a complete

representation of the scope of all Origami. Unlike Euclidean geometry, Origami

is an open system. In reality, multiple creases can be folded at any one time;

one can fold creases and leave them folded, fold curved creases and cut or tear

the paper. Consequently, 1-fold construction axioms have been extended to 2-fold

constructions. This allows two folds to be made in one move and any combination

of alignments between these two folds and the unfolded part of the paper. This

is more powerful as it allows for angle trisection with only one move. However,

although it is well defined, 489 axioms are needed to define all the possible com-

binations of folds. This shows how quickly the complexity of Origami increases

when we allow more complex operations. But, it can be used to solve algebraic

equations up to septics [310]. Theoretically this can be expanded to nth degree

equations if n-fold axioms are used.

Note that n-fold axioms cannot be used to construct transcendental numbers such

as π. Therefore, the problem of squaring the circle can only be approximated.

However, allowing curved creases, this is possible as was shown by Hull, [26]. It

is important to note that although 1- and 2-fold constructions are well defined,

Origami in general is not well defined for even 3d folding with straight creases let

alone curved creases [26].
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3.3 Flat-foldable Origami construction

With one-fold constructions we make each fold and unfold, the paper is our tool

acting as a calculator. In most real world Origami the model is produced with-

out unfolding after every step. Many folds are therefore combined to produce a

finished model. This creates more challenges than 1-fold construction, some of

these are explored here. Note that when a fold is made in axiomatic construction

the interest is only in its location. Now, however, the concern is with the angle

between the faces bordering a crease and the direction of the crease. We now give

some definitions.

We note here that not all creases in these models go through the whole paper and

only a part of the line representing the crease is needed.

Definition 3.3.1. A segment of a straight line consists of all points along the

line between two given endpoints.

Definition 3.3.2. A Crease Pattern, CP, is a collection of creases, represented

by lines and segments, on the plane / piece of paper. A crease pattern contains

all the folds required to produce a model but does not contain detail about the

order of folding or final layering orders.

In Origami when we make a fold we can fold the paper in one of 2 directions,

thus the lines on the CP represent either a fold towards the observer or away from
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them.

Definition 3.3.3. A mountain fold is a fold in the plane which has the crease

pointing towards the observer and the folded sections going away.

Definition 3.3.4. A valley fold is the opposite of a mountain fold with creases

pointing away from the observer.

From behind, mountain and valley folds are valley and mountain folds, respectively

[120].

Definition 3.3.5. A CP is considered to be an assigned CP when the creases

are expressly assigned either as mountains or valleys.

Definition 3.3.6. A CP is considered to be an unassigned CP when creases

can be folded in either direction.

Definition 3.3.7. The fold angle is the angle change about the crease, where

there is no fold there is no change thus the fold angle is 0◦, where the paper is

folded onto itself, one side of the paper is rotated 180◦ about the fold line, thus

a fold angle α ∈ R, such that α ≤ 180◦ and ≥ −180◦. An unfolded fold has an

angle of 0◦.

Definition 3.3.8. Given a CP, its foldability is a binary property which states

if the creases defined in the CP are realisable and can be folded. Foldability can
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be looked at globally across a whole CP or locally at a vertex.

Definition 3.3.9. A flat foldable Origami is one where the CP has a flat

folded state. More specifically, in a flat foldable Origami, all folds can be made

where the creases are folded with a fold angle of ±180◦ thus all the sections of

folded paper lie either face up or face down and the folded model lies in a plane.

Rigid foldability looks at the process of folding and if the creases can fold as if

they were hinges connecting rigid faces.

We now focus specifically on flat foldable Origami. Before stating the main results

of this type of folding, some restrictive assumptions are presented.

Assumption 3.3.1: The paper is continuous and cannot intersect itself, thus it

cannot pass through itself or create knots.

Assumption 3.3.2: The paper does not stretch, thus the distance between two

points along the paper is invariable.

These assumptions mean that, for instance, saddle points cannot be created

through bending or curving the paper as this would stretch it. Let us now state

the main theorems of flat foldable Origami.

Theorem 3.3.1 (Maekawa 1985 [311]). In a flat foldable Origami construction,

at any vertex made by intersecting creases on the CP, the number of mountains

and valleys differs by 2, and the total number of creases is at least 4.
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A proof of this can be found in [16].

Theorem 3.3.2 (Kawasaki [311]). A vertex in a CP is flat foldable if and only if

the sum of alternating angles at that vertex is 180◦.

A proof of this can be found in [16].

Theorem 3.3.3 (The one straight cut, OSC, theorem, [16]). Any series of poly-

gons, any map with straight edges, can be folded so that all edges, and only the

edges, lie on a single line in the folded state of a CP. It is then possible to cut

them all with one straight cut.

The proof is a bit involved. It can be found in [16]. To illustrate the theorem,

it is for example, possible to cut out a star or a swan with one cut. We can see

clearly where the name comes from.

Flat foldable Origami has not been used for mathematical exploration as has been

done with 1-fold construction. We have seen many examples of how Origami can

be used to solve mathematical problems which are not all simple. They are often,

however, curiosities. Trisecting angles and doubling cubes are not top of the

preoccupations of today’s mathematicians. The question we want to raise here is

whether Origami can be applied to tackle modern mathematical issues. Can it be

used to solve open mathematical problems, for instance?
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3.4 Summary

We have recalled the Mathematical notions necessary to formalise Origami. Im-

portant results and some complex problems have been visited. In the following

we revisit the famous 4-colour theorem and build an Origami-inspired framework

for a new proof to be attempted.
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4
Colourability of graphs and maps: the 4-colour

theorem revisited

This chapter revisits the famous 4-colour theorem and constructs a framework

inspired by Origami in which a new proof is attempted. We begin with several

definitions which we will use throughout the chapter.

Definition 4.0.1. A planar graph representing a map is a graph G = (V,E)

consisting of a set of vertices V and a set of edges E = (v1, v2) connecting these

vertices where v1, v2 ∈ V .

Definition 4.0.2. The faces of a planar graph are the areas which are sur-

rounded by edges.

We have seen in chapter 3 that a CP is a collection of straight lines constructed

on the plane. Now we have our above definition, a CP can be represented as map
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or a straight-line planar graph embedded in the paper.

Definition 4.0.3. The degree of a vertex is the number of edges for which that

vertex is an endpoint. Thus odd and even degree vertices connect to an odd or

even number of edges.

Definition 4.0.4. Vertices connected by an edge are referred to as adjacent

vertices.

Definition 4.0.5. Faces which share an edge are referred to as adjacent faces.

Definition 4.0.6. A path is a sequence of vertices with the property that each

vertex in the sequence is adjacent to the vertex next to it.

Definition 4.0.7. A circuit is a path which starts and ends at the same vertex.

Definition 4.0.8. A connected graph is a graph where there exists a path

between any pair of vertices.

Definition 4.0.9. A bridge is an edge, the removal of which would separate the

graph and stop it from being connected.

Definition 4.0.10. The dual graph of our planar graph or map is a graph con-

structed with one vertex for each face in the map and an edge between adjacent

faces. This is shown in figure 4.8 with the green graph being the dual.

Definition 4.0.11. A face colouring on a map is one where we colour the faces
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Figure 4.1: Example of a dual graph

of the graph such that no two adjacent faces are assigned the same colour. Where

n colours are required to colour the graph it is referred to as an n−colouring.

Definition 4.0.12. A vertex colouring on the dual is one where we colour the

vertices of the graph such that no two adjacent vertices are assigned the same

colour.Where n colours are required to colour the graph it is referred to as an

n−colouring.

When we look at crease patterns, we will be discussing face colourings. Therefore,

a crease pattern is n−colourable if at most n colours are required to colour it such

that no adjacent regions/faces have the same colour.
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There is a well known result for any flat foldable CP. This result is

Theorem 4.0.1 (2−colour theorem, [311]). Maps of flat foldable crease patterns

are 2−colourable.

Proof. Take a flat foldable Origami object in its folded state and consider the

faces on the CP. Each of these faces is created in one of two orientations, face up

or face down. Moving over any crease will take you to a neighbouring polygon, as

you have moved over a crease this polygon will be the opposite way up. Therefore,

you can colour all polygons based on which way up they are in the folded state.

If you label all of these and open it up you will have a two colour pattern for the

model.

The 4-Colour Theorem, is a well-known and popular result in modern mathematics

and goes back a long way. The conjecture was first raised by Francis Guthrie,

when he was a student at UCL in 1852, studying under De Morgan [312]. It can

be stated as follows.

Theorem 4.0.2. Given any separation of a plane into regions, no more than four

colours are required to colour the regions so that no adjacent regions have the same

colour.

A first proof of the 4-Colour Theorem was due to Alfred Bray Kempe who an-

nounced it in the journal Nature in 1879. It was, however, later shown to be
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flawed by a certain Percy John Heawood. This meant that after just 11 years, the

4-Colour Theorem became the 4-Colour Conjecture again. It resisted the assaults

of many great mathematicians of the late 19th and 20th centuries including De la

Vallee Poussin, Heawood, Veblen and Birkhoff, on both sides of the Atlantic. It

was not until 1976 that a proof has at last been put together. That was by Ap-

pel and Haken, [313]. Their proof consisted of an exhaustive analysis of discrete

cases which was completed by a computer meaning that the proof is criticised by

some [148]. Although shorter proofs have been found since, all require a com-

puter to check through hundreds if not thousands of cases thus, there still is the

possibility that a more elegant, short proof exists.

Here we discuss the connections between the n-colour problems and Origami.

Before attempting to prove such theorems with Origami let us start by looking at

the links between Origami and colourability. Recall from early in this thesis that

a CP can be considered as a graph where creases define edges and vertices their

intersections. It is also a map where regions/faces are bounded by the creases or

edges. We propose a way to link the two and sketch an alternative proof.

110



4.1 An Origami based exploration of the coloura-

bility of maps

In the following we relate a map to a Connected Planar Graph, CPG, drawn

on the plane of a piece of paper. Using the OSC theorem, we know it must

be possible to flat fold our paper in such a way as to align all the edges of the

CPG onto a line. We can also fold along this line and produce a flat foldable

crease pattern, CP, which is also a map but now has added-edges. From the

2-colour theorem for flat foldable Origami we know that the map of the CP is

2−colourable. We then show ways in which we can remove added-edges from this

map and retain the 2−colourability property. This is shown to be possible until

a point at which we prove no more of our added-edges can be removed without

requiring an additional colour. Finally, we look at the properties of the remaining

added-edges and present some ideas about how they could be removed in such a

way that we will only ever require four colours.

4.1.1 Observations of colourability of graphs

We note that one of the novel approaches we have explored looks at addition and

removal of vertices and edges; the aim is to produce a new graph for which we

know the colouring and then subsequently reverse the changes while maintaining
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knowledge of the graphs colourability. This process is unusual in graph theory as

often one would look for properties of the graph they were presented with; here

we look for properties of another graph and how those change when we alter the

graph.

Here we make some simple observations which show that it is sometimes difficult

to see how changing a graph would affect its face colourability. This is followed

by some examples to demonstrate that each of these cases are possible,

1. There exist n-colourable connected planar graphs which require more colours

when one or more edges are removed.

2. There exist n-colourable connected planar graphs which require fewer colours

when one or more edges are removed.

3. There exist n-colourable connected planar graphs in which the removal of

some edges has no effect on n.

Examples:

1. Example 1, figure 4.2, requires three colours, the diagram demonstrates how

removing edge A has no effect on the colourability, removing edge C reduces

the requirement of number of colours to two, and removing edge B increases

the requirement to four.

2. Example 2, figure 4.3, requires 2 colours; we remove edge A and now require
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three colours.

3. Example 3, figure 4.4, requires 4 colours, removal of edge A reduces the

requirement to three.

From the above we show that edges can be of three types:

1. Those that when removed leave the n−colouring intact.

2. Those that affect it upwards, i.e. more colours are needed.

3. Those that affect it downwards i.e. fewer colours are needed.

Note that these observations would hold for adding edges as it is simply the

process in reverse. Note also that the effect of adding or removing edges is, at

least visually, difficult to predict.

4.2 An Origami approach

Given a map to colour, this map is equivalent to a CPG, G = (V,E) consisting

of a set of vertices V = (1, . . . , v) and a set of edges E = (1, . . . , e). Edges create

a set of faces for which we aim to provide a colouring. We also colour the outside

of the map. At this stage we know the following:

1. The map is connected; if it were not then we can colour it as if it were 2
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(a) Example 1

(b) Example 1 with A re-
moved

(c) Example 1 with B re-
moved

(d) Example 1 with C re-
moved

Figure 4.2: Examples of removing edges from graphs
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Figure 4.3: Example 2

Figure 4.4: Example 3

115



independent maps.

2. It has no vertices which are only connected to a single edge, as this does not

separate regions on the map.

We assume that it is possible to construct an isomorphic graph to this map such

that it has straight edges. We will refer to these edges, vertices and faces as the

initial edges, vertices and faces, of the graph/map. We draw our map on the

plane of a piece of paper and apply the OSC theorem, which stipulates that there

is always an Origami method which will fold the edges of a graph onto a single

line. We note here that the outside of the map is included thus for any colouring

problems we look at the outside as a region to be coloured.

It is hard to tell which side of this line each face of the CPG will be, however

we can fold along it placing all the faces on one side of it and maintaining a flat

folding.

Unfolding results in a CP which consists of the initial CGP plus a number of new

edges and vertices which we refer to as added edges and added vertices. Since this

CP is flat foldable it is 2−colourable by the Origami 2−colour theorem. Figure

4.5 is an example of this.

To recap, we begin with a CPG which is equivalent to a map, which leads to

a CP also equivalent to a map. We have created more regions but the map is

now 2−colourable. The application of the OSC theorem results in an explosion
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(a) Initial CGP (b) CP with added edges (c) A 2-colouring of the CP

Figure 4.5: Example of the Edge adding process

of regions as their number has vastly increased.

4.2.1 Removing edges and maintaining 2-colourability

The aim is to strip away added edges of this extended map; we show that one

can remove specific edges without requiring any additional colours. Some added

edges of the extended map, when they form paths across the paper or cycles, can

be removed without removing 2−colourability, as the following lemma states.

Lemma 4.2.1. We can remove added edges from this map where they make a

path from one edge of the paper to another or where there is a cycle.

Proof. We first look at the case of cycles. Where we have a cycle, there exists

both a sub-map of the map inside the cycle and another sub-map outside it. No

faces can exist both inside and outside this sub-map without being separated by

an edge. If we invert the colouring of the internal sub-map, A becomes B and B
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becomes A, then the colouring inside will still be valid, as we remove all edges

at the boundary of the sub-maps the bordering faces join thus maintaining the

2−colourability property. We can also do this for paths between edges of the

paper as they also separate the map into two sub-maps, one side of this can have

colouring flipped and the bordering faces join.

We note here that we may not keep the property of foldability when we remove

these edges. Figure 4.6 gives examples of how edges can be removed differently.

Edge removal has been grouped into steps so that it is clear which edges are being

removed and whether they are cycles or not.

In Trial 1 we are given a 3-colourable CPG, in Trial 2 we are given a CPG which

requires four colours.

As we keep stripping edges there comes a point where we can no longer remove

edges without requiring additional colours.

Lemma 4.2.2. The resulting map from removing all possible added edges while

maintaining 2−colourability cannot be reduced further without requiring additional

colours.

Proof. By OSC theorem our CP is flat foldable, thus Maekawa’s theorem must

hold at all vertices not at the edge of the paper. A consequence of Maekawa’s

theorem is that the number of folds at each vertex must be an even number.
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(a) Initial CP

Trial 1

(b) Step 1 (c) Step 2 (d) Step 3 (e) Final Solution

Trial 2

(f) Step 1 (g) Step 2 (h) Step 3 (i) Final Solution

Figure 4.6: Examples of Crease Removal
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When we remove paths or cycles they will always remove two edges from a vertex

unless it is at the edge of the paper, thus all vertices in the remaining map will

still have an even number of initial and added edges. If cycles of added edges

exist, we remove them. If paths of added edges exist from one edge to another

edge, we remove them. Thus once we have removed all of these, the added edges

we have remaining will make a forest. We can now show why we cannot remove

any of these edges. If we attempt to remove an edge in the middle of a tree where

at each endpoint there are other edges, we must remove an edge connected to it.

If we did not then we would leave this vertex with an odd number of edges, thus

also an odd number of regions meeting at a point in our map. This would require

at least three colours. Thus we must remove an edge connected to it. We have

to do this for both ends of the edge unless we hit the edge of the paper and we

know we have no paths between two edges of the paper as well as no cycles. Thus

we will always have at least one endpoint of our path where the edge cannot be

removed without adding an additional colour.

Assuming the initial CGP to be 2−colourable, we have the following lemma:

Lemma 4.2.3. If the original CPG was 2−colourable we must be able to remove

all added edges from our CP, then all added edges can be removed without altering

its 2-colourability.

Proof. If we are given a 2−colourable map it can be shown that it must have an
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even number of edges meeting at any vertex. By Maekawa’s theorem our CP also

has this property apart from at the edges of the paper. When we remove edges we

remove paths or cycles, thus apart from at the edge of the paper we maintain the

even number of edges at any vertex. Thus there cannot exist any vertex which

has an irremovable endpoint as they are only irremovable if the path terminates

at a vertex with an odd number of added edges.

There are many possible ways we can choose loops or edge to edge paths to

remove. Thus there are many possible sets of remaining edges which cannot be

removed. We now look at these remaining added edges and try to characterise

their properties and quantity.

We have already shown that as all cycles are removed we are left with a forest.

Although we do not know the position of the edges we find we do know where the

endpoints are.

Lemma 4.2.4. In our reduced CP, after all removable edges have been removed

maintaining 2−colourability, the endpoints of the trees made by the added edges

are located at each point where an odd number of edges in the initial CPG met.

Proof. Given that our CP is flat foldable, before any creases are removed, by

Maekawa’s theorem, we know there must be an even number of creases at each

vertex which is not at the edge of the paper. Thus there must be an odd number

of edges added at any point where an odd number of edges meet in the CPG.
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4.2.2 Removing the remaining edges

We now look to see if we can remove any other edges in this CPG. If we can find

a method to remove the remaining added edges, and can do this using only two

colours we would have the basis for a proof of the four colour theorem.

Lemma 4.2.5. If a tree exists such that it only passes through a single face on

the initial map, and all the adjacent faces on the initial map are free from added

edges then it can be removed at the cost of requiring a third colour.

Proof. This is obvious as this face is only surrounded by faces of the initial two

colours, thus it is possible to use the third colour without affecting the rest of the

map.

This can be extended as follows.

Lemma 4.2.6. If a tree exists such that it passes through a group of faces on the

initial map which can be n−coloured, and the adjacent faces on the initial map do

not contain any added edges, then the tree can be removed and n colours can be

added as a 2−colouring of this section.

Proof. This is obvious in the same way as for the previous lemma since this face

is only surrounded by faces of the initial two colours, it is possible to use the third

and fourth colours without affecting the rest of the map.
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This is equivalent to saying if we can show that only two colours are required to

colour the faces with remaining added edges then we can construct a proof of the

4−colour theorem.

Lemma 4.2.7. Once we remove an added edge which forces us to require a third

colour we cannot remove any other combination of the remaining added edges to

reduce the colourability back to two.

Proof. We know we will now have a vertex with an odd number of edges, all of

which will be initial edges. Thus we cannot remove any further edges to make

even, and thus 2-colourtability cannot be regained.

It might be possible to optimise the removal process at the 2−colourable stage

such that the remaining edges are easier to remove. Perhaps this could consist

of minimising crossings, maximising the space between the edges, attempting to

empty specific faces of the CGP from added edges.

Another attempt is made to find a proof for the 4-colour theorem in Appendix A,

some these look promising, however the work on these is not complete.

This includes, attempting to get remaining edges to fall into a 2-colourable region

using moated faces. Exploring other ways of producing the added edges to make

the CPG 2-colourable and exploring circuits which separate the region into two,

2-colourable regions.
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4.3 A statement equivalent to the 4-colour the-

orem

During our Origami inspired exploration of the 4-colour theorem, we searched

for an equivalent statement to the famous problem. Many have searched for

statements that are equivalent to the 4-colour theorem as these may shed extra

light on the problem and can be used to help inspire new proofs. One example of

this is

Is it possible to colour the edges of a cubic planar graph with only three colours.

This is stated as equivalent to the 4-colour problem in an OSME paper by

Hull [147] and although it is not one of the main focuses of Hull’s work, the

authors comment, “Thus the possibility exists that by three colouring cubic mod-

ular works, further light might be thrown on the search for a short proof of the

4-colour theorem”, provided motivation for some of our exploration.

Following is a statement which we will later prove, providing an equivalence to

the 4-colour theorem.

Theorem 4.3.1. Given any connected planar graph corresponding to a map, the

faces of the map are 4 colourable if and only if a circuit or multiple circuits can

be found covering all odd vertices in the map, such that each circuit contains an

even number of odd vertices and no edge is contained in more than one circuit.

124



Figure 4.7: Example of a circuit covering all odd vertices

An example of this is given in figure 4.7 where the circuit is represented by the

pink line.

Our literature search did not find this equivalence statement in the pre-existing

literature and we believe this is new. It is, however, somewhat similar to the

Tait colouring which was used in an unsuccessful attempt to prove the 4-colour

theorem. We show how this is different to this colouring later in this section.

We note here that we are interested mainly in face colourings but we will also

be looking at the vertex colouring of the dual graph to the map, this is a view-

point which is potentially less explored than that of vertex colouring alone and

is certainly not the norm for exploration of statements equivalent to the 4-colour
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theorem.

We shall begin with some definitions:

Definition 4.3.1. A planar graph representing a map is a graph G = (V,E)

consisting of a set of vertices V and a set of edges E = (v1, v2) connecting these

vertices where v1, v2 ∈ V .

Definition 4.3.2. The degree of a vertex is the number of edges for which that

vertex is an endpoint. Thus odd and even degree vertices connect to an odd or

even number of edges.

Definition 4.3.3. Vertices connected by an edge are referred to as adjacent

vertices.

Definition 4.3.4. Faces which share an edge are referred to as adjacent faces.

Definition 4.3.5. A path is a sequence of vertices with the property that each

vertex in the sequence is adjacent to the vertex next to it.

Definition 4.3.6. A circuit is a path which starts and ends at the same vertex.

Definition 4.3.7. A connected graph is a graph where there exists a path

between any pair of vertices.

Definition 4.3.8. A bridge is an edge, the removal of which would separate the

graph and stop it from being connected.
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Figure 4.8: Example of a dual graph

Definition 4.3.9. The dual graph of our planar graph or map is a graph con-

structed with one vertex for each face in the map and an edge between adjacent

faces. This is shown in figure 4.8 with the green graph being the dual.

Definition 4.3.10. A face colouring on a map is one where we colour the faces

of the graph such that no two adjacent faces are assigned the same colour.

Definition 4.3.11. A vertex colouring on the dual is one where we colour the

vertices of the graph such that no two adjacent vertices are assigned the same

colour.

For our proof of theorem 4.3.1, the map is the primal graph and we look to colour

its faces, where we refer to the dual we will be looking to colour the vertices.
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In the definition of a dual we note that the property which is maintained is the

adjacency of faces and vertices. This means that a colouring problem will be the

same in the dual or the primal.

Lemma 4.3.2. Given our definition of the dual a face colouring on the primal

graph is equivalent to the vertex colouring on the dual.

Proof. This is given by our definition which defined each vertex in the dual as

representing a face in the primal graph, and vertices in the dual are adjacent, if

and only if, a face is adjacent in the primal graph.

Where our primal graph has several dis-connected components and we colour the

faces, the outside face is shared but, as this is the only shared face, it does not

affect how many colours are required for the overall graph. In the case of vertex

colouring a dual graph with disconnected components, there will also be no effect

on colouring as no paths exist between the disconnected regions of the graph, so

each can be coloured as a separate entity. Because of this, we only need to concern

ourselves with connected graphs.

We ask now if our definition of the dual can produce all connected planar graphs.

Lemma 4.3.3. Given any connected planar graph we can produce a dual of this

graph which is also a connected planar graph. Also, this, the dual of the dual, is

equivalent to the original graph.
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Proof. It is obvious that we can always place a vertex in every face on a connected

planar graph.

Given that the graph is planar, when constructing a dual, we can always construct

an edge from one of the vertices placed in a face to any location along an edge

bordering that face in the primal graph where that edge would continue to the

point placed in the neighbouring face. Therefore we can always construct the

edges for our dual.

Vertices in the dual are created in each face of the primal graph, thus the number

of vertices in the dual is equal to the number of faces in the primal graph. For

every edge in the primal graph an edge is constructed in the dual thus the number

of edges is unchanged, thus by Euler’s Formula “V − E + F = 2” the number of

faces in the dual is equal to the number of vertices in the dual.

Given any graph, to find a vertex colouring we can find the dual of this graph as

a map for which we need to provide a face colouring.

As the 4-colour problem’s traditional statement refers to a vertex colouring on

any planar graph, we note that when vertex colouring it is not required to look at

graphs with edges which connect a vertex to itself. This would mean that a vertex

would need to not have the same colour as itself which is obviously not possible.

The dual situation to this is a tree or edge in the primal graph where both sides

are in the same face. Therefore all vertices of degree leq1 can be ignored along
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with any edges which connect a vertex to itself.

4.3.1 Proof that our circuits imply 4-colourability

In order to prove theorem 4.3.1 we will first show that, if circuits can be found

covering all odd vertices in the map, such that each circuit contains an even

number of odd vertices and no edge is contained in more than one circuit, then

the map is 4 colourable. We begin with a standard graph theory result.

Lemma 4.3.4. The Handshake lemma: Every graph has an even number of ver-

tices of odd degree

The proof for this is straight forward and this is a standard graph theory result.

Each edge connects exactly 2 vertices, thus sum of the degrees of all vertices must

be even. This implies that the number of vertices of odd degree must also be even.

We now look at a single circuit, or non intersecting circuits, on our connected pla-

nar graph. We note that a circuit which does not repeat vertices clearly separates

the plane upon which the graph is drawn into two regions; we shall refer to these

as the inside and the outside although they are interchangeable. An example of

this is shown in figure 4.9.

Where a circuit passes through a vertex more than once there are several different

ways in which the circuit can be traversed. Note, every circuit contains a Euler
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Figure 4.9: Example of two circuits separating the plane into two regions

cycle.

Lemma 4.3.5. Given a single circuit, it always separates the faces of the graph

into two regions; an inside and an outside.

We note here that this has similarities, to work in knot theory on the colouring

of link diagrams but we cannot find a graph theory statement/proof for this and

have provided a proof of this below; an example of this is shown in figure 4.10.

Proof. If the circuit does not have any repeated vertices then a group of one or

more faces will clearly be bounded by this circuit. By following the circuit with

the edges of the circuit on our left we can define everything to our left as inside
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Figure 4.10: Similarities between a knot and a circuit

Figure 4.11: Two ways to move round a circuit
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the circuit and everything to our right as outside.

Where we have intersections we need to be more careful as there are multiple ways

we can travel around the circuit as shown in figure 4.11.

One way to do this is traversing the circuit in the same way with the edges of the

circuit to the left and defining everything to our left as inside and everything to

our right as outside; however, whenever we pass one of the edges of the circuit

which we do not follow, we change our definition so that the left is now the outside

and the right is the inside. We do this each time we pass an edge in the circuit

for both the left and the right.

If we look only at the edges and vertices contained in our circuit, the degree

of every vertex must be even by definition; therefore the difference between the

number of edges not followed on the left and the right when passing a single vertex

will always be ±2. Thus there will never be a case where the left and right sides

of the circuit will either be both inside or both outside.

We also now provide another, slightly simpler proof for this.

Proof. Irrespective of how many intersections our circuit has, we know that when

looking only at the edges and vertices in the circuit the degree of every vertex

must be even. Also there must be a Euler cycle covering it. Therefore the face

colouring of the graph of this circuit is bipartite and is two colourable.
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Figure 4.12: Method to produce a 2-colouring

We also note that given all vertices have even degree it is possible to colour the

faces by counting how many edges are crossed to get to the outer face, this will

be either even or odd and thus you can colour the faces with two colours. figure

4.12 shows this.

Above we noted that every circuit contains a Euler cycle, we now also note that

this also applies to any interconnected circuits which intersect at only vertices and

do not share edges. These will also contain a Euler cycle as at any vertex where

they intersect you can follow one cycle then the other to complete a Euler cycle

on both circuits.

Lemma 4.3.6. Given a collection of circuits, that do not share edges, they will

always separate the faces of the graph into two regions; an inside and an outside.

Proof. Given that the edges of any individual circuit will separate the faces on
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Figure 4.13: Faces between multiple circuits still can be 2-colourable

the plane into two regions, when adding a second circuit which does not share

edges we only need to invert the colouring on the inside of the new circuit. This

is always possible unless an edge is shared when it would cause two adjcent faces

to have the same colour. It follows that this process can be repeated and any

number of circuits will split the faces in the plane the same way.

So far we have shown that the circuits as defined in theorem 4.3.1 will always sep-

arate the faces into two regions. We refer to these as inside and outside although

they are interchangeable.

Looking at one of these regions, the “inside”, we aim to colour the faces inside
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this region with only 2 colours.

Definition 4.3.12. Internal vertices shall be those verticies which are not

part of the outer face.

When we look at the graph representing the region bounded by a circuit, or part

of a circuit, all internal vertices will have even degree. We note that this is because

any vertices of odd degree will be on a circuit.

We now look to colour the internal faces of this graph. Here we only look at those

edges on the border or the inside of the region, there may be edges extending to

other parts outside of our region but we ignore these.

Lemma 4.3.7. A face colouring of a connected planar graph, such that all internal

vertices have even degree, requires only 2 colours if the outer face is ignored and

the number of edges which extend from the vertices of the outer face is even.

We note here that the above theorem is so natural should be known, this may

already exist in some other form however it was not obvious from a literature

search if it had been looked at before and thus it may be new. An proof has been

given bellow.

Proof. The edges of the outer face have an even number of endpoints, this is

obvious as each edge has two endpoints. All the remaining edges extend from the

outer face into the region. These edges separate all the outermost faces of the

graph.
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Figure 4.14: An example of circuits within circuits

We now look at vertex colouring of the dual graph. As all internal vertices on the

primal graph are even degree, a cycle with an odd length can only exist if it passes

through the vertex representing the outer face. If this vertex is removed all cycles

have even length therefore the graph is bipartite and vertices are 2-colourable.

This implies that the internal faces on the planar graph are also 2-colourable.

There may exist circuits within circuits as in 4.14, this is not an issue as long as

both the boundaries have an even number of edges extending from them into the

region. As this is equivalent to the region having multiple outside faces.

It just remains to show that there will be an even number of edges extending into

any region of faces from the circuits which form a boundary to that region.
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Figure 4.15: counting an odd vertex

Every region in every circuit must have an even number of edges extending into

it from the boundary of the region; this can be seen in figure 4.15 and figure 4.16.

To ensure this property is true it is sufficient to require that each circuit has an

even number of vertices of odd degree.

We note here a counting problem. Where an odd degree vertex is passed more

than once, such as A1 in figure 4.17, does it count for one or more than one circuit

and which circuit does it count for? We solve this by insisting that either it counts

only for 1 circuit but moreover where circuits intersect they can be referred to as

one circuit. Thus we do not count the number of times an odd vertex is passed

by a circuit; instead we count how many odd degree vertices are in a given circuit

or connected group of circuits.
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Figure 4.16: counting an odd vertex

Here we note that if the number of edges extending into the region from the

boundary is odd, it would not be possible to find a 2-colouring and there would

also be an odd number of edges extending out from this region, as there is an even

number of edges in total.

If we assume the existence of an internal region which has an odd number of edges

extending into it, then the outside would also be odd, this would leave an uneven

number of odd points outside this and so on. At the outermost points and the

innermost parts of the graph this would not be rectifiable as odd degree vertices

would be uncovered.

Thus to ensure no odd degree vertices or odd number of edges inside a region

we ensure all circuits have an even number of odd degree vertices. Therefore as
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Figure 4.17: counting an odd vertex
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every region has an even number of edges extending from it, this must hold for

the whole graph.

4.3.2 Proof that 4-colourable maps contain our circuits

We aim to show that if given a planar graph with a face colouring then circuits

exist.

If the map is 4 (face) colourable (a,b,c,d), then it is always possible to choose

2 pairs of 2 colours and separate the map into 2 distinct regions. (a,b – b,c or

a,c-b,d or . . . )

These regions must be bounded by edges which construct a circuit. This is obvious

as there is always an edge separating the regions and they are bounded by this;

the outside of any region can always be followed by a circuit. We shall call these

the “border edges” as they form the border between the two regions

Looking at one of these 2 regions, (refer to this as the inside), it can not contain

any odd degree vertices which are not on the “border edges” of the region.

There will be an even number of edges extending into any region from these

borders as otherwise it would need more than 2 colours internally.

Finally, as the inside and the outside of each circuit will have an even number
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of edges extending form it, there must be an even number of odd edges in that

circuit.

Above, we have shown the construction of a proof for theorem 4.3.1.

To conclude this section, we note that these circuits are similar to patterns found

in Tait’s colouring [314] which was used for a false proof of the 4-colour theorem.

The conjecture stated:

Every 3-connected planar cubic graph has a Hamiltonian cycle through all its

vertices

The conjecture was disproved using the “Tutte graph” to provide a counter ex-

ample.

In figure 4.18 we show the Tutte graph and our circuits showing that this is not

a counter example for our theorem.

4.4 Colourability of non flat-foldable crease pat-

terns

Recall that, in section 4.2, as we removed edges we maintained the n−colourability

of the CP, however, we did not conserve foldability. We know that for flat Origami
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Figure 4.18: The Tutte graph
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Figure 4.19: Straight line approximation to a curved fold

the CP is 2−colourable. However, does 2−colourability of a CP imply flat fold-

ability and what is the colourability of non-flat Origami?

Now we conjecture that the maps of any foldable crease patterns are 3−colourable.

To prove this, we need some definitions. Note that the statement covers all crease

patterns including non-flat foldable constructions and those with curved creases.

Recall that it was assumed that the paper cannot stretch and so one can only fold

curved creases in such a way that there exists a cross section with a straight line.

To deal with CPs with curved creases, consider that a crease is placed along all

cross sections of a curved crease that results in a straight line, thus a curve in the

paper can be approximated by a series of very short straight creases, (see Figure

4.19). At each of these creases and their intersections the paper behaves in the

same way as with any other Origami using straight creases. Thus, the proof of

the conjecture is only required for Origami with straight creases and rigid faces

in the CP.
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A

B

C

D E

Figure 4.20: A not flat-foldable, not 2−colourable crease pattern

Lemma 4.4.1. There are CPs whose maps require more than two colours.

Proof. Figure 4.20 provides such a CP. Note that it is foldable but not flat foldable.

We now attempt to colour this CP with 2 colours. It can be seen that colouring

region A with colour 1 means that regions B and E must have colour 2, which

implies that region C and region D must both be coloured with colour 1. As they

are adjacent a third colour is needed.

Let us now show that to colour the maps of foldable CPs, flat-foldable or otherwise,

at most 3 colours are needed.

Definition 4.4.1. The Dual Graph (DG) of a CP map is a graph whose

vertices correspond to the regions/faces of the map and whose edges link adjacent

regions. (See Figure 4.21.)

We will apply our colouring to the DG and look at the properties of this graph

to prove it only requires 3 colours.
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Figure 4.21: CP to DG example; CP in red, DG in blue

Definition 4.4.2. A Vertex colouring on a DG of a crease pattern is made

when we colour each of the vertices in the DG so no two adjacent vertices have

the same colour.

Vertices in the DG are adjacent if they are joined by an edge, faces in the CP are

adjacent if they are separated by an edge, as these are equivalent, the definitions

for colouring are also equivalent. Thus, a DG vertex colouring is similar to a CP

face colouring. Let us now show that all DGs are planar.

Definition 4.4.3. A planar graph is a graph that can be drawn on the plane

in such a way that its edges intersect only at their endpoints.

Lemma 4.4.2. DGs are always planar.
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Proof. It is obvious that all CPs are planar, due to our definitions of points and

lines that make up the CP. In a CP produced on a plane, wherever creases are

made to intersect, vertices are always formed. Therefore, a CP is always planar.

When constructing a DG we place a vertex in each face of the CP. In order for

edges to cross on the produced DG there must be two pairs of faces connected by

edges in the same location, which is not possible as the CP is planar.

We now introduce a definition for a triangle free graph and aim to show that DGs

are also triangle free.

Definition 4.4.4. A triangle free graph is one in which no three vertices form

a triangle of edges. Equivalently, it is a graph with no 3-cliques.

Note: A triangle free graph is equivalently defined as a graph with clique number

less than or equal to two, a graph with girth less than or equal to four, a graph

with no induced 3-cycle or a locally independent graph. This is illustrated in

Figure 4.22.

Lemma 4.4.3. The DG must be triangle free.

In order to prove that the DG is triangle free we attempt to create a triangle in

a DG and show that this is not possible. In other words we take the proof by

contradiction approach.

Proof. A triangle in the DG represents three faces in the CP which are connected
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Figure 4.22: Possible ways to create a triangle in the dual graph

in pairs by edges which meet at edges in the CP. These edges will either meet at

a vertex in the crease pattern, will continue to a hole in the folding material or

will join with a more complex crease pattern in the centre. In each case a band

is produced in which there are no creases other than the three radiating from the

centre, this is seen in Figure 4.22. If the first of the three creases is created as a

valley of fold angle θ such that 180◦ ≥ θ > 0◦ then both sections either side of this

fold will be oriented towards the observer. The two other creases are connected

by one section of paper which is not folded. However, this piece will no longer

fit without bending as both creases have been brought closer together. The same

applies for a a mountain fold, thus it is not possible to orient these creases such

that they are folded unless two of the edges are in the same location or one of the

sections is curved.
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We introduce one final theorem which we will use in our proof.

Theorem 4.4.4. Grötzsch [315]) Every triangle-free planar graph is 3-colourable,

.

Using the above we are now able to prove our generalised Origami colourability

theorem.

Conjecture 4.4.5. The CP of any rigid foldable Origami structure is 3-colourable.

Proof. By our example, Figure 4.20, we know some CPs may require three colours,

thus it only remains to show that we never need more than three colours. We

know all DGs are planar and are also triangle free thus by Grötzsch’s theorem all

DGs are at most 3-colourable. By virtue of the equivalence of the DG and the

CP for colourability we have that CPs are at most 3-colourable.

This is equivalent to saying that a 4-colourable crease pattern cannot be folded.

We note here that it would be nice to have a proof of this which did not refer to

the Grötzsch’s theorem as this would potentially lead to an origami based proof

of the Grötzsch’s theorem. We believe this may be possible but will leave it for

future work.
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4.5 Summary

In this chapter we have explored aspects of the relationship between Origami

and graph theory. In particular we have looked at the equivalence between maps

and CPs and that between CPs and planar graphs. We have then given some

definitions and drawn results on 2-colourability and 3-colourability. We have also

shown how, by removing edges introduced in a CP after the application of the

OSC theorem, we may devise a new and succinct proof of the 4-colour theorem.

The next chapter is on the concept of error modelling and estimation in Origami.

When using Origami as a mathematical tool, minimising errors is important. We

will show how errors crop up in all forms of Origami; a model is presented for

these errors. This model can be used to choose better folding sequences.
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5
Error modelling in Origami

As discussed in chapter 3, the Fujimoto method uses an iterative approach to

reduce error for the specific application of approximating lengths, this is not how-

ever, a generic model for errors in folding processes. It is possible that errors in

specific applications of Origami have been explored before, however, any formal

mathematical error modelling does not appear to have been published. With ap-

plications of Origami becoming increasingly more commonplace and ever more

complex, it would be helpful to have a mathematical basis for error modelling and

measurement.

Although most Origami artists will provide advice on how to make creases more

accurately, many of these techniques have not been analysed formally. A model

that captures the accuracy of a crease and the process that produced it is therefore

desirable. This model may also help choose between crease making processes in
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terms of accuracy and potentially efficiency. Here we look at Origami construc-

tions from the ground up to analyse the basic concept of an Origami instruction.

By introducing an arbitrary margin of error to an alignment, it is possible to

model each of the 1-fold Huzita-Justin Axioms (HJAs) [298], creating a model for

any Origami construction which shows the factors that most affect the accuracy of

a crease. Although this Origami construction approach only includes the creation

of a single crease per iteration, it is possible to use the same method to look at

more complex moves such as squashes and sinks.

Building upon the 1-fold Origami constructions, the previous results are used to

study how errors made in one crease affect the formation of subsequent creases

in any Origami structure. This shows there exist creases in which errors have a

greater impact on the final result than others and how, by changing the order of

instructions, one can create the same end product with a greater accuracy. This

chapter compares the results with those of some pre-existing examples of tips to

improve accuracy.

Two methods to apply these results have been provided. Firstly, a method which

minimises the dependency of creases on each other and thus the opportunity for

build up of error in a given crease pattern. Secondly, a more in-depth calculation

of which alignments should be made where there is a choice from many.

The chapter concludes with some interesting results where iterations of creases

act to increase the accuracy and reduce the error in a future crease. Noting that
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these have similar properties to the Fujimoto Approximation method [54], it may

be possible to define mathematically the properties of a crease which will have

the effect of reducing the error level in future steps.

5.1 The importance of accuracy

Many Origami textbooks provide tips and guidance on how to fold neatly. An

extensive literature exists providing such information [316–323]. The instructions

are often varied and it is the formal analysis which is lacking.

Although machines work within tolerances often too small to be noticed without

measurement, people are not as accurate. An interesting example is that of 1000

paper cranes made by a selection of members of the public at an event organised

by the University of Essex Origami Society. Even though all folders were making

almost the exact same model, ignoring the final judgement fold, some of the

finished cranes looked completely different to others. This may be due to the

skill of the specific person folding each model, of course, but it could also be due

to slight differences in the instructions or sequences of folds carried out by each

person.

Accuracy in Origami is very important, not just when an artist is making a model

for an exhibition or display, but also when a machine is producing a folded product.
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In general, for a specific model there will be bespoke requirements for it to count

as successful. For example, if a machine is producing an Origami box then its

stacking ability or “stackability” will be affected by inaccuracies in its creases.

Also, if creating a box which holds itself together with a lock, how level the top of

the box is may not be as important as the amount of paper available to produce

the lock. However, with a model of an animal the importance may be on the legs

coming to crisp points rather than angles elsewhere. This implies that accuracy

in some aspects of a model may be more important than in others. Systematic

ways for approaching accuracy through error estimation is needed.

The Fujimoto approximation method, as shown in chapter 3, is one of the only

mathematical Origami techniques where accuracy plays a fundamental role. It is

an iterative way to make errors in folding decrease exponentially. This approach

however, only looks at the construction of accurate creases and the only error

incurred is in choosing an incorrect starting point; there are, of course, additional

errors added at every fold which are not accounted for in the Fujimoto method.

This chapter looks at modelling the random errors introduced in any fold.

5.2 Error modelling in Origami constructions

Paper folding, like all real applications, is hardly error free. In Origami, folds

are performed based on aligning creases or predefined points with others. With
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a complex folding sequence it is likely that the instructions assume there are no

errors, and thus are generic. For example, it may ask the folder to fold such

that a point is reflected to align with an intersection of several creases. Due to

errors in previous folds, these creases may not be perfectly aligned. This raises

the question, which intersection should be chosen?

In Origami, the most basic form of instruction is given by simply providing the

folder with a diagram of a crease pattern, the aim is to construct all the creases;

the collapsing process of folding is then left to the folder. Although the folder is

only given a diagram of the crease pattern and on their paper there are no starting

creases, the process is referred to as folding from a crease pattern. With a crease

pattern, unlike step by step instructions, the folder is not given a specific order

to construct the creases. With this approach, once the creases are put into the

paper, much of the accuracy of the end result has already been defined; creases

are only moved if they were not accurate enough when first made. Constructing

the crease pattern before folding is referred to as pre-creasing, this is also often

said to be the most accurate way to produce creases.

For the purposes of our model, all fold lines are straight; curved folding is not

considered. Thickness, strength and other material properties of the paper are

not considered. There are some complex moves which, when performed in the

folding process, create a series of interconnected creases. This chapter will not

examine moves such as squashes, sinks and rabbit ears but it is possible they
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could be included in the model at a later date simply by modelling them as

rigidly connected structure on an inextensible surface, where the inaccuracies in

one fold define the locations of several creases.

Judgement folds and measured folds [317, 318, 320, 321] will not be examined.

Judgement folds have no accurately defined position and thus have no accurate

measurement for error. Measured folds are the opposite; creases are marked not

by a folding process, but by measuring and scoring or by folding along a mark

already drawn on the paper. It may be the case that for some machines, creases

are made using measurements from an edge or from a corner, but this would not

be the same for different machines. It is again possible that our model could be

extended to look at measured creases. However, because the accuracy is due to

the measurement process and not to the folding one, this is not currently included.

Note, Appendix B looks at the ideas presented in this chapter and applies them to

measurement which may relate to producing measured folds using other Origami

related tools.

In reality, there are many different ways to make a crease. We give some examples

for making a fold that puts a crease through two points:

• With the paper on the table, lift one side of the paper over the other creating

a curved section between the upper and lower flap, attempt to align the

curved part of the paper through the two points and increase pressure until
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it becomes a crease. This makes a straight but probably inaccurate crease.

• Make a short crease through each point in the rough direction of the other.

Extend them from each end and hope they go through the other, adjusting

if needed. Thus can often produce a non-straight crease or one which has

greater accuracy at one end.

• make pinch marks as in the second method, prior to doing the first method.

Feel for when the paper folds more easily and this should be when the paper

is folding through the pre-existing creases.

Including an individual’s skill and personal technique there is no mathematical

way to capture all the possible methods to construct a crease. To simplify this

we will create a model where the error in an alignment will be capped. After

construction, the errors in these alignments could be measured and if a crease is

made with an error larger than this the crease can be remade. For this approach

we can produce mathematical bounds.

Considering this we look to define a simple mathematical way to look at errors uni-

formly. To begin with, the chapter creates a model from the 1-fold constructions

of the HJAs [298,299].

A set of uniform maximum errors for each of the primary alignments is introduced

in order to analyse how these affect the location of creases for each one-fold con-

struction. This standardised error allows accurate definition of a region in which
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any fold can be made such that it satisfies the one-fold construction to within the

given tolerance. With these in mind, given a selection of one-fold constructions

to produce a crease, a choice is made based on accuracy.

To produce the model we consider a square region in the plane to represent the

square piece of paper we are folding which has no thickness, does not stretch and

is finite. For each of the possible alignments we define a region in which a crease

can be constructed such that the maximum possible error is ε. Combining these

allows the creation of an error model for the HJAs.

5.3 Alignments

As with Chapter 3, let a piece of paper represent a simply connected, bounded

subset of the R2 plane without holes and homeomorphic to a disk with the edges

of the paper, marked as segments, creating the region boundaries. A crease in

the paper is also represented as a segment. The size of any paper used in the real

world is finite thus the concept of a line of infinite length is not strictly required.

Recall that, in folding constructions, lines are primal. This means that lines define

points, unlike in standard Euclidean geometry where points define lines [16] and

all lines are in fact segments. For simplicity in this chapter we shall refer to lines

and segments as lines.
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Folding to extend a crease is not usually included in the HJA’s, as mathematically

in a perfect model it does not create anything new, however, it is included here as

there is a possibility that one may wish to extend a crease and this may be done

with some error. This gives the possible alignments [298], which are needed for

the constructions, and an additional alignment for extending creases.

When making a fold, the folder takes everything to one side of the required crease

and reflects it about the crease. An alignment is made where an object on one

side of the crease is reflected to the same location as an object on the other side.

We will use the term ’folding’ to mean ’making a fold which aligns’, thus folding

point P1 to point P2 implies that we make a fold which reflects point P1 such that

it is aligned with point P2. We now define the following mathematical terms.

Definition 5.3.1. Every fold made shall be represented by the fold function

f : R2 → R2, mapping the plane to itself.

Thus the folded position of a point P1 is f(P1), a fold which aligns P1 onto P2

perfectly will be represented by saying f(P1) = P2.

We can align points and lines with each other giving three types of alignment:

Definition 5.3.2. A point to point alignment , of points P1 and P2, is any

fold made such that f(P1) = P2

Definition 5.3.3. A line to line alignment , of lines l1 and l2, is any fold made
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such that ∃ ⊂ ofpointsPn ∈ l1 such that f(Pn) ∈ Pm where Pm ⊂ l2.

Definition 5.3.4. A point to line alignment , of point P1 and line l1, is any

fold made such that ∃Pn ∈ l1 such that f(P1) = Pn.

We can also fold a line or point onto itself, meaning we crease through a line or a

point. There are two possibilities for folding a line onto itself:

Definition 5.3.5. A line to itself alignment, creating a perpendicular

crease through line l1, is any fold made such that ∀ points Pn ∈ l1 that can be

aligned with l1, ∃P ′n ∈ l1 such that f(Pn) = P ′n and Pn 6= P ′n except where Pn ∈

the fold line.

Definition 5.3.6. A line to itself alignment, creating an extension of

the crease line l1, is any fold made such that ∀ points Pn ∈ l1, f(Pn) = Pn.

Note the subtle difference between the two definitions above, in folding through

a crease the points are aligned with themselves, with a perpendicular crease they

are folded to other points on the line, apart from where the creases intersect.

We note in the above definitions we are not too concerned with the parts of the

lines which do not overlap, it is obvious that at some point a longer crease will

need to be aligned to a shorter crease. This will be explored more later in the

chapter.

Consider a fold making machine. To achieve a crease, the machine is assumed to
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make alignments with a tolerance say ε. Each possible alignment is considered

individually in this analysis and remains defined by the tolerated error and where

the target crease is specified. It is assumed that creases made in reality would be

distributed with many having smaller errors however the maximum error provides

the bounds for this.

The error is defined as the distance between the points and lines which are aligned

when the crease is folded, thus for imperfect alignments we define a distance

function d.

Definition 5.3.7. d(A,B) is the Euclidean distance between the two points

A and B.

This allows us to say that where there is a specific error in an alignment we can

measure this as d(P1, P2) = k where k is the measure of the size of the error.

For a fold to be made aligning two points with a maximum error of ε we would

have a constraint that d(f(p1), p2) ≤ ε

For alignments with lines this is a bit more complex; we have Pa as a point on

the line a, and P ′a as the point on the line b which Pa is aligned with, thus for a

fold to be made aligning with a maximum error of ε we would have a constraint

that ∀Pa ∈ a∃P ′a ∈ b such that d(f(Pa), P
′
a) ≤ ε.

We note here that not all points on an object are required to be aligned as aligning
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part of one segment onto part of another is acceptable. Careful attention must be

paid to which parts of a line actually can be aligned.

Further to the above definitions we can define C as what we shall refer to as the

‘circle’ around an object.

Definition 5.3.8. C(A, x) is the region, which we shall call a ‘circle’ , around

the object A in the R2 plane such that the maximum distance a point within that

region can be from any point in A is x. For a point this gives a circle centred at

A of radius x.

With this we can state more generally that for an alignment to be made folding

P1 onto P2 with maximum error ε, f(P1) ∈ C(P2, ε).

Unlike before, for alignments with lines or regions this is not as complex; we have

Pa as an aligned point on the line a, and the line b, for a fold to align Pa onto b

with a maximum error of ε we have the similar constraint that f(P1) ∈ C(b, ε).

Our ‘circle’ notation is notably simpler when aligning objects which are not points.

To simplify this further we shall make one more definition:

Definition 5.3.9. dA(A,B) shall be a measure of the maximum error when align-

ing A onto B, thus the maximum euclidean distance between two aligned points

on the objects such that no point on either object is closer to the other than the

aligned points. Whenever an accurate alignment is made dA(A,B) = 0
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We note that, when aligning an object with itself, it may not be possible to

measure the distance an object has been moved. It may be just as appropriate

for a model to measure the distance between the object and the resulting crease.

For our model we have chosen to be consistent with ε as the error in alignments.

We now locate the regions in which any possible crease resides, that will satisfy

these conditions. The boundaries of these regions are found; they will be referred

to as the Crease Boundaries (CB) and a crease made without error will be referred

to as a Target Crease (TC). Note that in the diagrams the inaccuracies are overly

exaggerated to help display the results.

Note that in the following sections we have produced several conic sections using

creases. Showing that conic sections can be produced was first done by Lokta in

1907 [324]. The aim of the work by Lokta was to produce such conic sections,

however, the motivation behind the following sections was not in fact to produce

these, but was to produce the boundaries of the regions of creases when an error

is made. The work of Lokta was not studied while undergoing research in this

section of the thesis; it was only after working out which conic sections had been

produced that the author was made aware of this work. the work of Lokta [324]

is cited throughout where we have concluded the same results.
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5.3.1 Folding to align a point onto another point

Consider first the crease resulting from pressing the paper after aligning a point

to another. Because there are an infinite number of ways to bring the two points

to within ε from each other there is also an infinite number of resulting creases.

To capture them all the region that contains them all must be described. To that

end the folds which take the first point to somewhere on the circle that is centred

about the target point with radius ε is calculated as this will produce the creases

which are furthest from he target crease, TC. The region bounding these will be

the crease boundary, CB, of all possible folds.

We begin by folding such that we align a point to another point thus we want

to find the region of all the possible folds that will take that point to within ε

another one. Figure 5.1 shows several creases resulting from folding P1 onto the

points on the circle of radius ε centred about P2. All the possible creases will be

within the hyperbola.

Thus the CB’s of the region are determined by a hyperbola [324]. In Figure 5.2

the blue dashed line is the TC which satisfies the alignment of P1 onto P2. The

hyperbolic curves, CB1 and CB2, mark CB’s which satisfy the alignment with

maximum error ε. Therefore, any crease which lies entirely in this region will

produce an error at the alignment of ε or less. EC is an example crease which

touches CB1 as the error is equal to ε. When folded, EC aligns P1 onto the circle
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P1

P2

BP1

BP2

CB5

TP
EC

TC

Figure 5.1: Folding to align a point onto points on a circle, radius ε, produces
creases tangent to a hyperbolic curve
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about P2. Figure 5.2 is the complete error model for this alignment.

Lemma 5.3.1. For a crease to be constructed such that it folds a point P1 to

within the circle C(P1, ε) the following must hold. That crease must either not

intersect the hyperbola, constructed from tangents to all the creases made when

folding the point P1 to the boundary of the circle C(P1, ε), or be tangent to it.

Proof. We know from Lokta [324] that the creases produced when folding a point

P1 onto a circle are tangent to a hyperbola. Aligning to any point inside this

circle will produce a crease which is tangent to another hyperbola which shares

the same foci as the boundary parabola but is entirely inside it. As any crease

made aligning the point P1 to a point inside, and not on the boundary, of the circle

about P2, this crease is tangent to a hyperbola which does not cross through the

outer hyperbola it is not possible for any crease made in this way to intersect the

outer parabola. This is shown in figure 5.3.

5.3.2 Folding to align a point onto a line

Folding to align a single point to all locations along a line produces a series of

creases which are all tangents to a parabola [325] whose focus is P1 and directrix

is L1. This is shown by Figure 5.4 where resulting creases are shown for folds

taking P1 onto a series of points along L1. These creases are all tangent to the

blue parabola [325].
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P1

P2

CB1

CB2

EC

TC

Figure 5.2: A model for folding a point to a point including the Target Crease,
TC, and an Example Crease, EC, with error of ε
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Figure 5.3: Concentric Hyperbolas

When we fold a point, P1, to align that point to within ε of a given line line L1

we must fold to align with a point inside the circle, C(L1, ε), about that line. For

an infinite line this would be bounded by two straight lines parallel to the target

line. Any alignment onto this boundary produces a crease which is tangent to one

of two parabolas BP1 and BP2.

Lemma 5.3.2. For a fold to be made which satisfies the alignment, the crease

must either intersect or be a tangent to the outer parabola BP2 and must either

not intersect the inner parabola BP1 or it must be a tangent to it. This can be

simplified by saying that any line which is a tangent to a parabola between the two

bounding parabolas will align the point to within ε of the line.

Proof. Between the two parallel straight lines which are located either side of our

target line L1, there exists an infinite number of other straight lines.
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P1

L1

Figure 5.4: Folding to align a point onto points along a line produces creases
tangent to a parabola
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For each of these lines we imagine a corresponding parabola formed such that it

is tangent to each of the creases representing a fold of the point, P1, onto a point

on that line.

Therefore, we have an infinite number of parabolas which could be produced

between the inner parabola BP1 and the outer parabola BP2. None of these

parabolas will intersect as they each fold to a separate one of the parallel lines.

As the parabolas do not cross they are all also bounded by those parabolas BP1

and BP2.

Any potential crease line will be tangent to exactly one parabola as it folds the

point P1 onto exactly one of these parallel lines; thus it must pass through a point

between or on the two boundary parabolas BP1 and BP2.

Therefore, if a crease aligns with the furthermost line from P1 then it will be

tangent to BP2, any other crease will be tangent to a parabola which at all points

is nearer to P1 than BP2 and thus will cross BP2 in two places.

Finally, if a fold aligns with the near-most line from P1 then it will be tangent to

BP1, any other fold will be tangent to a parabola which at all points is further

away from P1 than BP1 and thus any crease tangent to it will never cross BP1.

The outer boundary parabolas are shown in figure 5.5 where an accurate fold

taking P1 onto L1 would produce a crease tangent to TP . The two bounding
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parabolas are shown as BP1 and BP2.

Note that it is not possible to align a point to a line beyond the endpoint of the

line; this can be taken into account by considering the end of a line as a point, thus

as the region for this has already been defined for point-to-point alignments it is

possible to combine these. Figure 5.7 shows the boundary parabolas for folding

P1 onto L1 in green, these are the same as those shown in Figure 5.5. Figure 5.7

also shows the hyperbolic bounds of possible creases taking P1 onto the endpoints

of L1, P2 or P3. These are shown in Blue and red respectively.

We now note an interesting fact about the positions of the intersections of these

bounds.

Theorem 5.3.3. The intersections of the hyperbolic and parabolic lines I1, I2, ..., I6,

as in figure 5.8 can be found on two lines which are perpendicular to the target

line L1 and pass through its endpoints.

For the proof of this theorem we shall require a definition for our parabola.

Definition 5.3.10. A parabola is the set of all points whose distance from a

certain point, the focus, is equal to the distance from a certain line, the directrix.

Proof. First we note that the intersection of the accurate creases, representing

the folds aligning P1 onto P2 and P3 respectively will of course be tangent to

the accurate parabola. We now look to see precisely where these creases will be

tangent to this parabola.
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P1

L1

BP2
BP1

TP

Figure 5.5: Boundary parabolas produced when aligning a point with lines ε either
side of a line
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We note that for any crease which represents a fold aligning a point P1 onto

another point P2, that crease also represents a fold which constructs the angle

bisector of the lines from any point along that crease to P1 and P2 This is shown

in figure 5.6.

We note from our definition of a parabola, that the point on the parabola, where

the crease will be tangent to it, is an equal distance from the point P1, the focus,

and the line L1, the directrix.

We note that, the distance between a point and a line is the same as the distance

between that point and the point on the line which is closest to it. A line through

these points will always be perpendicular to the original line.

Therefore the point on the parabola where the crease is tangent to it, and thus is

the same distance from the focus P1 to the specific point on the directrix L1, is

also on a line perpendicular to the directrix.

This implies that the intersection of the accurate creases, representing the folds

aligning P1 onto P2 and P3 respectively with the accurate parabola will be at

points which intersect the perpendicular lines passing through the endpoints of

L1.

As a single crease will only align a point to a single location, where the boundary

parabolas intersect the boundary hyperbola there will be exactly one crease which

will align P1 to exactly one point. This will be the intersection of the circles about
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Figure 5.6: Folding a point to another point is similar to folding many angle
bisectors

P2 and P3 with the lines ε either side of L1.

This intersection also takes place on the perpendicular line to L1 which passes

through its endpoints. Therefore, the points where the creases which fold to these

points will be tangent to a boundary parabola will also be on this perpendicular

line.

The same follows for the hyperbola, however, it is obvious that at the intersections

of the hyperbola and parabolas they will be parallel as they can only produce one

crease at that point.

Therefore I1, I2, ..., I6 can be found on two lines which are perpendicular to the

target line L1 and pass through its endpoints.
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P1

L1

P2

P3

I1,2,3

I4,5,6

Figure 5.7: The intersection of parabola formed when folding to allign a point to
a line and hyperbolas formed when folding the same point to the endpoints on
the line
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It is possible to define our model using a combination of the parabolic approach

shown in Figure 5.5 and the hyperbolic approach. This is shown by Figure 5.8. In

this diagram CB1 and CB5 are hyperbolic lines formed folding P1 onto P3, CB3

and CB4 are the same for P2. CB2 completes the boundaries and is the smaller

of the two bounding parabolas. We note here that not all lines within this region

satisfy the alignment within an error of ε thus the region is not ‘full’.

As almost all of the possible creases will use the parabolas, for simplicity Figure

5.9, our final model, only includes the parabolas; the lines cropping the parabolas

mark where this approach should change to the hyperbolic lines from before.

In Figure 5.9 P1 is folded onto L1; this produces the target parabola, TP . The

two lines either side of L1 are ε either side of it. TC is an example of a Target

Crease which is tangent to TP ; EC is an example crease which is tangent to the

inner parabola.

Folding to align a point to a line could be considered as folding a point to another

point with an additional degree of freedom.

5.3.3 Folding to align a line onto another line

Folding to align two lines can be considered as aligning a series of points on one

line with a series of points on another. It could be assumed that it is only necessary
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P1

L1

P2

P3

I1,2,3

I4,5,6

CB1

CB2

CB3

CB4

CB5EC1

i

Figure 5.8: Full crease boundaries for folding to align a point to a line with
unsatisfactory Example crease, EC
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P1

L1

BP1

BP2

TP

EC

TC

P

g

Figure 5.9: A simplified model for folding to align a point with a line including a
sample Target Crease, TC, and an Example Crease, EC, with error of ε
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to look at the parts of the lines which overlap. However, the folder is not told

which parts of the line will overlap as marked points showing which part of each

do not exist thus there is no specific part of a line which must align with another.

As we have mentioned before there may be cases where both lines are not the same

length, it is only possible to measure the error where both lines exist, alignment

beyond the endpoints is not possible. Because of this we can only insist that those

points which have been aligned are done so with maximum error epsilon.

We define which points have been aligned as the maximum distance between any

two points on the two lines, such that they are both no closer to any other point on

their opposite line, is ε when folded as there is nothing to align on the overhanging

parts. Thus, when folded, the two shorter endpoints are no more than ε away from

the other line.

Figure 5.10 shows six CB’s. CB3 and CB4 are created by taking a reflection of

L2 onto the grey line ε past L1 and moving one end of the line until it touches the

nearer grey line. These lines represent the maximum clockwise rotation and are

the same if calculated by starting on the nearer line and rotating until the line

intersects the furthest grey line. CB1 and CB6 are made the same way, however

anticlockwise rotation is applied. CB2 and CB5 show the creases when L2 is

folded to align onto each of the grey lines beside L1. Any crease which satisfies

this alignment with error of ε or less will not cross any of the CB’s.
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Note although P1, P2 and P3 are on the lines either side of L1, P3 is beyond the

endpoint of L1 thus is not required to align.

Note, the bounded nature of the creases play a role in alignment; alignments of

longer lines and lines further apart both yield more accurate folds.

5.3.4 Folding through a point

Folding to align a point with itself is the same as folding through a point. Given

an error of ε one might assume we should fold through the circle that is centred

about the target point with radius ε. However, this would allow one to align the

point with a position 2ε away from the original location, thus we fold passing

through the circle centred about the point with radius ε
2
. This means any line

passing through the circle also passes within ε
2

of the point.

Figure 5.11 shows that for examples of the point P1 being folded onto points ε

away from itself produce creases tangent to the circle radius ε
2
.

In Figure 5.12 the aim is to fold a crease through P1. There are an infinite number

of creases which can be folded through P1, ETC is an example of this. EC1 and

EC2 both have errors: EC2 has the maximum permitted error as the crease is

tangent to CB.
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TC

CB6

CB1

CB3

CB2
CB5

CB4

L2

L1

P1

P2

P4

P3

Figure 5.10: Crease boundaries produced when folding to align a line onto another
line
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P1

CB

Figure 5.11: Folding a point onto points on the circle radius ε from it (Note this
is shown 4 times larger than the other examples)
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P1

CB

ETC

EC1EC2

s

t

Figure 5.12: A model for folding to align a point with itself including an example
the Target Crease, TC, and two Example Creases, EC (Note as with Figure 5.11
this is shown 4 times larger than the other examples)
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5.3.5 Folding a perpendicular crease through a line

A crease is made perpendicular to a line, thus aligning the line with itself. The

crease is constructed such that at the end of the line closest to the crease, the

error is not more than ε. The shorter endpoint is the last point at which we have

both parts to align. If the crease is made in the middle of the line then either

endpoint can be used to measure the error. Figure 5.13 shows the possible CB’s

for creases through a given line. An arbitrary intersection point AP , is picked

as this alignment does not define a specific crease. CB1 and CB2 are the CB’s

which satisfy the alignment. They are generated by reflecting line L1 such that

its endpoint is exactly ε from the line.

5.3.6 Folding through a line to extend a crease

If we make a crease which aligns a line with itself and is parallel to that line we

have a fold so that any point on that line is not aligned more than ε away from its

original position. As with folding through a point, here we need a crease which

can be at most ε
2

from the line. This is important and it should be noted that the

circles are not radius ε as that would allow an error of twice ε.

In Figure 5.14 CB4 and CB3 represent the maximum clockwise error which can

occur, CB1 and CB6 represent the anticlockwise maximum error, CB2 and CB5

184



TC

CB1

CB2

AP

L1

Figure 5.13: Crease boundaries produced when folding to produce a crease per-
pendicular to align a line
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are the furthest a parallel crease could be from the line to be acceptable. Together,

these define the region in which any crease can lie.

5.4 An error model for the Origami HJA’s

We now go through all seven of the HJA’s and produce models of the CB’s of the

regions where the error is less than or equal to ε. We also calculate the maximum

translation and rotation of a crease inside this region.

5.4.1 Axiom 1: Fold a crease through two points

Given P1 and P2, fold so that P1 is aligned onto P1 and P2 onto P2. From the

alignments for P1 and P2 we have that the crease must pass through both the

circles centred at these points with radius ε. Thus we can represent the boundary

of the region of possible creases.

In Figure 5.15 CB2 and CB5 represent creases made at the maximum distance

from the TC while remaining parallel with the accurate crease. We get the other

four CBs from the tangents to the circles.

It is worth noting that the points where the CBs cross are not on the circles as
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TC

CB1

L1

CB5

CB3

CB2

CB4

CB6

EC

Figure 5.14: Folding through a line to extend a crease (Note this is shown 2 times
larger than the other examples)
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they are tangents to them. Given P1 = (X1, Y1) we have the circle

(X −X1)
2 + (Y − Y1)2 = ε2. (5.1)

Given P1 = (X1, Y1) and P2 = (X2, Y2), the maximum rotation of a crease is:

θ = ± sin−1(
ε
2√

(X1−X2

2
)2 + (Y1−Y2

2
)2

) (5.2)

The maximum translation is ± ε
2
.

We note here that folding through two points is found to be the same as the

alignment for folding to extend a line; thus no additional axiom is required.

5.4.2 Axiom 2: Fold a crease to align two points

Given two points, P1 and P2, fold so that P1 is aligned with P2. This has also

been considered, see Figure 5.2. But, here we develop the model as follows.

Let the two points be (X1, Y1) and (X2, Y2) then the hyperbola has foci at each

of these two points and passes through a point on the line between the two foci ε
2
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TC

CB1

P1

CB5

CB3

CB2

CB4

CB6

EC

P2

Figure 5.15: Axiom 1 - Folding through 2 points
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from the midpoint. This point is given by:

(
X1 +X2

2
+
ε

2

X2 −X1√
(X2 −X1)2 + (Y2 − Y1)2

,
Y1 + Y2

2
+
ε

2

Y2 − Y1√
(X2 −X1)2 + (Y2 − Y1)2

)

(5.3)

From this we should get a hyperbola of the form:

1 =
(x cos(θ)− y sin(θ)− h)2

a2
− (x sin(θ)− y cos(θ)− k)2

b2
. (5.4)

The expansion of this equation with points (X1, Y1) and (X2, Y2) is extremely

long and difficult to simplify; it is shown in Figure 5.16 after it has been through

simplification in the computer program ‘Maple’. Given these points the maximum

rotation of a crease is:

θ = ± sin−1(
ε√

(X1−X2
2

)2 + (Y 1−Y 2
2

)2
) (5.5)

and the maximum translation is ±ε.

5.4.3 Axiom 3: Fold a crease to align two lines

Given two lines, L1 and L2, fold so that L1 is aligned onto L2. This has already

been considered, see Figure 5.10.
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Figure 5.16: Generic equation for CBs when folding a crease to align two points

5.4.4 Axiom 4: Fold perpendicular to a line and crease

through a point

Given L1, and P1, fold so that L1 is aligned onto L1 and P1 onto P1.

In Figure 5.17 each of the four CB’s will fold the endpoint of L1 to align with the

grey lines ε either side of L1; they are also tangent to the circle of radius ε
2

about

P1.

It is important to note here that as P1 is being aligned with itself the circle is

radius ε
2

not ε.

5.4.5 Axiom 5: Fold a crease through a point and align a

point onto a line

Given P1, P2 and L1, crease so that P1 is aligned onto L1 and P2 onto P2.
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TC

CB1

CB3

CB2

CB4

L1

P1

Figure 5.17: Axiom 4 - Folding a line to itself so the crease passes through a point
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Here we fold a point to a line, thus we get two bounding parabolas and at the

same time we have that the resulting creases must go through a circle of radius ε
2

about the second point. We can take, the tangents to the circle and each of the

parabolas create the region of creases.

In Figure 5.18, CB3 and CB4 represent the fold made with the maximum clock-

wise rotation. It is tangent to the inner parabola and the circle. CB1 and CB6

represent the crease made with the maximum anticlockwise rotation. They are

tangent to the outer parabola and the circle. CB2 and CB5 represent the maxi-

mum movement a crease can make perpendicular to the TC without rotation.

5.4.6 Axiom 6: Fold a crease to align two points with two

lines

Given P1, P2, L1 and L2, fold so that P1 is aligned onto L1 and P2 onto L2.

Here we fold a point to a line twice, thus we get two bounding parabolas twice.

We can take the tangents to one parabola from each alignment to create the CB’s.

In Figure 5.19, CB1 and CB4 represent the crease made with the maximum

clockwise rotation, they are tangent to the inner parabola one alignment and

the outer parabola for the other. CB3 and CB6 represent the crease made with

the maximum anticlockwise rotation. CB2 and CB5 represent the maximum
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TC

CB1

P1

CB5

CB3

CB2

CB4

CB6

L1

P2

Figure 5.18: Axiom 5 - Folding a point to a line so that the fold passes through
a point
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movement a crease can make perpendicular to the TC without rotation; they are

tangent to the equivalent parabolas for each alignment.

5.4.7 Axiom 7: Fold a point to a line making a crease

perpendicular to a line

Given P1, L1 and L2, crease so that P1 is aligned onto L1 and L2 is aligned onto

L2. Thus we have the two bounding parabolas for the first alignment, which

define the movement perpendicular to the TC, and two further parabolas from

the second alignment. Together these provide four CB’s.

In Figure 5.20 CB1 and CB3 represent creases made with the maximum clockwise

rotation. CB2 and CB4 represent creases made with the maximum anticlockwise

rotation.

5.5 Illustration: Folds on a square

To illustrate the modelling methodology we have just introduced, we apply it in

simple structures to help choose the best HJA to use through error considerations

in order to generate simple creases.
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TC

CB1

P1

CB5

CB3

CB2

CB4

CB6 L1

P2

L2

Figure 5.19: Axiom 6 - Folding two points to two lines
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TC

CB1

P1

CB3

CB2

CB4

L1

L2

Figure 5.20: Axiom 7 - Folding a point to a line and a line to itself

197



5.5.1 Folding in half diagonally

When folding in half diagonally, several options arise. We compare folding the two

opposite corners together as in Figure 5.21, folding two adjacent edges onto each

other as in Figure 5.23 and folding through the two corner points as in Figure 5.22.

Comparing these in Figure 5.24 we can see that the region of solutions for folding

through two points is smaller than both the other regions. Thus we conclude that

this is the better axiom choice as it minimises the sixe of the region within the

bounds of the paper.

5.5.2 Folding in half horizontally

Using the 1-fold model we have two ways of folding in half with a horizontal

crease; we can either look at folding two parallel edges of the paper together, or

folding either of the other edges to meet themselves. The latter is equivalent to

folding two adjacent corners of the paper to meet each other. In Figure 5.25 we

show the outcome for the CB’s for both methods. This shows how the side which

is aligned is accurate however the further you get away from the alignment the

greater the size of the maximum error. In contrast the alignment of the entire

top edge is much more accurate. Aligning edge-to-edge is the obvious choice. It

is expected to produce the best solution in this case.

198



P1

CB2

P2

P3

TC

P4

CB1

Figure 5.21: Folding a diagonal through a square by folding opposite corners
together
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P1

CB6

P2

P3

TC

P4

CB5

CB1

CB2

CB3

CB4

Figure 5.22: Folding a diagonal through a square by folding through opposite
corners
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P1

CB6

P2

P3

TC

P4

CB1

CB4

CB5

CB2

CB3

Figure 5.23: Folding a diagonal through a square by folding two edges together
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P1

P2

P3

TC

P4

Figure 5.24: Comparison of all three methods for folding a diagonal through a
square: folding through two points in red, folding two points together in green
and folding edges together in blue
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P1

P2

P3

TC

P4

Figure 5.25: Comparison of all three methods for folding horizontally through a
square: folding to align P2 and P3 in red, folding to align P1 and P4 in green,
folding to align the top and bottom edge in blue
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5.5.3 Folding to locate the centre

Which method is best to find the centre of a square? If we limit ourselves to

just one pair of intersecting lines then the edge-to-edge horizontal and vertical

folds generate errors of the same size as folding point-to-point for both diagonals.

However, the region in which the centre point resides is approximately square of

edge length ε in the former, while it is the same but rotated diagonally in the

latter. It is conceivable that more lines could be constructed and the centres of

all intersections taken as the middle. However this would be using unnecessary

creases and multiple points would be found.

5.6 Compounding of errors through multiple creases

Even simple Origami objects involve multiple creases. Error compounding there-

fore is unavoidable. Here we consider modelling the effect of axiom choice on a

crease pattern with multiple folds. We note that this would become increasingly

difficult as instead of having a nicely defined line or point to create the crease we

may be starting from a point or line for which we only know the region in which

it lies.

For example if we had found the centre of a square we would have a region in

which this point could lie. If we wanted to fold a corner to the centre and find
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the region in which that fold could lie we would need to fold that point to a point

within ε of that region. With lines this is even harder as we would need to align

with all possible lines in a region.

We note that using the “circle” and distance notation, as we continue to make

steps constructions which compound errors, the shape of the circle can become

arbitrarily complex however we can still define it and are still able to describe the

requirement to align one complex region with another.

We look instead at ways of quantifying the possible error at each stage and giving

it a value which can be used to help choose axioms to apply. Here we compare

some possibilities for this quantification of the error.

1. One solution is to quantify the maximum angle of rotation a crease can have.

We can build a general model of this for each axiom. This is a much simpler

way to model the error as for each crease one only gets one error based on

the points and lines which are to be aligned. However, this does not take

into account the movement of a crease perpendicular to the TC. Thus we

could have a crease which can be folded in the correct direction but which

is folded off the edge of the paper.

2. If we aim to define the maximum shift perpendicular to the crease we get a

measure of how spread out the creases can be.

3. Another solution is to define the maximum distance from the crease we make
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to the ideal one. We can measure this by finding the distance between the

creases at the boundary of the paper. This method takes into account the

shape of the paper as well as the location of points and lines to be aligned.

However, this does not help where we make creases which do not extend to

the boundary of the paper.

4. If we look to define the area of the entire region we get a single value for

the error. But this cannot be found without knowing the exact boundaries

of the paper.

5. Rather than looking for a specific value we look at what affects the error for

each axiom. For example with the Axiom from Section 5.4.2, the further the

two points are apart the smaller the error, but the further the paper is from

the line between those two points the larger the error at the boundaries.

If we compare this to Axiom 1, the further apart the two points are the

smaller the error but the further the paper extends past the two points in

the direction of the line between those two points, the larger the error at

the boundaries.

5.6.1 Error control: A simple approach

We have seen that when folding we are making alignments, thus, error is caused

both by the limited accuracy with which we can align objects and the pre-existing
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Figure 5.26: A simple crease pattern

errors in them. With this in mind we can assume that, where several creases rely

on each other in order to be constructed, the error will be compounded. We now

look to minimise the compounding of errors without looking at the specific errors

involved in each step. Here we make one fold at a time and each time unfold;

thus layers do not increase and all folds are made with the same random error.

For each crease we will assign an error state based on the folding sequence. Let

us first define what we mean by error state.

Definition 5.6.1. An error state is a measure of how many times the error

has been compounded in order to construct a particular crease. For a crease xi

constructed by aligning objects x1, . . . , xn, we assign an error state σ ∈ Z such

that σ(xi) = 1 + max
1≤j≤n

(σ(xj)). Also, σ(xi) = 0 for all initial elements such as

paper borders.

Figure 5.26 is a simple crease pattern which consists of a 1× 4 rectangle divided

into 8 similar triangles. Three possible folding sequences to construct this crease

pattern are compared below.

Method 1: Folding each crease in sequence from C1 to C7. First, C1 is created
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by aligning the left edge with the top edge. Then C2 can be created by folding

perpendicular to the bottom edge at the point where it intersects C1. Next C3 is

created by aligning C2 with the top edge; the process repeats in this way for the

remaining creases C4 to C7.

It is obvious that Method 1 is inaccurate, as C7 is affected by the errors in all the

other creases which have been compounded at each stage.

Method 2: Begin with the vertical creases, then add the diagonals. First, C4

is created by folding in half. Then C2 and C6 are created by folding each of the

edges to C4. Finally, the diagonals are added by folding a crease through the two

points made by the intersections of the vertical and horizontal creases with the

paper edge.

This is the most likely way one would naturally construct the crease pattern. It

is easy to see why it is more accurate than the first sequence. However, it is not

obvious to see if it can be improved upon.

Method 3: In each step, fold each crease that can be constructed immediately;

make each crease independently of the others in this step. Then repeat this process

until all creases are constructed. Thus, we can initially create C1, C4 and C7.

Then we can create C2, C3, C5 and C6.

Method 3 minimises the compounding of errors in Figure 5.1. We can see that

the maximum error state has been reduced from 7 to 2. A method is presented
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which insures that the error state of each crease is minimised. Call it the Least

Error State or LES method.

Table 5.1: Error states of creases made using methods 1 to 3

Error states C1 C2 C3 C4 C5 C6 C7

Method 1 1 2 3 4 5 6 7

Method 2 3 2 3 1 3 2 3

Method 3 1 2 2 1 2 2 1

Definition 5.6.2. The LES method constructs creases in a sequence of rounds.

In round 1, a set of creases M1 are made, where each crease in M1 can be made

using nothing but the boundary of the paper for alignments. Then recursively, in

round k, a new set of creases Mk are made, where each crease in Mk can be made

using only the creases in
⋃k−1
i=1 Mi and the boundary of the paper for alignments.

Lemma 5.6.1. The LES method returns the lowest possible error state for any

crease.

Proof. Given a crease, see if it could be made with a lower error state. Given

that a crease xi is in the set Mk it has been constructed in round k and has

error state σ = k. Thus, all creases used in alignments to construct xi have error

state σ = k − 1 or less. In each round 1, 2, 3, ..., k − 1 of the method it must not

have been possible to construct xi, or any other crease with error state σ = K or

higher. Thus it is not possible to construct xi until round k; its Least Error State

is σ = k.
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It is likely that, as all creases have the lowest error state, and compounding of

errors is minimised, the result is most accurate. However, there is a possibility

that in each step we are limited to axiom choices which are not the most accurate.

It is possible that by choosing other more accurate axioms, with a higher error

state, we could get a better result. We conjecture that LES runs in polynomial

time.

Theorem 5.6.2. The LES method runs in polynomial time.

Proof. Each Axiom constructs a new crease from a pre-defined number of other

objects. We shall set the maximum number of objects needed to be a. For each

round, we compute all kai possible creases from the ki objects with error state

σ ≤ i, then compare each against all creases which are still to be constructed.

There are at most O(n) error states, so LES should be computable in O(na+2)

time.

5.7 Summary

In this chapter we have developed a framework in which errors incurred when

realising creases can be estimated. A model of the error in terms of the extent to

which a crease can vary, assuming some distance ε between the points we want

to align in order to realise the crease, is given for each of the 1-Fold axioms or

HJA’s. The model defines an area on a square piece of paper on which a crease
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is made. This area is defined by straight lines or curved ones as parabolas or

hyperbolas. It is also shown how estimating this area for different ways of making

a crease allows one to choose the fold that will result in a more accurate crease.

Crease accuracy is important in origami; this has also been illustrated. Finally an

algorithm to minimise the compounding of errors due to successive crease making

has been given.

Note that the content of this chapter has now appeared as an OSME paper in the

7th OSME proceedings [326].

The next chapter is an overall conclusion of this thesis.
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6
Conclusion

This thesis has looked at several interesting and related questions which arise from

an in depth exploration of Origami science and its underpinning mathematics.

Through a thorough literature survey we have presented a comprehensive review of

work that has been carried out in the last few decades on Origami. Our emphasis

has been on the mathematical aspects, however, work concerned with Psychology,

Teaching and Art has also been covered. In fact our survey concerns to a large

extent the papers that appeared at the OSME conferences series. The proceedings

of all six conferences to date have been consulted and all papers have been briefly

summarised. We believe that there are other important papers presented outside

the OSME conferences; several of those we are aware of and we consider to be

important have also been mentioned.

This survey led to many fascinating open or unexplored questions of which sev-
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eral are looked at in this thesis. Before exploring new mathematical aspects of

Origami, a solid foundation on the already existing theorems and knowledge of

the Mathematics of Origami was required.

Chapter three has shown how we can use Origami to solve problems such as

trisecting angles and doubling the cube. It has also proved the new result that

any Origami crease pattern is at most 3-colourable. We later built on this to show

how the proof of the 4-colour theorem can be explored by converting the task of

map colouring into an Origami problem.

It is clear that if it can be shown that it is always possible to 4-colour a map using

an Origami technique then a proof of this would be equivalent to a proof of the

4-colour theorem. Many attempts were made to prove this theorem. Although the

thesis does not provide a complete method, it demonstrates how Origami methods

could become a tool for finding proofs of mathematical principles more complex

than just trisecting angles and solving polynomials. It is yet to be seen if this

might help to find solutions to these problems.

In Chapter five we have shown that, given a standardised error model for each of

the one-fold constructions, differences between the sizes of the regions containing

the resulting creases point to differences in accuracy. This allows axiom choices

to be made which minimise the overall error. This approach has been illustrated

on some simple examples and several ways to quantify the error regions have been

suggested.
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We have also introduced LES, an algorithm to reduce the compounding of errors.

Applying it is by far the easiest way to improve overall accuracy in Origami

construction.

In conclusion this chapter has shown that given a standardised error model, we

can both choose the most accurate alignments to make; as well as dramatically

reducing how the compounding of errors using a polynomial time algorithm.

6.1 Future Work

In future work we will consider both development of the model and further ex-

ploration for mathematical problems solvable with Origami techniques. Perhaps

most desirable would be a proof of the 4 colour theorem, although this may be

still just out of reach it may be achievable. More realistically we hope to explore

if other problems may be approachable with Origami techniques.

We also hope to expand the error model to allow more complex error regions

and to generalise the approach to other than just the 1-fold construction axioms.

Although the error model is helpful for single crease models it is possibly over

complex to expand into a multi-fold process, thus looking at the maximum trans-

lations, rotation or distance between the fold and target fold, give a value which

can be used more effectively and built into an accuracy optimisation method.

214



Exploration of the more practical side of potential folding machines may also lead

to further operations which are not Origami constructions but produce measured

creases.

There are also other questions still remaining. can more advanced mathematics be

done if we do not limit ourselves to a single fold or straight folds? This question

is similar to that seen with constructing π using the somewhat undefined area

of folding involving curved creases. We also do not know if there are any open

mathematical questions that we can solve using Origami? It is possible that with

further research into folding in general, we could answer these questions.
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A
Notes on experimentation with the 4-colour

problem

A considerable amount of time on my thesis was spent exploring possible solutions

to finding a proof for the 4-colour Theorem, some more are briefly listed below.

A.1 Generating added edges without use of Origami

Having been inspired by the OSC theorem and having used Origami to add edges

to a CPG it is obvious that looking at other ways of producing these edges, without

Origami, might be of interest.

We look at what’s special about the remaining edges when those that are easy to

remove are removed. We note that the endpoints of the chains made my added
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edges are where there were odd degree vertices. More specifically the odd vertices

on a graph are where they are odd verticies on the graph consisting only of the

added edges (if the initial CPG is removed).

A.2 Expansion of exploration of moated faces

We have seen that if the remaining added edges, which cannot be removed with

cycles or paper-edge to paper-edge paths, are contained in a single face, they can

be dealt with if they only exist in a single face in the CPG. It is also possible to

look at pairs of faces or even multiple disconnected pairs of edges. These regions

of added edges need to be far enough away from each other as to be not share any

edges.

We shall refer to regions of faces which do not share any edges as moated from each

other. If a solution can be found where moated regions contain only individual or

pairs of faces then a 4-colouring possible.

Unfortunately this approach was not successful and will still always will leave a

problem as it is unlikely all examples will be able to do this.

However, these moated regions have a boundary, if we can find this boundary we

can guarantee to find a colouring
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Looking at the odds degree vertices and where they are in the graph shows there

are strong links between them. You can you get an isolated odd vertex as the

number of odd degree vertices must be even. (This is a common result by the

Handshake theorem)

We remember that the aim is to separate all the faces in the CPG into 2 groups

each being 2 colourable. Thus perhaps we should look at the border between these

two regions. Notably, it covers all the odd vertices.

through exploration of this we also found an equilivant statement to the 4-colour

theorem.

Lemma A.2.1. Given any planar graph corresponding to a map, the map is 4

colourable if and only if a circuit or multiple circuits can be found covering all odd

vertices such that each circuit contains an even number of odd vertices.
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B
Notes on possible Origami approaches which

could be used to optimise precision of Non

Origami tools

In this note we look at the precision associated with measuring tools and meth-

ods by which we can use these tools such that their precision is increased, we

then relate this to Origami and show how Origami tools can further increase this

precision. The concepts looked at here are similar to the analysis of our error

modelling in Chapter 5

Understanding Origami constructions is very useful for an Origami artist as they

can use these techniques to efficiently construct Origami models. It is also useful

to anyone using applications of Origami, for the same reasons. However, if you

are not using Origami in your application one would rarely use folded paper as a
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tool.

Due to the speed of constructing Origami tools and their easily replaceable and

disposable nature this note suggests a method by which Origami tools might

become useful.

We look at the precision associated with measuring tools, using, among others,

the example of finding the most accurate way of measuring the area of a square

given a specific tool, then looking at how this might apply to other real world

examples.

Finally, we take these techniques and attempt both to apply them to integrate

Origami techniques to improve these methods.

B.1 Measuring tools and errors

Errors can affect both the accuracy (correctness of the output), and precision (size

of the range of the output) of a result. Here we are only looking at the precision of

a result and we are not taking into account factors such as operator error. Given

a specific measuring tool, there is a fixed tolerance or precision associated with

it. Using this tool we will only be able to take measurements accurately to within

this pre-set tolerance. This affects how precisely you can take a measurement.

However, here we ask, are there ways in which we can reduce the tolerances in
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our output based solely on how we use the tool. Here we give an example of how

we can achieve this.

We now provide a sample object which is 60cm high and 60cm wide. The mea-

surer is informed that the shape is perfectly square however does not know the

dimensions and is asked to, as precisely as possible, calculate the area using only

a meter stick.

The meter stick is marked with 1cm divisions thus we can measure from 1cm to

100cm with a precision of ±0.5cm. If we wish to use this tool to measure the area

of a square we might initially consider measuring the height/width of this square

and then calculate the area. We now attempt this initial method:

• Measuring the height and width gives us measurements of 60cm which with

our precision have maximums of 60.5cm and minimums of 59.5cm.

• Our maximum area, calculated by multiplying both diagonals is 3660.25cm2

and the minimum is 3540.25cm2.

• The difference between these two values is 120cm2.

However this might not be the most precise method, we now suggest a differ-

ent method where we measure instead the diagonals, the actual lengths of the

diagonals are
√

7200cm which is 84.8528cm to six significant figures.

• Measuring the diagonals gives measurements of 85cm which with our preci-
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sion have maximums of 85.5cm and minimums of 84.5cm.

• Our maximum area, calculated by multiplying both diagonals and dividing

by 2 is 3655.125cm2 and the minimum is 3570.125cm2.

• The difference between these two values is 85cm2.

The actual area of the square was 3660cm2 which is contained in the range of

measurements from both methods, however, the latter method provides tighter

bounds, thus a higher confidence, on the final measurement.

As we are told that our shape is square we can even take this one step further

as square rooting our maximum and minimum areas give 60.46cm and 59.75cm

respectively, to four significant figures, as bounds for our height and width which

is more precise than measuring directly, albeit only slightly.

This shows that the precision of a measurement is not only affected by our tool

but how we use them.

The reason for the increase in precision of the final result is due to the effect

of measuring a longer part of the object, thus relative to this measurement the

tolerance has a smaller effect. Perhaps if we had a measuring tape of the same

precision as the meter stick we would produce an even more precise measurement

using the perimeter.
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B.2 Using Origami as a measuring tool to re-

duce errors

We now relate these to Origami techniques.

If we take our meter rule and measure a piece of paper which is 100cm long we

will have a resulting piece of paper which is between 99.5cm and 100.5cm.

There is of course a random error associated in folding. If however, we fold that

paper into tenths, we will have a piece of paper that should be between 9.95cm

and 10.05cm. If we were to repeat this for pieces of paper that were measured by

the meter stick to be from 100cm to 1cm in steps of 1cm we would theoretically

be able to use these to mark up a 10cm ruler with 1mm precision.

In reality this method would be impractical and it is likely that random errors

would outweigh the increase in precision, however if, rather than measuring an

object, we wish to mark a measurement on an object, then we can use Origami

techniques to produce a template device possibly with more precision and accuracy

than a measuring device.

We now give another example of this. We begin by attempting to mark on an

object a measurement of 25
√

5cm along an edge. Using our meter rule again we

will first need to convert this to a decimal measurement which is 55.9017cm to

six significant figures. Thus we can measure a length of 56cm and we will get a
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marked lenth of between 55.5cm and 56.5cm.

Instead we measure and mark a square piece of paper, using diagonal measure-

ments, to get a square of edge length 50cm, (Here we skip over the logistics of

doing this as it is the same as for the 60cm square) we would get a square with

edge lengths between 50.56cm and 49.85cm. By marking the midpoint of the top

edge using a fold and then folding one of the bottom corners up to the top edge

we will produce a fold of length between 56.53cm and 55.73cm which is a range

of 0.8cm compared with 1cm. This is again ignoring random errors however there

are fewer places in which they can occur.

As a final example this time without specific measurements, if you wish to cut an

object in half we compare measuring through traditional methods with Origami

methods. We are given an object to cut in half, we simplify this problem to

marking the middle of the object as both would use the same cutting tool.

Initially we measure the object to within a tolerance of ±E. We then measure

along the object half that of the measured length of the object and we make a

mark in this location. This can now be up to ±2E away from the actual midpoint.

We attempt this with Origami: We mark the length of the object on a piece of

paper, this is marked with a random error of ±O, , where O is our error associated

with marking the object in the specific place, this time marking the paper. When

we fold this in half we have a piece of paper which is accurate to within ±(O
2

+F ),
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where F is the fold error, thus when we mark it we end up with a measurement

with error of ±(3O
2

+ F ) from the centre of our object.

The question now remains is it possible to reduce ±(3O
2

+ F ) below ±2E

B.3 Conclusion

In conclusion this paper has shown that there exist ways in which we can use

tools to increase their precision and there are methods we can take to reduce the

quantity of random errors which can be introduced.

It is perhaps surprising to see that those methods which are most obvious for

performing simple tasks can be improved by performing them in an unusual way,

such as measuring the diagonals of a square rather than the height and width

This would also scale to estimating the area of larger objects such as a building

site or a building, by measuring the diagonals we get a more precise result.

We now plan to look at these methods and see how they relate to axiomatic

Origami construction and provide steps for increasing the accuracy of Origami.

one possibly route will be to see if it is possible to create a model for Origami

construction methods including error modelling which might create an output for

any method of the types and quantities of errors associated with such a method.
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