
P-EdgeCoolingMode: An Agent Based
Performance Aware Thermal Management
Unit for DVFS Enabled Heterogeneous
MPSoCs
Somdip Dey1 , Amit Kumar Singh2, Klaus Dieter McDonald-Maier3
1,2,3Embedded and Intelligent Systems Laboratory, University of Essex, Colchester, UK
1Samsung R&D Institute, UK

E-mail: somdip.dey@essex.ac.uk

Abstract: Thermal cycling as well as spatial and thermal gradient affects the lifetime reliability and performance of heteroge-
neous multiprocessor systems-on-chips (MPSoCs). Conventional temperature management techniques are not intelligent enough
to cater for performance, energy efficiency as well as operating temperature of the system. In this paper we propose a light-weight
novel thermal management mechanism (P-EdgeCoolingMode) in the form of intelligent software agent, which monitors and regu-
lates the operating temperature of the CPU cores to improve reliability of the system while catering for performance requirements.
P-EdgeCoolingMode is capable of pro-actively monitoring performance and based on the user’s demand the agent takes neces-
sary action, making the proposed methodology highly suitable for implementation on existing as well as conceptual Edge devices
utilizing heterogeneous MPSoCs with dynamic voltage and frequency scaling (DVFS) capabilities. We validated our methodol-
ogy on the Odroid-XU4 MPSoC and Huawei P20 Lite (HiSilicon Kirin 659 MPSoC). P-EdgeCoolingMode has been successful to
reduce the operating temperature while improving performance and reducing power consumption for chosen test cases than the
state-of-the-art. For applications with demanding performance requirement P-EdgeCoolingMode has been found to improve the
power consumption by 30.62% at the most in comparison to existing state-of-the-art power management methodologies.

1 Introduction and Motivation

Modern embedded systems employ heterogeneous Multi-Processor
Systems-on-Chips (MPSoCs), where several types of processing
cores are available within a single chip, to deliver power as well
as energy efficient computing. Some of the most popular hetero-
geneous MPSoC are the Samsung Exynos 5422 [1] and HiSilicon
Kirin 659 [2]. Exynos 5422 employs 4 ARM Cortex A-15 (big)
CPUs and 4 ARM Cortex A-7 (LITTLE) CPUs and 6 ARM Mali-
T628 GPU cores, implementing ARM’s big.LITTLE technology.
Whereas, Kirin 659 employs 4 ARM Cortex A-53 (big) CPUs and
4 ARM Cortex A-53 (LITTLE) CPUs and 2 ARM Mali-T830 GPU
cores. Now a days most of the research and development in MPSoCs
have been focused on developing algorithm to provide energy effi-
ciency while catering for performance and reduced thermal gradient
[3–6]. But in practical sense, majority of the published algorithms
lack the flexibility for real world implementation because the usage
and workload on similar devices by different users are different
and hence, requires the resource management methodologies to be
flexible to adapt over time.

Elevated temperatures have adverse effects on Integrated Circuits
(ICs) and reliability of electronic products can be heavily influenced
by spatial or temporal gradients, or absolute temperatures [7]. To
mitigate such reliability issues most mobile devices often come with
thermal capping. Now a days devices often come with hardwired
Thermal Management Units (TMUs) as well as software TMUs
which regulates the energy consumption as well as the temperature
of the associated components. But so far none of these state-of-
the-art thermal management units have been proven to be effective
enough (see Sec. 2) to cater for performance, energy efficiency as
well as thermal-regulation.

The Exynos 5422 and Kirin 659 SoCs also support Dynamic Volt-
age Frequency Scaling (DV FS) capabilities, which could be used
to reduce dynamic power consumption (P ∝ V 2f) [8–10]. DVFS
helps to reduce the energy consumption by executing the workload

over extra time at a lower voltage and frequency, which could be
accounted for reduced power consumption. In order to cater for per-
formance several resource mapping and partitioning mechanisms
using DVFS [3, 4, 8, 11–13] have been proposed while keeping
energy consumption low. Since applications can be classified into
three categories [9]: compute intensive, memory intensive and mixed
load (both compute and memory intensive), given most applications
in real-world fall under the mixed load category, we had the follow-
ing observations:
Observation 1: ARM Cortex A-15 CPU being an out-of-order
sustained triple-issue processor, is capable of providing maximum
performance, but when we ran a mixed load program on such CPU,
the core temperature rises very fast due to executing workload that
are both compute and memory intensive.

65

75

85

95

105

115

125

135

145

120

320

520

720

920

1120

1320

1520

1720

1920

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

2
0

5

2
1

7

2
2

9

2
4

1

2
5

3

2
6

5

2
7

7

2
8

9

3
0

1

3
1

3

3
2

5

3
3

7

3
4

9

3
6

1

3
7

3

3
8

5

3
9

7

Frequency Temperature

Fr
eq

u
en

cy
 (

M
H

z)

Te
m

p
er

at
u

re
 (

D
eg

re
e

C
en

ti
gr

ad
e)

Fig. 1: Frequency and Temperature vs Execution Time Comparison
of Streamcluster

Fig. 1 shows the motivation to design a dynamic thermal manager
for executing applications on a heterogeneous multi-core archi-
tecture (Exynos 5422) containing two types of cores in clusters

This paper is a postprint of a paper submitted to and accepted for publication in IET Computers and Digital Techniques
and is subject to Institution of Engineering and Technology Copyright.
The copy of record is available at the IET Digital Library.

(big.LITTLE), where 4b and 4L cores are present. The horizontal
axis shows the execution time steps whereas the vertical primary
axis (left-hand side) reflects the Frequency (in MHz) for the big
cores on which the program is executing and the vertical secondary
axis reflects the temperature (in °Centigrade) of the big core, which
has the worst temperature behavior, while executing the workload.
Usually the cores exhibit worse thermal behavior which are residing
close to the memory. We chose Streamcluster∗ from the PARSEC
benchmark suit [14] to be our mixed workload on the big cluster.
The benchmark completed its execution in 433.12 secs, but Fig. 1
only shows the variance result for first 39.9 secs of the execution
because there was repetition in the behavior of the results. From the
figure, it could be noticed that the peak temperature† on the big core
was around 95° centigrades and because of this the thermal manage-
ment unit (TMU) of the OS starts to regulate the temperature of the
cores by CPU throttling‡. For none of our experiments, we could
profile the temperature behavior of LITTLE cores on the Exynos
5422 not just because they are less powerful (1/4 size of the big ones
and operates at a lower frequency) but there is no temperature sen-
sor for LITTLE cores onboard as well. Therefore all our results only
focused on thermal behavior and CPU throttling on the big cores
on Exynos MPSoC. Although CPU throttling is good in terms of
reliable operations but the stock thermal management algorithm of
the OS is not intelligent enough to provide performance at the same
time. In Fig. 1 we could notice that the clock speed varies from 2000
MHz to 900 MHz at a periodic time step, which causes a drop in
performance of the executing application(s). Thus it is necessary to
design a thermal manager, which is intelligent enough to cater for
performance as well as maintain a desirable operating temperature
of the cores.
Observation 2: In a study [9] by Basireddy et al., the researchers
have proposed a novel workload management system, which clas-
sifies workloads of the executing applications based on Memory
Reads Per Instruction (MRPI) metric and manages DVFS lev-
els of cores based on it. This method has resulted to 33% more
energy efficiency as compared to modern state-of-the-art workload
management approaches and Fig. 2 shows that efficient workload
management could also result in energy efficiency as well as perfor-
mance. For this experimentation, we executed the same Streamclus-
ter benchmark, which completed its execution in 409.596 secs, but
Fig. 2 only reflects the variance result for first 39.9 secs of the exe-
cution because there was repetition in the behavior of the results.
Another interesting thing that could be noticed is that the peak
temperature of the big cores also reduced when the workload was
mapped appropriately between the CPU cores executed with appro-
priate DVFS levels for similar mixed-load applications. In some
studies [15, 16] it has been found that by reducing the operating
temperature by 10-15° centigrades could improve the lifespan of the
device by 2x. Since the reliability of the device is highly dependent
on the operating temperature of the device, devising temperature-
aware mechanisms capable of reducing the operating temperature
can help improve the life-span of the SoC device. Therefore, there
is a desperate need to implement dynamic thermal manager, which
is capable of regulating the operating temperature of the system on
top of the state-of-the-art workload and resource management mech-
anisms so that we could cater not just only energy efficiency and
performance but also the overall reliability of the MPSoC.

In our previously published methodology, EdgeCoolingMode [6],
we are able to reduce the operating temperature of the device by
6.32% (average) while improving the performance by 7.16% com-
pared to Linux’s Ondemand governor and reduce the operating

∗We chose the native option of the Streamcluster to mimic real-world

data-mining algorithms, which are both compute intensive and memory

intensive.
†For our study we have fetched the peak temperature out of the 4 big cores

on the Exynos 5422 SoC. More details are provided in Section 4.
‡Adjusting the clock speed of the CPU to use less energy consumption and

reduce CPU temperature for improved reliability.

60

70

80

90

100

110

120

130

140

150

1520

1570

1620

1670

1720

1770

1820

1870

1920

1970

2020

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

2
0

5

2
1

7

2
2

9

2
4

1

2
5

3

2
6

5

2
7

7

2
8

9

3
0

1

3
1

3

3
2

5

3
3

7

3
4

9

3
6

1

3
7

3

3
8

5

3
9

7

Frequency Temperature

Fr
eq

u
en

cy
 (

M
H

z)

Te
m

p
er

at
u

re
 (

D
eg

re
e

C
en

ti
gr

ad
e)

Fig. 2: Frequency and Temperature vs Execution Time Comparison
of Streamcluster Using MRPI

temperature of the device by 6.32% (average) while improving the
performance by 7.85% compared to Linux’s Performance governor
while executing Streamcluster benchmark (See Sec. 4 for detailed
analysis). This goes on to prove that if EdgeCoolingMode method-
ology [6] is aware of performance/throughput pro-actively while
reducing thermal gradient then there is a possibility of reducing the
operating temperature even more.

In order to overcome the limitations of the existing approaches (as
mentioned in Observation 1 and 2) towards addressing temperature-
aware resource management mechanisms, which are capable of
catering for both performance and reduced energy consumption, we
propose a novel light-weight dynamic thermal management mech-
anism using intelligent software agents based on a fast heuristic
approach. This performance aware thermal management mecha-
nism could be used as a module sitting in the application layer
to pro-actively monitor operating temperature and performance of
the executing applications. We call our proposed methodology, “P-
EdgeCoolingMode", since the intelligent software agents monitors
and regulates the operating temperature of the system while taking
throughput in to consideration. To this end, this paper makes the
following contributions:

1. A light-weight mechanism in the form of intelligent software
agent to monitor and regulate temperature of the CPU cores
to improve reliability of the system while pro-actively monitoring
performance.
2. Validation of the proposed thermal management intelligent agent
on real hardware platforms such as the Odroid-XU4 [17] and
Huawei P20 Lite [18].
3. To show the efficacy and flexibility of our proposed methdol-
ogy (P-EdgeCoolingMode) we have implemented it on Ubuntu OS
as well as on Android OS and highlighted the experimental results
in Sec. 4.

The rest of the paper is organized as follows. Section 2
presents the state-of-the-art work pursued in the same field. Section
3 describes our proposed methodology and its implementation.
Section 4 shows the system model describing the hardware and
software infrastructures used for our experiments, the experimen-
tal results and validation of our proposed approach. In Section 5 we
explore some related discussion on the proposed methodology and
finally, Section 6 concludes the paper.

2 Related Work

In several earlier studies, many researchers have focused on design-
ing methodologies and frameworks to optimize power and operating
temperature of MPSoCs. One such noteworthy study is performed by
Ghasemazar et al. [19] where the researchers proposed a hierarchical
framework leveraging DVFS capabilities of the processing cores to
find the optimal voltage-frequency to cater for power consumption
and temperature. This methodology was successful in achieving 20%
performance boost without impacting the overall operating tempera-
ture but their experiments focused mainly on CISC architectures and

all results were based on a MATLAB-based Chip Multiprocessor
simulator. In another paper [20] Kamal et al. proposed a heuristic
based thermal stress-aware mechanism for management of power
and temperature in MPSoCs formulated in a convex optimization
problem. This approach was implemented on Sniper multicore sim-
ulator [21] and was able to reduce spatial and temporal thermal
gradients by 7% and 18% respectively when compared to the work in
[19]. In another work by Iranfar et al. [22], the researchers proposed
a multi-tier hierarchical thermal stress-aware power and temperature
management framework for MPSoCs, where the methodology used
similar convex optimization solution in multi-layer to improve mean
time to failure (MTTF)∗. The effectiveness of this methodology is
again proved based on simulations performed on Sniper multicore
simulator. All the aforementioned noteworthy studies were imple-
mented and experimented in simulations instead of experimenting
on real devices, which could differ a lot from the practical results
achieved from real devices because there are so many factors that
account for the operating temperatures such as ambient surround-
ing temperature, chemical reactions on the devices due to weather
change, etc. Although modern simulators such as Sniper multicore
provides simulation results very close to real devices but there are
many unaccountable factors that could happen when executed on a
real device instead of simulation, especially in case of temperature
variance.

In [23] Sigla et al. present a predictor using power sensors to pre-
dict the next power consumption based on the following frequency
setting is developed. Their technique uses a leakage power model of
the ARM’s big.LITTLE architecture on the Odroid-XU3 to validate
its predictor and Dynamic Power and Frequency Management tech-
nique. An Extension of this work has also been published in [24].
Both [23, 24] methods involve predicting the future core tempera-
tures to adjust the workloads or frequencies before exceeding a set
threshold, but computation of such predictive temperatures increases
the performance overhead of such methods. Another issue with such
methodology is that predicting future core temperatures only work
with applications consisting of periodic tasks, where the workload
of the task is predictable in the future. Whereas, most real world
(real-time) applications [25–27] on mobile devices such as social
media, email composer/reader, music player, etc. which also rely on
different types of operations and are not predictable, consist of ape-
riodic and sporadic tasks as well. A sporadic task [26] is released
at random time instants and have hard timing constraints, whereas,
aperiodic task invocation is unknown at design time, making both
sporadic and aperiodic tasks difficult for future prediction.

To solve the aforementioned issue of predicting thermal behavior
and power consumption of real world applications, Reinforcement
Learning (RL) could seem to be a viable option at first, but such
approaches have their own disadvantages. In the study [28] by ul
Islam et al., the authors proposed Reinforcement Learning based
DVFS approach to improve energy consumption of the device, but
the proposed methodology is based on Q-Learning where the states
and actions are noted in a Q table. Since the methodology learns
from the actions it takes and what kind of reward or penalty it
receives from taking such an action by updating the Q table, it might
take the approach some time to reach an optimized solution, which
is optimized energy-consumption in this case. Not to mention that
in a resource constrained device where the total amount of available
memory on the device is restricted or limited utilizing Q learning
could be a challenge. Additionally, the methodology does not pro-
actively control the thermal behavior of the device. In another study
[27] by Zhang et al., the authors proposed a Reinforcement Learning
and Deep Learning based DVFS selection mechanism, where based
on the periodic tasks the appropriate DVFS algorithm is chosen. But
the issue with this study is that it only workds for periodic tasks
where sequence of tasks are predefined and easy to predict. More-
over, if a new type of task is introduced in the task graph then re
training of the mechanism is required, which makes it unfavorable

∗Mean time to failure (MTTF) is the length of time a device is expected to

operate/last till failure.

for applications with ever changing task set. In both the aforemen-
tioned studies [27, 28], efficacy of the methodologies are validated
on simulation platform with generated task sets that do not repre-
sent application with sporadic and aperiodic tasks similar to usage
of mobile platform users.

In a different study [29], the authors propose a deep Q-learning
methodology for dynamic thermal and power management. This
approach takes less memory due to the reduced number of bins and
hence reducing the number of rows in the Q-table. However, in this
approach the Q-table still has 15 states (sum of little core utilizations,
big and little core frequencies, number of big and little cores, total
power consumption, and five normalized performance counters) and
3 actions making the memory consumption to store the table high.
Although the experiments were performed on Odroid XU3 plat-
form, the approach still depends on profiling of application during
design time to be fed for training to produce best rewards. More-
over, the approach is not automated in nature and hence, reduces
viable application in commercial devices.

In our previously published work, EdgeCoolingMode [6], we
have developed a thermal management mechanism, which is capa-
ble of pro-actively monitoring thermal behavior of the device while
addressing all the limitations faced by the aforementioned related
published works. But for commercial mobile devices, where Quality
of Service is critical for user satisfaction, performance requirements
become more important than thermal behavior or energy consump-
tion on the device itself for certain applications. To be able to
pro-actively monitor performance and temperature to satisfy both
performance requirement and reduced thermal gradient, based on
the need of the user we introduced P-EdgeCoolingMode, an agent
based performance aware thermal management unit. In our current
approach (P-EdgeCoolingMode), we utilize the concept of intelli-
gent software agents and linear regression based supervised machine
learning to design a light-weight fast heuristic based operating tem-
perature regulator, which could be used on top of any scheduler
or governor or any other types of system resource manager to
achieve reduced operating temperature while catering for desired
performance and improving energy efficiency in the long run.

3 Proposed Methodology: P-EdgeCoolingMode

3.1 Overview of P-EdgeCoolingMode

There are four schools of thought for artificial intelligence
[30]: Thinking Rationally [31], Acting Rationally [32], Thinking
Humanly [33] & Acting Humanly [34], where intelligent agents
are built or designed to portray each school of thought. In our P-
EdgeCoolingMode we propose an intelligent software agent that
would monitor and regulate the thermal behavior of the system by
Thinking and Acting Rationally based on our heuristic approach, and
operates on top of the existing scheduler of the system.

Fig. 3 reflects the working of P-EdgeCoolingMode, which starts
by defining a thermal budget by the user and a performance dead-
line (referred to as performance threshold or Pmax symbolically).
The performance deadline could be optional and if no value for
this parameter is provided to P-EdgeCoolingMode then by default
the agent just uses the thermal budget to reduce thermal gradient.
P-EdgeCoolingMode agent has two distinct modules: Learning mod-
ule, which monitors the operating frequency, operating temperature
of the cores and performance of the executing application and creates
a relationship variable (α) based on linear regression between oper-
ating frequency and operating temperature. Although relationship
between power and temperature [7], therefore frequency (P ∝ V 2f)
and temperature does not follow a linear relationship in practice
but to make our heuristic approach fast we make the assumption
that the relationship is linear and try to reduce the error capacity
of our approach by defining an error variable (ε). Most of the time
the default scheduler of the system already considers the task uti-
lization and maximum capacity of the processing elements (CPU)
to decide the best possible frequency to operate the task and since,
P-EdgeCoolingMode executes on top of existing system scheduler,
we have only considered to use the operating frequency and thermal

Resource Manager

Thermal Budget
Tmax

Performance
Budget

Pmax [= Null]

P-EdgeCoolingMode

<Tthreshold,
Pthreshold>

Mapping
F <T, P>

Calculate
Ti=?Fi + ?
Fi Pi

Learn Decide

<Tthreshold,
Pthreshold>

Is
Tnow > Tthreshold

&
Pnow > Pthreshold

?

Regulate
frequency
(Fdesired) to

minimum steps

Yes

CPU 1

CPU n

CPU 1

CPU n

Cluster 1

Cluster m

f1 t1

fm tm
Fig. 3: P-EdgeCoolingMode Software Agent

Resource Manager

Thermal Budget
Tmax

Performance
Budget

Pmax [= Null]

P-EdgeCoolingMode

<Tthreshold,
Pthreshold>

Mapping
F <T, P>

Calculate
Ti=?Fi + ?
Ti Pi

Learn Decide

<Tthreshold,
Pthreshold>

Is
Tnow > Tthreshold

&
Pnow > Pthreshold

?

Regulate
frequency
(Fdesired) to

minimum steps

Yes

CPU 1

CPU n

CPU 1

CPU n

Cluster 1

Cluster m

f1 t1

fm tm

Fig. 4: Cluster wise frequency scaling and cluster wise thermal
behavior

behavior of the processing elements to deduce the linear relationship
for faster execution and practical implementation.

Based on the user-defined maximum threshold of the operating
temperature of the system, the Learning module updates the value
of the relationship (α) and error (ε) variables while recording the
performance of the application at the same time. In the Decision
module, if the performance deadline is not defined then the agent
adjusts the operating temperature of the system by deciding by how
much the operating frequency needs to be reduced based on the value
of α deduced in the Learning module. In contrary, if the perfor-
mance deadline is defined then the agent caters for the performance
by selecting the appropriate operating frequency based on the map-
ping created between operating frequency and performance in the
Learning Module. In order to make our P-EdgeCoolingMode agent
more intelligent and adaptive, we have also adopted the concept of
ContinuousLearning [35–37], which is bio-inspired. A human-
being continuously learns from its environment and tries to adapt
to the surrounding through continuously learning from it. We repli-
cate the same concept in our P-EdgeCoolingMode agent so that with
changing environment and conditions, the agent could adjust the α

and ε variables along with the performance achieved for an appli-
cation on a particular operating frequency. Our proposed approach
can work with the existing Governor or dynamic thermal and power
management (DTPM) of the OS or any other resource manager that
is installed on the system or is working in co-habitation. For major-
ity of the proposed work [19, 20, 22, 23, 27, 28] in this area require
either modification in the kernel of the OS or heavy modification to
the existing infrastructure of the devices in order to be implemented,
however, our agent could be deployed in the application layer with-
out rebuilding the kernel or without making modification to device’s
infrastructure, making it easy to implement on existing devices and
in devices to come in the future.

3.2 Learning Module

The algorithm for Learning module is provided in Algo. 1.
In the study [7], through experiments on real devices it was found

that on heterogeneous MPSoCs such as Odroid platforms, power and
temperature follows a relationship of quadratic function or exponen-
tial function based on various other dependable factors∗. We also
validate this relationship in Sec. 5. However, to make our heuris-
tic approach fast during run time to take necessary decision for
thermal regulation we assume that frequency and temperature fol-
lows a linear relationship represented by Eq. 1. In Sec. 4 also show
the effectiveness of using such linear regression based methodol-
ogy, which has yielded amazing results in terms of performance and
reduction in temporal thermal gradients considerably.

Ti = α× Fi + ε ,

where Fi : Operating frequency at time instance i,

Ti : Operating temperature at time instance i,

α : Relationship variable,

ε : Error variable

(1)

In the Learning module, the agent monitors the thermal changes
using Eq. 1 and evaluate the value of α and ε based on Eq. 2. If
we consider that α and ε remain constant between two temperature
variance and, F2 and T2 are the operating frequency and operating
temperature respectively at the time instance, whereas F1 and T1
are the operating frequency and operating temperature respectively
at previous time instance then we could derive:

T2 = α× F2 + ε ,

T1 = α× F1 + ε ,

∴ α = (T2 − T1)/(F2 − F1)

(2)

From Eq. 2 we could solve for α. Thus, for every instance of oper-
ating frequency of the cluster, i.e. Fi, the agent maps it to a peak
operating temperature of the cluster cores (Ti) (see Eq. 3). Since, in
this study, we have focused on hardware platforms such as Exynos
5422 [1] and Kirin 659 [2], which only allows cluster wise DVFS,
hence, P-EdgeCoolingMode agent regulates the operating frequency
(Fi) of the cluster to monitor the operating temperature (Ti) of the
cluster. In Fig. 4, we show cluster wise DVFS mechanism. If we con-
sider that a MPSoC consist of m number of clusters of processing
cores, where each cluster consists of n number of processing cores,
then for each cluster we could have an operating frequency (f i)
which leads to the operating temperature (ti) of the cluster. Hence,
m different clusters we could have different operating frequencies
represented as {f1, f2,fm} and different operating temperature
{t1, t2,tm} associated with these frequencies. For simplicity of

∗Power/Temperature relationship could vary because of whereabouts of

the temperature sensors onboard or distance between temperature sensors

and hotspot, etc.

understanding the implementation of the agent, let us generalize
the operating frequency and operating temperature as Fi and Ti
respectively.

Fi 7−→ Ti (3)

Now from Eq. 3 and 2 and by reducing the frequency (using
DVFS capabilities) by a certain number of frequency scaling lev-
els∗, different Fi, Ti, α, ε, frequency scaling level reduction steps
(l) along with the performance (Pi) of the application for the respec-
tive Fi are recorded by the agent, which would be used to decide
which frequency to drop to in the Decision module when the oper-
ating temperature reaches the threshold value†. We have to keep in
mind that an instance of operating frequencies (Fi) do not just lead
to an instance of operating temperature (Ti) but also leads to an
instance of performance (Pi) achieved. Hence, P-EdgeCoolingMode
maps the operating frequency to a tuple consisting of operating fre-
quency and performance of the executed application, represented by
Eq. 4, which is an extension of Eq. 3.

The readings of the values such as Fi, Ti, Pi (refer to Mapping
Frequency with Temperature in Algo. 1) are kept on the fast volatile
memory such as RAM for fast access by P-EdgeCoolingMode, while
a copy of the values are also recorded in a file, which is saved in
map.txt file on the non-volatile memory such as hard-disk/external
storage so that the values could be fetched (refer to Calculate α &
ε in Algo. 1) at any point even after the execution of the application
has completed.

Note: Performance could be defined by the user based on the type of
application being executed. For some applications where Quality of
Service (QoS) is measured by how fast the application is computed
in that case performance would be the execution time of the appli-
cation, whereas for some other application where performance of a
game could be evaluated based on the rendered frames per second
(FPS) in that case the performance would be defined as FPS for the
gaming application.

Fi 7−→< Ti, Pi > (4)

3.3 Decision Module

The algorithm for this module is provided in Algo. 2.
In the decision module, if the performance budget i.e. perfor-

mance deadline (performance is set to Null as variable in the imple-
mentation) is not mentioned then by default P-EdgeCoolingMode
optimizes for operating temperature only without actively meeting
performance deadline by regulating the operating frequency based
on Eq. 3. The P-EdgeCoolingMode agent uses different relationship
variable (α), error variable (ε), frequency scaling level steps li com-
puted from Algo. 1 and then calculate the desired frequency using
the following equation:

Fi − Fdesired = (Ti − Tdesired)/(α) ,
where Tdesried < Tthreshold

(5)

The Eq. 5 is deduced from Eq. 3 and 1, and later verified
under different experimental setup on different devices with differ-
ent processing capabilities to be effective (see Sec 4) to reduce the
thermal gradient and power consumption without hurting the perfor-
mance. The P-EdgeCoolingMode agent tries to find the least value
of Fi − Fdesired i.e. the least number of frequency scaling level, it

∗For Exynos 5422 [1] big core cluster has 19 frequency scaling levels

with 100MHz each step, whereas the Kirin 659 [2] big core cluster has 5

frequency scaling levels.
†Here, temperature threshold is the thermal cap of the CPU cores that the

P-EdgeCoolingMode agent regulates such that Ti ≤ Tthreshold.

Algorithm 1: Learning Module Execution
Input:
1. Tmax: threshold value of operating temperature
2. Pmax: threshold value of performance for the particular
executing application
3. n: number of different frequency scaling levels
Output: S(α, ε, l): set of α values for s frequency scaling

levels
Initialize:
Tthreshold = Tmax;
Pthreshold = Pmax;

Mapping Frequency with Temperature:

Write(Fi, Ti, Pi, map.txt); . Monitor and track different
frequency, temperature readings & performance (Eq. 3)

Calculate α & ε:
Read(map.txt); . Monitor map.txt file for changes in Ti
if Ti−1 ≥ Tthreshold then

for each frequency scaling level li in n do
< αi, εi > = CalculateAlphaEpsilon(l, Fi, Ti, Fi−1,
Ti−1); . Compute α & ε using the Eq. 2

Write(S(αi, εi, li), alphas.txt);
. Write our α, ε & l values so that it could be later

updated through conituous learning return
S(αi, εi, li);

else
return void();

should drop to so that the operating temperature could be reduced
without affecting the overall performance of the executing applica-
tion as opposed to what generic TMUs or DPTMs‡ do. Majority of
stock TMUs and DPTMs reduce the frequency of the cores drasti-
cally to achieve thermal and power budget but that also reduces the
performance of the executing application drastically.

When performance deadline is not defined then P-EdgeCoolingMode
does not monitor performance directly but since for most compu-
tational application operating frequency is directly proportional to
performance and hence by reducing the frequency by least scaling
level the agent not just reduces the operating temperature but also
try to affect performance in a passive way. Therefore, from the Eq. 5
the agent has to find the least value of Fi − Fdesired by computing
the predictive operating temperature using the values of αi & εi for
every frequency scaling level steps (li). In the Eq. 6, we could notice
that using Eq. 6 the agent would be achieving several possible fre-
quency scaling levels to drop to but the agent has to choose the least
value from the set to ensure performance is affected the least.

∀{li ∈ n} : ldesried = (Fi − Fdesired)least ,
where li : each frequency scaling level

n : number of different frequency scaling level steps

(6)

Now, when the performance deadline is defined by the user in
the P-EdgeCoolingModefor an executing application then from the
operating frequency and achieved performance mapping deduced
from Eq. 4 in the Learning module, the operating frequency, which
is able to satisfy the defined performance deadline, is chosen from
the mapping table instead of using the relationship deduced from Eq.
5.

‡DPTM is Dynamic Power and Thermal Management techniques that

regulates both power and temperature.

It should be kept in mind that the α values deduced from the
Learning module are not just saved on the fast volatile memory such
as RAM, but also saved in a file (alphas.txt) on the non-volatile
memory such as hard disk or external storage so that the values could
be fetched even after the application has exited or stopped executing
(refer to Decide in Algo. 2). The values of Fi, Ti, Pi recorded in
the Learning module are also stored on the volatile memory for fast
access as well as on a file (map.txt) on the non-volatile memory for
later access.

Algorithm 2: Decision Module Execution
Input:
1. Tmax: threshold value of operating temperature
2. Pmax: threshold value of performance for the particular
executing application
3. n: number of different frequency scaling level steps
Output: (Fi − Fdesired)least: least desired operating

frequency to drop to
Initialize:
Tthreshold = Tmax;
Pthreshold = Pmax;

Decide:

if Pmax == Null then
S(αi, εi, li) = Read(alphas.txt);

. Read the αi and εi for each li
if Ti ≥ Tthreshold then

for each frequency scaling level li in n do
lthis = CalculateLeastFrequency(αi, Fi, Ti,
Fi−1, Ti−1);

. Compute lthis, which is (Fi − Fdesired)
if lthis ≤ li && lthis ≥ lprev then

SetOperatingFrequency(Fdesired);
. Set the operating frequency to the desired

optimal one
return (Fi − Fdesired)least;

lprev = li;

else
return void();

else
< Fi, Ti, Pi > = Read(map.txt);
Select Fi as Fdesired where Pi ≥ Pmax;

3.4 Continuous Learning

The Learning module keeps running and keeps updating the value
of relationship variable (α), error variable (ε) and performance
achieved for different associated frequency scaling levels for which
the operating frequency should be reduced to reduce spatial and
temporal thermal gradient.

4 Experimental Results

4.1 System

4.1.1 Hardware Infrastructure: Nowadays heterogeneous
MPSoCs consist of different types of cores, either having the same or
different instruction set architecture (ISA). Moreover, the number of
cores of each type of ISA can vary based on MPSoCs and are usually
clustered if the types of cores are similar. For this research, we have
chosen an Asymmetric Multicore Processors (AMPs) system-on-
chip (AMPSoC), which is a special case of heterogeneous MPSoC

and has clustered cores on the system. Our study was pursued on two
different MPSoC platforms:

1. The Odroid XU4 board [17], which employs the Samsung
Exynos 5422 [1] MPSoC.
2. The Huawei P20 Lite [18] smart-phone, which employs the
HiSilicon Kirin 659 [2] MPSoC.

Exynos 5422 MPSoC: Exynos 5422 is based on ARM’s
big.LITTLE technology [38] and contains cluster of 4 ARM Cortex-
A15 (big) CPU cores and another of 4 ARM Cortex-A7 (LITTLE)
CPU cores, where each core implements the ARMv7-A ISA. This
MPSoC provides dynamic voltage frequency scaling feature per
cluster, where the big core cluster has 19 frequency scaling levels,
ranging from 200 MHz to 2000 MHz with each step of 100 MHz and
the LITTLE cluster has 13 frequency scaling levels, ranging from
200 MHz to 1400 MHz, with each step of 100 MHz. Additionally,
each core on the cluster has a private L1 instruction and data cache,
and a L2 cache, which is shared across all the cores within a cluster.

Since Odroid XU4 board does not have an internal power sen-
sor onboard, hence an external power monitor [39] with networking
capabilities over WIFI is used to take power consumption readings.
Although the ARM Cortex-A7 (LITTLE) CPU cores on Odroid XU4
do not have temperature sensor but our intelligent agent approach is
scalable and works for heterogeneous cluster cores.

Kirin 659 MPSoC: Kirin 659 is also based on ARM’s big.LITTLE
technology and contains a cluster of 4 big CPU cores and a cluster of
4 LITTLE CPU cores. But the big.LITTLE implementation of this
MPSoC is unique, since it uses the same type of CPU core for big
as well as LITTLE. Kirin 659 MPSoC uses Cortex A-53 as both
big and LITTLE CPU cores, which implements ARMv8-A ISA,
supporting 64 bit instruction set and is userspace compatible with
32-bit ARMv7-A architecture. Similar to Exynos 5422, this MPSoC
also provides dynamic voltage frequency scaling feature per clus-
ter, where the big core cluster has 5 frequency scaling levels ranging
from 1402 MHz to 2362 MHz (at the following frequencies: 1402
MHz, 1805 MHz, 2016 MHz, 2112 MHz, 2362 MHz), and the LIT-
TLE core cluster has 4 frequency scaling levels ranging from 480
MHz to 1709 MHz (at the following frequencies: 480 MHz, 807
MHz, 1306 MHz, 1709 MHz).

Huawei P20 Lite smart-phone has power sensors as well as 13
thermal sensors, but due to lack of documentation from the vendor
on the positioning of the thermal sensors it is not feasible to associate
the installed temperature sensors with specific cores/cluster. For this
reason, the experiments on Kirin 659 focused on the performance of
the executed applications and associated power consumption of the
device.

4.1.2 Software Infrastructure:

4.1.3 Experiments on Exynos 5422: For multi-core systems,
multi-threaded applications are heavily used in recent times to rep-
resent workloads as they could leverage concurrency and parallel
processing. Examples of such applications are available in several
benchmarks such as PARSEC [14]. For our experiments we have
tried several applications from the PARSEC benchmark such as
Streamcluster, Facesim, x264, etc. but to validate the effectiveness of
our P − EdgeCoolingMode mechanism we chose Streamclsuter
with native option because it closely represented a real-world
mixed load application and the execution period was long enough
to observe thermal regulation in the system. We also validated our
approach for Whetstones benchmark [40]. We have run all these
applications on the Exynos 5422 MPSoC having UbuntuMate OS
version 14.04 (Linux Odroid Kernel: 3.10.105).

4.1.4 Experiments on Kirin 659: To emulate the usage of
mobile applications by users on real mobile devices, instead of
choosing benchmark applications such as PARSEC for experimental
setup, we chose mobile applications that could be used to consoli-
date a typical user’s behavior on the device itself. For this reason, we
chose the following common actions that consolidate the behavior
of users on Android:

• Downloading an app using the Google Play Store application.
• Streaming Youtube videos on Chrome web browser application.
• Idle background processes.
• Taking pictures/recording videos on Camera application.

Since, the performance of the aforementioned actions on an
Android is mostly related to rendered frames per second (FPS)
because of Vertical Synchronization (VSYNC) [41]. VSYNC is basi-
cally the refresh rate of the display. Whenever we perform an action
on Android, every action updates the smart-phone’s display to return
something viewable to the user. If the result of an action is not
updated on the display before the next VSYNC update time then the
user experiences tearing effect on the display because of dropped
frames. Henceforth, in all our experiments on the Kirin 659 MPSoC
we are more focused on FPS for the aforementioned actions as the
performance parameter for P-EdgeCoolingMode. We have executed
the aforementioned actions on the Kirin 659 MPSoC running on the
Android 8.0.0.168 Oreo OS (Linux Kernel: 4.4.23+ #1 SMP).

4.2 Experimental Setup

4.2.1 Experiments on Exynos 5422: We implemented our
proposed P-EdgeCoolingMode software agent on top of the MRPI
based Mapping and Resource Manager [9] as well as on stock Linux
Governors to perform the experiments and validate the effectiveness
of our methodology. For all our experiments we did not modify any-
thing else on the system, hardware or software, so that the agent’s
standalone effectiveness could be determined. We choose 7 different
operating temperature thresholds: 95°, 94°, 93°, 92°, 91°, 90°and
89°.

4.2.2 Experiments on Kirin 659: As mentioned in Sec. 4.1.4,
we performed the following actions on Huawei P20 Lite: download-
ing an app from Google Play store, streaming Youtube on Chrome,
idle mode where no major application runs in foreground and taking
picture/recording video. To reproduce the same task set, we extracted
the related task set from the task tree on the device and executed the
same task set with same CPU affinity to evaluate a fair compari-
son between P-EdgeCoolingMode and default governor of Android
based Linux.

4.3 Experimental Results

4.3.1 Experiments on Exynos 5422: In table 1 we provide the
different α and ε values for different threshold (90-95°)∗ for drop of
frequency by two-step levels (reduction of 200 MHz). Here each
α and ε are the values for the instance when operating temperature
reached the threshold value and the agent reduced frequency by two-
steps to reduce the operating temperature.

Fig. 5 and 6 show the operating temperature & frequency respec-
tively of the big core, which was monitored during the execution of
benchmarks with our proposed P-EdgeCoolingMode agent in effect
as well without utilizing the agent. We choose to show only values
for 5 temperature threshold: 89°, 91°, 93°& 95°, so that it could be
easily understood from the graph.

We ran Streamcluster from PARSEC five times each for different
temperature threshold values (89°, 90°, 91°, 92°, 93°, 94°& 95°) and
for MRPI [9], Linux governor in performance mode, Linux gover-
nor in ondemand mode & Deep Q-Learning Dynamic Management
[29]. Fig. 7 summarizes the average execution time (in secs), average
peak temperature (in ° centigrade), average power consumption (in
Watt) and the average number of times CPU throttling took place.
The average is computed by taking all 5 execution for each tempera-
ture budget into account. From the table in Fig. 7 it could be noticed
that using our P-EdgeCoolingMode we have achieved 6.84% reduc-
tion in peak temperature† while improving performance by 7.16%

∗We only showed from 90-95° centigrades for this experiment to show the

computations of α and ε for space constraint in this paper.
†Considering that Linux’s thermal cap is at 95°centigrades.

Table 1 Results: Values of α & ε for different temperature thresholds

95° 94° 93° 92° 91° 90°
α =
0.02,
ε = 55

α =
0.01,
ε = 74

α =
0.01,
ε = 73

α =
0.01,
ε = 73

α =
0.02,
ε = 55

α =
0.02,
ε = 55

α =
0.02,
ε = 55

α =
0.01,
ε = 74

α =
0.01,
ε = 73

α =
0.01,
ε = 73

α =
0.02,
ε = 55

α =
0.02,
ε = 52

α =
0.005,
ε = 85

α =
0.01,
ε = 74

α =
0.01,
ε = 73

α =
0.01,
ε = 73

α =
0.01,
ε = 73

α =
0.02,
ε = 55

α =
0.01,
ε = 75

α =
0.02,
ε = 56

α =
0.02,
ε = 55

α =
0.02,
ε = 55

α =
0.02,
ε = 55

α =
0.01,
ε = 71

compared to Linux’s Ondemand governor and reducing power con-
sumption by 9.45%, whereas, the agent achieved 6.32% reduction in
peak temperature while improving performance by 7.85% compared
to Linux’s Performance governor and reducing power consump-
tion by 8.45%. In the aforementioned experiments, the performance
deadline for P-EdgeCoolingMode has not been set, yet the agent was
able to improve performance at the same time reducing the thermal
gradient. On the other hand, the Deep Q-Learning Dynamic Man-
agement is only able to reduce the operating temperature to 93.56°C
(average) with a power consumption of 10.81 W while maintaining
similar performance as executing Streamcluster on Linux’s Onde-
mand governor, and hence, is capable of reducing the operating
temperature by 1.52% (average) and reducing the power consump-
tion by 1.82% (average) compared to peak temperature and power
consumption. Therefore, the P-EdgeCoolingMode outperforms the
Deep Q-Learning Dynamic Management while improving perfor-
mance of the executing application.

We executed Whetstones benchmark for five times and here, we
present the average result of all five executions. For Whetstones the
total execution time, when run with the Linux’s stock governor onde-
mand, is 121.56 secs with 206.8 times CPU throttling and an average
temperature of 93.95° centigrade. With our approach, we achieved
4.11% reduction in temperature with a performance boost of 1.65%
and no CPU throttling. We have also noticed that while using linear
regression of temperature vs frequency instead of quadratic equation,
on an average the computation takes 193 ms whereas the quadratic
one takes 237 ms and hence has a speedup of 1.295x with no loss in
accuracy over time.

65

70

75

80

85

90

95

0
.1

0
.6

1
.1

1
.6

2
.1

2
.6

3
.1

3
.6

4
.1

4
.6

5
.1

5
.6

6
.1

6
.6

7
.1

7
.6

8
.1

8
.6

9
.1

9
.6

1
0

.1

1
0

.6

1
1

.1

1
1

.6

1
2

.1

1
2

.6

1
3

.1

1
3

.6

1
4

.1

1
4

.6

Threshold 89 Threshold 91 Threshold 93 Threshold 95
MRPI Performance On Demand

Te
m

p
er

at
u

re
 (

D
eg

re
e

C
en

ti
gr

ad
e)

Execution Time (secs)

Fig. 5: Execution Time/Temperature Relationship For Streamcluster

4.3.2 Experiments on Kirin 659: On Kirin 659 MPSoC the
task set for different actions (see Sec. 4.1.4) were executed on
Linux’s Interactive governor first to evaluate the performance of
the default governor provided in the device. In Fig. 8, the aver-
age FPS of each action is shown. In the same figure (Fig. 8) you
would also notice the average FPS of using P-EdgeCoolingMode

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000
0

.1

0
.6

1
.1

1
.6

2
.1

2
.6

3
.1

3
.6

4
.1

4
.6

5
.1

5
.6

6
.1

6
.6

7
.1

7
.6

8
.1

8
.6

9
.1

9
.6

1
0

.1

1
0

.6

1
1

.1

1
1

.6

1
2

.1

1
2

.6

1
3

.1

1
3

.6

1
4

.1

1
4

.6

Threshold 89 Threshold 91 Threshold 93 Threshold 95

MRPI Performance On Demand

Execution Time (secs)

Fr
eq

u
en

cy
 (

M
H

z)

Fig. 6: Execution Time/Frequency Relationship For Streamcluster

Fig. 7: Result for different temperature threshold: Execution time,
Avg. temperature, Avg. power, Avg. times throttling for different
temperature threshold

(denoted as Avg. FPS (P-ECM)), which is actually the FPS per-
formance deadline set for the chosen user action. The performance
deadline for different actions in the P-EdgeCoolingMode were cho-
sen after monitoring the Learning module of the agent and selecting
the performance, which provided the satisfactory Quality of Service
to users.

Fig. 8: FPS on Interactive Governor vs FPS on P-EdgeCoolingMode

In Fig. 9, we show the average power consumption in Watts for
executing the user actions on Linux’s Interactive governor and P-
EdgeCoolingMode with performance deadline. In the figure, Avg.

P. (Int.) denotes the average power consumption (Watts) for the
chosen user action while using Interactive governor and Avg. P.
(P-ECM) denotes the average power consumption (Watts) while
using P-EdgeCoolingMode with performance deadline. From the
figure, we could notice that using P-EdgeCoolingMode, we are able
to achieve reduction in power consumption by 30.63% for Idle
user action, 10.67% for downloading app action, 11.31% for tak-
ing picture/recording video and 13.25% for streaming Youtube on
Chrome.

Fig. 9: Average power (Watt) consumption on Interactive governor
vs P-EdgeCoolingMode

The Fig. 10, 11, 12 and 13 show individual power consumption
for different user actions, where it could be noticed that using P-
EdgeCoolingMode with performance deadline improves the power
consumption while providing for performance requirement of that
particular user action (chosen task set) in comparison to Linux’s
Interactive governor.

Fig. 10: Execution time (ms) vs Power consumption (Watt) dur-
ing Idle action for Interactive governor (Interactive) and for P-
EdgeCoolingMode (P-ECM)

5 Discussion

During our experiments, we noticed that power/temperature relation-
ship was following a quadratic equation instead of exponential as is
the well-known case. There could be several reasons for such behav-
ior. One possibility is that we have run our experiments with the

Fig. 11: Execution time (ms) vs Power consumption (Watt) during
downloading an app from Google Play store while on Interactive
governor (Interactive) and on P-EdgeCoolingMode (P-ECM)

Fig. 12: Execution time (ms) vs Power consumption (Watt) dur-
ing picture snapping/video recoding while on Interactive governor
(Interactive) and on P-EdgeCoolingMode (P-ECM)

Fig. 13: Execution time (ms) vs Power consumption (Watt) dur-
ing Youtube streaming on Chome while on Interactive governor
(Interactive) and on P-EdgeCoolingMode (P-ECM)

active cooling mechanism (cooling fan with heatsink) on board of the
Odroid XU4, which tried to physically regulate the temperature thus
regulating the spatial thermal gradient as much as possible through
active heat dissipation. Another point we have to keep in mind is
that since our methodology acts as an intelligent agent to enhance
the capacities of thermal regulation of the system instead of acting
as a replacement for the already existing thermal management unit
on the system, we did not turn off the TMUs for our experiments.
We mapped the relationship between power and temperature after
executing∗ our P-EdgeCoolingMode mechanism with a thermal
threshold of 90° centigrades and the relationship follows a quadratic
function (see Fig. 14). Since our proposed P-EdgeCoolingMode was
acting as a thermal regulator, therefore, regulating the temporal ther-
mal gradient and hence from the aforementioned figure (Fig. 14)
we could see that the temperature is regulated (temperature variance
stabilizes) and maintained below the thermal cap set by the OS.

We have also noticed that we achieve different results based on the
time period of the day due to the difference in ambient temperature
between night and day†. Fig. 7 shows the results of experiments per-
formed during daytime when the ambient temperature was hottest.
Thus if the same set of experiments are performed now the results
might vary by a little percentage.

67

72

77

82

87

92

6
.8

9
3

1
0

.1
5

3

1
0

.5

1
0

.4
4

3

1
0

.5
5

4

1
0

.5
2

7

1
0

.5
0

4

1
0

.3
1

7

1
0

.2
9

8

9
.1

6

1
0

.5
1

9

1
0

.4
8

9

1
0

.7
4

1

1
0

.3
5

9

1
0

.7
9

8

1
0

.4
0

9

9
.0

9
6

1
0

.4
0

5

1
0

.4
8

1

9
.9

9
3

1
1

.1
1

1

1
0

.1
3

8

1
0

.3
7

4

1
0

.4
5

1

1
0

.5
6

1

1
0

.2
2

9

1
0

.8
4

8

1
0

.4
0

5

Power vs Temperature

Temperature

Poly. (Temperature)

Te
m

p
er

at
u

re
 (

D
eg

re
e

C
en

ti
gr

ad
e)

Power Consumption (Watt)

Fig. 14: Power/Temperature Relationship Using
P-EdgeCoolingMode

6 Conclusion

In this paper, we have proposed a light-weight thermal manage-
ment mechanism in the form of an intelligent agent, which is
capable of monitoring and regulating the operating temperature
of the CPU cores on MPSoCs, and pro-actively monitors perfor-
mance at the same time. The efficacy of the methodology was
evaluated by implementing and validating the mechanism on the
Odroid-XU4 MPSoC and Huawei P20 Lite (Kirin 659 MPSoC),
employing ARM’s big.LITTLE architecture. The results of apply-
ing the agent-based thermal manager showed that, compared with
the state-of-the-art power and temperature management approaches,
the proposed approach was not only capable of reducing operating
temperature of the CPU cores but at the same time improved per-
formance of the executing application as well as reduction in power
consumption.

∗We ran Stremcluster benchmark from PARSEC and mapped the power

consumption with the peak temperature of the big cluster.
†Ambient temperature between night and day varied by a couple of

degrees, hence, affecting the results.

Acknowledgment

This work is supported by the UK Engineering and Phys-
ical Sciences Research Council EPSRC [EP/R02572X/1 and
EP/P017487/1] and the authors would like to thank the people
associated with National Centre for Nuclear Robotics (NCNR) and
Extreme Environments for their support and feedback. Somdip
would also like to thank everyone from the Embedded and Intelligent
Systems Laboratory at the University of Essex for their feedback on
this project.

7 References
1 ‘Exynos 5 octa (5422)’. (Samsung, . accessed: 2018-07-23. https://www.

samsung.com/exynos
2 ‘Hisilicon kirin 650 (659)’. (Hisilicon, . accessed: 2018-07-23. http://www.

hisilicon.com/en/Solutions/Kirin
3 Singh, A.K., Dziurzanski, P., Mendis, H.R., Indrusiak, L.S.: ‘A survey and com-

parative study of hard and soft real-time dynamic resource allocation strategies
for multi-/many-core systems’, ACM Computing Surveys (CSUR), 2017, 50, (2),
pp. 24

4 Singh, A.K., Leech, C., Reddy, B.K., Al.Hashimi, B.M., Merrett, G.V.: ‘Learning-
based run-time power and energy management of multi/many-core systems:
current and future trends’, Journal of Low Power Electronics, 2017, 13, (3),
pp. 310–325

5 Reddy, B.K., Merrett, G.V., Al.Hashimi, B.M., Singh, A.K. ‘Online concur-
rent workload classification for multi-core energy management’. In: Design,
Automation Test in Europe Conference Exhibition (DATE). (, 2018. pp. 621–624

6 Dey, S., Guajardo, E.Z., Basireddy, K.R., Wang, X., Singh, A.K., McDonald.Maier,
K.D. ‘Edgecoolingmode: An agent based thermal management mechanism for
dvfs enabled heterogeneous mpsocs’. In: The 2019 32nd International Confer-
ence on VLSI Design (VLSID 2019) and 2019 18th International Conference on
Embedded Systems. (, 2018.

7 DeVogeleer, K., Memmi, G., Jouvelot, P., Coelho, F. ‘Modeling the temperature
bias of power consumption for nanometer-scale cpus in application processors’. In:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIV), 2014 International Conference on. (IEEE, 2014. pp. 172–180

8 Aalsaud, A., Shafik, R., Rafiev, A., Xia, F., Yang, S., Yakovlev, A. ‘Power–aware
performance adaptation of concurrent applications in heterogeneous many-core
systems’. In: Proceedings of the 2016 International Symposium on Low Power
Electronics and Design. (ACM, 2016. pp. 368–373

9 Reddy, B.K., Singh, A., Biswas, D., Merrett, G., Al.Hashimi, B.: ‘Inter-cluster
thread-to-core mapping and dvfs on heterogeneous multi-cores’, IEEE Transac-
tions on Multiscale Computing Systems, 2017, pp. 1–14

10 Dey, S., Singh, A.K., McDonald.Maier, K.: ‘Energy efficiency and reliability of
computer vision applications on heterogeneous multi-processor systems-on-chips
(mpsocs)’, , ,

11 Chandramohan, K., O’Boyle, M.F. ‘Partitioning data-parallel programs for hetero-
geneous mpsocs: time and energy design space exploration’. In: ACM SIGPLAN
Notices. vol. 49. (ACM, 2014. pp. 73–82

12 Barik, R., Farooqui, N., Lewis, B.T., Hu, C., Shpeisman, T. ‘A black-box approach
to energy-aware scheduling on integrated cpu-gpu systems’. In: Proceedings of
the 2016 International Symposium on Code Generation and Optimization. (ACM,
2016. pp. 70–81

13 Singh, A.K., Prakash, A., Basireddy, K.R., Merrett, G.V., Al.Hashimi, B.M.:
‘Energy-efficient run-time mapping and thread partitioning of concurrent opencl
applications on cpu-gpu mpsocs’, ACM Transactions on Embedded Computing
Systems (TECS), 2017, 16, (5s), pp. 147

14 Bienia, C. ‘Benchmarking Modern Multiprocessors’. Princeton University, 2011
15 Chantem, T., Dick, R.P., Hu, X.S. ‘Temperature-aware scheduling and assignment

for hard real-time applications on mpsocs’. In: Proceedings of the conference on
Design, automation and test in Europe. (ACM, 2008. pp. 288–293

16 Coskun, A.K., Rosing, T.S., Whisnant, K. ‘Temperature aware task scheduling
in mpsocs’. In: Design, Automation & Test in Europe Conference & Exhibition,
2007. DATE’07. (IEEE, 2007. pp. 1–6

17 ‘Odroid-xu4’. (Hardkernel, . accessed: 2018-07-23. https://goo.gl/
KmHZRG

18 ‘Huawei p20 lite’. (Huawei, . accessed: 2018-07-23. https://consumer.
huawei.com/uk/phones/m/p20-lite/

19 Ghasemazar, M., Goudarzi, H., Pedram, M. ‘Robust optimization of a chip
multiprocessor’s performance under power and thermal constraints’. In: Com-
puter Design (ICCD), 2012 IEEE 30th International Conference on. (IEEE, 2012.
pp. 108–114

20 Kamal, M., Iranfar, A., Afzali.Kusha, A., Pedram, M. ‘A thermal stress-aware
algorithm for power and temperature management of mpsocs’. In: Proceedings of
the 2015 Design, Automation & Test in Europe Conference & Exhibition. (EDA
Consortium, 2015. pp. 954–959

21 Carlson, T.E., Heirman, W., Eeckhout, L. ‘Sniper: Exploring the level of abstrac-
tion for scalable and accurate parallel multi-core simulations’. In: International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC). (, 2011. pp. 52:1–52:12

22 Iranfar, A., Kamal, M., Afzali.Kusha, A., Pedram, M., Atienza, D.: ‘Thespot:
Thermal stress-aware power and temperature management for multiprocessor
systems-on-chip’, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018, 37, (8)

23 Singla, G., Kaur, G., Unver, A.K., Ogras, U.Y. ‘Predictive dynamic thermal and
power management for heterogeneous mobile platforms’. In: Proceedings of
the 2015 Design, Automation & Test in Europe Conference & Exhibition. (EDA
Consortium, 2015. pp. 960–965

24 Bhat, G., Singla, G., Unver, A.K., Ogras, U.Y.: ‘Algorithmic optimization of
thermal and power management for heterogeneous mobile platforms’, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, (3),
pp. 544–557

25 Chetto, H., Silly, M., Bouchentouf, T.: ‘Dynamic scheduling of real-time tasks
under precedence constraints’, Real-Time Systems, 1990, 2, (3), pp. 181–194

26 Sprunt, B., Sha, L., Lehoczky, J. ‘Scheduling sporadic and aperiodic events
in a hard real-time system’. (CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST, 1989.

27 Zhang, Q., Lin, M., Yang, L.T., Chen, Z., Khan, S.U., Li, P.: ‘A double deep
q-learning model for energy-efficient edge scheduling’, IEEE Transactions on
Services Computing, 2018,

28 ul Islam, F.M.M., Lin, M.: ‘Hybrid dvfs scheduling for real-time systems based on
reinforcement learning’, IEEE Systems Journal, 2017, 11, (2), pp. 931–940

29 Gupta, U., Mandal, S.K., Mao, M., Chakrabarti, C., Ogras, U.Y.: ‘A deep q-
learning approach for dynamic management of heterogeneous processors’, IEEE
Computer Architecture Letters, 2019, 18, (1), pp. 14–17

30 Negnevitsky, M.: ‘Artificial intelligence: a guide to intelligent systems’. (Pearson
Education, 2005)

31 McDermott, D., Charniak, E.: ‘Introduction to artificial intelligence’, Reading:
Addison-Wesley, 1985,

32 Russell, S.J., Norvig, P.: ‘Artificial intelligence: a modern approach’. (Malaysia;
Pearson Education Limited„ 2016)

33 Haugeland, J.: ‘Artificial intelligence: The very idea. 1985’, Cited on, 1985, p. 26
34 Rich, E., Knight, K.: ‘Artificial intelligence’, McGraw-Hill, New, 1991,
35 Dey, S., Kalliatakis, G., Saha, S., Singh, A.K., Ehsan, S., McDonald.Maier, K.:

‘Mat-cnn-sopc: Motionless analysis of traffic using convolutional neural networks
on system-on-a-programmable-chip’, 2018 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS 2018), 2018,

36 Thrun, S., Mitchell, T.M. ‘Lifelong robot learning’. In: The biology and
technology of intelligent autonomous agents. (Springer, 1995. pp. 165–196

37 Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka.Jr, E.R., Mitchell, T.M.
‘Toward an architecture for never-ending language learning.’. In: AAAI. vol. 5.
(Atlanta, 2010. p. 3

38 ‘Arm big.little technology’. (arm, . accessed: 2018-07-23. http://www.arm.
com/

39 ‘Odroid smartpower2’. (Hardkernel, . accessed: 2018-07-23. https:
//www.hardkernel.com/main/products/prdt_info.php\?g_
code=G148048570542

40 Curnow, H.J., Wichmann, B.A.: ‘A synthetic benchmark’, The Computer Journal,
1976, 19, (1), pp. 43–49

41 ‘Implementing vsync’. (Android, . accessed: 2018-12-23. https://source.
android.com/devices/graphics/implement-vsync

