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for collaborative caching
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Abstract—In this paper, we study the online collaborative
content caching problem from network economics point of view.
The network consists of small cell base stations (SCBSs) with
limited cache capacity and a macrocell base station (MCBS).
SCBSs are connected with their neighboring SCBSs through
high-speed links and collaboratively decide what data to cache.
Contents are placed at the SCBSs “free of charge” at off-peak
hours and updated during the day according to the content
demands by considering the network usage cost. We first model
the caching optimization as a finite horizon Markov Decision
Process that incorporates an auto-regressive model to forecast
the evolution of the content demands. The problem is NP-
hard and the optimal solution can be found only for a small
number of base stations and contents. To allow derivation of
close to optimal solutions for larger networks, we propose the
rolling horizon method, which approximates future network
usage cost by considering a small decision horizon. The results
show that the rolling horizon approach outperforms comparison
schemes significantly. Finally, we examine two simplifications of
the problem to accelerate the speed of the solution: (a) we restrict
the number of content replicas in the network and (b) we limit the
allowed content replacements. The results show that the rolling
horizon scheme can reduce the communication cost by over 84%
compared to that of running Least Recently Used (LRU) updates
on offline schemes. The results also shed light on the tradeoff
between the efficiency of the caching policy and the time needed
to run the online algorithm.

Index Terms—Collaborative caching, online/offline caching,
cost optimization, popularity dynamics, finite horizon MDP,
approximate dynamic programming

I. INTRODUCTION

During the last few years, we have witnessed an explosion
of the data traffic in cellular networks. Due to the increase
in the number of wireless devices with network access, the
mobile video traffic will reach 82% of the overall Internet
traffic by 2021 [1]. This increase puts pressure on network
operators infrastructure and renders inefficient the current
model according to which the base stations (BS) receive the
requested content through the core network using expensive
bandwidth-limited backhaul links. The backhaul links may
become congested because of the increased data traffic, and
this may result in users experiencing excess delays and low
Quality of Experience (QoE). High QoE can be preserved by
densifying the network of BSs, i.e., installing a larger number
of BS; however, this solution does not scale well with the
number of wireless devices. A more efficient solution would
be to exploit the spatial diversity of the data requests. This can
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be done by caching popular content at BSs’ caches so that it
is closer to the end-users. The exploitation of BSs’ caches
helps to decrease the load of the backhaul links and combat
download delays.

Edge caching resembles web caching mechanisms employed
in Content Delivery Networks (CDN), where content providers
replicate popular content in dedicated servers (mirror servers),
which accommodate users’ requests. As the content is located
near the end-users, the communication with the origin servers
is limited. Thus, caching helps minimize the data traffic in
the core network. The CDN approach of having an increased
number of servers to accommodate the demands of the users
does not scale well with the number of users and leads to
increased delays and low QoE [2]. Efficient CDN architectures
[3] optimize the cached content in the mirror servers so that
the load of the core network is reduced. In the wireless caching
systems, the cache optimization problem is harder than that in
CDNs due to the plethora of the requested contents and the
dynamic nature of the requests. This is fueled by the change
of the content production and consumption model which has
transformed the end-users to content producers. This problem
becomes even more challenging as the vast majority of the
generated data is video, which has considerable size and is
characterized by strict delivery deadlines. Hence, each base
station can cache only a part of the entire content catalogue.
The cache optimization problem can be mapped to a knapsack
problem which is known to be NP-hard [4]. In practice,
network operators adopt simple cache update policies such as
the Least Recently Used (LRU) or the Least Frequently Used
(LFU).

Collaborative wireless caching is proposed in [5], [6] in
order to take advantage of the spatial correlation of the re-
quests. Specifically, the BSs collaborate with wireless devices
which offer their caching space (helper nodes) to store popular
content. The advantages of coded caching [7], [8] are explored
in [5], [9] where the benefits of content reuse in increasing
the cache hit ratio and decreasing the content delivery delay
are shown. More recently, the tradeoff between global caching
gains and pre-downloading gains is investigated in [10] for the
aforementioned network setting. In [11]–[13], a large number
of cache-enabled small-cell base stations (SCBSs) are placed
to lower the data retrieval delays in mobile networks. The
cached content in the SCBSs is decided centrally by the
mobile network operator (MNO). The SCBSs work in concert
with a macro-cell base station (MCBS) to deliver content
that is not available to the SCBSs, which is requested from
MCBS. In [11], the problem is first cast as an unsplittable hard
capacitated metric facility location problem and then is solved
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efficiently by an approximation algorithm which performs
close to the optimal solution. Cache assisted delivery of scal-
able video data [14] is studied in [12] where multiple MNOs
collaborate locally by offering part of their cache space to
SCBSs of other MNOs. It is shown that the cache optimization
is related to the multiple-choice knapsack problem and that a
pseudo-polynomial time-optimal solution exists. The relation
between partial caching and users retention rate for video data
is investigated in [15]. It is suggested that only the initial part
of the video files should be cached in the BSs and that the
size of the cached part depends on the video popularity. In
[13], a joint caching, routing, and channel assignment scheme
is presented for optimizing video delivery over coordinated
small-cell cellular systems. The column generation method is
used to reduce the computational complexity and to find a
well-performing solution.

The schemes mentioned above assume that the content
popularity profile is known and can be modeled as Zipf, Zipf-
Mandelbrot, Shot Noise Model, or are a combination of several
distributions [16]. In these schemes, the content replacement
decisions are made assuming that the future content requests
will be in accordance with the considered model. Hence,
offline schemes depend heavily on the sufficiency of content
request statistics that are used for parameter fitting and are
sensitive to sudden changes in popularity. When content pop-
ularity is time-varying, offline caching schemes perform sub-
optimally. To address the inefficiency of offline schemes for
non-stationary content demands online algorithms have been
proposed [17]–[27]. There exist both non-collaborative [17]–
[23], [26] and collaborative caching schemes [24]–[27]. Base
stations in non-collaborative caching decide independently
from each other the optimal caching policy. To determine the
optimal online cache policy reinforcement learning algorithms
have been suggested [18], [20], [21], [26]. When the freshness
of the data is important, caching algorithms should consider
the age of information [18], [20]. More efficient caching
policies can be found by taking into account both the global
and local content popularity [21]. In [21], linear function
approximation is used in an attempt to lower the computational
cost, which is inspired by the additive form of the overall cost.
This allows to solve larger instances of the problem, e.g., more
files. Context-aware caching is proposed in [26] for proactively
deciding the cache allocation strategy. The content popularity
is learned using a contextual multi-armed bandit algorithm
which has guaranteed convergence, however, this algorithm
still requires a significant number of iterations to learn data
popularity. A linear regression model is used to estimate the
content popularities in [19]. The problem is first formulated
as a time-averaged hit rate maximization problem and then
reformulated as time-averaged regret minimization. Two algo-
rithms based on simulated annealing are introduced in [22]
to deal with non-stationary content requests. In [23], caches
are updated when the offloading cost, i.e., the cost introduced
when files are delivered through the backhaul, exceeds a
threshold. An online popularity-aware caching scheme that
refreshes the cached content according to the revealed content
requests is presented in [17]. This scheme considers a single
cache network, and thus the algorithm is not appropriate for

collaborative caches case. Exploiting collaboration opportuni-
ties between BSs can reduce offloading cost [24], [27] and/or
reduce the network use [25], [28]. Collaboration opportunities
may emerge due to the fact the coverage areas of base stations
overlap as in [24], where a Gibbsian based sampling method
is used to determine the optimal caching strategy. This enables
sequential cache updates and policies are updated only when
a content is delivered to a user through the backhaul link.
Collaboration between caches can also be achieved by means
of a content centric networks (CCN). Caching in CCN from an
economic point of view is explored in [25], [28]. Incentives
are given to Internet Service Providers (ISPs) to cache data
for other ISPs. The proposed algorithm is of low complexity,
however, due to the special characteristics of content demand
in the CCN framework, it cannot be trivially generalized to
solve wireless cache optimization problems. Network coded
cached in CCN is studied in [27] where more popular contents
are cached to the edge nodes, from where the end-users can
acquire them.

In this work, we study the wireless edge cache optimization
problem from a single MNO point of view. We assume SCBSs
with limited storage space that collaborate with each other to
accommodate the content requests. We assume that SCBSs are
connected with neighboring SCBSs through the core network
via high-speed links. When a user issues a request for a
content, if it is not cached in the SCBSs where the user
lies, the request is forwarded to its neighboring SCBSs. If
one of these SCBSs has the requested content, it transmits
the content to the SCBS where the content was requested,
otherwise the request is forwarded further. We examine the
problem from a network economics point of view, and hence
we consider the cost of updating the content (including the
communication cost) to decide whether the content should be
retrieved from the MCBS or the SCBSs. The above content
request model resembles the way information is requested
in information-centric networks and peer-to-peer networks,
however our solution is generic and applicable to any network
following such a content request model. More details regarding
the communication model are provided in Section II. The
considered scenario has similarities with the one examined
in [29], [30] where centralized offline caching solutions are
presented. Different from [29], [30], we propose an online
caching solution which belongs to the family of approximate
dynamic programming methods called rolling horizon. The
rolling horizon method approximates future network usage
cost and enables the determination of close-to-optimal caching
policies in large networks. In our caching network, cache
content is placed free-of-charge at the SCBSs in off-peak
hours and updated during the day according to the encountered
content popularity dynamics considering the cost of update.
The changes in the content popularity are captured by an
auto-regressive model. We compare the performance of the
proposed scheme against several schemes with and without
prediction. The results show that the proposed rolling horizon
approach outperforms all other schemes in all cases and that
it needs only the consideration of a small horizon. Further,
from the results, it is clear that the policy with the lower
network usage cost does not coincide with one achieving the
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maximum cache hit ratio. As the computational complexity of
the problem can be still high, we study two simplifications of
the problem: (a) we consider that the content can be cached
in at most one SCBS and (b) we limit the number of allowed
content replacements in each SCBS. The results show that
besides these simplifications large gains over the comparison
schemes are noticed and the performance is comparable to
a theoretical lower bound achieved when we can accurately
predict the demand evolution in the future and update the
cached contents without any cost. The contributions of our
work are summarized as follows:
• we propose a dynamic programming structure with finite

horizon to solve the online cache optimization problem;
• we cope with the dimensionality by proposing two sim-

plification problems to the problem, i.e., we restrict to
one the number of replicas in the network and we limit
the number of content replacements;

• we compare the proposed scheme with several schemes
to show the efficiency of the proposed online caching
algorithm.

The rest of the paper is organized as follows. In Section
II we discuss the considered scenario. Then we present the
online cache optimization model in Section III. Next, in
Section IV, we propose the rolling horizon algorithm and some
simplifications of it, which permit to reduce the computational
complexity and allow us to use this algorithm in larger
problems. The performance of proposed schemes is compared
against several schemes in Section V. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL

In this paper, we consider the network setting depicted in
Fig. 1 that represents an MNO handled network comprising
an MCBS that communicates through the backhaul link with
a set M = {1, 2, . . . ,M} of SCBSs. Let M′

= {M ∪ 0}
be the augment set that includes the MCBS and the SCBSs,
where the index 0 stands for the MCBS. In addition, each
SCBS is connected with its neighboring SCBSs through the
core network via high-speed links1. We assume that there is
a set U = {1, 2, . . . , U} of users who request to receive files
contained in the content catalogue N = {1, 2, . . . , N}. Each
file n ∈ N has size vn bytes and is associated with a parameter
λtn that represents the number of requests for the nth file in
time period t. The files are unsplittable, and hence they should
be fully retrieved only from one base station (either MCBS or
SCBS), however a file n ∈ N can be stored in multiple SCBSs.
The SCBSs have limited storage capacity, and thus they can
cache only a part of the content catalogue, while the MCBS
can store the entire content catalogue. The storage capacity of
the mth SCBS is denoted as bm.

When a user u ∈ U issues a request for a content, e.g.,
n ∈ N , it first directs this request to the closest SCBS, e.g.,
mth SCBS. In this paper, we assume that contents requests
follow the independent reference model (IRM). If the content
is cached in this SCBS, the delivery of the content incurs no

1The high-speed links can be backhaul links connecting the edge nodes of
the core network, i.e., the SCBSs.

Fig. 1. Considered network setting.

extra cost. However, in case the content is not found at the mth
SCBS, the content request is forwarded to all its neighboring
SCBSs. If these do not possess the requested file, they forward
it further to their neighbors and so on. When the content is
located in the cache of the SCBS m

′ ∈M\m for example, we
assume that the delivery cost is equal to cu

m′ ; this accounts for
the communication cost, which includes the cost of using the
network infrastructure. In this paper, without loss of generality
we assume that the cost depends on the distance of the SCBS
m, in which the client u ∈ U requested the content from, to
the resource SCBS (or MCBS), i.e., the m

′ ∈ M′\m where
the requested content was located. If none of the SCBSs has
the demanded content, this can be acquired from the MCBS
through the backhaul link with a cost cu0 , where cu0 > cu

m′ .

III. ONLINE DYNAMIC PROGRAMMING MODEL

In this section, we formulate the studied collaborative online
cache optimization problem as a finite-horizon Markov Deci-
sion Process (MDP) to reflect the dynamics of the system.
We assume that cache decisions are made online and every
T decision stages the cached content can be updated free-
of-charge, i.e., the cost for updating the cached content at the
SCBSs is zero. For example, if we consider T = 24 and cache
updates every hour, the content will be updated free-of-charge
at mid-night, i.e., every 24 hours.

We define the states of the finite-horizon MDP as St =
(~xt1, ~x

t
2, ..., ~x

t
M ), where ~xtm = (xt1m, x

t
2m, ..., x

t
Nm)T is a N

dimensional 0 − 1 vector that indicates whether a content is
cached in a SCBS. We have

xtnm =

{
1, if content n is cached in SCBS m in stage t
0, otherwise

n ∈ N ,m ∈M.

Recall that M and N represent the number of SCBSs and the
number of contents, respectively.

The actions of the finite-horizon MDP are composed of two
sub-actions corresponding to the addition and/or the eviction
of a content to/from the cache. The sub-action of adding a
content to the cache is defined as ~at = (~at1,~a

t
2, ...,~a

t
M ), where
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~atm = (at1m, a
t
2m, ..., a

t
Nm)T is a N dimensional vector with

atnm =

{
1, if content n is added in SCBS m in stage t
0, otherwise .

Similarly the sub-action of evicting a content from the
cache is defined as ~dt = (~dt1,

~dt2, ...,
~dtM ), with ~dtj =

(dt1m, d
t
2m, ..., d

t
Nm)T being a N dimensional vector and

dtnm =

{
1, if content n is evicted from SCBS m in stage t
0, otherwise

Therefore, the state St+1 and the xt+1
nm evolve with the time

as follows
St = St−1 + ~at − ~dt.

xtnm = xt−1
nm + atnm − dtnm, n ∈ N ,m ∈M.

For each state St, the feasible action set for stage t, i.e. the
set of eligible actions, is given by

χt = {~at, ~dt| atnm ≤ 1− xt−1
nm , d

t
nm ≤ xt−1

nm , n ∈ N ,m ∈M
N∑
n=1

vn(xt−1
nm + atnm − dtnm) ≤ bm,m ∈M}

,

where the first inequality does not allow to add a content to
an SCBS cache if it is already cached in it, while the second
means that a content cannot be evicted from a cache if it is
not already cached in it. The third inequality does not permit
the total size of the cached content in an SCBS to exceed the
cache capacity.

In each stage t = 1, ..., T−1, the decisions regarding which
contents to add and/or evict to/from the cache of the mth
SCBS are made by solving the Bellman equation

Vt−1(St−1) = min
~at,~dt∈χt

[
I(~at, ~dt) + min

yunm

{∑
n

∑
u∈U∑

m∈M′

λtnc
u
my

u
nm|

M∑
j=0

yunm = 1, yunm ≤ xtnm
}

+ Vt(St)
]
(1)

where Vt(St) represents the value of the MDP model when the
system is in state St, λtn represents the number of requests in
time period t and cum is the content delivery cost from m ∈M′

SCBS to the user u. The variable yunm indicates from where a
content demand is satisfied. This parameter is equal to 1 when
a request for content n issued by a client u is satisfied with the
content copy cached in the mth SCBS, differently its value is
0. The parameter I(~at, ~dt) corresponds to the penalty coming
as a result of actions ~at and ~dt and is defined as follows

I(~at, ~dt) = γ

N∑
n=1

M∑
m=1

(atnm + dtnm), (2)

where γ stands for the cost (per content) incurred when
we add/remove a content to/from a cache. Without loss of
generality, we assume that the cost to add a content to a
cache is equal to the cost of evicting the content from it. Here,
although we assume that the penalty is linear to the number of
contents to add/evict, other models can be used to determine
the penalty value. Since at the end of the horizon (e.g., at
mid-night) the contents’ update does not incur any penalty,

two adjacent decision periods (e.g., days) can be considered
independently by setting boundary condition VT (ST ) = 0.
Thus, during the first stage when we renew all contents free-
of-charge, the penalty term I(~at, ~dt) in (1) is 0 and the decision
problem becomes

V0(S0) = min
~x1

[
min
yunm

{∑
n

∑
u∈U∑

m∈M′

λ1
nc
u
my

u
nm|

M∑
j=0

yunm = 1, yunm ≤ x1
nm

}
+ V1(S1)

]
,

(3)

In our scheme, differently from the standard offline ap-
proaches where it is assumed that content requests follow a
long term distribution, e.g. Zipf, we employ an auto-regressive
model to estimate the expected number of content requests
λtn, n ∈ N . For new contents, we introduce a regression model
to predict their initial popularity. If we denote by ε a noise
parameter that captures the randomness in the evolution of
λtn, the number of content requests is estimated as

λ̃tn = µt · (
H∑
τ=1

βτλ
t−τ
n + ε), (4)

where H is the number of previous stages we take into account
during the prediction of content requests. The coefficients
βτ , τ = 1, ...,H − 1 correspond to the weights of each of
the H previous stages to the prediction process. Apparently,

it is
H∑
τ=1

βτ = 1. The parameter µt stands for the average

number of per-content requests during stage t; this parameter
varies with the stage index to reflect the time-varying demand
pattern over the day. It is worth noting that in this paper
we assume that the auto-regressive model parameters, µt,
β and the distribution for ε are known. The determination
of the optimal values of these parameters is an interesting
problem, but it is out of the scope of this paper. This could be
done considering, for example, contextual information such as
language, category, publisher, etc., and this prediction could
be treated as the baseline number of contents’ requests per
hour, µt. Finally, we should note that in the employed auto-
regressive model, the number of requests is not affected by
the age of information, i.e., how long the content has been
available to the content catalogue, as well as we assume that
content will not disappear before stage T . These are reasonable
assumptions as for the results we assume a horizon of T = 24
hours, i.e., one day.

IV. ROLLING HORIZON CACHE OPTIMIZATION ALGORITHM

The online dynamic programming cache optimization model
presented in the previous section suffers from the curse of
dimensionality and cannot be solved exactly for realistic size
problems. Specifically, at every stage t an integer problem
with (M2 + 2M)N variables should be solved. Given that
the content cache status is a binary variable (e.g., a content
can be cached or not in an SCBS), the discrete state space

has
( b∑
l=0

ClN

)M
components, where b is the cache capacity
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of every SCBS (assume they all have the same size) and ClN
represents the number of combinations of l elements from N
objects. Therefore, in order to solve the online problem using
backward induction algorithm for 2 SCBSs, 10 contents and
b = 3, we need to enumerate the Bellman equation (1) into
30976 states during every stage. To combat the dimensionality
problem, we propose the rolling horizon (RH) algorithm
which is based on approximate dynamic programming (ADP)
concepts and allows us to find efficient solutions.

Our motivation lies to the fact that backward induction
algorithm needs the value function (i.e., cost) for stage t,
e.g, Vt(St), to optimize the cache decisions in stage t − 1.
If this cost is estimated for all possible states St, the decision
problem in (1) only contains information for the current stage
t − 1, and thus it can be solved independently in each stage.
However, the value function Vt(St) represents the future cost
of following the optimal decision policy starting from state
St, which captures both the information involvement and the
optimal decision policy. Therefore, it is nearly impossible to
obtain an accurate evaluation without backward recursion.

To this aim, we construct an approximation of Vt(St) using
ADP ideas, which enables an efficient forward recursion. This
simplification is achieved by solving explicitly an approxi-
mation of the problem over some stage horizon Γ. Both the
evolution of the content popularity and the best future actions
can be captured to some extent with this type of formulation.
However, in order to avoid the dimensionality of the backward
recursion, the fixed optimal policy obtained at stage t is used
for a certain number of periods determined by Γ rather than
until the terminate stage T . This can be viewed as an extended
short-sighted approach, which considers part of the influence
of the current action to the future. If the rolling horizon
algorithm is implemented for Γ periods into the future, the
decision problem at stage t becomes:

Ṽt−1(St−1) ≈ min
~at,~dt∈χt

[
I(~at, ~dt) + min

yunm

{∑
n

∑
u∈U∑

m∈M′

(λtn +

Γ∑
τ=1

λ̃t+τn )cumy
u
nm|

M∑
j=0

yunm = 1, yunm ≤ xtnm
}]
(5)

where λ̃t+τn denotes the forecasted number of requests in stage
t+ τ and is computed by (4).

In the following subsections, we present two further sim-
plifications of the online cache optimization problem that
allow us to determine well-performing solutions with reduced
complexity. For the sake of simplicity, we define the inner
decision problem of (5) as P to stand for the minimum
communication cost (cost of satisfying all content demands
during a period) under the current cache status. Note that

without loss of generality, we replace the (λtn +
Γ∑
τ=1

λ̃t+τn )

in the rolling horizon update formula (5) by a variable λ̄tn
because the simplifications described in the following can be
used in other ways of demand forecasting.

P (~xt) := min
∑
n

∑
u∈U

∑
m∈M′

λ̄tnc
u
my

u
nm (6a)

s.t.
∑

m∈M′

yunm = 1, n ∈ N , u ∈ U (6b)

yunm ≤ xtnm, yunm ∈ {0, 1}n ∈ N , u ∈ U ,m ∈M
′

(6c)

A. Allow a single copy of a content to be cached in SCBSs
network

Based on the observation that there are far more contents
than the total capacity of all the SCBSs, which in practice
holds, we simplify the decision problem further by restricting
contents to be cached at maximum in one SCBS in the net-
work. This is an effective strategy when contents’ popularity is
given by a smooth distribution, i.e., the popularity of contents
does not vary significantly. This simplification permits us
to find near-optimal solutions with reduced cost. Under this
simplification, when content n ∈ N is cached in SCBS
m ∈ M, all requests for it are served by the SCBS which
cached the content if it is less costly than receiving it from the
backhaul. Therefore, the problem P (~xt) can be decomposed
into sub-problems solved by contents. For example, for content
n ∈ N we need to solve the following sub-problem:

Pn(~xt) := min
∑
u∈U

∑
m∈M′

λ̄tnc
u
my

u
nm (7a)

s.t.
∑

m∈M′

yunm = 1, u ∈ U (7b)

yunm ≤ xtnm, yunm ∈ {0, 1}u ∈ U ,m ∈M
′

(7c)

If the content n is cached in SCBS m̂, i.e., xtnm̂ = 1 and each
content is cached in only one SCBS, then xtnm = 0,∀m 6= m̂.
This means that yunm = 0,∀m 6= m̂ according to constraint
(7c). Hence, it should be yunm̂ = 1 −

∑
m6=m̂

yunm = 1 in order

to to satisfy (7b). In this case, the minimum usage cost is∑
u∈U

λtnc
u
m̂ for each content n. However, if the content n is

not cached at any SCBSs, the minimum usage cost is trivially
equal to

∑
u∈U

λtnc
u
0 . Considering the above costs, we conclude

that under a cache placement xtnm, the total communication
cost can be computed as:∑

n

λtn
∑
u∈U

[
cu0 (1−

M∑
m=1

xtnm) +

M∑
m=1

cumx
t
nm

]
(8)

This removes the need to solve the problem P , and the
minimization problem (1) becomes

Vt−1(St−1) = min
~at,~dt∈χt

{
I(~at, ~dt)+

∑
n

λtn
∑
u∈U

[
cu0 +

M∑
m=1

(cum − cu0 )xtnm

]
+ Vt(St)

}
.

(9)

Note that the simplified problem in (9) does not contain
content delivery decision variables y, and hence the size of
the action space is greatly reduced from (M2 + 2M)N to
2MN . If we further consider the simplification incurred by
the rolling-horizon approximation described by (5), the cache
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and delivery optimization problem can be written as

min
∑
n∈N

∑
m∈M

I(~at, ~dt) +
∑
n

(λtn +

Γ∑
τ=1

λ̃t+τn )·

·
∑
u∈U

[
cu0 +

M∑
m=1

(cum − cu0 )(xt−1
nm + atnm − dtnm)

]
(10a)

s.t. atnm ≤ 1− xt−1
nm ,∀n ∈ N ,∀m ∈M (10b)

dtnm ≤ xt−1
nm ,∀n ∈ N ,∀m ∈M (10c)

N∑
n=1

vn(xt−1
nm + atnm − dtnm) ≤ bm,∀m ∈M (10d)∑

m∈M
(xt−1
nm + atnm − dtnm) ≤ 1,∀n ∈ N (10e)

atnm, d
t
nm ∈ {0, 1},∀n ∈ N ,∀m ∈M (10f)

We can see that all the constraints of the original online
minimization problem (1) are also constraints of the simplified
problem in (10a), but in addition we have constraint (10e)
which prohibits the caching of a content in two or more
SCBSs. This constraint enables the use of the closed-form
formula (8) for computing the optimal usage cost, and thus
decreases the cost of determining the optimal solution. As we
will see in the evaluation section in the majority of the cases
the proposed simplification results in the same cache allocation
with that of the original problem (1) under the assumption that
content popularity follows a smooth distribution.

B. Limit the number of allowed content replacements

Despite the simplification considered in the previous subsec-
tion, the action space could be still large in size. To overcome
this problem, we propose a greedy heuristic summarized in
Algorithm 1 to solve (5), which examines contents with
decreasing order of popularity. ∆(xtj←i,k) corresponds to the
difference in the cost when content j is replaced by content i
at the cache of the kth SCBS. A content replacement happens
only if the replacements of a content in an SCBS leads to
the largest reduction of total usage cost, regardless of whether
contents involved in this replacement are cached anywhere else
in the network. This means multiple SCBSs may have a copy
of the same content, which is different from the assumption
used in Section IV-A. The cost reduction is calculated by
considering a fixed length stage horizon into the future, as what
we have used in (5). As each potential replacement involves
only two contents, i.e. the added and the evicted one, the
penalty of cache update and the potential cost reduction can
be evaluated very quickly.

As shown in Algorithm 1, the greedy heuristic turns the op-
timization problem into a sequential decision-making problem
by content. This is possible because demands for contents are
independent of each other. The inner optimization Pn for each
content n calculates the cost of satisfying customer demands
given the existing caching locations. The outer problem, which
selects the optimal ~at, ~dt values, is subject to the capacity
constraint of every SCBS and cannot be decomposed. Never-
theless, assuming that content updates are done via replace-
ment, the capacity constraint is always satisfied. Therefore,

Algorithm 1 Greedy heuristic for content replacement
1: Input: maximum number of content replacements per

cache r
2: Sort contents in an decreasing order of the forecasted

number of downloads
3: for i = 1, . . . , r do
4: for k = 1, . . . ,M do
5:

∆(atik) = γ + [Pi(x
t
ik = 1)− Pi(xtik = 0)]

6: for each content j that is cached on SCBS k (xt−1
jk =

1) do
7:

∆(dtjk) = γ + [Pj(x
t
jk = 0)− Pj(xtjk = 1)]

8:
∆(xtj←i,k) = ∆(atik) + ∆(dtjk)

9: end for
10: end for
11: if (min ∆(xtj←i,k) < 0) then
12: Carry out the corresponding replacement.
13: end if
14: end for

the overall optimization problem boils down to a content-
by-content replacement problem where more popular contents
replace the less popular ones in each SCBS. Please note that
when Pn problems are solved (lines 5 and 7 in Algorithm 1),

the popularity is forecasted as λ̄tn = (λtn +
Γ∑
τ=1

λ̃t+τn ).

The greedy heuristic proposed in Algorithm 1 is of low
computational complexity, as it only requires to compare the
parts of the value function which are relevant to the added and
evicted contents in an SCBS. Therefore, the computational
complexity of the algorithm is linear with respect to the
number of allowed replacements r per decision stage. As the
greedy algorithm calculates the cost reductions that are coming
from each replacement decision separately taking into account
content popularity forecasting, all contents can be potentially
replaced per decision stage. This type of heuristic is derived
naturally by examining the structure of the optimization prob-
lem in (5) and has great potential of providing very good
solutions given a large enough number of cache updates is
allowed.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
rolling horizon algorithm presented in Section IV. We compare
the rolling horizon algorithm with a scheme that decides
every T stages the cache placement considering a Zipfian
distribution and then update it based on the LRU policy
and with two other online cache updating policies, i.e., a
myopic policy and an one-step improvement policy, which are
described in Section V-B.

A. Experimental results settings
We evaluate the performance of all schemes under com-

parison for various settings summarized in Table I, where
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the “Ratio” column corresponds to the ratio between the
cumulative size of the contents in the content catalogue and
the total cache capacity of the SCBSs. The third column in
Table I depicts the SCBS network topology. For all cases, we
consider that the SCBSs form a grid network where a crossover
point indicates the existence of an SCBS. In addition, we
assume that all the SCBSs are connected with a direct link
to the MCBS, which for the sake of simplicity is not depicted
in Table I. The communication cost to deliver a demanded
content to a client depends on the distance between the SCBS
at where a client is located, and the base station (either SCBS
or MCBS) from where the requested content is obtained.
Specifically, the communication cost is linearly dependent with
respect to the length of the shortest path between them, while
the downloading cost of a content from the MCBS cum0 is set
to 20.

The parameter γ in Table I is used to compute the cost
(penalty) one has to pay for each content update in the cache,
i.e., when a cached content in an SCBS is replaced by another
and is calculated by (2). This parameter is associated with
the potential delay of meeting users’ requests for adding and
evicting the contents. This cost should be larger than the cost
of downloading a content directly from the MCBS, which
is the minimum delay (cost) one has to wait for updating a
content in an SCBS. Also, this cost should be smaller than
the cost incurred when all contents’ requests are served by
the MCBS in one stage, as otherwise there would not be
any reason to alter the current cache allocation. Thus, for
all network settings and content update ratios, we set the
parameter γ to be equal to 100, which is five times the cost
of requesting a content from the MCBS. For all experiments,
the βτ parameters used from our forecasting model in (4) are
(0.6, 0.3, 0.1). Finally, we consider hourly cache updates and
T = 24.

B. Comparison schemes

Prior to presenting the experimental results, we introduce
the comparison schemes. The first comparison scheme decides
which contents to cache in the SCBSs in two phases: an offline
phase where the off-peak network caching update policy
is made assuming that content popularity follows a Zipfian
distribution, and an online cache updating phase based on LRU
policy. For both cache update phases, the content placement
in the SCBSs’ caches is decided centrally considering the
SCBSs’ communication model described in Section II. We
also compare with several alternative approximations of the
proposed dynamic programming model (1). These policies aim
at incorporating future information through an approximated
value-to-go function, i.e. the Vt(St) in (1). For these policies,
the cache update decisions are made by solving (1) with an
approximated Vt(St), which is policy-specific, and, therefore,
the simplifications discussed in Section IV-A and IV-B are also
applicable to them.

1) Offline cache optimization with online updates based on
LRU: During the offline phase cache update decisions are
made assuming that content popularity follows a Zipf distri-
bution with a known skewness parameter. Let pn represent the

popularity of content n, the optimization problem is formally
expressed as

min
∑
n∈N

pn

(∑
u∈U

∑
m∈M′

cumy
u
nm

)
(11a)

s.t.
∑
n∈N

vnxnm ≤ bm,m ∈M (11b)∑
m∈M′

yunm = 1, u ∈ U , n ∈ N (11c)

yunm ≤ xnm, u ∈ U ,m ∈M
′
, n ∈ N (11d)

xnm ∈ {0, 1}, n ∈ N ,m ∈M (11e)

yunm ∈ {0, 1}, u ∈ U ,m ∈M
′
, n ∈ N (11f)

where the constraint (11b) corresponds to the capacity con-
straint, which prevents the total volume of contents cached
in a SCBS from exceeding its capacity. The constraint (11c)
ensures that all customer requests are satisfied. Finally, the
constraint (11d) imposes that a content can be obtained from
a SCBS only if it is cached in it.

In the online phase, the cached content at the SCBSs is
updated by applying LRU policy. The online cache optimiza-
tion aims at capturing sudden content popularity changes and
demands for contents that were not previously available in
the content catalogue, so as to minimize the backhaul link
load. Hence, in every decision stage the least popular cached
content is replaced by the most popular one as observed in
this stage. As in each stage, there might be new contents or
contents that their popularity changed significantly, multiple
content replacements are allowed. Depending on whether
caching multiple copies of the same content is allowed within
the network, we consider two variations of the LRU policy:
LRU(S)r and LRU(M)r, where r stands for the number
of allowed replacements in each SCBS. S and M indicate
whether a single copy or multiple copies per content are
allowed, respectively. We should note that the determination
of the optimal r value is out the scope of this paper.

2) Myopic policy: The Myopic policy is a short-sighted
approach which only considers the immediate cost when
solving the Bellman equation (1). This means that the future
expected cost, Vt(St), by carrying out the optimal policy in
all future stages, is set to zero. Therefore, the cache updates
are decided by solving the following problem:

V̂t−1(St−1) ≈ min
~at,~dt∈χt

[
I(~at, ~dt) + min

yunm

{∑
n

∑
u∈U∑

m∈M′

λtnc
u
my

u
nm|

M∑
m=0

yunm = 1, yunm ≤ xtnm
}]
.

(12)

3) One-step improvement policy: Another policy we use
for evaluation purpose is the One-step improvement policy.
This policy works similarly to the Myopic policy in that it
solves the Bellman equation for every SCBS independently
and then decides the contents to update based on the computed
cost values. However, differently from the Myopic policy, it
considers the long-run usage cost in addition to the immediate
cost. For the computation of the long-run usage cost, it is
assumed that both the content popularity and the caching plan
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TABLE I
EVALUATION SCENARIOS SETTINGS

Index #SCBS Network topology #Contents Penalty(γ) Capacity Ratio #New contents per hour
Ins 1.1 1 30%
Ins 1.2 3

[
• • •

]
10 100 2 60% 1

Ins 1.3 3 90%
Ins 1.4 4 120%
Ins 2.1 10 30%
Ins 2.2 3

[
• • •

]
100 100 20 60% 2

Ins 2.3 30 90%
Ins 2.4 40 120%
Ins 3.1 4 24%
Ins 3.2 8 48%

Ins 3.3 6
[
• • •
• • •

]
100 100 12 72% 2

Ins 3.4 17 102%
Ins 4.1 20 24%
Ins 4.2 40 48%

Ins 4.3 6
[
• • •
• • •

]
500 100 60 72% 5

Ins 4.4 80 96%
Ins 5.1 10 24%
Ins 5.2 20 48%

Ins 5.3 12

 • • • •
• • • •
• • • •

 500 100 30 72% 5

Ins 5.4 40 96%
Ins 6.1 20 24%
Ins 6.2 40 48%

Ins 6.3 12

 • • • •
• • • •
• • • •

 1000 100 60 72% 10

Ins 6.4 80 96%
Ins 7.1 17 25.5%
Ins 7.2 33 49.5%

Ins 7.3 15

 • • • • •
• • • • •
• • • • •

 1000 100 50 75% 10

Ins 7.4 66 99%

will not be updated in the future. Under this assumption, the
long-run usage cost can be captured by a Zipfian distribution,
which estimates the average popularity of every content over
the entire decision horizon based on the encountered content
requests. In order to capture the evolution of the number of
requests per stage, the Zipfian distribution is rescaled. Hence,
if the total number of content requests is constant over the
future periods and a percentage pn of them is for content n,
the expected number of requests for content n in the future
periods evolves as follows:

λ̃t+τn = pn(

N∑
n̂=1

λtn̂), τ = 1, ..., T − t,

Then, the cache updates are decided by solving

V̄t−1(St−1) ≈ min
~at,~dt∈χt

[
I(~at, ~dt) + min

yunm

{∑
n

∑
u∈U∑

m∈M′

λtnc
u
my

u
nm|

M∑
m=0

yunm = 1, yunm ≤ xtnm
}

+ min
yunm

{∑
n

∑
u∈U∑

m∈M′

T−t∑
τ=1

λ̃t+τn cumy
u
nm|

M∑
j=0

yunm = 1, yunm ≤ xtnm
}]

(13)

By observing (13), we note that the inner decision problem
(selection of optimal y values) is split into two subproblems:
one aiming to optimize the immediate cost (second summand

in (13)) and another aiming to minimize the approximation
of the cost-to-go, Vt(St) (third summand in (13)). The two
subproblems can be merged as follows:

V̄t−1(St−1) ≈ min
~at,~dt∈χt

[
I(~at, ~dt) + min

yunm

{∑
n

∑
u∈U∑

m∈M′

(λtn +

T−t∑
τ=1

λ̃t+τn )cumy
u
nm|

M∑
m=0

yunm = 1, yunm ≤ xtnm
}]

(14)

C. Numerical Results

In this section, we examine the performance of the proposed
online cache optimization schemes described in Sections III
and IV and compare them with those presented in Section
V-B. All the reported results are averages of 100 simulations,
i.e., realizations of different content requests.

1) Performance evaluation for exact solution of Bellman
equation: We first examine the performance of the online
cache optimization policies (i.e., the generic dynamic pro-
gramming framework and the rolling horizon policies RH1-
RH3, where the number corresponds to the size of the horizon)
for updating the cached contents in the SCBSs presented in
Section IV and compare them with the methods discussed in
Section V-B. We should note that despite the fact that the
Myopic and the One-step improvement policies approximate
differently the value-to-go function Vt(St) in (1), for the sake
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of deriving conclusions that are not affected by the solution
approach, we assume that the best action of (1) with an un-
derlying policy is found by solving optimally the optimization
problem without any simplifications. As the optimal actions
can be computed only for problems of very small size due to
the computational complexity of solving the integer program,
we present results only for the settings Ins 1.k, Ins 2.k, and
Ins 3.k, k ∈ {1, 2, 3, 4}(see Table I).

Table II shows the proportional performance (usage cost) of
an evaluated policy compared to the lower bound LB and the
offline policy as described in Section V-B1. Specifically, the
proportional performance of an evaluated policy is calculated
as (∗ − LB)/(x0 − LB), where x0 indicates the cost of
using the optimal offline cache decisions for the entire horizon
without allowing any online updates. LB is equivalent to the
cost of a scheme where accurate demands are known before
updating the online caching and cache updates are done in all
the stages before the end of the horizon T without introducing
any additional cost, i.e., the penalty cost γ is set to 0. Hence,
LB can be seen as an unreachable lower bound of any practical
policy. For the LRU(S)r and LRU(M)r policies, we allow
potentially all the contents to be updated in each decision
stage, which means that r is equal to the SCBS’s cache size.
However, we should note that the actual number of content
replacements depends on the content popularity.

From the usage cost results presented in Table II, we can see
that apart from LRU(M)r, all other online schemes achieve
a usage cost lower than x0 for all testing scenarios. This
justifies the benefits coming from an online update of the
cached contents. In most testing scenarios, the proposed rolling
horizon method (RH1, RH2, RH3) outperforms LRU(S)r and
LRU(M)r policies significantly. From the proposed online
schemes, the best performance is achieved by RH1, which
assumes a horizon of one. This is attributed to the fact that
the longer we perform the forecasting, the larger is the error
introduced because of the imperfectness of forecasting.

Further, from Table II we can observe that the performance
gap between RH policies and Myopic and LRU(S)r policy
becomes smaller as SCBSs cache capacity increases. This is
because when SBCSs capacity is large enough, all contents’
requests can be accommodated by the caches of local SCBSs.
Thus, for larger capacity values, content popularity evolution
becomes less important, as there is sufficient space to cache
most of or even all the contents. In such a case, close to
optimal content update decisions can be made using only
the immediate information. Differently, when capacity is very
limited, the consideration of looking at several stages ahead
leads to large usage cost reduction. Besides, from the results
is obvious that in most cases the LRU(S)r policy, without
considering the explicit optimization model (1), performs
worse than the Myopic policy, which solves the optimization
model ignoring the future usage cost. This happens because
in contrast to LRU(S)r policy which bases its decisions
only on recent demands, the Myopic policy decides caching
and delivery by optimizing (1). It is also worth to note that
although we would expect One-step improvement policy to
perform better than the Myopic, as it considers the immediate
usage cost together with an estimation of the future cost,

this does not happen because One-step improvement policy
assumes a Zipfian model to capture the future usage cost
and no future updates of the cached contents, which leads
to inaccurate approximation of the future cost Vt(St).

Next, we examine the cache hit ratio achieved by all the
schemes under comparison and the results are shown in Table
III. We can observe that LRU(M)r achieves the highest or
very close to the highest cache hit ratio although it performs
worse than the other schemes in terms of cost, as shown in
Table II. This increased cache hit ratio does not lead to reduced
cost even when cumulative SCBS cache capacity is higher
than the total size of contents in which case multiple copies
of contents should exist in the network. This is because, in
a collaborative network, the policy with the minimal usage
cost does not necessarily coincide with the one achieving
the highest cache hit ratio. Serving more content requests
from SCBSs close to the users require multiple copies, which
contradicts with the aim of collaborative caching to maximize
the “re-use” of the cached content (i.e., serve users with
content cached in other SCBSs).

2) Performance evaluation of allowing a single copy of
every content: In the previous subsection, we have seen
that the proposed rolling horizon policies outperform all the
other schemes in terms of usage cost. Here, we investigate
the impact on the performance of the approximation policy
proposed in Section IV-A where we allow a single copy of a
content in the SCBSs network. Considering this simplification,
we minimize the usage cost by solving (9) instead of (1). This
approximation model removes the cache delivery y variables
from the decision problem, and, therefore, largely reduces the
problem size and the solution time.

The evaluation results are summarized in Fig. 2. By com-
paring these results with the ones in Table II, we observe that
the results are nearly the same with that of solving the decision
problem optimally given that the benchmark policies, say x0

and LB, do not change with the reformulation. However, the
solution time is largely reduced from 5 hours to 7 minutes,
for performing 100 simulations of Ins 3 settings. This method
needs in average 0.18 seconds to find the optimal cache update
policy for Ins 3 in every stage.

Interestingly, the performance of the One-step policy im-
proves when contents are restricted to be cached in only one
SCBS in the network. This is explained by the fact that the
longer the prediction period it considers, the larger are the
differences in the total demands of contents, which results in
some contents’ popularity to be overestimated. Differences in
the usage cost reduction can also be noted when cache capacity
is large. This happens as in this case optimally the content
should have been cached in multiple SCBSs and because of
the restriction of one-copy per content restriction, an error is
introduced in the reformulation. To overcome this problem,
in the next section we test the heuristic replacement approach,
which facilitates a fast solution for the online decision problem
without imposing the one-copy per-content condition.

Next, we investigate the impact of the network topology
and the content catalogue size to the usage cost. First, we
examine the effect of the content catalogue size. Figs. 3(a)
and (b), which correspond to network topologies with three
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TABLE II
USAGE COST FOR THE ONLINE MODELS ASSUMING EXACT SOLUTION OF (1)

Offline(Zipf) + LRU Dynamic programming Offline
Index LB LRU(S)r LRU(M)r Myopic One-step RH1 RH2 RH3 x0

Ins 1.1 0.00 0.6983 2.2488 0.2824 0.6817 0.2559 0.2727 0.3013 1.00
Ins 1.2 0.00 0.4989 2.2919 0.1787 0.4132 0.1812 0.2093 0.2224 1.00
Ins 1.3 0.00 0.2346 1.9823 0.1241 0.1745 0.1084 0.1179 0.1285 1.00
Ins 1.4 0.00 0.1027 2.4033 0.1338 0.1446 0.1052 0.1055 0.1067 1.00
Ins 2.1 0.00 0.9045 3.5173 0.4392 0.7614 0.3450 0.3667 0.4054 1.00
Ins 2.2 0.00 0.8026 4.0877 0.3454 0.4677 0.2804 0.2977 0.3292 1.00
Ins 2.3 0.00 0.4957 4.4549 0.1594 0.2945 0.1564 0.1774 0.1995 1.00
Ins 2.4 0.00 0.1041 5.3883 0.1350 0.2170 0.0997 0.0982 0.0976 1.00
Ins 3.1 0.00 0.9017 3.6483 0.4489 0.8109 0.3403 0.3590 0.3954 1.00
Ins 3.2 0.00 0.9117 4.4121 0.3848 0.6879 0.2942 0.3090 0.3437 1.00
Ins 3.3 0.00 0.7353 4.6935 0.2733 0.4700 0.2326 0.2496 0.2786 1.00
Ins 3.4 0.00 0.1547 5.2946 0.1367 0.2141 0.0974 0.0912 0.0904 1.00

TABLE III
CACHE HIT RATIO FOR ONLINE MODELS ASSUMING EXACT SOLUTION OF (1)

Offline(Zipf) + LRU Dynamic programming Offline
Index LB LRU(S)r LRU(M)r Myopic One-step RH1 RH2 RH3 x0

Ins 1.1 0.0853 0.0883 0.0970 0.0794 0.0850 0.0829 0.0819 0.0861 0.0652
Ins 1.2 0.1506 0.1546 0.1769 0.1431 0.1460 0.1462 0.1497 0.1500 0.0944
Ins 1.3 0.1748 0.2112 0.2540 0.1872 0.1925 0.1959 0.1989 0.1970 0.0775
Ins 1.4 0.2792 0.2451 0.2828 0.2303 0.2831 0.2498 0.2626 0.2696 0.1346
Ins 2.1 0.0895 0.0980 0.1147 0.0870 0.0926 0.0922 0.0937 0.0947 0.0703
Ins 2.2 0.1519 0.1667 0.2078 0.1466 0.1533 0.1536 0.1567 0.1568 0.1284
Ins 2.3 0.1877 0.2039 0.2893 0.1938 0.1928 0.1971 0.1971 0.1991 0.1481
Ins 2.4 0.2819 0.2639 0.3596 0.2692 0.2963 0.2725 0.2791 0.2782 0.2230
Ins 3.1 0.0617 0.0617 0.0750 0.0561 0.0617 0.0595 0.0593 0.0610 0.0430
Ins 3.2 0.1071 0.1073 0.1391 0.0981 0.1074 0.1022 0.1027 0.1045 0.0837
Ins 3.3 0.1491 0.1438 0.1980 0.1306 0.1431 0.1315 0.1370 0.1374 0.1155
Ins 3.4 0.1679 0.1652 0.2616 0.1710 0.1758 0.1322 0.1737 0.1384 0.1275

and six SCBSs, respectively, show the proportional usage cost
of the best performing rolling horizon policy out of all tested.
From these figures, we can see that for any capacity/content
ratio a smaller catalogue size leads to improved usage cost for
the RH policies compared to the cost of the offline caching.
Second, we examine the effect of various topologies for fixed
content catalogue sizes. The results are depicted in Figs. 3(c)
and (d), from where we can see that the higher is the number
of SCBSs, the better is the performance of the RH policy. This
can be explained as follows: the larger the network topology
is, the higher delivery cost it incurs, and the higher penalty one
receives by sub-optimal content cache placements and updates.
Therefore, larger profits are expected by updating the cached
content in the SCBSs by considering both the immediate cost
and a future prediction of it.

3) Performance evaluation of limiting the number of content
replacements: In this section, we evaluate the performance of
the solution proposed in Section IV-B. This heuristic solution
solves the cache optimization problem by setting the maximum
number of content replacements to be equal to the total cache
capacity of the network (cumulative SCBSs cache capacity).
Therefore, potentially all the contents that are currently cached
in any SCBS (including all its copies in different SCBSs)
can be updated at every stage. This updating scheme is used
indifferently on all dynamic programming policies, however,
the forecasting strategy employed by each policy determines
whether a replacement is profitable (i.e., it leads to a lower
usage cost). Note that this approach allows multiple copies of
contents at different SCBSs.

The results of this evaluation are summarized in Fig. 4.
By comparing these results with those in Table II, where
Bellman equation is solved exactly, we can see that the
performance of the dynamic programming policies changes
slightly. The usage cost for LRU(M)r and LRU(S)r policies
is the same in both comparisons, as the replacement heuristic is
only implemented on dynamic programming policies. We can
observe that in some cases the replacement heuristic gives even
slightly smaller overall cost. Further, by comparing the results
of the dynamic programming policies with the ones shown
in Fig. 2 we note that the replacement heuristic improves
the performance in all ∗.4 scenarios significantly, which is
attributed to the relaxation of the one-copy per-content con-
dition. Also, from Fig. 4 we observe that similarly to the
previous subsections, the proposed schemes RH1-RH2 achieve
the minimal usage cost. More importantly, the performance of
the RH policies improve with the size of the studied problem
(larger network and larger number of contents). For example,
for Ins.7, which corresponds to a topology consisting of 15
SCBSs and 1000 contents, the RH1 cost is only 0.04% higher
than the theoretical lower bound, where the latter cannot be
achieved in practice since the replacement penalty in this case
is zero (assume no repay when replacing a cached content
by another). This improved performance on larger networks
justifies the reliability of RH policies in practice. Also, the
exact number of cache updates (replacements) one should
allow does not have to be optimized. The number of maximum
replacements always can be set to a large number, as in
practice a replacement decision is made only when it reduces
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Fig. 2. Numerical results for online model when approximate solution is obtained by solving (9).
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Fig. 3. Comparison of usage cost over different parameter settings for online models, when approximate solution is obtained by solving (9).

the immediate cost together with a short prediction in the
future that is captured in 5. Nevertheless, the computation
time is largely reduced with the heuristic. For larger instances,
e.g., Ins.7, for every stage (one-hour interval) the cache update
decision can be made in approximately 1 second.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented a rolling horizon cache opti-
mization scheme in a network of SCBSs which collaboratively
optimize cache updates. From the evaluation, we note that
even for low per-hour content generation rates, the gains of
the proposed scheme exceed 69-99% the performance of the
offline schemes. In order to reduce the complexity of the online

scheme, we approximate future content updates/replacements
cost by considering only a limited history horizon. To further
reduce the time needed to solve the online cache optimization
problem we propose two simplifications to the problem: (a)
we restrict the number of content replicas in the network and
(b) we limit the allowed content replacements. The experi-
mental results show that policies achieving the higher cache
hit ratio do not necessarily coincide with the ones with the
minimal usage cost. Also, the results make clear the value of
considering future information when deciding the cache update
policy. When cache capacity is limited, restricting the number
of content replicas is shown to be very efficient. Limiting the
allowed content updates, in general, leads to easy-to-deploy
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Fig. 4. Numerical results for online model when replacement heuristic is used on all DP policies.

schemes especially when the rolling horizon approximation
is used. Nevertheless, the size of the horizon depends on the
computational capacity and the inaccuracy of forecasting we
can afford.

REFERENCES

[1] “Global Mobile Data Traffic Forecast Update, 2014–2019,” Feb. 2015,
Cisco Visual Networking Index. Cisco Inc.

[2] A. Vakali and G. Pallis, “Content Delivery Networks: Status and Trends,”
IEEE Internet Computing, vol. 7, no. 6, pp. 68–74, Dec. 2003.

[3] “State of the Internet Report,” Q2 2014, [Online]. Available:
http://www.akamai.com/, Akamai Inc.

[4] S. Martello and P. Toth, Knapsack Problems. New York: Wiley, 1990.
[5] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Femto-

caching and Device-to-Device Collaboration: A New Architecture for
Wireless Video Distribution,” IEEE Communications Magazine, vol. 51,
no. 4, pp. 142–149, Apr. 2013.

[6] N. Golrezaei, A. G. Dimakis, and A. F. Molisch, “Scaling Behavior
for Device-to-Device Communications With Distributed Caching,” IEEE
Trans. Information Theory, vol. 60, no. 7, pp. 4286–4298, Jul. 2014.

[7] A. Shokrollahi, “Raptor codes,” IEEE Trans. Information Theory,
vol. 52, no. 6, pp. 2551–2567, June 2006.

[8] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network Informa-
tion Flow,” IEEE Trans. Information Theory, vol. 46, no. 4, pp. 1204–
1216, Jul. 2000.

[9] M. A. Maddah-Ali and U. Niesen, “Fundamental Limits of Caching,”
IEEE Trans. Information Theory, vol. 60, no. 5, pp. 2856–2867, May
2014.

[10] M. Gregori, J. G. Vilardebo, J. Matamoros, and D. Gunduz, “Wireless
Content Caching for Small Cell and D2D Networks,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 5, pp. 1222–1234, May
2016.

[11] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation Algorithms
for Mobile Data Caching in Small Cell Networks,” IEEE Trans. Com-
munications, vol. 62, no. 10, pp. 3665–3677, Oct. 2014.

[12] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tas-
siulas, “Caching and Operator Cooperation Policies for Layered Video
Content Delivery,” in Proc. IEEE INFOCOM 2016, San Francisco, CA,
USA, Apr. 2016.

[13] A. Khreishah, J. Chakareski, and A. Gharabeih, “Joint Caching, Routing,
and Channel Assignment for Collaborative Small-Cell Cellular Net-
works,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 8, pp. 2275–2284, Aug. 2016.

[14] N. Thomos, E. Kurdoglu, P. Frossard, and M. V. der Schaar, “Adaptive
Prioritized Random Linear Coding and Scheduling for Layered Data
Delivery from Multiple Servers,” IEEE Trans. on Multimedia, vol. 17,
no. 6, pp. 893–906, Jun. 2015.

[15] L. Maggi, L. Gkatzikis, G. Paschos, and J. Leguay, “Adapting Caching
to Audience Retention Rate,” Computer Communications, vol. 116, pp.
159–171, Jan. 2018.

[16] J. Famaey, F. Iterbeke, T. Wauters, and F. D. Turck, “Towards a Pre-
dictive Cache Replacement Strategy for Multimedia Content,” Elsevier
Journal of Networks and Computer Applications, vol. 36, no. 1, pp.
219–227, Jan. 2013.

[17] S. Li, J. Xu, M. van der Schaar, and W. Li, “Trend-Aware Video Caching
Through Online Learning,” IEEE Trans. Multimedia, vol. 18, no. 12, pp.
2503–2516, Dec. 2016.

[18] N. Zhang, K. Zheng, and M. Tao, “Using Grouped Linear Prediction
and Accelerated Reinforcement Learning for Online Content Caching,”
in Proc. of IEEE Int. Conf. on Communications Workshops, ICCW18,
Kansas City, MO, USA, May 2018.

[19] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. Shen, “Content
Popularity Prediction Towards Location-Aware Mobile Edge Caching,”
available at https://arxiv.org/abs/1809.00232, Sep. 2018.

[20] M. S. H. Abad, E. Ozfatura, O. Ercetin, and D. Gunduz, “Dynamic

http://www.akamai.com/


13

Content Updates in Heterogeneous Wireless Networks,” available at
https://arxiv.org/abs/1902.09445, Feb. 2019.

[21] A. Chattopadhyay, B. Blaszczyszyn, and H. P. Keeler, “Optimal and
Scalable Caching for 5G Using Reinforcement Learning of Space-Time
Popularities,” IEEE Journal on Selected Topics on Signal Processing,
vol. 12, no. 1, pp. 180–190, Feb. 2018.

[22] G. Neglia, D. Carra, and P. Michiardi, “Cache Policies for Linear Utility
Maximization,” IEEE/ACM Trans. on Networking, vol. 26, no. 1, pp.
302–313, Feb. 2018.

[23] B. N. Bharath, K. G. Nagananda, D. Gunduz, and H. V. Poor, “Caching
With Time-Varying Popularity Profiles: A Learning-Theoretic Perspec-
tive,” IEEE Trans. on Communications, vol. 66, no. 8, pp. 3837–3847,
Sep. 2018.

[24] A. Chattopadhyay, B. Blaszczyszyn, and H. P. Keeler, “Gibbsian On-
Line Distributed Content Caching Strategy for Cellular Networks,” IEEE
Trans. on Wireless Communications, vol. 17, no. 2, pp. 969–981, Feb.
2018.

[25] A. Gharaibeh, A. Khreishah, and I. Khalil, “An O(1)-Competitive Online
Caching Algorithm for Content Centric Networking,” in Proc. IEEE
INFOCOM, San Francisco, CA, USA, Apr. 2016.

[26] S. Muller, O. Atan, M. van der Schaar, and A. Klein, “Context-Aware
Proactive Content Caching With Service Differentiation in Wireless
Networks,” Trans. on Wireless Communications, vol. 16, no. 2, pp. 1024–
1036, Feb. 2017.

[27] J. Saltarin, T. Braun, E. Bourtsoulatze, and N. Thomos, “PopNetCod: A
Popularity-based Caching Policy for Network Coding enabled Named
Data Networking,” in Proc. of IFIP Networking Conference, Network-
ing18, Zurich, Switzerland, May 2018.

[28] A. Gharaibeh, A. Khreishah, I. Khalil, and J. Wu, “Distributed Online
En-route Caching,” IEEE Trans. on Parallel and Distributed Systems,
vol. 27, no. 12, pp. 3455–3468, Dec. 2016.

[29] A. Khreishah and J. Chakareski, “Collaborative Caching for Multicell-
Coordinated Systems,” in Proc. IEEE INFOCOM Workshop Communi-
cation and Networking Techniques for Contemporary Video, Hong Kong,
Apr. 2015.

[30] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A Provably Efficient
Online Collaborative Caching Algorithm for Multicell-Coordinated Sys-
tems,” IEEE Trans. on Mobile Computing, vol. 15, no. 8, pp. 1863–1876,
Aug. 2016.


	I Introduction
	II System model
	III Online Dynamic Programming model
	IV Rolling horizon cache optimization algorithm
	IV-A Allow a single copy of a content to be cached in SCBSs network
	IV-B Limit the number of allowed content replacements

	V Experimental results
	V-A Experimental results settings
	V-B Comparison schemes
	V-B1 Offline cache optimization with online updates based on LRU
	V-B2 Myopic policy
	V-B3 One-step improvement policy

	V-C Numerical Results
	V-C1 Performance evaluation for exact solution of Bellman equation
	V-C2 Performance evaluation of allowing a single copy of every content
	V-C3 Performance evaluation of limiting the number of content replacements


	VI Discussion and conclusions
	References

