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Summary
Objectives: Comparison of classification methods
using data of one clinical study. The tuning of hyper-
parameters is assessed as part of the methods by
nested-loop cross-validation.
Methods: We assess the ability of 18 statistical and
machine learning classifiers to detect glaucoma. The
training data set is one case-control study consisting of
confocal scanning laser ophthalmoscopy measurement
values from 98 glaucoma patients and 98 healthy
controls. We compare bootstrap estimates of the
classification error by the Wilcoxon signed rank test and
box-plots of a bootstrap distribution of the estimate.
Results: The comparison of out-of-bag bootstrap
estimators of classification errors is assessed by Spear-
man’s rank correlation, Wilcoxon signed rank tests and
box-plots of a bootstrap distribution of the estimate.
The classification methods random forests 15.4%,
support vector machines 15.9%, bundling 16.3% to
17.8%, and penalized discriminant analysis 16.8%
show the best results.
Conclusions: Using nested-loop cross-validation we
account for the tuning of hyperparameters and dem-
onstrate the assessment of different classifiers. We
recommend a block design of the bootstrap simulation
to allow a statistical assessment of the bootstrap
estimates of the misclassification error. The results
depend on the data of the clinical study and
the given size of the bootstrap sample.
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1. Introduction

The application of machine learning meth-
ods in medicine for automated classifica-
tion is common practice [1]. Considering
different modern classification methods
competing for this task it is not obvious how
to compare the diagnostic performance. In
clinical applications the definition of the
examined disease is often complex and
different examination methods are used. For
illustration we use data of a clinical study on
early detection of glaucoma [2].

Glaucoma is a neurodegenerative eye
disease and the second most common rea-
son for blindness worldwide [3]. The symp-
toms are progressive visual field loss and ir-
reversible damage of the optic nerve. Early
detection is essential for an efficient treat-
ment. Changes in the optic nerve head pre-
cede loss of the visual field. Early detection
should be based on examinations of the eye
background. Confocal scanning laser oph-
thalmoscopy (CSLO), performed for
example by the Heidelberg Retina Tomo-
graph (HRT) [4], provides a 2.5-dimen-
sional image of the optic nerve head (ONH).
Such an image is used to assess the ONH
morphology and allows the detection of
glaucomatous changes at an early stage of
the disease.

We compare 18 classification methods to
detect glaucoma based on one clinical data
set consisting of HRT measurement results.
We use data of a case-control study drawn
from the Erlangen Glaucoma Register,
which consists of HRT measurement values
of 98 glaucoma patients and 98 healthy con-
trols [5]. Several articles discuss classifi-
cation using visual field data [6], HRT data
[7, 8] or both [2, 9]. Schwarzer et al. [10]
compare classifier performance in general.

Often classification models involve hy-
perparameters, which enable the specific
adjustment to different classification prob-
lems. To take advantage of this flexibility,
tuning of the hyperparameters is required.
Duin [11] points out the difficulties that
arise if classification methods that require
tuning, for example multilayer perceptrons,
are compared to those classifiers that do not
require tuning. When enough data is avail-
able, the data set can be split into a learning/
tuning set and a test set [12]. The size of our
clinical data set is too small to split the data.
Instead, we estimate the classifier perform-
ance using bootstrapping and we consider
the tuning process as part of the method.
Our approach follows the recent suggestion
to use nested-loop cross-validation by Mar-
kowetz and Spang [13].

Frequently, point estimates of the mis-
classification error are used to illustrate
classification performance. We compare the
classifiers by inspecting performance dis-
tributions rather than point estimates of ex-
pected performance. We assess the misclas-
sification error using a bootstrap approach
for a given size of the bootstrap sample. To
test for an overall difference we use the
Friedman test and for pairwise differences
we use the Wilcoxon signed rank test. Addi-
tionally, we compute point estimates of the
expectation of classification performance,
namely the out-of-bag error (err oob) and the
.632+ bootstrap error (err .632+), which can
be seen as a bias reduced version of the
err oob. We do all our computations using the
statistical programming environment R
[14]. We give a brief description of the 18
used classifiers and describe their imple-
mentation in R. R also provides the pro-
cedures necessary for error rate estimation,
statistical analysis and visualization of re-
sults.
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In Section 2 we describe the data of the
Glaucoma study, we give an overview of the
used classification methods and describe the
suggested data analysis. The results are re-
ported in Section 3 and discussed in Section 4.

2. Methods

2.1 Confocal Scanning Laser
Ophthalmoscopy
Glaucoma is a slowly progressive and irre-
versible disease which affects the retinal
nerve fiber layer. It is the second most fre-
quent cause of blindness and generally oc-
curs in the elderly. The diagnosis is mainly
based on measurements of visual field [15,
16] and optic nerve head (ONH) morphol-
ogy [6]. The intra-ocular pressure (IOP) de-
fines normal- or hyper-tension glaucoma.
Damage to the ONH precedes visual field
defects, which are symptoms of glaucoma
in an advanced stage.

Since we want to examine methods that
allow for the early detection of glaucoma, we
concentrate on confocal scanning laser
ophthalmoscopy (CSLO) by the Heidelberg
Retina Tomograph. CSLO is a method to ob-
tain 2.5-dimensional topography images of
the optic nerve head. The HRT creates 32 im-
ages of the eye background. These images
cover a range of about 0.5 to 4.0 millimeters
in depth. The depth information that is stored
in the image series can be transformed to grey
values that lie between 0 (black = near the
HRT) and 255 (white = far from the HRT).
Figure 1 shows typical normal and glaucoma-
tous topography images. The excavation of
the ONH, which is identifiable as the bright
area in the topography image is larger in the
glaucomatous image which indicates the loss
of retinal nerve fibers, i.e. the pathological
changes of the ONH.

However, the difference between normal
and glaucomatous images is often less ob-
vious. Therefore, features that enable the
automated discrimination of the two classes
have to be computed.

The HRT software [4] is used to extract
features from the topography images. These
features are based on manual outlining of

the papilla in the reflectivity image per-
formed by a clinical expert. Like the to-
pography image, the reflectivity image is
generated from the image series, but instead
of depth values, the eye background’s re-
flectivity is shown like a photograph. Fig-
ure 2 shows a reflectivity image and the
corresponding topography image. The man-
ually plotted so-called contour-line has been
automatically transferred to the topography
image.

A reference plane that marks a certain
height in the ONH is computed based on the
contour-line.The papilla is divided into four
sectors (temporal, superior, nasal and in-
ferior; see Fig. 3, cf. Fig. 20 of [17]). Three-
dimensional landmarks are established
from the contour-line and reference plane

Fig. 1 Normal (left) and glaucomatous (right) topography image of the ONH

Fig. 2 Reflectivity image with manually outlined papilla (left) and corresponding topography image with automatically
transferred outlining (right)

Fig. 3 The papilla is divided into four sectors (example:
left eye): The bisectors of the superior and inferior right-
angled sectors lie 13° temporal to the vertical optic disc axis.
The angle of the temporal sector has 64°, the angle of the
nasal sector has 116°.
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and enable the extraction of 62 features,
among which are volumes and two-dimen-
sional measurements of the individual sec-
tors and of the global papilla. A list of the
features is given in Table 1, and selected
features are illustrated in Figure 4.

2.2 Classification Methods
In the following we introduce the used clas-
sification methods.The methods include es-
tablished statistical methods and modern
machine-learning classifiers.

2.2.1 Linear Discriminant Analysis (LDA)

LDA tries to find a class-separating hyper-
plane that maximizes the ratio of between-
class to within-class variance [18]. The R
function lda( ) is available in the package
MASS [19].

2.2.2 Stabilized Linear Discriminant
Analysis (sLDA)

The stability of LDA suffers from high-di-
mensional data.A solution is presented with
the stabilized linear discriminant analysis
(sLDA) [20, 21]. sLDA performs a LDA on
q-dimensional variables x~T := xTDq , where
x denotes the p-dimensional observation
and Dq is a p × q projection matrix from the
p-dimensional input space into the reduced
q-dimensional feature space. The function
slda() is available in the package ipred
[22].

2.2.3 Flexible Discriminant Analysis (FDA)

A classification problem can be solved via
regression by optimal scoring [23]. LDA
then can be described as linear regres-
sion. Flexible discriminant analysis (FDA)
allows regression with more advanced
methods, for example multivariate additive
regression splines (MARS) [24]. Multi-

variate additive regression splines are given
by a function f:

,

where xv(k, m), v(k,m) ∈ {1,...,p}, is the predic-
tor used in the k-th term of the m-th product.
The basis function φ(x) is defined as φkm(x) =
max((x – tkm),0), φk, m + 1(x) = max((tkm – x),0) and
tkm is one of the values of xv(k, m). M is the number
of knots of the spline, Km is the degree of inter-
action between the variables and α and βm are
the parameters that have to be optimized. We
used MARS with degree 1 and 2 for an additive
model and a model with pairwise interaction,
respectively. In R, FDA using MARS is per-
formed by calling fda(method=mars,
degree, nk), where degree is the degree
of interaction, i.e. Km, and nk specifies M, the
maximum number of model terms. The func-
tion fda() is available in the package mda.

2.2.4 Penalized Discriminant Analysis
(PDA)

The approach of PDA [25] is similar to that of
FDA. The classification problem is trans-
formed into a regression problem by opti-
mal scoring, but instead of regression by
complex functions like MARS, generalized
ridge regression is performed. Consequent-
ly, this classification method is called
fda (method=gen.ridge).The idea of
penalization allows PDA to deal with high-
dimensional and highly correlated data.

2.2.5 Mixture Discriminant Analysis (MDA)

The difference between LDA and MDA [26]
is the way, the class-conditional densities
p (x |cj) are modelled. Rather than a single
Gaussian distribution, MDA assumes a
mixture of Gaussian distributions, i.e.
classes are divided into subclasses. MDA is
available in the package mda and its func-
tion call is mda(subclasses, iter),
where iter limits the total number of
iterations.

2.2.6 Logistic Discrimination (LD)

Given two classes, we model the dif-
ference of the logarithms of the class-
conditional densities as linear in x:

Fig. 4
Profile of the optic nerve
head with the features
mean radius (MR),
volume above reference
global (VARG), volume
below reference global
(VBRG), maximum depth
global (MDG) and area
global (AG)

Table 1 HRT variables (variables indicated by
(G,T,S,N,I) are given for several locations in the image):
G = global, T = temporal, S = superior, N = nasal, I =
inferior.

Variable no. Variable name

1–5 A – Area (G,T,S,N,I)

6–10 EA – Effective Area (G,T,S,N,I)

11–15 ABR – Area below reference (G,T,S,N,I)

16 HIC – Height in contour

17–21 MHC – Mean height of contour
(G,T,S,N,I)

22–26 PHC – Peak height of contour (G,T,S,N,I)

27 HVC – Height variation contour

28–32 VBS – Volume below surface (G,T,S,N,I)

33–37

38–42

43–47

48–52

53–57

58

59

60

61

62

VAS – Volume above surface (G,T,S,N,I)

VBR – Volume below reference
(G,T,S,N,I)

VAR – Volume above reference
(G,T,S,N,I)

MD – Maximum depth (G,T,S,N,I)

TM – Third Moment (G,T,S,N,I)

MR – Mean radius

RNF – Retinal nerve fiber layer thickness

MDIC – Mean depth in contour

EMD – Effective mean depth

MV – Mean variability
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log( p (x |c1) /p (x|c2)) = β0 + β Tx [27]. Pat-
terns are assigned to classes in the following
way: Let β ′0 = β0 + log(p(c1) /p (c2)), where
p (cj) is the unconditional class probability
of class j, j = {1,2}. Then x is assigned to
c1, if β ′0 + β Tx >0, else to c2. Logistic dis-
crimination shows higher accuracy and ro-
bustness with respect to small sample size
and measurement errors compared to LDA.
The R function call is multinom(). This
function is distributed with the package
nnet.

2.2.7 Multilayer Perceptron (MLP)

Multilayer perceptrons are often used for
classification problems in medicine [28, 29].
The MLP is a layered neural network, i.e. its
processing units, so-called neurons, are ar-
ranged in layers 1 to n, where layer 1 denotes
the input layer and layer n denotes the output
layer. Layers 2 to (n – 1) are called hidden
layers. Multilayer perceptrons are feed-
forward networks, i.e. a neuron in layer a
can send a signal to a neuron in layer b only
if b >a. The connections between the neu-
rons are weighted. The computational flexi-
bility of MLPs results from the variability of
these weights. Training is done by changing
the weights in a way that the desired output
for a given input is reached. Back-propa-
gation is an efficient training method for
MLPs [30]. This is a gradient-descent
method, where the derivative of the neurons’
output is needed. Therefore, the threshold
function that was used in single-layer per-
ceptrons is not appropriate. A similar func-
tion, which is continuously differentiable is
given with the logistic function f (z) =
(1 + e –z) –1. The limits of this function are 0
and 1 for z → –∞ and z → ∞, respectively. To
prevent overfitting of MLPs, weight decay
can be used. With this variant of the learning
algorithm, large weights are avoided and
decision boundaries are smoothed. MLPs
can separate nonlinearly separable data.

In R, a MLP with one hidden layer con-
sisting of a variable number of neurons is
implemented. Skip-layer connections are
possible, i.e. the input-layer can be directly
connected to the output-layer. The use of
weight decay is supported. The function is
called nnet(size, decay), where the
parameter size determines the size of the

hidden layer, i.e. the number of hidden
neurons, and decay is the weight decay.
nnet() comes with the package nnet.

2.2.8 Support Vector Machines (SVM)

The idea of SVMs [31, 32] is to separate two
classes by a maximal margin hyperplane. To
achieve this goal, data that are probably
non-linearly separable in the input space are
transformed to a higher dimensional feature
space, where linear separability is assumed.
This transformation is performed by a so-
called kernel function k (xk, x), where xk de-
notes the k-th support vector. The hyper-
plane is defined by these support vectors.
The kernel function is composed of non-
linear transformations Φ (xk) T Φ (x). Com-
mon kernel functions are the polynomial,
the sigmoid or the radial basis function. For
the two-class problem, the sign of the output
of the SVM determines the class of the
input. We use the radial basis function

as the kernel in our experiments.
The R function, that implements SVMs is
available in the package e1071 and is
called svm() [33]. The regularization par-
ameter C, which penalizes the training er-
rors, can be passed to the function via the
parameter cost.

2.2.9 k Nearest Neighbor (kNN)
To assign a new observation to one of the
classes, the Euclidean distances between the
observation and the data points in the train-
ing set are measured [18]. The class is de-
termined by the class membership of the
majority of the k nearest data points. kNN
classifiers can be applied to linearly non-
separable data. We used the R function
knn(k), available in the package class.

2.2.10 Learning Vector Quantization (LVQ)

LVQ is a neural network with one active
layer of n neurons, where n is the number of
so-called codebook entries. This codebook
consists of vectors that represent the differ-
ent classes. The codebook vectors are used
as weight vectors of the neurons. Input vec-
tors x are compared to each neuron’s weight
by measurement of the Euclidean distance.
The neuron with the weight that is most

similar to the input is called the winner neu-
ron. It “fires” and defines the class member-
ship of the input. Several methods exist to
assess the vectors of the codebook. We
apply OLVQ1 followed by LVQ3 [34].
OLVQ1 performs an initial guess of the
codebook vectors and LVQ3 performs fine-
tuning to achieve better entries. The R func-
tions that are needed to run this classifi-
cation method, lvqinit(), olvq1(),
lvq3() and lvqtest(), are available in
the package class.

2.2.11 Classification Trees (RPART)

At each node of a classification tree, a fea-
ture value of the observation to be classified
is compared to a threshold until a leaf of the
tree is reached. Leafs are labelled with
classes and an observation is assigned to the
class corresponding to the reached leaf.
Hence, a classification tree is a set of splits
corresponding to selected variables with a
certain ordering. The R function to compute
classification trees is rpart(), available
in the package rpart.

2.2.12 Bagging

Classification trees are instable in the way
that small changes in the training data, for
example increasing or decreasing the
number of observations, can lead to ex-
tremely different trees. Breiman [35] sug-
gests creating several trees by bootstrap
sampling. He obtains the final decision by
majority voting which results in a stabilized
tree-based classifier. We created trees for
200 bootstrap samples. The R function is
called bagging() and it is implemented
in the package ipred.

2.2.13 Random Forests

Random forests [36] are similar to bagged
classification trees. The special feature of
random forests is the way the trees (in our
case 200) are created. At every split point of
the tree, the features which are used to de-
scribe the split are drawn from a randomly
selected subset of all variables. We fix the
subset size to round(log 2(62)) + 1 = 7, as
proposed by Breiman [36]. This method
leads to stability against noise and better
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matched by age (normal: 54.7 ± 9.3 years,
glaucomatous: 54.7 ± 9.3 years) and sex. The
glaucoma group contains primary open-angle
glaucoma and normal pressure glaucoma.The
controls were members of the administrative
staff of the hospital or persons who came to
exclude a glaucomatous disease. Ocular hy-
pertension was not an exclusion criterion for
normal subjects. Eyes with a myopic refrac-
tive error <–8 diopters were not included,
because of a differing optic disc morphology.
Only one eye per person was selected. In the
glaucoma group, the more advanced glauco-
matous eye was chosen and in the control
group, the eye with the better visual field per-
formance was selected. The diagnosis was
based on clinical examination, visual field
evaluation and optic nerve head analysis.
Summary statistics are reported in Table 2.

2.4 Tuning of Hyperparameters
To obtain comparable estimates for the mis-
classification error, we define the tuning of
hyperparameters as part of the methods.
Consequently, we include tuning in the

performance. Again, the final classification
result is accomplished by majority voting of
all trees. The function call in R is called
randomForest(). It is available in the
package randomForest [37].

2.2.14 Bundling

Bundling [38] is a bootstrap-based classi-
fier that combines bagging and an arbitrary
number of additional classifiers. Classifi-
cation trees constructed within this algo-
rithm are based on an extended set of fea-
tures. These additional features are calcu-
lated using the out-of-bag sample, i.e. those
observations not included in the bootstrap
sample. The out-of-bag constitutes an inde-
pendent sample and enables us to combine a
set of classification techniques with boot-
strap-aggregated classification trees. As we
used bootstrapping for error estimation in
this work, it is important not to confuse the
out-of-bag sample, which is used to train ad-
ditional classifiers (oobT) with the out-of-
bag sample, which is used for error rate esti-
mation (oobE). Sample oobT is part of the
bootstrap sample used for error rate esti-
mation: bundling performs a bootstrapping
in the bootstrap sample.

Benchmark results show that bundling
performs comparable to the classifier that is
best suited for the given data set and dis-
tribution. In our experiments, we combine
LDA, sLDA, LD and the combination of
LD, sLDA, 5-NN and 10-NN with bagging.

In R, bundling is treated as a special case of
the function bagging() and is performed
by calling this function with the additional
parametercomb, wherecomb describes the
list of additional classifiers that are trained
with the out-of-bag data.

Note that the construction of this classifier
combined with a bootstrap-based error esti-
mator is computationally demanding. For
example, if we estimate the error rate of bun-
dling combined with LDA, we draw 100
bootstrap samples for the construction of the
error estimator. For each sample, 200 boot-
strap samples are drawn by bundling. A LDA
and a classification tree are constructed for
each sample.This gives a total of 200 × 100 =
20,000 calculated LDAs and additionally
20,000 classification trees that are computed
to estimate the misclassification error.

2.3 Case-control Study
We compare the classifiers by data of one
case-control study drawn from the Erlangen
Glaucoma Register [5]. The study consists of
98 normal and 98 glaucomatous observations,

Variable Normal

AG 2.608 (0.764)

ABRG 0.976 (0.786)

MHCG 0.066 (0.066)

VBSG 0.497 (0.400)

VASG 0.066 (0.079)

VBRG 0.292 (0.435)

VARG 0.414 (0.197)

MDG 0.636 (0.203)

Glaucoma

2.605 (0.539)

1.608 (0.647)

0.122 (0.060)

0.770 (0.372)

0.034 (0.025)

0.559 (0.356)

0.179 (0.117)

0.735 (0.193)

TMG

MR

–0.152 (0.093)

0.903 (0.130)

–0.034 (0.088)

0.907 (0.092)

Table 2 Mean values (standard deviations) of variables
of the used data set (abbreviations see Table 1)

Table 3
Misclassification rates,
sensitivities and
specificities for tested
classifiers

Classifier err oob

Random Forests 15.4%

Bundling (RPART, LD, sLDA, 5-NN,
10-NN)

16.3%

Bundling (RPART, LD) 16.3%

Bundling (RPART, sLDA) 17.3%

Bundling (RPART, LDA) 17.8%

SVM 15.9%

PDA 16.8%

MLP 17.2%

err .632+

11.0%

11.7%

11.7%

12.5%

13.0%

13.4%

15.3%

14.5%

Sensitivity

82.79%

82.82%

82.98%

81.22%

80.86%

82.65%

83.74%

81.92%

Bagging

sLDA

FDA/MARS (degree=1)

FDA/MARS (degree=2)

Logistic Discrimination

LVQ

RPART

kNN

LDA

MDA

17.9%

18.2%

20.0%

20.2%

21.7%

22.1%

22.9%

24.0%

27.7%

27.9%

13.0%

15.8%

17.5%

18.6%

16.9%

18.4%

19.7%

21.1%

22.8%

22.8%

80.91%

80.63%

78.17%

77.58%

76.80%

77.13%

75.48%

75.26%

71.84%

72.49%

Specificity

86.54%

84.97%

84.70%

84.38%

83.67%

85.70%

83.02%

83.92%

83.54%

83.02%

82.05%

82.07%

79.80%

78.72%

78.66%

76.85%

72.46%

71.51%
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training process for each bootstrap sample.
We perform a threefold cross-validation of
the bootstrap sample and the classifier is
modeled with the best combination of hy-
perparameters. This procedure is repeated
for each bootstrap sample. Our com-
putations are performed using the R func-
tions errorest() for error rate esti-
mation and tune() [39] for tuning.

We determined the hyperparameters for
SVM, MLP, kNN, FDA and MDA. For the
SVM, we tried several values for the kernel
parameter γ (2–10, 2–9,..., 24, 25), and for
C (2–5, 2–4,..., 211, 212).The hyperparameters for
MLP are the number of neurons in the hidden
layer (1, 2,..., 6) and the weight decay (0.025,
0.05, 0.075, 0.1, 0.2, 0.4, 0.6). The hyper-
parameter k of the kNN was tuned with the
values (1, 3, 5, 7, 9, 11, 13, 15). When comput-
ing FDA, we varied the number of knots (5, 15,
45, 75, 125) for both degrees of MARS (1 and
2). The MDA was evaluated with a varying

number of subclasses (2, 3, 4,..., 10) and differ-
entmaximumnumbersof iteration(3,5,10,20).

2.5 Statistical Analysis
We compare classification methods by
using the bootstrap distribution of the esti-
mate of misclassification error. We use the
same set of B different learning samples
L1, …, LB (in our case: B = 100) for each
classifier. The variance, which is induced by
the different bootstrap samples is reduced
by subtraction of the mean over all classifi-
cation methods per sample:

i = 1,…,B, j = 1,…,n
errij denotes the j-th classifier’s classifica-
tion error using the ith bootstrap sample,

errij, aligned denotes the aligned misclassifi-
cation rates. We additionally compute the
out-of-bag estimation of the misclassifi-
cation error and the bias corrected .632+ esti-
mation [36, 40, 41]. We estimate the sensitiv-
ity and the specificity by estimates defined by
the classification results in all out-of-bag
samples. To illustrate the significance of
these results in the given setting, the Fried-
man test is performed and the pairwise differ-
ences between classification methods are
tested using the Wilcoxon signed rank test.

3. Results
Using nested-loop cross-validation we ac-
count for the tuning of hyperparameters. We
demonstrate the comparison of the point es-
timates of 18 methods on data of one clinical
study. The resampling estimates are as-

Table 4 Spearman’s rank correlation in % (lower triangular matrix) and significance of
Wilcoxon signed rank tests for the given number of bootstrap samples B= 100 (“*” indicates
a p-value < 0.0003; “+“ indicates a p-value < 0.001) between performances (upper

MD
A

MDA

LDA 43

kNN 4

RPART 11

LVQ 11

LD 32

FDAF1 10

FDAF2 12

LD
A

–2

27

19

37

23

36

kN
N

*

*

29

58

–2

17

14

sLDA

Bagging

BundlingB1

BundlingB2

MLP

PDA

BundlingB3

BundlingB4

SVM

Random Forests

27

10

6

2

37

18

9

11

25

11

27

25

22
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sessed by Spearman’s rank correlation,
Wilcoxon signed rank tests and naive boot-
strap confidence intervals. Table 3 shows
the point estimates out-of-bag error (err oob),
.632+ bootstrap error (err .632+) and esti-
mates of the sensitivity and specificity for
the 18 analyzed methods.

Friedman’s test shows that the classi-
fier performances differ significantly (p
<0.001). To illustrate the meaning of these
values in our experimental setup (B = 100),
significant results of the 144 pairwise com-
parisons using the Wilcoxon signed rank
test are listed in Table 4 (Bonferroni ad-
justed level of significance: 0.05/144 =
0.0003).

The misclassification rates of the classi-
fier performing best in our setup, namely
random forests (err oob = 15.4%, err .632+ =
11.0%), differ significantly from those of all
other methods, except bundling (best com-

bination: err oob = 16.3%, err .632+ = 11.7%),
SVM (err oob = 15.9%, err .632+ = 13.4%) and
PDA (err oob = 16.8%, err .632+ = 15.3%).
MDA (err oob = 27.9%, err .632+ = 22.8%) and
LDA (err oob = 27.7%, err .632+ = 22.8%)
mark the other end of the spectrum. The
misclassification rates of these methods
also differ significantly from those of all
other methods.

Table 4 also shows the computed cor-
relations between the misclassification rates
of all classifiers. Similar concepts of clas-
sification methods may differ only in the
classification of few observations, which re-
sults in correlation of estimated misclassifi-
cation rates.

The aligned misclassification rates are
visualized in Figure 5. As the number of
bootstrap iterations is increased, the order of
the boxplots of the different classification
methods converges.

4. Discussion

We introduce several classification methods
provided by the statistical programming en-
vironment R and demonstrate their appli-
cation. A randomized block design is used
to compare the bootstrap estimates of the
misclassification rates of the classifiers.
Bias resulting from tuning the hyperpa-
rameters of several classification methods is
avoided by incorporation of an inner cross-
validation in the bootstrap process [13].
Thus, classification performances of sev-
eral different classifiers with and without
the use of hyperparameters can be com-
pared using a rather small clinical dataset.
Bootstrap-based evaluation is done for a
chosen size of the bootstrap samples B. We
provide a statistical evaluation of our boot-
strap estimation (B = 100), which shows sig-

Fig. 5 Aligned misclassification rates
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nificant differences of classifier perform-
ance. The derived significances depend on
the used dataset and the chosen number of
bootstrap replications. The results illus-
trated by the glaucoma study are that en-
semble methods [42] perform comparably
to the best non-ensemble methods, namely
SVM, PDA, MLP and sLDA. Table 3 shows
the misclassification rates, sensitivities and
specificities obtained with the different
classification methods. Misclassification
rates are lowest for random forests, closely
followed by bundling. SVM and PDA are
the only non-ensemble methods that are not
significantly worse than random forests.
LDA, which is often used in literature on
classification of CSLO data [43-46] is out-
performed by every other classifier under
test except MDA. It is well known that LDA
is unstable for high-dimensional data. We
did not analyze the reduction of dimen-
sionality by variable selection, which is an
important task in medical classification to
characterize prognostic factors. We in-
cluded in our analysis two methods based on
LDA which deal with high-dimensional
data sets without parameter selection by
mapping the data to a lower dimensional
feature space (sLDA) or by regularization
(PDA).

5. Conclusions
We recommend bootstrapping to assess the
differences of misclassification results
given one data set of a clinical study and a
chosen size of the bootstrap sample. The es-
timated sensitivities and specificities de-
pend on the Erlangen glaucoma study and
the patients selected. Our work illustrates,
that the classification method double-bag-
ging, which was used by Mardin et al. [2],
results in similar classification character-
istics as the best methods. In our paper we
do not aim to publish a new glaucoma clas-
sification rule for clinical application, but
we illustrate a strategy to compare different
classifiers using data of one clinical study.
We use inner cross-validation for the tuning
of hyperparameters as proposed by Marko-
wetz and Spang [13] by incorporating the
tuning process into the training process.

Thus, the comparability of the classification
methods and the flexibility of classifiers
using hyperparameters are preserved.
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