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Abstract

We revisit the problem of a principal allocating an indivisible good with costly
verification, as it was formulated and analyzed by Ben-Porath et al. (2014). We
establish, in this setting, a general equivalence between Bayesian and ex-post in-
centive compatible mechanisms. We also provide a simple proof showing that the
optimal mechanism is a threshold mechanism.
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1 Introduction
A crucial part of designing mechanisms is to elicit private information. It is often assumed
that private information cannot be verified in any way. However, there are many real-life
situations when information indeed is verifiable as it may be based on hard information.
In a recent paper, Ben-Porath et al. (2014) (henceforth called BDL) analyzed costly
verification in a model where a principal allocates an indivisible good to privately informed
agents. They showed that the optimal Bayesian incentive compatible mechanism for the
principal is in the class of “threshold mechanisms.”1 In a threshold mechanism, provided
that some report is above the threshold, the agent with the highest reported value is
verified and gets the object if he was truthful, and the object is randomly allocated
according to a given probability distribution otherwise. If an agent is caught lying he
does not receive the object.

BDL point out that, somewhat surprisingly, the optimal mechanism is ex-post incent-
ive compatible. Thus, the optimal mechanism does not use the extra flexibility that a
Bayesian mechanism offers. We explain this observation by establishing a more general
equivalence: for any Bayesian incentive compatible mechanism there exists an “equi-
valent” mechanism that is implementable in ex-post equilibrium and induces the same
expected verification costs. Proving the equivalence might help to analyze this or related
models because it allows to optimize over a smaller class of ex-post incentive compat-
ible mechanisms. Since these mechanisms are conceptually simpler the corresponding
analysis might sometimes be more tractable. Similar equivalence results exist in the
standard one-dimensional mechanism design setting with single-crossing and quasi-linear
utilities (Mookherjee and Reichelstein, 1992; Manelli and Vincent, 2010; Gershkov et al.,
2013).

In the second part of this note we provide an alternative proof for the optimality of
threshold mechanisms2 by using insights from the literature on interim allocation rules.3
To prove the optimality of threshold mechanisms we observe that the relevant incentive
constraints are formulated in terms of interim allocation and verification rules. Thus, we
can restate the optimization problem using only interim rules and optimize over them dir-
ectly, which is significantly easier. A characterization of feasible interim allocation rules
is readily available due to Border (1991), and we can show that threshold mechanisms
are optimal. Our approach of using interim allocation rules to solve for optimal mech-
anisms is one example among several recent papers, for other examples see Mierendorff
(2016), Mylovanov and Zapechelnyuk (2017) and Pai and Vohra (2014).

The rest of the note is organized as follows. In Section 2 we introduce the model. In
1BDL further showed that a “favored-agent” mechanism is the optimal threshold mechanism. Thus,

a favored-agent mechanism is optimal among all incentive compatible mechanisms.
2Another proof of the optimality of threshold mechanisms can be found in Lipman (Lipman).
3An interim allocation rule or reduced form maps the type of an agent into the expected probability of

being allocated the object. The set of feasible interim allocation rules has an explicit description (Border,
1991) and a nice combinatorial structure (Che et al., 2013).
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Section 3 we formalize and prove the equivalence between Bayesian and ex-post incentive
compatible mechanisms. In Section 4 we provide our alternative proof for the optimality
of threshold mechanisms.

2 Model and incentive constraints
The principal wants to allocate one indivisible object among agents in I ” t1, ..., Iu.
Agents are privately informed about their types ti P Ti ” rti, tis, where ´8 ă ti ă ti ă 8.
The principal receives value ti when the object is allocated to an agent with type ti.
Monetary transfers are not possible, and all agents strictly prefer to receive the object.
Thus, the payoff of an agent is simply the probability of receiving the object.4 Types
are independently distributed with distribution function Fi and corresponding density fi.
A profile of types is denoted by t P T ”

ś

iPI Ti. The principal can verify agent i at a
given cost of ci, in which case the type of agent i is perfectly revealed. The goal of the
principal is to maximize the expected value of allocating the good less the expected cost
of verification.

By invoking a revelation principle, it is without loss of generality to consider only
direct and incentive compatible mechanisms. Denote by pi : T Ñ r0, 1s the probability
that agent i is assigned the good, and by qi : T Ñ r0, 1s the probability that agent i
is verified and assigned the good given that he reported truthfully. A mechanism is a
tuple pp, qq “ ppi, qiqiPI . A mechanism pp, qq is feasible if, for all t P T ,

ř

piptq ď 1 and
qiptq ď piptq for each i P I. Without loss of generality, we can assume that if an agent is
verified and is lying then he will not be assigned the object.

A mechanism is incentive compatible if truthtelling is an equilibrium in the game
induced by the mechanism. We will consider both ex-post and Bayesian incentive com-
patibility.

Definition 1. A mechanism pp, qq is Bayesian incentive compatible (BIC) if, for all i P I
and all ti, t1i P Ti

Et´i
rpipti, t´iqs ě Et´i

rpipt
1
i, t´iqs ´ Et´i

rqipt
1
i, t´iqs. (1)

The right hand side of equation (1) is the probability of being allocated the object
Et´i

rpipt
1
i, t´iqs conditional upon not being verified minus the probability of being verified

Et´i
rqipt

1
i, t´iqs. This is the probability of getting an object when an agent of type ti

reports to be of type t1i ‰ ti, since once verified agent i does not get the object. For pp, qq
to be incentive compatible this has to be lower than the probability of getting an object
when reporting the type ti truthfully.

Since the right-hand side of the inequality is independent of ti, this inequality holds
if and only if it holds for the type that minimizes the left-hand side, for which the left-
hand side assumes the value inft2i PTi

Et´i
rpipt

2

i , t´iqs. This characterizes BIC mechanisms
4Agents’ cardinal preferences can depend on their types, but intensities of the agents’ preferences do

not play a role in the analysis.
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by giving us a lower bound on how often we need to check an agent with type ti to make
an allocation rule p incentive compatible.

Lemma 1. A mechanism pp, qq is Bayesian incentive compatible (BIC) if and only if, for
all i P I and all ti P Ti,

Et´i
rqipti, t´iqs ě Et´i

rpipti, t´iqs ´ inf
t1iPTi

Et´i
rpipt

1
i, t´iqs. (2)

The stronger notion of ex-post incentive compatibility requires that equation (1) holds
pointwise and we get the analogous characterization of ex-post incentive compatibility.

Lemma 2. A mechanism pp, qq is ex-post incentive compatible (EPIC) if and only if, for
all i P I, all ti P Ti and all t´i P T´i

qipti, t´iq ě pipti, t´iq ´ inf
t1iPTi

pipt
1
i, t´iq. (3)

In this note, instead of using the ex-post allocation rule p, we will use the corresponding
interim allocation rule (also called reduced form) p̂, where p̂iptiq “ Et´i

rpipti, t´iqs and the
interim verification rule q̂iptiq “ Et´i

rqipti, t´iqs. These are lower dimensional objects and
are simpler to maximize over than ex-post rules. Moving from ex-post allocation rules to
interim allocation rules we need to know whether a given interim allocation rule is feasible,
in the sense that there exists a feasible ex-post allocation rule that induces p̂. This question
has been answered by Border (1991) and Mierendorff (2011), who characterized the set
of feasible interim allocation rules: a monotone interim allocation rule is feasible if and
only if, for all pα1, ..., αnq P T ,

ÿ

i

ż ti

αi

p̂iptiqdFiptiq ď 1´
ź

i

Fipαiq. (Border)

This condition is necessary for a interim allocation rule to be feasible: the left-hand side,
denoting the probability that an agent i with type above αi wins the object, must clearly
be lower than the probability that there is an agent i with type above αi, which is written
on the right-hand side.5 The content of Border’s theorem is to show that the above
condition is also sufficient for a nondecreasing interim allocation rule to be feasible.

3 BIC-EPIC equivalence
In this section we will establish an equivalence between BIC and EPIC mechanisms.
We will first formalize our equivalence notion, and then state and prove the equivalence
theorem.

5We use this direction to construct an upper bound on the objective function in Section 4.
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BDL showed that the optimal BIC mechanism satisfies the stronger notion of ex-post
incentive compatibility.6 At first sight it might be surprising that the optimal mechanism
does not use the extra degrees of freedom that Bayesian incentive constraints offer in order
to save on verification costs. We show that there is a deeper connection underlying this
observation: for any BIC mechanism pp, qq there exists an “equivalent” EPIC mechanism
pp̃, q̃q that induces the same expected verification costs and the same interim allocation
rules. While this equivalence holds in this model for any mechanism, it fails in model
variations with imperfect verification, interdependent preferences, or more general decision
problems (see Erlanson and Kleiner (2019)).

To understand the logic behind the equivalence and to compare Bayesian with ex-post
incentive constraints, we begin with averaging the pointwise constraints in (3) by taking
expectations over reports of the other agents. Consequently, any EPIC mechanism must
satisfy

Et´i
rqipti, t´iqs ě Et´i

rpipti, t´iqs ´ Et´i
r inf
t1iPTi

pipt
1
i, t´iqs; (4)

moreover, for any allocation rule p we can define q by qipti, t´iq “ pipti, t´iq´inft1iPTi
pipt

1
i, t´iq

so that pp, qq is EPIC and satisfies (4) as an equality.
Note that inft1iPTi

Et´i
rpipt

1
i, t´iqs ě Et´i

rinft1iPTi
pipt

1
i, t´iqs, and hence the right-hand

side of (4) is in general larger than the right-hand side of the Bayesian constraints in (2).
Thus, for a given allocation rule p that is BIC with the verification rule q, we may need to
verify agents more frequently to satisfy the more stringent ex-post incentive constraints.
Therefore, in general it is more costly to implement an allocation rule in ex-post equilib-
rium than in a Bayes Nash equilibrium; only if the expectation operator commutes with
the infimum operator, that is if inft1iPTi

Et´i
rpipt

1
i, t´iqs “ Et´i

rinft1iPTi
pipt

1
i, t´iqs, can a rule

be implemented at the same verification costs in ex-post equilibrium. Example 1 below
illustrates an allocation rule p which requires strictly more verifications to be implemented
in ex-post equilibrium than in Bayes Nash equilibrium.

Example 1. Suppose that I “ t1, 2u and that each type profile is equally likely and
consider the incentive constraints for agent 2. The allocation rule p2 for agent 2 is shown
in Figure 1a. We can think of agent 2 as having three intervals to report in, TL2 , T I2 and
TH2 , since the allocation rule is the same for any report in these three intervals. We first
compute the interim allocation rule as Et1rp2pt1, t2qs “ 0.8 for t2 P TL2 , Et1rp2pt1, t2qs “ 0.2
for t2 P T I2 , and Et1rp2pt1, t2qs “ 0.4 for t2 P TH2 . To find a verification rule q2 such that
p2 and q2 satisfy BIC, we observe that inft2PT2 Et1rp2pt1, t2qs “ 0.2. By Lemma 1, BIC is
satisfied if q2 satisfies Et1rq2pt1, t2qs “ 0.6 for t2 P TL2 , Et1rq2pt1, t2qs “ 0 for t2 P T I2 , and
Et1rq2pt1, t2qs “ 0.2 for t2 P TH2 .

6BDL show that the optimal mechanism is dominant-strategy incentive compatible (DIC). Our equi-
valence result below extends to DIC instead of EPIC if we specify more precisely the allocation if an
agent is found lying, see BDL.
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t1

t2

0.10.90.2

0.300.3

0.411

TH2

T I2

TL2

TH1T I1TL1

(a) Allocation rule p2.

t1

t2

00.90

0.200.1

0.310.8

TH2

T I2

TL2

TH1T I1TL1

(b) EPIC verification rule for p2.

Figure 1: BIC-EPIC non-equivalence.

If we instead want to satisfy the EPIC constraints, the expected number of verifications
and hence the cost of verification increases. To see this, note that inft2 p2pt1, t2q “ 0.2
for t1 P TL1 , inft2 p2pt1, t2q “ 0 for t1 P T I1 , and inft2 p2pt1, t2q “ 0.1 for t1 P TH1 .
Therefore, Et1rinft2 p2pt1, t2qs “ 0.1 ă inft2 Et1rp2pt1, t2qs. Inequality (4) then implies
that Et1rq2pt1, t2qs ě 0.8 ´ 0.1 for t2 P TL2 , Et1rq2pt1, t2qs “ 0.2 ´ 0.1 for t2 P T I2 , and
Et1rq2pt1, t2qs “ 0.4 ´ 0.1 for t2 P TH2 (the verification probabilities for each profile of
reports are given in Figure 1b).

Example 1 shows that for some allocation rules it is strictly more expensive to im-
plement them in ex-post equilibrium than in Bayes Nash equilibrium. It is therefore not
obvious why the optimal mechanism in the class of BIC mechanisms is also EPIC. How-
ever, we show below that for any allocation rule p there exists another allocation rule p̃,
which is equivalent in the sense that it has the same interim allocation rules and therefore
induces the same expected utilities, such that the expectation operator commutes with
the infimum operator. It follows from our arguments leading to (4) that this rule can
be implemented in ex-post equilibrium using the same expected verification probabilities,
and hence the same expected verification costs, that are necessary to implement it in
Bayes Nash equilibrium.

Example 1. [ctd.] Figure 2a illustrates an allocation rule p̃2 that is equivalent to p2

and for which the expectation operator and the infimum operator commute. It is readily
verified that Et1rp̃2pt1, t2qs “ Et1rp2pt1, t2qs for all t2. Moreover, inft2 p̃2pt1, t2q “ 0.3 for
t1 P T

L
1 , inft2 p̃2pt1, t2q “ 0.3 for t1 P T I1 , and inft2 p̃2pt1, t2q “ 0 for t1 P TH1 . Therefore,

Et1rinft2 p̃2pt1, t2qs “ 0.2 “ inft2 Et1rp̃2pt1, t2qs and we can implement p̃ with EPIC using
the same expected number of verifications that are necessary for BIC. Figure 2b shows
the verification rule that achieves this.

To state our result, we define our equivalence notion formally.
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t1

t2

0.10.60.5

00.30.3

0.710.7

TH2

T I2

TL2

TH1T I1TL1

(a) Allocation rule p̃2.

t1

t2

0.10.30.2

000

0.70.70.4

TH2

T I2

TL2

TH1T I1TL1

(b) EPIC verification rule for p̃2.

Figure 2: BIC-EPIC equivalence.

Definition 2. Two mechanisms pp, qq and pp̃, q̃q are equivalent if Et´i
rpipti, t´iqs “ Et´i

rp̃ipti, t´iqs

and Et´i
rqipti, t´iqs “ Et´i

rq̃ipti, t´iqs for all i and almost every ti.

Theorem 1. For any BIC mechanism pp, qq there exists an equivalent EPIC mechanism
pp̃, q̃q.

To explain our proof approach, suppose that the type space of each agent is finite.
We can then reorder the types so that Et´i

rpipti, t´iqs is nondecreasing in ti for each i.
It then follows from Theorem 1 in Gershkov et al. (2013) that there exists an equivalent
allocation rule p̃ such that p̃ipti, t´iq is nondecreasing in ti for each t´i and i. It follows that
infti p̃ipti, t´iq is attained, for any choice of t´i, for the smallest reordered type, denoted
by t˚i . It follows that

Et´i
rinf
ti
p̃ipti, t´iqs “ Et´i

rp̃ipt
˚
i , t´iqs “ inf

ti
Et´i

rp̃ipti, t´iqs;

that is, the expectation operator and the infimum operator commute for p̃. Step 1 below
provides the argument for the case of infinite type spaces.

We can then define in the second step verification rules for p̃ that make pp̃, q̃q EPIC
while satisfying Et´i

rq̃ipti, t´iqs “ Et´i
rqipti, t´iqs.

Proof of Theorem 1. Let pp, qq be a BIC mechanism. We will construct an equivalent
EPIC mechanism pp̃, q̃q.
Step 1: Constructing an equivalent allocation rule p̃ such that expectation and infimum
commute
We will define a new type space and an allocation rule p1 that is nondecreasing in its
marginals on this new type space. Given this, we can construct another allocation rule p2
that is pointwise nondecreasing. Finally we will construct the new allocation rule p̃ using
p2 and the relation between the original and the new type space.
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Let, for all i P I, σi : Ti Ñ R be defined as σiptiq “ Et´i
rpipti, t´iqs and let the new

type space be T̃i “ tx P R|σiptiq “ x for some ti P Tiu, i.e., the new type space T̃i is the
image of σi. Denote a type in T̃i by t̃i, and let T̃ ”

ś

iPI T̃i. Let Gi denote the distribution
function on the type space T̃i such that

Gipt̃iq “

ż

ti:Et´i rpipti,t´iqsďt̃i

dFiptiq for all i P I.

Let the allocation rule on the new type space p1i : T̃ Ñ r0, 1s be defined such that
Et̃´i

rp1ipt̃i, t̃´iqs “ t̃i for all t̃i P T̃i, recall that by construction t̃i “ Et´i
rpipti, t´iqs for some

ti P Ti. The existence of such an allocation rule p1 is guaranteed by a characterization of
interim allocation rules (Mierendorff, 2011).7 Thus, the interim allocation rules of p1i are
nondecreasing and Theorem 1 in Gershkov et al. (2013) implies that there exists another
feasible allocation rule p2i p¨, t̃´iq that is pointwise nondecreasing and has the same interim
allocation rules as p1ip¨, t̃´iq.8 Now we can define the allocation rules

p̃ipti, t´iq “ p2i pσiptiq, σ´ipt´iqq for all i P I. (5)

Note that Et´i
rp2i pσiptiq, σ´ipt´iqqs “ Et̃´i

rp2i pt̃i, t̃´iqs “ Et̃´i
rp1ipt̃i, t̃´iqs “ t̃i “ Et´i

rpipti, t´iqs.
Thus, we get that the interim allocation rules are the same for p̃ and p, that is Et´i

rp̃ipti, t´iqs “

Et´i
rpipti, t´iqs, as desired.
Because p2i is pointwise nondecreasing, we obtain that the expectation operator and

the infimum operator commute. Formally, for arbitrary ε ą 0,

@t̃´i P T̃´i : Dt̃ipt̃´iq P T̃i : p2i pt̃ipt̃´iq, t̃´iq ď inf
t̃1i

p2i pt̃
1
i, t̃´iq ` ε{2.

Therefore, if we choose t̃˚i P T̃i such that Prt̃´i
pt̃ipt̃´iq ě t̃˚i q ě 1 ´ ε{2 then the fact that

p2i is nondecreasing implies

inf
t̃i

Et̃´i
rp2i pt̃i, t̃´iqs ď Et̃´i

rp2i pt̃
˚
i , t̃´iqs ď Et̃´i

rinf
t̃i
p2i pt̃i, t̃´iqs ` ε.

Since ε ą 0 was arbitrary, we conclude that inf t̃i Et̃´i
rp2i pt̃i, t̃´iqs “ Et̃´i

rinf t̃i p2i pt̃i, t̃´iqs.
Further by definition of p̃i we have that p̃iptq “ p2i pσptqq. Thus,

Et´i
r inf
tiPTi

p̃ipti, t´iqs “ Et´i
r inf
tiPTi

p2i pσiptiq, σ´ipt´iqqs

“ inf
tiPTi

rEt´i
p2i pσiptiq, σ´ipt´iqqs “ inf

tiPTi

rEt´i
p̃ipti, t´iqs.

7Let µi denote the measure induced by the cdf.Fi, we get for all αi P T̃i (setting Ai “ tt̃i P T̃i|t̃i ě αiu:
ÿ

i

ż

Ai

t̃idGipt̃iq “
ÿ

i

ż

σ´1pAiq

Et´ipirpti, t´iqsdFiptiq ď 1´
ź

i

r1´ µipσ´1pAiqqs “ 1´
ź

i

Gipαiq

The equalities hold by construction and the inequality holds because p is a feasible interim allocation
rule.

8Gershkov et al. (2013) show that there is an allocation rule providing the same interim expected
utilities (U-equivalence). Since agents in our model only care about the probability with which they receive
the good, this implies that the new allocation rule is the same interim allocation rule (P-equivalence).
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Step 2: Constructing verification rules q̃
Now we will construct verification rules q̃i such that the mechanism pp̃, q̃q is EPIC, i.e.,
satisfies (3), and induces the same expected verification costs. The verification rules are
defined as

q̃ipti, t´iq “ p̃ipti, t´iq ´ inf
t1iPTi

p̃ipt
1
i, t´iq for all i P I. (6)

By construction, the incentive constraints in (3) hold as equalities, and it remains to show
that the expected verification probabilities are the same.

Et´i

“

q̃ipti, t´iq
‰

“ Et´i

“

p̃ipti, t´iq
‰

´ Et´i

“

inf
t1iPTi

p̃ipt
1
i, t´iq

‰

“ Et´i

“

p̃ipti, t´iq
‰

´ inf
t1iPTi

Et´i

“

p̃ipt
1
i, t´iq

‰

“ Et´i

“

pipti, t´iq
‰

´ inf
t1iPTi

Et´i

“

pipt
1
i, t´iq

‰

ď Et´i

“

qipti, t´iq
‰

The first equality follows by definition of q̃i. The second equality follows from Step 1 and
the third by construction of p̃i. The inequality follows because pp, qq is BIC. Thus, by
possibly adding verification we can ensure that Et´i

“

q̃iptq
‰

“ Et´i

“

qiptq
‰

.

4 Threshold mechanisms are optimal
In this section, we analyze which mechanism maximizes the expected payoff for the prin-
cipal. We provide a simple proof showing that it is optimal to use a threshold mechanism.

The principal’s problem can be stated using interim allocation rules as

max
0ďp̂,q̂ď1

ÿ

i

Etirtip̂iptiq ´ ciq̂iptiqs

s.t. inf
t1iPTi

p̂ipt
1
iq ě p̂iptiq ´ q̂iptiq

p̂ is feasible

The objective function is the expected payoff for the principal, taking into account the
expected costs of verification. The first set of constraints are the incentive compatibility
constraints, and the second constraint ensures that the interim allocation rules are actually
implementable.

Note that the objective function is decreasing in q̂ and any optimal solution therefore
satisfies q̂iptiq “ p̂iptiq´ inft1iPTi

p̂ipt
1
iq. We can then restate the problem as a simpler prob-

lem where we only optimize over interim allocation rules p̂ and use the characterization
of feasible interim allocation rules:

max
0ďp̂ď1

ÿ

i

Etirpti ´ ciqp̂iptiq ` ci inf
t1iPTi

p̂ipt
1
iqs

s.t. (Border)
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While this problem is not a linear program, we can formulate a related program that is
linear by replacing inft1iPTi

p̂ipt
1
iq by ϕi:

max
p̂,ϕ

ÿ

i

Etirpti ´ ciqp̂iptiq ` ciϕis

s.t. p̂iptiq ě ϕi

(Border)

Indeed, if pp̂, ϕq solves the latter problem, ϕi “ inft1iPTi
p̂ipt

1
iq must hold as we could

increase ϕi otherwise to obtain a higher objective value. Therefore, p̂ obtains the same
objective value in the former problem. Conversely, if p̂ solves the former problem we can
define ϕi :“ inft1iPTi

p̂ipt
1
iq and then pp̂, ϕq will obtain the same value in the latter problem,

establishing that both problems achieve the same value.
The last step before solving the problem is to consider net-types ti ´ ci instead of the

original types ti. This gives us an equivalent formulation of the optimization problem
that is notationally easier to work with. Henceforth, with slight abuse of notation, the
type ti is the net-type ti ´ ci.9

Below, we show that a so-called threshold mechanism is optimal. To do so, we show
that for any choice of tϕiui a threshold mechanism is optimal in the above problem. We
therefore analyze the following parametrized problem:10 Given tϕiui such that

ř

i ϕi ď 1,

max
p̂

ÿ

i

Etirtip̂iptiqs (R)

s.t. p̂iptiq ě ϕi

(Border)

Following BDL, we define a threshold mechanism with threshold α to be a mechanism
p with the following interim allocation rule: p̂iptiq “

ś

j‰i Fjptiq for ti ą α and p̂iptiq “ ϕi
otherwise. This interim allocation rule can be implemented as follows (where i˚ denotes
the agent with the highest report). If ti˚ ď α, that is, all agents report below the
threshold, then each agent i is allocated the object with probability ϕi

ś

j‰i Fjpαq
. If ti˚ ą α,

then agent i˚ is verified and conditional that no lie was detected, he receives the object
with probability 1. Let

α˚ “ inftα P R`|
ř

i ϕiFipαq ď
ś

i Fipαq and Fipαq ą 0 for all iu (7)

and denote by p˚ the threshold mechanism with threshold α˚.11 Given the parameters ϕi,
9Formally, we could define t̃i “ ti ´ ci and write the whole problem in terms of t̃i. In particular, this

would change the distribution of types from Fi to another distribution F̃i of net types ti ´ ci. Since a
threshold mechanism is optimal independent of the particular distribution, we do not formalize this step.
To simplify notation, we use ti in place of t̃i.

10Since ϕi’s are constant we can drop any terms that only involve ϕi’s from the objective function.
11The constraint set is nonempty, and hence α˚ is well-defined, because given

ř

i ϕi ď 1, α “ maxi ti
satisfies all constraints. Note also that, by continuity of Fi and the definition of α˚,
ř

i ϕiFipα
˚q “

ś

i Fipα
˚q.
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the designer would like to choose the threshold as low as possible: if all reports are below
the threshold, he has to randomize the allocation, whereas he can allocate to the highest
type if at least one report is above the threshold. However, feasibility requires that the
threshold cannot be too low. We prove below that α˚ is the lowest threshold that is still
feasible.

The following theorem from BDL is the main step in deriving the optimal mechanism.

Theorem 2. [Theorem 4 in Ben-Porath et al. (2014)] The threshold mechanism p˚ is the
essentially unique solution to problem (R), that is, every solution to this problem equals
p˚ almost everywhere.

Our proof is significantly shorter than the original proof provided in BDL, provides
some insight for the economic properties of the optimal mechanism, and suggest an ap-
proach that might be applicable in related allocation problems. First, we state and prove
the result using only interim allocation rules. While BDL use interim allocation rules in
some places, for example to state the incentive constraints, they switch back and forth
between interim allocation rules and ex-post allocation rules, which adds complexity.
Using Border’s characterization of interim allocation rules allows us to use exclusively
interim allocation rules, which are simpler to analyze. Our second key insight is that the
optimization problem, written using interim allocation rules, has a tractable structure. To
illustrate this, suppose that each type space is finite. The optimization problem is then a
linear program and the constraint set is a generalized polymatroid, and it is well-known
that such a problem can be solved by a greedy algorithm.12 A greedy algorithm makes
locally optimal choices, not taking into account the effect this has on the feasible choices
for other types. For our linear program this implies that the allocation probability for
the highest net type is set as high as possible, then the allocation probability for the
next highest net type is set as high as possible given the previous choice and so on. This
explains the particular economic structure of the optimal allocation: the threshold mech-
anism allocates the object to the agent with the highest type as long as someone reports
above the threshold. The threshold is chosen so that this mechanism still satisfies the
constraint p̂iptiq ě ϕi.

Since the type spaces in our model are infinite, the constraint set is the infinite-
dimensional analog of a polymatroid. Our proof of Theorem 2 therefore follows the
outline of arguments showing that a greedy algorithm solves the finite-dimensional linear
program, but adapts these arguments to infinite types. More specifically, we show in
Step 1 that no feasible mechanism can achieve a higher objective value than the threshold
mechanism p̂˚. To do so, we first derive an upper bound on the objective function using
that any feasible solution must satisfy Border’s constraints. We then show that p̂˚ achieves
this bound. In Step 2, we show that every optimal interim allocation rule must in fact be
equal to p̂˚ almost everywhere. Finally, In Step 3 we verify that p̂˚ is a feasible solution

12See, for example, Che et al. (2013).
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by constructing an ex-post allocation rule inducing the required interim allocation rule
and arguing that it satisfies the incentive constraints.

Proof of Theorem 2.
Step 1: Optimality
We first establish an upper bound for the objective function and then show that the
interim allocation rule p̂˚ achieves this upper bound.

Let p̃ be any feasible interim allocation rule, which therefore satisfies the Border con-
ditions for all α P R:

ÿ

i

ż ti

α

fiptiqp̃iptiqdti ď 1´
ź

i

Fipαq. (8)

Since p̃iptiq ě ϕi, the Border conditions also imply that for all α1,

ÿ

i

ż α1

ti

ϕifiptiqdti `
ÿ

i

ż ti

α1
fiptiqp̃iptiqdti ď 1´

ź

i

Fiptiq “ 1

or, equivalently,

ÿ

i

ż ti

α1
fiptiqp̃iptiqdti ď 1´

ÿ

i

ϕiFipα
1
q for all α1 P R. (9)

Denoting t “ maxittiu, we therefore get:

ÿ

i

ż ti

0
fiptiq p̃iptiq ti dti

“
ÿ

i

ti

ż ti

0
fipsq p̃ipsq ds

ˇ

ˇ

ˇ

ˇ

ti

ti“0
´
ÿ

i

ż ti

0

ż ti

0
fipsq p̃ipsq ds dti

“

ż t

0

ÿ

i

ż ti

α

fipsq p̃ipsq ds dα

ď

ż α˚

0
r1´

ÿ

i

ϕiFipαqsdα `

ż t

α˚
r1´

ź

i

Fipαqsdα, (10)

where the first equality follows from integration by parts, the second by rearranging terms
and the inequality follows from (8) and (9).

Note that p̃iptiq ě ϕi implies
ş0
ti
fiptiqp̃iptiqti dti ď

ş0
ti
fiptiqϕiti dti. This gives the

following upper bound on the objective function for any feasible solution p̃,

ÿ

i

ż ti

ti

fiptiq p̃iptiq ti dti

ď
ÿ

i

ż 0

ti

rfipαqϕiαsdα `

ż α˚

0
r1´

ÿ

i

ϕiFipαqsdα `

ż t

α˚
r1´

ź

i

Fipαqsdα.
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We claim that p̂˚ achieves this upper bound because inequality (10) is binding for p̂˚.
First, for α ě α˚,

ř

i

şti
α
fipsq p̂

˚
i psq ds “

ř

i

şti
α
fipsq

ś

j‰i Fjpsq ds “ 1 ´
ś

i Fipαq.
Moreover, for α ă α˚,

ÿ

i

ż ti

α

fipsq p̂
˚
i psq ds “

ÿ

i

ż α˚

α

fipsq ϕi ds` 1´
ź

i

Fipα
˚
q

“
ÿ

i

ϕirFipα
˚
q ´ Fipαqs ` 1´

ź

i

Fipα
˚
q “ 1´

ÿ

i

ϕiFipαq

since, by definition of α˚,
ř

i ϕiFipα
˚q “

ś

i Fipα
˚q. Summarizing, we get

ÿ

i

ż ti

ti

fiptiq p̂iptiq ti dti

“
ÿ

i

ż 0

ti

rfipαqϕiαsdα `

ż α˚

0
r1´

ÿ

i

ϕiFipαqsdα `

ż t

α˚
r1´

ź

i

Fipαqsdα,

which shows that p̂˚ is indeed an optimal solution.

Step 2: Uniqueness
Note that any feasible interim allocation rule p̃ satisfies the following inequality:

Gpα1, ..., αnq :“
ÿ

i

ż ti

αi

fipsqp̃ipsqds ď 1´
ź

i

Fipαiq “: Hpα1, ..., αnq.

Since G is monotone, it is differentiable almost everywhere, and H is differentiable by
assumption. Because p̂˚ satisfies inequality (10) as an equality, we conclude that any
optimal interim allocation rule must satisfy (10) as an equality as well. Hence, any optimal
interim allocation rule must satisfy, for almost every α ě α˚, Gpα, ..., αq “ Hpα, ..., αq

and that G and H are differentiable in αi for all i at pα, ..., αq. Since H is an upper bound
for G, this implies that their derivatives must coincide at pα, ..., αq:

´p̃ipαqfipαq “ ´
ź

j‰i

Fjpαqfipαq.

Moreover, by (8) and p̃i ě ϕi, p̃iptiq “ ϕi for ti ă α˚. We conclude that p̃ equals p̂˚ almost
everywhere.

Step 3: Feasibility
We will construct a feasible ex-post rule inducing the interim allocation rule p̂˚ and then
show that p̂˚ satisfies the incentive constraints.

Consider the following ex-post rule p˚. It allocates the object to the agent with the
highest type whenever tj ą α˚ for some j, and whenever tj ď α˚ for all j it is defined
by p˚i ptq “

ϕi
ś

j‰i Fjpα˚q
.13 This rule induces the interim rule p̂˚. Moreover, it is clearly

13If Fjpα˚q “ 0 for some j, we define the ex-post rule to always allocate to the agent with the highest
type.
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feasible if tj ą α˚ for some j. Assuming tj ď α˚ for all j and summing over all agents,
we have that

ř

i p
˚
i ptq “

ř

i
ϕi

ś

j‰i Fjpα˚q
. By definition of α˚ and continuity of the Fjp¨q’s,

ř

i
ϕi

ś

j‰i Fjpα˚q
ď 1.14 Thus, p˚ is a feasible ex-post rule.

Regarding the incentive constraints, p̂˚i ptiq “ ϕi for all ti ď α˚. Suppose instead
that ti ą α˚. By definition of α˚, Fiptiq ą 0 and we obtain p̂˚i ptiq “

ś

j Fjptiq

Fiptiq
. We

will show below that
ř

j ϕjFjptiq ´
ś

j Fjptiq is non-increasing for all ti ě α˚ and hence
ś

j Fjptiq ě
ř

j ϕjFjptiq for all ti ě α˚. Thus,

p̂˚i ptiq “
ś

j Fjptiq

Fiptiq
ě

ř

j ϕjFjptiq

Fiptiq
ě ϕi.

Hence, p̂˚ is a feasible solution to (R). To finalize the argument we now show that the
function hpxq :“

ř

i ϕiFipxq ´
ś

i Fipxq is non-increasing for all x ą α˚. Note first
that hpα˚q “ 0; if this was strictly negative, Fipα˚q ą 0 had to hold for all i and we
could decrease α˚ without violating any of the constraints in (7). Differentiating h,
h1pxq “

ř

i fipxqrϕi´
ś

j‰i Fjpxqs ď
ř

i fipxqrϕi´
ś

j‰i Fjpα
˚qs ď

ř

i
fipxq
Fipα˚q

r
ř

i ϕiFipα
˚q´

ś

i Fipα
˚qs “ 0, since hpα˚q “ 0. Thus, h1pxq ď 0 for all x ą α˚ and as desired h is

non-increasing for all x ą α˚. Thus, p̂iptiq ě ϕi for all ti P Ti and i P I, and we conclude
that p̂ is feasible in (R).
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