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Abstract 

In Breast Cancer (BCa), steroid receptors play a key role in the progression of the 

majority tumours. Oestrogen Receptor-α (ERα), for example, drives the growth of 

approximately 70% of tumours and is therefore a useful therapeutic target for this disease. 

Interestingly, the Androgen Receptor (AR) is the most commonly expressed steroid receptor in 

normal breast tissue and appears to also play an important role in BCa. In ERα-positive disease 

the crosstalk between ERα and AR is inhibitory to tumour growth. Sequencing studies have 

identified the presence of AR mutations in BCa, however little is known about the role of these 

in disease progression. This study aimed to further characterise AR-ERα cross-talk and to 

analyse the effect of AR mutations upon receptor activity. Several mutations were found to affect 

receptor activity, but these did not affect AR-ERα cross-talk. 

AR signalling is also important in Prostate Cancer (PCa) and hence therapies often target 

this signalling axis. Although successful initially, these treatments invariably fail and the 

tumours progress to the aggressive castrate resistant stage of the disease. Thieno[2,3-b]pyridine 

derivatives have been previously demonstrated to be effective inhibitors in BCa. Here we 

expanded the research by investigating the efficacy of these compounds upon PCa. Using growth 

assays, flow-cytometry analysis, florescent imaging and cell tracking assays it was demonstrated 

that the compounds are potent inhibitors of PCa proliferation and motility. Importantly, the drugs 

were found to induce multi-nucleation, G2/M arrest and promote apoptosis. Further, a drug pull-

down assay suggested that the compounds bind to multiple targets involved in, for example, 

cytoskeleton dynamics and p53 signaling. In conclusion, these compounds represent a novel 

therapeutic approach for PCa and further work to assess their efficacy is warranted. 
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CHAPTER 1 
 

INTRODUCTION 
  

1.1 Normal Breast 

1.1.1 Mammary Gland Structure & Development 

The mammary gland is an exocrine gland that in human it develops from the 

embryological tissue where epithelium invades the stroma during the fifth week of pregnancy. 

The glandular tissue within the breast is present in both genders and after puberty sex hormones 

(e.g. oestrogen) promote breast maturation in females (Geddes, 2007; Lombardi et al., 2014). 

Tubule and branching formation occur during puberty where the basic arboreal ducts network is 

spread out from the nipple (Lemaine and Simmons, 2013). Oestrogen action is dependant on 

growth hormone (GH), which is released from the pituitary gland.  GH has been shown to act via 

stimulation of insulin-like growth factor-1 (IGF-1), which also modulates mammary gland 

development (Javed, 2013). The breast is composed of multiple lobes (15-20) and each consists 

of up to 40 clusters of alveoli where milk is secreted and stored. Surrounding each lobe is a 

network of myoepithelial cells which are responsible of the contraction of the mammary glands 

to eject milk. These clusters are connected to mammary tubules which gather to form multiple 

ducts who are also capable of temporary milk storing ready to drain to the nipple upon hormonal 

signals (Figure 1.1) (Lemaine and Simmons, 2013). All lobes are supported by connective tissue, 

mainly collagen and elastin, which come together into suspensory ligaments called cooper’s 

ligaments that anchor the breast to the chest wall on the pectoral muscles. This structure has 

spaces in between which are filled by an adipose tissue containing blood vessels and surrounded 

by lymph nodes (Javed, 2013). During pregnancy, the ovarian follicles initially produce 
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oestrogen and progesterone, but these hormones are subsequently produced by the placenta, 

promoting breast growth and milk production (Lombardi et al., 2014). Moreover, oestrogens 

promote elongation of the ducts and stimulate branching morphogenesis while, progesterone 

increases the lobules number and size in order to facilitate the breast to perform its function 

(Geddes, 2007). Normally, the breast reaches its highest maturation levels during pregnancy in 

preparation for lactation, and then after this stage it is able to regress into an arrested state 

(Hassiotou and Geddes, 2013; Lemaine and Simmons, 2013).  

 

Figure 1.1: Structure of the human mammary gland. The breast anatomy, ducts spreading out of 
the nipple to form 15- 20 lobes lining on a fat pat within the adipose tissue. [obtained from Medscape 
2016].  
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1.1.2 Mammary Gland Function 

The primary function of the mammary glands is lactation in which the produced milk 

provides nourishment and immunity to the new born baby. Prior to childbirth and in the few days 

following, the breast produces a yellowish substance known as colostrum that is rich in protein 

and lactose but low in lipids (Yang, 2017). Also during this period, the anterior pituitary gland 

releases prolactin which stimulates gland cells in the breast to produce milk enriched with fat, 

carbohydrate, proteins, vitamins and minerals (Hassiotou and Geddes, 2013). Furthermore, when 

the female starts nursing, the mechanoreceptors in the nipple are stimulated, generating an 

electrical signal that is carried to the hypothalamus in the brain (Rezaei, 2016; Yang, 2017). In 

response to this signal, the hypothalamus sends a signal to the posterior pituitary gland to initiate 

the production of oxytocin, which stimulates the myoepithelial cells to squeeze the milk out to 

the nipple. At the same time, the hypothalamus sends an off signal to specific neurons in the 

anterior pituitary gland, which releases prolactin inhibiting hormone, resulting in less inhibition 

to the neurons responsible for prolactin production (Macias, 2012). Oxytocin not only promotes 

milk release, but also stimulates the mother’s uterus to return to its normal size and shape 

(Lombardi et al., 2014).  

 

1.2  Breast Cancer 

1.2.1 Epidemiology 
Generally, cancer occurs due to mutations in the DNA resulting in the proliferation and 

homeostasis process of the normal cell (Tomasetti et al., 2017). The manipulation of the cell 

physiology causes deactivation in the anticancer defence mechanism of the affected tissues 

(Hanahan and Weinberg, 2000; Tomasetti and Vogelstein, 2015). Moreover, cancer cell 
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genotyping indicated six alterations, known as the hallmarks of cancer, and are believed to drive 

the malignant growth of the tumour. These changes include: self-sufficiency in growth signals, 

insensitivity to growth-inhibitory signals, tissue invasion and metastasis, limitless replicative 

potential, sustained angiogenesis and evading apoptosis. Further, the genome instability of the 

tumour cells leads to the reprogramming of energy metabolism and evading of immune 

destruction (Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2011). 

Breast Cancer (BCa) is a heterogeneous disease and is the most common cancer in 

women worldwide. 54,800 females and 370 males were diagnosed with Breast Cancer in 2015 in 

the UK and approximately 1:5 will die from the disease (Cancer Research UK, 2015). BCa is the 

2nd most common cause of cancer death in women in the UK’s and incidence rates are projected 

to rise by 2% within the next 20 years (Cancer Research UK, 2015).  

 

1.2.2 Symptoms, Management & Risk Factors 

The main symptom of breast cancer is a lump felt by the patient, however, some cases are 

detected at an early stage though mammographic screening. Lumps within the lymph nodes in 

the armpit can also indicate the presence of breast cancer. Some other symptoms may include 

changes in breast tissue thickness, disproportionate breast size, dimpling and inflammation, 

changes in the nipple shape or position and unusual secretions from the nipples (Cancer Research 

UK, 2015).  

Physical examination and mammography are commonly used as early detection 

procedures where micro classifications are observed. In the latter, x-rays are applied to the 

patient’s breast for the detection of abnormal masses. For suspicious cases, fine needle aspiration 
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(FNA) is performed and the sample is examined using microscopy to evaluate the sample. This 

usually provides an accurate diagnosis, otherwise patients may undergo additional testing such as 

Magnetic Resonance Imaging (MRI) and core biopsy where larger parts of the affected tissue are 

examined (Cancer Research UK, 2015). Breast Cancer cases have variable management 

guidelines based on the sub-type and other clinical criteria e.g. age, stage and tumour size. 

Treatment protocols include a combination of adjuvant hormonal therapy, chemotherapy, 

radiotherapy and surgery (Fioretti et al., 2014; Cancer Research UK, 2015). A number of risk 

factors have been associated with breast cancer and these include gender, lack of physical 

exercise, obesity, alcohol consumption, smoking, genetics and hormonal therapies at certain 

periods such as menopause (Cancer Research UK, 2015).  Like other types of cancer, breast 

cancers develop as a result of a combination of external (environmental) and/or internal (genetic) 

factors.  

1.2.3 Treatment  

Due to the heterogeneity of BCa, there are multiple treatment options dependant on the 

stage and sub-type of the disease. Surgical removal of the breast, (lumpectomy, quadrantectomy 

or mastectomy), combined with radiotherapy and chemotherapy is commonly used with localised 

tumours (Tilstra and McNeil, 2017). Radiation is delivered after surgery via brachytherapy or 

external beam radiotherapy, where it is applied to the tumour area and the surrounding lymph 

nodes to destroy any cancer cells that might have escaped the surgery. The decision to administer 

adjuvant or neoadjuvant chemotherapy is dependent upon the presence of metastases (Ali and 

Coombes, 2002). Oncotyping of the ductal carcinoma in situ (DCIS) aids a more appropriate 

treatment strategy for this non-invasive BCa subtype (Tilstra and McNeil, 2017). Endocrine 

therapies, which aim to block ERα activity, are often preferred for patients with metastatic ERα-
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positive Luminal disease. These therapies include anti-oestrogens, Aromatase Inhibitors (AIs) 

and Gonadotropin- Releasing Hormone agonists (GnRHas), which can be used either separately 

or together (Vorobiof, 2016). Docetaxel, methotrexate and fluorouracil are the most 

chemotherapy regimes used in BCa and aim to target the fast growing/replicating cancer cells. In 

HER-2 positive disease, monoclonal antibodies (e. g. Pertuzumab) are commonly used in 

combination with other treatments to block HER-2 receptor dimerization (Vorobiof, 2016). In 

advanced BCa, where the tumour has metastasised from the the primary site, endocrine therapies 

(e. g. anti-oestrogens and aromatase inhibitors) are an effective treatment option for patients with 

ERα-positive disease (Ben-Baruch et al., 2015; Vorobiof, 2016).          

 

 

1.2.4 Molecular Subtypes 

Based on molecular profiling, BCa can be classified into at least five distinct malignant 

subtypes (Luminal A, Luminal B, HER2-enriched, normal-like and basal-like BCa) based on the 

expression of the Oestrogen Receptor α (ERα), Progesterone Receptor (PR) and Human 

Epidermal growth factor Receptor 2 (HER2) (Table 1.1) (Lehmann-Che et al., 2013; Prat et al., 

2015). 

Luminal subtypes are both ERα and PR positive but differ in the presence of the HER2 

oncogene where type A is negative and type B is positive for this receptor. The HER2-enriched 

subtype is negative for the hormone receptors ERα and PR, with amplification of the oncogene 

HER2. The normal-like subtype is ERα positive while the basal-like subtype, also known as 
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Triple Negative BCa, is negative for all of the receptors (ERα, PR and HER2) (Lehmann-Che et 

al., 2013; Héquet et al., 2011). BCa can also be divided into two types based on the site of 

development within the breast tissue. Non-invasive in situ carcinoma is known to develop in the 

breast ducts and are unable to metastasize to other parts of the body. This type is commonly 

referred to as ductal carcinoma in situ (DCIS) (Prat et al., 2015; Sinn and Kreipe, 2013). In 

contrast, invasive breast cancer develops in the cells surrounding the breast ducts (invasive 

ductal breast) and this sub-type is associated with a higher risk of tumour spread outside of the 

breast (Souzaki et al., 2011). 

 

 

Table 1.1: The five main classifications of Breast Cancer. BCa molecular classification according to the presence 
or absent of Oestrogen Receptor Alpha (ERα), Progesterone Receptor (PR) and Human Epidermal Growth Factor 
Receptor 2 (HER-2). 

Subtype ERα PR HER-2 

Luminal A + + - 

Luminal B + +/- + 

HER-2 enriched - - + 

Normal-like + N/A N/A 

Basal-like - - - 
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1.3 Nuclear Receptors 
 

1.3.1 Nuclear Receptors Structure and Function 
 

Nuclear receptors (NR) are transcription factors that regulate the expression of specific 

genes. Members of this super family are essential in development, reproduction, differentiation 

and metabolism in eukaryotes (Tocchini-Valentini et al., 2003). Typically, nuclear receptor 

activation requires interaction with ligands that circulate within the body. Those ligands 

dissociate from their carrier plasma protein to enter the cell via passive diffusion or specific 

transport processes to bind to their specific receptor. In humans, there are 48 nuclear receptors 

which all share a common well-characterized structure (Figure 1.2); the variable N-terminal 

region contains Activation Function-1 (AF-1). Central to the receptor is highly conserved DNA 

binding domain (DBD), consisting of two alpha-helical structures (zinc-fingers), responsible for 

DNA specificity and receptor dimerization (Bain et al., 2007; Robinson-Rechavi et al., 2003). 

Next to this is the less conserved hinge region; a flexible region containing the nuclear 

localization signal (NLS). The C-terminus of the receptor contains the ligand-binding domain 

(LBD), which is moderately conserved between receptors. This region is often responsible for 

receptor binding to specific hormonal or non-hormonal ligands (Brooke and Bevan 2009). The 

LBD contains Activation Functions-2 (AF-2) that in some receptors synergizes with AF-1 to 

reduce ligand-off rate and subsequently increase gene expression. The C-terminal region varies 

in length amongst the different nuclear receptors (Tocchini-Valentini et al., 2003; Brooke and 

Bevan 2009). 
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1.3.2 Steroid Hormone Receptors 

Nuclear receptors are classified into 6 subfamilies (NR1-6) based on their sequence 

similarity. One family that has been demonstrated to be particularly important in BCa is the 

steroid hormone receptors subfamily (Oestrogen Receptor-like) (Brooke and Bevan 2009). This 

group contains the oestrogen receptors (ERα and ERβ, activated by oestrogens), glucocorticoid 

receptor (GR, activated by cortisol), mineralocorticoid receptor (MR, activated by aldosterone) 

and the 3-ketosteroid receptors (PR and AR, activated by progesterone and androgen hormones 

respectively). Since steroid hormones are lipid-soluble, they can cross the cell membrane via 

simple diffusion and therefore bind to their specific intracellular receptors. Upon ligand binding, 

the steroid receptors become activated and modulate gene expression (Hickey et al., 2012).  

In general, steroid receptors have two mechanisms in controlling cell behaviour; genomic 

and non-genomic (Figure 1.3). In classical genomic signalling, the receptor is held in an inactive 

state through a heat-shock protein (HSP) complex (Heemers et al., 2007).  Ligand activation of 

the receptor promotes the dissociation of this complex, resulting in nuclear translocation and 

dimerization of the receptor.  The dimer is then able to bind to hormone response elements, a 

Figure 1.2. General structure and functional domains of nuclear receptors. Nuclear 
receptors (NRs) are comprised of four functional domains: N-terminal domain, DBD= DNA 
binding domain, Hinge and LBD= ligand binding domain. AF1, 2= activation function 1,2. 
[Adapted from Bain et al., 2007].  
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specific target sequence found in the regulatory regions of target genes (Carroll et al., 2006). 

Receptors recruit accessory proteins and the basal transcriptional machinery to subsequently 

regulate transcription (Heemers et al., 2007). The second mechanism of cell signalling is non-

genomic, where steroid receptors can regulate target expression/ activity in the absence of DNA 

binding. This activation pathway is dependent on receptor regulation of signal transduction 

pathways (Hickey et al., 2012; Heemers et al., 2007). An example of non-genomic signalling is 

the activated ERα interaction with the IGF-IR (insulin-like growth factor 1 receptor) and MAPK 

pathways resulting in regulation of gene transcription (Lipovka and Konhilas 2016).  

 

 

 

 

Figure 1.3. Genomic and non-genomic signalling of the Oestrogen Receptor (ER). 1- Genomic 
signalling, ER activated by ligand binding (E2) leading to gene transcription. 2- Non-genomic, E2 binding to 
ER result in receptor activation then interaction with other molecules/ pathways (e. g. MAPK) to initiate 
transcription of target genes. [obtained from Edwards and Boonyaratanakornkit 2003].  
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1.3.3 Oestrogen Receptor and Hormone Therapies 

In mammals, there are two Oestrogen Receptor (ER) variants: ERα and ERβ encoded by 

the genes ESR1 and ESR2 respectively.  Both receptors have similarities in DNA-ligand binding 

characteristics but they are distinct in their functions and tissue distribution. Oestrogen signalling 

influences the growth and function of many body tissues and has been implicated in the 

development of multiple diseases (Alluri et al., 2014; Fioretti et al., 2014). For example, 

oestrogen signalling has been demonstrated to play an essential role in various types of cancer 

such as breast, ovarian, prostate and colorectal. In breast cancer, it has been found that ER is 

expressed in 60-70% of tumours (McNamara et al., 2014).   

In the majority of ER positive BCa, modulation of oestrogen signalling is an effective 

strategy to treat the disease. Oestrogen signalling can be targeted in a number of different ways: 

i, tissue specific antagonists, e.g. Tamoxifen and Raloxifen, act as selective modulators of ER in 

breast cancer. ii, oestrogen receptor down-regulators, e.g. Fulvestant which promotes ER 

degradation. iii, inhibitors of oestrogen synthesis e.g. the aromatase inhibitors Exemestane, 

Anastazole and Letrazole (Ben-Baruch et al., 2015; Vorobiof, 2016).  The latter are 

predominantly used for postmenopausal women due to the importance of the aromatase enzyme 

in oestrogen synthesis in this group of women (Alluri et al., 2014). Importantly, endocrine 

therapies have significantly contributed to a reduction in BCa development, recurrence and 

morbidity (McNamara et al., 2014; Viedma-Rodríguez et al., 2014). 

 

 

 

 



	

	 28	

1.3.4 Endocrine Resistance 

Disease recurrence, following treatment with the anti-oestrogen Tamoxifen, has been 

shown to occur within 15 years of treatment in one-third of patients (Alluri et al., 2014). 

Multiple molecular mechanisms have been proposed to explain endocrine resistance in breast 

cancer e.g. ERα signalling pathway crosstalk with up/down-regulated growth factors such as the 

human epidermal growth factor 2, phosphoinositide-3-kinase, mitogen-activated protein kinase 

and insulin-like growth factor 1 (Alluri et al., 2014; McNamara et al., 2014). Recently is has also 

been demonstrated that mutations in ERα can also drive therapy resistance. These studies have 

demonstrated that through mutation, the ERα becomes ligand independent and can therefore 

bind to DNA and regulate gene expression in the absence of ligand (Fioretti et al., 2014). 

ERα mutations are detectable in up to 54% of metastatic BCa cases. Alluri et al., (2014) 

reported that there is a significant up-regulation in the expression of ERα responsive genes, such 

as GREB1 in tumours expressing a mutant ERα. This suggests an essential role of the active 

ERα pathway in converting the endocrine-sensitive tumour to a resistant phase. More 

understanding about the mutant genes involved in resistant tumours could contribute to treatment 

regime selection. For example, reliable clinical approaches to detect ESR1 mutants could help 

clinicians to change from an aromatase inhibitor treatment protocol to an anti-oestrogen. This 

switch in therapeutic regimes is known to be effective for patients with BCa resistant to aromatic 

inhibitors (Fioretti et al., 2014; Alluri et al., 2014). 
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1.3.5 Androgen Receptor  

The androgen receptor (AR) is another member of the steroid hormone receptor family.  

It is encoded by the AR gene located on the Q arm of the X chromosome (q11-q12) and consists 

of 8 exons encoding a protein of 919 amino acids. The AR has a similar structure (Figure 1.4) 

and mechanism of action to ERα and other nuclear receptors (Lehmann-Che et al., 2013). 

Generally, androgens are the key regulators of male sex organ development and function.  In 

addition to this, they also play a key role in maintaining male skeletal integrity, while in the 

female they tend to be less essential regardless of their high presence in different body tissues 

(Fioretti et al., 2014). The AR is widely characterized to be critical in prostate gland physiology 

and pathology and the oncogenic driver of prostate cancer at all stages (Brooke and Bevan, 

2009). Also, it has been recently demonstrated that ARs are involved in different types of 

tumours such as lung, liver and breast cancer. For example, it has recently been demonstrated 

that the AR has an oncogenic role in certain molecular subtypes of breast cancer, such as 

Molecular Apocrine BCa (Lehmann-Che et al. 2013). 
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1.3.6 Receptors in Breast Cancer 

Approximately 60% of BCa tumours are classed as ERα positive. ERα is known to play 

an important role in breast cells and overexpression of the receptor has been shown to increase 

DNA replication and cell replication (Gross and Yee 2002; Fioretti et al., 2014). The steroid 

hormone oestradiol binds to Oestrogen Receptor α (ERα) and plays an important role in BCa 

progression. When oestrogen binds to ERα, the receptor is activated and translocates into the 

nucleus. The receptor stimulates genes transcription through binding to responsive elements 

located in the regulatory regions of target gene.  

Deregulation of the HER family of receptors has also been demonstrated to play a role in 

the growth of BCa (Serra et al., 2011). In particular, the HER-2 receptor has been found to be 

highly overexpressed in 20% of BCas. The HER-2 receptor is activated by ligand induced 

Figure 1.4: AR gene location on the X chromosome and its modular structure. Image 
shows four functional domains of the AR and the gene structure consisting of 8 exons. NTD = 
N-terminal domain, DBD = DNA binding domain. LBD = ligand binding domain. AF = 
activation function. [obtained from Anestis et al., 2015].  
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dimerization or paring with other HER family receptors (Serra et al., 2011). The dimers 

phosphorylate specific tyrosine residues through activation of the intrinsic tyrosine kinase 

domain and subsequently activate downstream signalling pathways. HER-2 overexpression leads 

to inappropriate activation of signalling pathways that promote tumour cell proliferation and 

disease progression (Ménard et al., 2000; Serra et al., 2011).  

Combination of the anti-HER2 monoclonal Trastuzumab and other tyrosine kinase 

inhibitors are used for managing HER2 positive BCa whereas hormonal therapies, such as the 

anti-oestrogen Tamoxifen, are widely used to manage ERα positive disease (Kelly et al., 2010; 

Serra et al., 2011). Although the AR is highly expressed in the mammary tissue, the normal 

biological role of this receptor is still unclear (Robinson et al., 2011). However, a new subgroup 

of basal-like BCa has been recently identified as Molecular Apocrine Breast Cancer (MA). This 

subgroup is characterized as ERα and PR negative, AR positive and HER2 positive/negative. In 

ERα positive disease the AR is associated with good prognosis and this appears to be via 

inhibition of ERα activity.  In molecular apocrine disease, the AR appears to be able to drive 

growth (Robinson et al., 2011). It has therefore been proposed that MA BC could be treated with 

anti-androgens (AR antagonist) such as Bicalutamide. It is important to better characterise the 

role of the AR in BCa to investigate how the receptor could be utilised as a therapeutic target for 

the different subtypes of the disease (Lehmann-Che et al., 2013) 
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1.4  Androgen Receptor Signalling in Breast Cancer  

1.4.1 AR expression in Breast Cancer  

Androgen hormones are known to be relevant to the male gender, but various androgens 

have also been identified in serum from women, such as Dehydroepiandrosterone (DHEA), 

testosterone, 5α-dihydro-testosterone (DHT) and androstenedione (A4) (McNamara et al., 2014). 

These androgens are predominantly secreted from the ovaries and adrenal glands, but also to a 

lesser extent from peripheral tissues including breast and bone. Steroid Hormone Binding 

Globulin (SHBG) binds to, and controls the bioavailability of, androgens as well as oestrogens.  

During the menstrual period, testosterone has fluctuating concentrations which decline by the 

age of menopause. In contrast, adrenal androgens continue to be produced even after menopause 

(Labrie et al., 2003). It has been suggested that excessive levels of androgens could be 

considered as a sign of BCa development, since elevated levels of testosterone has been 

associated with breast cancer in postmenopausal women (McNamara et al., 2014). 

The enzyme aromatase is able to metabolize testosterone into oestradiol (E2) and 5α-

reductase converts testosterone into the more potent androgen dihydrotestosterone (DHT) 

(Fioretti et al., 2014). The relative expression of aromatase and 5α-reductase within the breast 

epithelium therefore plays a key role in AR activation in this tissue. Aromatase activity is the 

main source of E2 in post-menopausal women where androgens are primarily synthesized locally 

within the breast tissue (McNamara et al., 2014).  

AR activity in breast cancer cell lines has been found to be modulated by different 

signalling pathways such as PI3K/AKT/MAPK, FOXA1 and p53 which impacts upon the 

outcome of the AR action (Claessens and Tilley, 2014; Alluri et al., 2014). The main member of 

the forkhead family, FOXA1, is considered to be an essential factor in breast cancer growth 
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because it regulates AR and ERα DNA binding capacity. Chromatin Immunoprecipitation-

Sequencing (ChIP-seq) studies performed on the molecular apocrine BCa cell line MDA-MB-

453, demonstrated a high correlation between FOXA1 and AR binding sites, which suggests that 

FOXA1 mediates AR DNA-binding in this subtype of BCa (Ni et al., 2013, Robinson et al. 

2011). The factor FOXA1 has been found to be essential in directing AR DNA binding and 

siRNA knock-down of FOXA1 reduced androgen induction of MYC and reduced cell growth 

(Ni et al., 2013). 

 

 

1.4.2 AR/ER Cross Talks in BCa 

The AR appears to have different roles in breast cancer development, oncogenic in ERα-

negative disease and acting as a tumour suppressor in ERα-positive disease. In the latter, it 

appears that AR inhibits ERα activity to inhibit breast cancer progression and various crosstalk 

mechanisms have been described (Hickey et al., 2012). For example, direct interaction between 

the N-terminus of the AR and the LBD of ERα blocks the activity of both receptors (Heemers et 

al., 2007). Also, AR is able of bind to oestrogen response elements (EREs) and therefore block 

ERα binding to DNA. This was demonstrated through the transfection of the AR DBD into BC 

cell lines, which was shown to significantly reduce ERα activity (McNamara et al., 2014). Also, 

competition for histone modifying cofactors is also likely to have a bearing on receptor activity.  

For example, Androgen Receptor Associated co-regulator 70 (ARA70) can enhance the activity 

of both the AR and ERα and the AR may sequester this factor, resulting in a decrease in ERα 

activity. Lastly, competition for accessory proteins important in non-genomic activity for AR and 

ERα may also be important in receptor cross-talk. For example, M-BAR which is responsible of 
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regulating signalling pathways at the cell membrane, is shared between these receptors 

(McNamara et al., 2014; Heemers et al., 2007). 

 

 

1.4.3 AR as Prognostic and Therapeutic Factor in Breast Cancer 

Anti-androgens have been used in various medical conditions in women, such as ovarian 

cancer. In breast cancer AR has been found in 85% of primary BCs and 75% of metastatic 

lesions. A number of studies have suggested AR as a prognostic indicator in ERα-positive BC, 

based on correlations between AR levels, clinical characteristics and disease outcome 

(McNamara et al., 2014). Further, AR positivity is associated with longer survival, smaller 

tumour size, metastasis free and lower histological grade (Lehmann et al., 2011). The synthetic 

steroidal androgen, Fluoxymesterone, has been used clinically for the treatment of BCa (ERα-

positive) via activating the AR to promote cross-talk with ERα and found to effectively inhibit 

proliferation when combined with the anti-oestrogen Tamoxifen (Tam) (Africander et al., 2014). 

Current clinical trials for the anti-androgen Enzalutamide (Enz) have shown promising results 

and has been demonstrated to be effective in disease multiple subtypes, including the molecular 

apocrine disease (Schwartzberg et al., 2017). However, further investigation of this drug is still 

ongoing with the aim of optimising the effective dosage and the best combinations with other 

therapies. 

The selective androgen receptor modulator (Enobosarm) is another promising drug which 

has been investigated as a treatment option for multiple BCa subtypes (Vontela et al., 2017). 

This treatment was found to reduce tumour size and proliferation in a xenograft model (MDA-
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MB-453-AR) and reduced the expression of Interleukin 6 (IL6), which has been shown to be 

important in tumour metastasis (Narayanan et al., 2014; Vontela et al., 2017).     

1.4.4 Molecular Apocrine Breast Cancer (MA) 

Molecular Apocrine (MA) BCa is characterized as having high expression of the AR and 

is similar to the Luminal BCa subtype, but the absence of ERα. MA represents 12% of total 

diagnosed breast cancer cases and it is often enriched with the HER2 oncogene (Robinson et al., 

2011). MA tends to be more aggressive than other BCa subtypes and shows poor prognosis and 

much evidence exists to suggest that AR signalling drives proliferation of these tumours. 

Currently, the MDA-MB-453 cell line is the most common cell line used for MA research 

(Moore et al., 2012). Androgens can enhance the proliferation of MDA-MB-453 cells and AR 

antagonists have been shown to inhibit proliferation. Chromatin immunoprecipitation sequencing 

(ChIP-Seq), performed to examine AR binding sites in MDA-MB-453, demonstrated that 50.9% 

of AR sites overlap with ERα sites, suggesting that the AR regulates similar factors to ERα in 

MA breast cancer (Lehmann et al., 2011; Robinson et al., 2011).  

The AR antagonists Bicalutamide is currently in clinical trials to investigate its efficacy 

in advanced AR-positive BCa (McGhn et al., 2014). This drug is currently approved for clinical 

use for the treatment of advanced PCa as a monotherapy or in combination with LHRH agonists. 

Also, the newer AR antagonist, Enzalutamide, is under investigation in MA disease and clinical 

trails testing this drug in the TNBC subtype revealed promising tumour responses (McGhan et 

al., 2014; Traina et al., 2018).    
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1.4.5 AR Mutations in Breast Cancer 

It appears that AR signalling plays an important role in the development and progression 

of the BCa (Lehmann et al., 2011).  The investigation of AR targeting in BCa clinical trials has 

increased the importance of further characterisation of androgen signalling in this disease. It is 

well known that AR mutations promote resistance to antiandrogens therapies in prostate cancer 

(Alluri et al., 2014). Little is known about the prevalence and role of AR mutations in BCa.  The 

expansion of NGS sequencing of patients samples have demonstrated that mutations in the AR 

are associated with BCa, but the role of these mutations in disease development and progression 

is unclear. Therefore, this study aims to identify AR mutants in BCa and to evaluate the effect of 

these substitutions upon androgen signalling and cross-talk with other signalling pathways. 

 

 

1.5 The Prostate Gland 

1.5.1 Location and description 

The prostate is an exocrine gland within the male reproductive system, located at the base 

of the bladder, surrounding the exiting urethra and in front of the rectum. The gland is described 

as being the shape of a walnut or like a rounded cone, with approximate size of 3x4x2 cm and 

weight of 20-30 grams in adults (Chan et al., 2012). Approximately two thirds of the prostate is 

composed of glandular tissue with many ejaculatory ducts responsible for the secretion of the 

seminal fluid. A fibromuscular stroma forms the remaining third, which consists of smooth 

muscle, elastin and dense connective tissue containing collagen fibers (Aaron et al., 2016). Upon 

ejaculation, the stroma contracts in order to push out seminal fluid into the urethra and it forms 

the outmost layer of the prostate. The prostatic secretions are essential for male fertility as they 
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have a role in semen coagulation and liquefaction, nourish and protect the spermatozoa and 

lubricating urethral surface (Toivanen & Shen 2017). The prostatic fluid is composed of fructose, 

proteolytic enzymes, zinc, citric acid, acid phosphate and lipids (Verze et al., 2016).   

The prostate gland is clinically divided into two lateral lobes separated by a central sulcus 

and middle lobe that may project into the bladder in old men (Timms & Hofkamp 2011). 

However, more important is the anatomical and histological division of the prostate into different 

zones (Figure 1.5). The central zone, represent 25% of the gland and surrounds the ejaculatory 

ducts. The transitional zone, comprises approximately 5-10% of the prostate and is located 

centrally surrounding the urethra. The peripheral zone makes up the glandular bulk 

(approximately 65%) and is the main area felt during the digital rectal examination (DRE). 

Lastly, a non-glandular anterior fibromuscular zone of stroma accounts for about half of the 

volume of the prostate (Toivanen & Shen 2017; Verze et al., 2016).  

 
 

Figure 1.5: Anatomy of the prostate. The human prostate gland is divided into 
three zones: the central zone, the transition zone and the peripheral zone. 
[obtained from Abate-Shen & Shen 2000].  
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1.5.2 Prostate development 

The molecular development of the prostate has been mainly established in transgenic and 

gene knock-out animal models (mouse and rat) (Aaron et al., 2016). During embryogenesis, the 

structure of the prostate rises from the primitive urogenital sinus resulting in the formation of the 

caudal extension of the hindgut (Schaeffer et al., 2008). This structure stays as one joint 

excretory tract in the embryonic cloaca until approximately the 8th week post conception, where 

it divides into the urogenital and anorectal tracts. The primitive urogenital sinus can be 

subdivided to the rostral of the bladder, the urogenital sinus (UGS) and the penile urethra at the 

10th week of gestation when the epithelial budding of the prostate is initiated from the UGS 

(Kellokumpu-Lenhtinen et al., 1980; Marker et al., 2003).  

Prior to the epithelial budding, circulating androgens mediate the induction of the 

prostate in males and influence its organogenesis prenatally until it reaches its mature size during 

puberty (Schaeffer et al., 2008). After prostatic fate is determined, the urogenital sinus 

epithelium buds into the surrounding urogenital sinus mesenchyme via paracrine signalling; this 

initiates tissue outgrowth and branching morphogenesis resulting in a system of ducts composed 

of epithelial cords. The androgen receptor (AR) has an essential role in controlling the distal 

branching to the mature ductal network and the solid epithelial cords (Toivanen & Shen 2017). 

These cords undergo canalisation creating the ductal lumen and cyto-differentiation to form a 

functional glandular epithelium with fully differentiated cell types. Prostate growth is minimal 

between birth and puberty, at which point androgen levels increase, resulting in the gland’s full 

maturation (Aaron et al., 2016; Donjacour et al., 1988). 

The epithelium of the mature prostate consists of several distinct cell types based on cell 

morphology (Figure 1.6). The luminal cells are tall columnar epithelial cells that express 
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cytokeratins 8 and 18, the androgen receptor and secrete proteins such as prostatic specific 

antigen (PSA) (Wang et al., 2001). The non-secretory basal cells, under the luminal layer, 

express cytokeratins 5 and 14 and p63 with low levels of the AR. Within the basal layer, 

occasional intermediate cells express the same markers as luminal and basal cells, with the 

addition of cytokeratin 19 (Toivanen & Shen 2017; Wang et al., 2001). Lastly, neuroendocrine 

cells, which represent the minority of epithelial cells, express secreted neuropeptides and other 

hormones and are androgen-independent.  These cells are believed to produce paracrine signals 

that control luminal cell development (Abrahamsson 1999).  

 
 

 

 

 

 

 

 

Figure 1.6: Cell Types in the prostate. The epithelial compartment is composed of basal 
cells that line the basement membrane, secretory luminal cells, and rare intermediate and 
neuroendocrine cell populations. These epithelial ducts are adjacent to a stromal 
compartment that includes smooth muscle cells, fibroblasts, and vascular and neural 
components [obtaind from Toivanen & Shen 2017].  
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1.5.3 Prostate Diseases 

1.5.3.1 Prostatitis 

Prostatitis is the inflammation of the prostate gland and can be subtyped into two types 

with both types treated with Fluoroquinolone, anti-inflammatory drugs or alpha blockers (Domes 

et al., 2012). Acute prostatitis occurs in young men and is commonly caused by bacteria similar 

to strains that cause urinary tract infections (Touma & Nickel 2011). This acute inflammation is 

rare and causes pain in the perineum, rectal and/or lower back. As the prostate is enlarged and 

tender as a result of the infection, patients may experience dysuria.  

Chronic prostatitis is more common in older men and it may not necessary follow acute 

prostatitis.  This disease has been linked to obstructive urinary tract abnormalities.  95% of 

patients complain from intermittent urinary frequency, dysuria, pelvic pain and/or lower back 

pain (Touma & Nickel 2011; Weidner et al., 2008). Microscopic analysis has identified 

lymphocyte, plasma cell and macrophage infiltration (Weidner et al., 2008). In prostatitis, 

bacteria damages the secretory gland and is linked to a a noticeable elevation of the PSA (not 

more than double normal levels) (Domes et al., 2012). Microbicide oxidants are released by the 

inflammatory cells in response to the infection, which is believed to induce tissue and genomic 

damage followed by cell growth and potentially cancer in the prostate (Eiserich et al., 1983).       

   

 
1.5.3.2 Benign prostatic hyperplasia (BPH)      

Benign prostatic hyperplasia is a non-malignant enlargement of the prostate that refers to 

hyperplasia of the fibromuscular and glandular epithelial in the transition zone of the gland. By 

the age of 50, one in four men have some degree of hyperplasia, however, about 10% of these 
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cases are symptomatic and severe enough to require surgical or medical therapy (Bushman 

2009). This enlargement extends to the lateral lobes and affects the prostatic urethra causing 

bladder outflow obstruction with slight elevation in PSA levels. Microscopic findings of BPH 

illustrate nodules in the glands and stroma, variable in size with prominent papillary infoldings in 

the larger glands (Auffenberg et al., 2009; Bushman 2009). This growth is believed to be driven 

by altered androgen levels, specifically dihydrotestosterone (DHT), therefore treatment with 5-α 

reductase inhibitors can reduce the size of the enlarged prostate. Alpha blockers, e.g. α-1- 

adrenergic receptor blocker, can also be administered as these relax the bladder’s smooth muscle 

and ease the pressure caused by prostate enlargement (Andriole et al 2004).      

 

 

 

1.5.3.3 Prostatic intraepithelial neoplasia (PIN) 

Prostatic intraepithelial neoplasia (PIN) is a non-cancerous proliferation of the epithelial 

lining of the gland and is divided into low and high grade PIN.  Histologically, it is characterised 

as having progressive basal cell layer disruption, nuclear and nucleolar abnormalities, increasing 

proliferative potential and microvessel density, variation in DNA content and allelic loss (Ayala 

& Ro 2007). The glands and basal layer in PIN remain intact unlike in adenocarcinoma of the 

prostate. High grade PIN is differentiated with more hyperchromatism and pelomorphisim and 

cells might have more prominent nucleoli (Ayala and Ro 2007; Lipski et al., 1996). PIN 

commonly develops in the peripheral zone of the gland, the same location where the majority of 

malignant tumours occurs. Patients with PIN are put under increased due to the risk of prostate 

adenocarcinoma development (Lipski et al., 1996).             
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1.5.4 Prostate cancer (PCa) 

1.5.4.1 Prostate cancer epidemiology 

In the UK, prostate cancer is the most common cancer in males with around 47,700 new 

cases yearly and 25% mortality rate, making it 2nd most cause of cancer deaths after lung cancer. 

A projection of 12% increase in incidence rate is expected between 2014 and 2035 as well as a 

2.38% increase in mortality for the same period (Figure 1.7) (Cancer Research UK, 2014). 

Incidence rates differ between countries, in part due to coverage of PSA screening (Schröder et 

al., 2014). Population-based screening of men aged between 55 and 69 years, using PSA testing, 

has been evaluated in randomised trials and these show a significant reduction in PCa mortality 

when the screening and control groups are compared (Schröder et al., 2014). Currently, there is 

no national screening programme in the UK for PCa. However, the Prostate Cancer Risk 

Management programme was introduced in 2002 to test PSA levels among men over the age of 

50 who are concerned about the dieses (NHS Cancer Screening Programmes, 2012).  

In Europe, PCa incidence has been increasing, but mortality rates have decreased 

significantly and this has been attributed to improved prognosis as a result of PSA screening and 

the availability of imaging techniques in these countries (Smittenaar et al., 2016). In the UK, the 

five-year survival rate for PCa has increased from 37% during 1971- 1972 to 85% during 2010- 

2011 and this is strongly associated to PSA testing in the population and improvements in 

treatment options (Cancer Research UK, 2014). Despite these results, screening for PCa is 

controversial because of adverse effects, such as over-diagnosis and overtreatment, which is 

estimated to include 40–50% of screen-detected cases and results in unnecessary therapy 

associated side-effects. It is estimated that the global number of PCa incidence and deaths will 
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increase to 1.7 million cases and 477,000 deaths by 2030 respectively, as a result of population 

growth and aging (Ferlay et al., 2010; Smittenaar et al., 2016).  

 

 

 

 

1.5.4.2 Risk factors 

Studies have not shown any specific life style choices linked to PCa morbidity, however, 

there are multiple endogenous and exogenous risk factors that affect the probability of a man 

developing the disease. For example, PCa is rare in males under the age of 50 and incidence rates 

exponentially increase with age (Bostwick et al., 2004). Another example is family history; the 

risk for men, with a first-degree relative affected by PCa, is twice higher than of the general 

population and even higher if the relative was younger than 60 years at diagnosis. Therefore, 

family history has resulted in much research to identify genetic linkage and Ewing et. al., (2012) 

discovered a rare but recurrent mutation in the HOXB13 gene. Also, the rare BRCA2 mutation, 

associated with breast and ovarian cancers, correlates with higher risk of PCa. Ethnicity is also a 

notable endogenous factor and clinical studies have demonstrated that PCa incidence is 60% 

Figure 1.7: Projection of cancers in the UK. Proportion of total cancer cases by cancer site in 1993 (observed), 
2014 (observed) and 2035 (projected). The size of each segment is scaled to reflect the total number of cases. 
[obtained from Smittenaar et al., 2016].  
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higher in Black Americans than white men in the USA (Ferlay et al., 2015).  

Studies analysing migrant populations (from countries with low to high PCa morbidity) 

have shown that a Western lifestyle is linked to increased incidence rate (Bostwick et al., 2004). 

A diet with high intake of red meat and saturated fat with low antioxidants, micronutrients and 

vitamins is suggested to have a link with disease occurrence. Obesity and lack of physical 

activity are also believed to increase PCa mortality, however, there is still not enough evidence 

to support this data (Markozannes et al., 2016). Additionally, exposure to environmental factors 

such as radiation or hormonal agents correlate to PCa occurrence. The UK Atomic Energy 

Authority analysed data from dead employees and found that the only malignancy related to 

radiation exposer was PCa. Lastly, endocrine disrupting chemicals (EDCs) can alter hormone 

activity affecting reproduction, development and carcinogenesis (Bostwick et al., 2004).  

1.5.4.3 Grading and staging 

The dominant method for scoring PCa is the Gleason Grading System (Figure 1.8), which 

is based on the histological diagnosis of the primary tumours (Gardner 1982). This grading is 

performed microscopically at low-power magnification (10x- 40x) to define the pattern into five 

different grades (1 to 5).  The score is generated from the addition of the largest two examined 

patterns and therefore range from 2 to 10. Grades 2-4 are well-differentiated and provide the best 

prognosis, while 8-10 are poorly-differentiated cancer and carry a poor prognosis (Gardner 1982; 

Humphery 2004).  

Pathological staging of PCa is determined following the TNM classification after 

prostatectomy (Ukimura et al., 1998). Stage A (T1, N0, M0) represents a tumour that cannot be 

palpated during DRE and these can be further divided into T1a (involves <5% of the gland) and 
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T1b (involves >5% of the gland). Both are well-differentiated and evaluated for surgical 

procedures following the same criteria of the for BPH (Figure 1.9). T1c is refers to cases were 

the prostate was biopsied in response to elevated PSA levels. Stage B (T2, N0, M0) is where the 

tumour is contained within the gland and a nodule or hard region was identified by DRE (Strief 

2007). This stage is divided into: T2a - up to one-half of one lobe, T2b - more than one-half of 

one lobe, and T2c - where a palpable node is found in both lobes. Stage C (T3, N0, M0) is 

divided into: T3a - unilateral capsular penetration, T3b - bilateral extra-capsular extension, and 

T3c - the tumour has invaded the seminal vesicles. Lastly, stage D (T4, M+) is where the cancer 

has reached adjacent structures e. g. the bladder neck, sphincter, rectum and pelvis. Inclusion of 

N and M in the staging indicates if the tumour has reached lymph nodes and distant metastases 

respectively (Ukimura et al., 1998; Strief 2007).  
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Figure 1.8: The Gleason Grading system. A) Gleason scoring according to glandular 
architecture and patterns. B) Gleason histological features of the grades 3, 4 and 5. [obtained 
from Humphery 2004].  
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1.5.4.4 Detection and monitoring of Prostate cancer  

Initial investigations for prostate cancer are often done by DRE and the evaluation of 

Prostate Specific Antigen (PSA) levels in the blood (Berger et al., 2007). If one or both of these 

examinations raise concern, further investigation should follow as intervention at this stage may 

cure or control the tumour. In the DRE, the examiner assesses the gland texture, asymmetric 

nodules and consistency using the index finger against the posterior surface of the prostate 

through the anterior rectal wall. However, recent studies indicated a low specificity and 

sensitivity in DRE calling (Djulbegovic et al., 2010; Naji et al., 2018). PSA is an enzyme 

specifically created by prostate cells and is a component of the seminal fluid. PSA levels are 

elevated in response to disruption of the prostate capsule, but this is not specific for PCa. This 

test has been met with some controversy as increasing levels of PSA are also seen in the 

presence of prostatitis, BPH, prostate abscess, manipulation of the prostate, prostatic infarction, 

and ejaculation within the previous 48 hours (Strief 2007). However, patients with PSA higher 

than 10ng/ml are usually diagnosed with PCa and 95% of patients with metastasised PCa have a 

significant increase in their PSA levels (Berger et al., 2007). Since all the screening methods 

Figure 1.9: Prostate cancer TNM staging system. Schematic of the different stages of prostate cancer, with 
illustration of each stage based on the TNM system. [obtained from Cancer Research UK 2014].  
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have their limitation, a combination of methods are used to increase detection efficiency. 

Imaging of the prostate gland is also used in tumour detection, specially magnetic resonance 

imaging (MRI) and ultrasound (US). Further, positron emission tomography (PET) combined 

with MRI has been introduced in recent years for more sensitive detection (Mapelli & Picchio 

2015). The application of MRI imaging is widely used in the PCa, not only the disease detection, 

but to perform proper diagnosis, staging and surgical planning of the disease (Bonekamp et al., 

2017).    

 

 

1.5.4.5 Prostate cancer treatment 

The therapeutic management of PCa has become more complex due to the various stage-

specific therapeutic options available nowadays. Unfortunately, it is difficult to recommend that 

one therapy is superior over another, as this field lacks randomized controlled clinical trials 

(Heidenreich et al., 2010). Therefore, and to avoid overtreatment, patients with low-risk PCa are 

follow more conservative management plans. Generally, this could be divided into two 

strategies: watchful waiting (WW) and active surveillance (AS) (Bott et al., 2003). WW 

monitors the tumour and delays treatment until symptoms appear. This option is commonly used 

for patients with other health problems and/or elderly men with localized disease aiming to 

improve their quality of life without aggressive interventions. The AS approach delays active 

treatment whilst the tumour is at an unthreatening stage (Lund et al., 2014). Patients under AS 

are continuously assessed for disease progression indicators, including PSA levels, Gleason 

grade, tumour size and the development of metastases. This approach has shown greater 

improvement in survival rates than WW, but AS should be followed by active curative 
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treatments if cancer progression is reported (Bott et al., 2003; Lund et al., 2014). 

Another PCa management option is radical prostatectomy (RP) and this is commonly 

chosen for patients with localised tumour who are expected to live at least another 10 years 

(Heidenreich et al., 2010). Surgery options can be either open surgery (retropubic or perineal) or 

laparoscopic (e. g. Da Vinci) (Damber 2005). The majority of patients prefer the longer 

laparoscopic procedure over open surgery and a recent study demonstrated that the robotic-

assisted RP is linked with less surgical margins, reduced need for intraoperative blood 

transfusions, shorter catheter duration, improved post-operative complications and overall 

shorter hospitalisation duration. Although pelvic lymphadenectomy in RP is controversial, this is 

still routinely performed for men with intermediate to high risk of PCa (Niklas 2016). 

  Besides RP, radiation therapy (RT) is one of the current first line treatment options for 

PCa. This approach is performed through the application of a radiation beam to the tumour tissue 

either with an external source of radiation (external beam radiotherapy, EBRT) or internally 

using brachytherapy (Strief 2007). EBRT has similar efficacy to surgical options and is usually 

performed for a duration of 4 to 6 weeks, while brachytherapy involves the insertion of 

radioactive sources (seeds and rods) directly into the prostate gland. Physicians usually choose 

this procedure based on the detailed anatomy of the gland, tumour size and area, to prevent any 

unwanted tissue damage to the surrounding organs such as the rectum and bladder (Sadeghi et 

al., 2010). According to the required doses, injected seeds emit radiation for short-term high 

dose-rate brachytherapy (HDRB) or long-term low dose-rate brachytherapy (LDRB) (Cesaretti et 

al., 2007; Skowronek 2013). Since RT affects normal tissues, temporary side-effects include 

urinary incontinence and erectile dysfunction.  There is also an increased risk of developing 

secondary malignancies due to genetic alteration after radiation exposure (Skowronek 2013). 
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Androgen Deprivation Therapy (ADT) is often used in the management of the localised 

and metastasised form of the cancer. As androgens play an essential role in PCa development 

and progression, inhibition of AR signalling is performed either by medical or surgical 

approaches (Isbarn et al., 2009). This type of treatment can be used as the primary option in 

disease management and can be used in combination with RT or RP for better prognosis (Scher 

et al., 2012). Reduction of testosterone levels upon surgical castration (e. g. bilateral 

orchiectomy) is one of the best approaches in ADT, however, this procedure is the least popular 

due to its permanent side-effects (Karantanos et al., 2013). Instead, non-surgical methods such as 

oestrogen agonists and gonadotrophin-releasing hormone (GnRH) agonists and antagonists are 

often used to reduce testosterone production (Karantanos et al., 2013; Isbarn et al., 2009). In 

addition to ADT, the AR can be directly targeted through the use of anti-androgens (e. g. 

Bicalutamide and Flutamide), which bind to and inhibit the AR, inhibiting its transcriptional 

activity (Goa and Spencer. 1998; Scher et al., 2012).  

 

1.5.4.6 Development of castration-resistant prostate cancer (CRPC) 

Current hormonal therapies for PCa are highly effective in the early stages of the disease.  

However, in most patients, the tumour relapses within 2 to 3 years and the disease progresses to 

a stage known as CRPC, which is associated with poor prognosis and lower survival rates 

(Brooke et al., 2008; Cookson et al., 2013). A number of mechanisms have been proposed to 

explain CRPC and these include AR mutations, overexpression or hyper-activation of the AR, 

independent production of steroids within the tumour or alterations in co-activators and co-

repressors (Mostaghel et al., 2009). Moreover, it is proposed that constitutively active AR splice 

variant (AR-Vs), that lack the ligand binding domain, are up-regulated in CRPC and this also 

promotes tumour growth in the presence of hormone depletion and anti-androgens. Androgen 
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ablation therapy appears to provide the selective pressure necessary for clonal amplification of 

cells with mutated AR that can be activated by AR antagonists (Coutinho et al., 2016; Gaddipati 

et al., 1994). Furthermore, in CRPR the genomic instability caused by the tumour provides 

higher mutations occurrence in the AR. Few treatment options exist for CRPC.  Chemotherapies, 

such as docetaxel, have been the classical option to treat this stage of the disease (Hotte and Saad 

2010), however, since AR drives CRPC, a number of newer therapies, such as enzalutamide, 

have been developed to target this signalling axis (Coutinho et al., 2016).  

 

1.6  Phospholipase C (PLC) 

1.6.1 Structure & function 

The Phospholipase C (PLC) family is comprised of 13 different isoforms that are 

classified into 6 subfamilies (PLC-β (1-4), γ (1-2), δ (1,3,4), ε, ζ and η (1-2)) based on their 

biochemical properties (Béziau et al., 2015).  PLCs are membrane bound proteins which regulate 

multiple cellular functions. All isoforms share a conserved structure in addition to other domains 

specific for each subfamily that reflect their particular regulatory roles in cells (Figure 1.10). The 

core protein is composed of a pleckstrin homology (PH) domain, four tandem EF hand domains, 

a TIM barrel domain and a C2 domain (Cai et al., 2017). The PH domain, which is absent in 

PLC-ζ, is important for binding various lipids and proteins where in each phospholipase 

subfamily it can bind to different molecules, such as PIP2, Ca2+, Gβγ or the small GTPase. The 

EF tandem hands are Ca2+ binding domains as well as the C2 domain, which besides calcium 

binding, targets PLC for membrane surface binding (Cai et  al., 2017; Kadamur and Ross 2013).  

The TIM barrel harbours the protein’s active site and contains the catalytic residues and 

Ca2+ binding site.  This domain is interrupted by an auto-inhibitory region that differs among the 
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different subfamilies in sequence and size. This inhibition is due to the presence of the negatively 

charged X-Y linker and, upon PLC binding to the negatively charged plasma membrane, the 

linker is removed from auto-inhibitory confirmation resulting in activation of the protein 

(Kadamur and Ross 2013; Rebecchi and Pentyala 2000). In the PLC-γ sub-family, the TIM 

barrel contains an SRC homology domains (nSH2, cSH2 and SH3) located in between the X-Y 

linker, which facilitates interaction of the protein with numerous regulatory proteins. Lastly, 

PLC-ε contains two RA domains (RA1 and RA2) and a GEF domain, linking this family of 

PLCs to the RAS signalling pathway (Cai et al., 2017; Park et al., 2012). 

 

	
	

PLCs hydrolyse phosphatidylinositol 4,5-diphosphate (PIP
2
) into diacylglycerol (DAG) 

and inositol 1,4,5-triphosphate (IP3) (Figure 1.11). DAG activates the phospholipid-dependent 

serine/threonine kinase and protein kinase C (PKC), while IP
3 mediates cell motility and 

Figure 1.10: Structure of the different Phospholipase C isoforms. Thirteen mammalian PLC 
isoforms are subdivided into six subfamilies. X and Y domains contain catalytic activity. Several 
isoforms have pleckstrin homology (PH) or SRC homology (SH) domains. The calcium-binding 
(C2) domain can regulate PLC activity. The EF-hand domain responsible for forming a flexible 
tether to the PH domain. PLC-ε has a RAS guanine nucleotide exchange factor (GEF) domain, and 
the RA2 domain mediates the interaction with GTP-bound RAS [obtained from Park et al., 2012].  
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proliferation through the activation of IP
3 receptors (IP

3
R), located on the endoplasmic reticulum 

(ER) membrane, releasing calcium into the cytoplasm (Park et al., 2012; Nakamura et al., 2017). 

Signalling molecules such as heterotrimeric G protein subunits, tyrosine kinase, calcium and 

phospholipids work as activators of the PLCs resulting in the regulation of many cellular 

functions e. g. cytoskeletal reorganization, cytokinesis, membrane dynamics, nuclear events and 

channel activity (Nakamura et al., 2017). It has been suggested that each isoform regulates 

specific cellular responses, which has been supported by several studies using knockout animal 

models. For example, PLC-ε absence is related to abnormal development in the aortic and 

pulmonary valves, while manipulation of PLC-β2 expression affects calcium and superoxide 

production in neutrophils (Nakamura and Fukami 2009). More importantly, PLC-δ activation in 

cancer cells has been found to regulate tumourigenesis, metastasis, invasion and angiogenesis.  

For this reason, PLC-δ has been proposed as a novel therapeutic target for cancer (Park et al., 

2012). 

 

Figure 1.11: Phospholipase C signalling pathways involving PIP2. PLC hydrolyzes PIP2, 
which is both a signalling molecule in its own right and the precursor of another signalling 
molecule, PIP3. The PLC reaction creates two new signalling molecules, DAG and IP3, 
which are substrates for the formation of other signalling molecules, phosphatidic acid and 
inositol polyphosphates. The PLC reaction is shown in red, other signalling metabolites are 
blue, and regulatory targets are green [obtianed from Kadamur and Ross 2013].  
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1.6.2 The role of PLCs in cancer 

PLCs are essential for the metabolism of inositol lipids and therefore play a crucial role 

in multiple transmembrane signal transduction pathways, regulating numerous cell processes 

including proliferation and motility (Cai et al., 2017). Although their exact role in tumourigensis 

is unclear, the enzymes have been shown to modify proliferation, migration and invasion 

(Lattanzio et al., 2013). In many caners, an increase in PLC activity and/or expression has been 

associated with increased metastasis and proliferation in these tumours. For example, PLC-γ and 

PLC-ε act as oncogenes due to their involvement in Ras signalling which regulates proliferation 

(Cai et al., 2017). In contrast, the absence or down-regulation of PLC-β and PLC-δ have been 

demonstrated in human leukaemia suggesting that these have tumour suppressor activity (Cai et 

al., 2017). In BCa, poor clinical outcome has been linked to increased expression levels of PLC-

β2 making it a molecular marker which is indicative of disease severity (Lattanzio et al., 2013). 

This isoform drives the transition from G0/G1 to S/G2/M phase of the cell cycle, which is 

important in cancer progression and inositol lipid-related modifications of the cytoskeleton 

architecture that occur during tumour cell division, motility and invasion (Bertagnolo et al., 

2007). In recent studies, PLC- δ4 has been shown to be up-regulated in BCa cells where its 

overexpression enhances proliferation (Wang et al., 2015).   

Little is known about the expression and role of PLCs in PCa.  However, it has been 

found that PLC-γ is essential in tumour invasion as it has a role in regulating cell motility upon 

the activation by growth factors where the hydrolysis of P2 polymerizes actin (Lattanzio et al., 

2013). Wang et al. (2015) investigated 37 PCa patient samples and found increased PLC-ε 

expression.  Further, the group demonstrated that silencing of this isoform, in PC3 and LNCaP 

cells, significantly reduced proliferation. 



	

	 55	

1.6.3 Apoptosis and tumour cell death 

Investigation of the molecular pathways that regulate cell growth and death have greatly 

contributed to the discovery of targeted therapies for the treatment of many types of cancer. In 

humans, there are multiple mechanisms of cell death, which include programed cell death (PCD, 

for example apoptosis and autophagy), non-physiological necrosis and mitotic catastrophe (Ricci 

and Zong 2006). The decision as to which of these cell death pathways will occur is dependent 

upon the type of tissue, physiological nature, developmental stage and the type of death signal. 

Treatment of cancers, through promotion of cell death, can be achieved by any of these 

mechanisms (Fulda and Debatin 2006; Ouyang et al., 2012). However, apoptosis is commonly 

targeted in cancer therapy as many tumours inhibit this signalling pathway to promote survival 

and drug resistance. The process of apoptosis is well characterised, where a series of events leads 

to phenotypical changes including cell membrane blebbing, cell shrinkage, chromatin 

condensation, DNA fragmentation and loss of adhesion to other cells followed by the formation 

of apoptotic bodies which are engulfed by macrophages or neighbouring cells (Ouyang et al., 

2012). 

 There are two activation mechanisms for apoptosis: firstly, the intrinsic pathway (also 

known as the mitochondrial pathway) is initiated by intracellular signals generated from the 

mitochondria in response to e.g. DNA damage or oxidative stress (Figure 1.12). The pro-

apoptotic bcl2 factors (Bax, Bak, and Bid) initiate the permeabilisation of mitochondrial 

membranes to release apoptotic proteins such as cytochrome c, Smac/DIABLO, Omi/HtrA2, 

apoptosis-inducing factor (AIF) and endonuclease G (Degterev et al., 2003; Fulda and Debatin 

2006). Secondly, the extrinsic pathway (also known as the death receptor pathway) is activated 

via extracellular ligands such as tumour necrotic factor-a (TNFa), first-apoptotic signal receptors 
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(FasR) ligands (e. g. CD95/APO1) or TRAIL (TNF related apoptosis inducing ligand). Both 

pathways lead to the activation of caspases, a family of cysteine proteases that act as common 

death effector molecules (Ouyang et al., 2012).  

Caspases, initiators (2, 8, 9 and 10) and executioners (3, 6 and 7), activate each other 

by the cleavage of different substrates in the cytoplasm or nucleus, resulting in amplification 

of caspase activity through a protease cascade causing apoptotic cell death (Degterev et al., 

2003). The intrinsic pathway triggers caspase-3 activation via the cytochrome c/Apaf-

1/caspase-9-containing apoptosome complex, whereas Smac/DIABLO and Omi/HtrA2 

promote caspase activation through neutralisation of the inhibitory effects to the inhibitor of 

apoptosis protein (IAP) (Degterev et al., 2003; Hengartner 2000). In contrast, the extrinsic 

pathway recruits procaspase-8/10 to form the death inducing signalling complex (DISC), leading 

to caspase-8 activation which then cleaves caspase-3 and the rest of the apoptotic pathway that 

binds to the cell-surface death receptors. Links between the two apoptotic pathways does exist.  

For example, cleavage of caspase-6, part of the intrinsic pathway, can feedback to the death 

receptor pathway through cleavage of caspase-8 (Fulda and Debatin 2006).  
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Figure 1.12: Apoptosis signalling pathways. The intrinsic pathway is triggered by intracellular 
signals leading to activation of the caspase cascade. The extrinsic cascade is stimulated by death 
receptors followed by caspase 8 then caspase 3 cleavage and activation of apoptosis [obtained from 
Elmore 2007].  
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1.6.4 Signalling pathways in PCa 

In addition to AR signalling, multiple other pathways have been demonstrated to drive 

PCa progression, proliferation and migration. In CRPC it is well established that tumour 

proliferation is still under the regulation of AR or via cross-talk with other signalling pathways 

(Bitting & Armstrong 2013). Activation of the AR could occur by other molecules including 

growth factors such as Insulin- like Growth-Factor-1 (IGF- 1), Keratinocyte Growth Factor 

(KGF) and Epidermal Growth Factor (EGF), which are found to be overexpressed in PCa (Culig 

et al., 1994). These growth factors are ligands for receptor tyrosine kinases, which initiate 

signalling cascades, leading to transactivation of the AR in the absence of androgen (Culig et al., 

1994; Wu et al., 2006). Another important pathway in PCa is the PI3K-Akt-mTOR, which is 

often found to be constitutively active in the disease due to the loss of the tumour suppressor 

PTEN, hence targeting this pathway leads to increased clinical activity in CRPC (Phin et al., 

2013).  

PI3K phosphorylates PIP2 to PIP3 activating Akt and mTOR, which is involved in 

regulating cell growth.  PI3K activation of the protein kinase c (PKC) is also associated with cell 

proliferation and survival (Bitting & Armstrong 2013). PTEN removes phosphate groups from 3-

phosphorylated inositol lipids, such as PIP3.  It has been demonstrated that 60% of localised PCa 

have monoallelic loss of PTEN and complete loss in all cases of CRPC (Phin et al., 2013). 

Furthermore, due to the overlap between PI3K and PLC signalling pathways, mostly in the 

activation of PKC, inhibition of PKC could aid as an effective treatment for advanced forms of 

the disease (Figure 1.13) (Zhang et al., 2012). However, the biggest challenges in targeting 

signalling pathways in cancer therapy is the redundancy and rewiring of these axis due to the 

alteration of the cellular genomics. Developed anticancer could encounter number of limitations 
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as a result of the tumour microenvironment maintain cell variability throw altering pathways 

despite drugs inhibition (Lito et al.,2013; Sever and Brugge, 2015). Therefore, due to the 

heterogeneity of the molecular alterations in PCa, it appears that targeting common factors 

downstream of altered signalling pathway could be a more effective strategy in the treatment of 

CRPC. 

 

 
 

Figure 1.13: PLC and PI3K signalling pathways. Phospholipase C and 
PI3K signalling pathways, where PKC activation overlaps between the 
two pathways. Upon activation, signals promote cellular proliferation, 
migration, invasion and survival [obtained from Grang 2014].  
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1.6.5 New anticancer derivatives (thieno[2,3-b]pyridine) 

Due to its role in cancer, PLC-δ has been proposed to be a valid target for the treatment 

of cancer.  To identify novel inhibitors of PLC- δ, virtual high throughput screening (vHTS) was 

performed using GOLD (Genetic Optimisation for Ligand Docking) docking algorithm and a 

crystal structure for the binding site of the PLC- δ (Reynisson et al., 2009). Thieno[2,3-

b]pyridine compounds identified to be potential hits and were subsequently demonstrated to have 

potent anticancer activity against a variety of tumour cell lines (Reynisson et al., 2009). For 

example, in the breast cancer cell line MDA-MB-231, these compounds were shown to reduce 

proliferation, to induce blebbing of the plasma membrane, increase cell cycle arrest in the G2/M 

phase and to decrease cell motility (Leung et al., 2016). Similar effects were noticed when the 

anticancer agents were investigated with stem/progenitor-like cell populations from breast and 

prostate cancers (Mastelić et al., 2017). Furthermore, the thieno[2,3-b]pyridine compounds 

induced apoptosis. In-vitro testing of the thieno[2,3-b]pyridine compounds has therefore 

demonstrated that these compounds are promising anti-cancer therapeutic agents and hence the 

efficacy and mechanism of action of these inhibitors requires further investigation.  
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1.7 Project objectives 

Investigation of AR signalling in BCa has increased significantly over recent years and 

several clinical trials are assessing the efficacy of anti-androgens as therapeutics for this 

disease. There is therefore a need to better characterise the role of AR signalling in BCa, 

Aim 1-  To characterise the mechanisms of cross-talk between the AR and ERα.   

Aim 2 – To identify AR mutations associated with BCa and to investigate if these 

substitutions affect receptor activity and ligand specificity. 

Aim 3 – To investigate if mutations in the AR affect receptor cross-talk with the ERα 

pathway. 

 

Few therapeutic options exist for CRPC and there is therefore a great need to identify 

novel treatment options for this stage of the disease.  The second part of this thesis investigates 

the efficacy of thieno[2,3-b]pyridine inhibitors as a treatment option for CRPC.   

Aim 1 – To investigate the effect of thieno[2,3-b]pyridine inhibitors upon the 

proliferation of a panel of prostate cell lines. 

Aim 2 – To characterise the effect of thieno[2,3-b]pyridine inhibitors upon the cell cycle 

and mechanism of cell death and to assess the effect of the inhibitors upon cell motility. 

Aim 3 – To investigate the mechanism of action of the inhibitors and identify which 

proteins that these inhibitors target. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Reagents, solutions and buffers 

Reagents, solutions and buffers used in this thesis are listed below. Final concentrations 

of reagents are given and all solutions were made in distilled deionised water (ddH2O), unless 

otherwise specified	(table 2.1). 

 

Table 2.1: Preparation of reagents, solutions and buffers.   

General stock solutions 
SOLUTION RECIPE STORAGE STERILISATION 

1 % Bovine serum 
albumin (BSA) in 
PBS-T (1 % BSA- 
PBS-T)  

0.1 g BSA lyophilised powder 
(Sigma- Aldrich) in a total volume 
of 10 mL PBS- T.  

4 °C, used 
within 24 
hrs of 
making  

 

0.22 μm filter 
sterilise  

 

0.08 % Crystal violet  32 mg crystal violet (Sigma-
Aldrich) in a final volume of 40 mL 
double distilled water (ddH2O).  

RT 0.22 μm filter 
sterilise  

 

0.5 M 
Ethylenediaminetet- 
raacetic acid (EDTA)  

186.12 g EDTA disodium salt 
(Fisher Scientific) to a final volume 
of 1 L using ddH2O, adjusted to pH 
8.0 using 5 M NaOH stock solution.  

RT Autoclave 

4 M Hydrochloric 
acid (HCl)  

19.6 mL of 32 % HCl (Fisher 
Sceintific) with 30.4 mL of ddH2O.  

RT N/A 

4% 
Paraformaldehyde 

4 g of PFA (Sigma-Aldrich) 
dissolved in PBS to a final volume 
of 100 mL.  Heated on a stirring 

-20 °C, in 
5- 10 mL 

N/A 
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(PFA)  plate within a fume cupboard until 
fully dissolved.  

aliquots  

1 x Phosphate 
buffered saline (PBS)  

10 (Dulbecco A) tablets (Oxoid 
Limited) dissolved in ddH2O to a 
final volume of 1 L.  

RT Autoclave  

 

PBS-0.1 %-Tween 
(PBS-T)  

0.5 mL of Tween®-20 (Sigma-
Aldrich) in a total of 500 mL PBS.  

4 °C  

 

N/A 

0.2 M 
Phenylmethanesul- 
phonylfluoride 
(PMSF)  

0.35 g of PMSF (Sigma-Aldrich) to 
a total of 10 mL using ddH2O.  

-20 °C  

 

 

N/A 

5 M Sodium 
hydroxide (NaOH)  

20 g of NaOH pellets (Fisher 
Scientific) to a final volume of 100 
mL with ddH2O.  

RT N/A 

Flow cytometry (FACS) buffers 

SOLUTION RECIPE STORAGE STERILISATION 

Nicoletti buffer  10 g of Sodium citrate, 10 ml Triton 
X-100 (Sigma-Aldrich),to 1000 ml 
with ddH2O.  

4 °C  

 

N/A 

Propidium Iodide 
(PI) staining solution 
for apoptosis 
measurements  

200 μl PI (1 mg/ml, Sigma-Aldrich), 
5 ml Nicoletti buffer. 

4 °C  

 

N/A 

PI staining solution 
for cell cycle 
measurements  

1 ml PBS, 20 μl RNase (10 mg/ml) 
(Fisher Scientific), 10 μl PI (1 
mg/ml in).  

Freshly 

prepared 

N/A 

Agarose gel electrophoresis 

SOLUTION RECIPE STORAGE STERILISATION 
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1 % and 1.4 % 
Agarose gels  

 

1 g (1 %) or 1.4 g (1.4 %) of 
agarose (Fisher Scientific) 
dissolved in 100 mL of 1 X TAE 
via boiling. This is briefly allowed 
to cool prior to the addition of 5 
μL of ethidium bromide (10 
mg/mL, Sigma-Aldrich) and 
casting. 

RT, or gels 
can be 
wrapped and 
stored at 4 
°C O/N if 
necessary  
  

 

N/A 

1 X Tris-acetate- 
EDTA (TAE)  

 

40 mM Tris base (4.846 g, Fisher 
Scientific), 1.114 mL glacial 
acetic acid (Fisher Scientific) and 
1 mM EDTA (2 mL of 0.5 M 
stock), in a total of 1 L ddH2O.  

RT N/A 

Bacterial Culture 

SOLUTION RECIPE STORAGE STERILISATION 

100 mg / mL 
Ampicillin stock  

1 g ampicillin sodium salt (Sigma- 
Aldrich) to a final volume of 10 
mL ddH2O. Added to LB 
broth/agar to a final concentration 
of 100 μg/mL.  

-20 in 1 mL 
aliquots 

0.22 μm filter 
sterilise  

1 M Glucose stock  90.08 g of Glucose (Fisher 
Scientific) in a final volume of 
500 mL ddH2O.  

RT 0.22 μm filter 
sterilise 

20 mg / mL 
Isopropyl β-D-1- 
thiogalactopyranosi 
de (IPTG) stock  

0.2 mg of IPTG powder (Sigma- 
Aldrich) dissolved to a final 
volume of 1 mL in ddH2O.  

-20 in 50 μL 
aliquots 

N/A 

50 mg / mL 
Kanamycin stock  

0.5 g kanamycin (Sigma-Aldrich) 
in 10 mL of ddH2O.  

-20 in 1 mL 

aliquots 
0.22 μm filter 
sterilise 

Luria Broth (LB)  20 g LB (Lennox, larger granules, 
Fisher Scientific) dissolved in a 

4 °C  Autoclave  
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total of 1 L of ddH2O, with the 
pH adjusted to 7.2 where 
necessary. Supplemented, if 
required, with antibiotics.  

 

LB Agar plates  8.75 g of LB Agar (Sigma-
Aldrich) to a final volume of 250 
mL ddH2O, supplemented if 
required with antibiotics. Melted 
prior to use and poured to make 
agar plates whilst still molten.  

4 °C Autoclave 

LB/ampicillin/IPTG/
X -gal plates  

40 μL Xgal stock solution was 
mixed with 4 μL of IPTG stock 
solution per plate. To a prepared 
LB Agar plate, supplemented with 
antibiotics (equilibrated to RT 
after 4 °C storage), 44 μL of 
Xgal-IPTG solution was spread 
over the plate surface, and left to 
dry agar side up at 37 °C for 
approximately 2 hrs prior to use.  

Prepared 
immediately 
before use  

N/A 

1 M Magnesium 
chloride (MgCl2) 
stock  

101.655 g of MgCl2 (Fisher 
Scientific) in a final volume of 
500 mL ddH2O.  

RT Autoclave  

1 M Magnesium 
sulphate (MgSO4) 
stock  

120.366 g of MgSO4 (Fisher 
Scientific) in a final volume of 
500 mL ddH2O.  

RT Autoclave  

Super Optimal Broth 
(SOB) media  

20 g of Tryptone (Oxoid), 5 g of 
Yeast Extract (Oxoid), 0.58 g of 
Sodium chloride (10 mM, NaCl, 
Sigma- Aldrich), 0.18 g 
Potassium chloride (2.5 mM, KCl, 
Sigma-Aldrich), 10 mL of 1 M 
MgCl2 stock (10 mM) and 10 mL 
of 1M MgSO4 stock (10 mM), 
dissolved in ddH2O up to 1 L.  

4 °C Autoclave  

Super Optimal broth 20 g of Tryptone (Oxoid), 5 g of 4 °C Autoclave (prior 
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with Catabolite 
repression (SOC) 
media  

yeast extract (Oxoid), 0.58 g of 
NaCl (10 mM, Sigma-Aldrich), 
0.18 g KCl (2.5 mM, Sigma-
Aldrich), 10 mL of 1 M MgCl2 
stock (10 mM), 10 mL of 1M 
MgSO4 stock (10 mM), and 20 
mL of 1 M Glucose stock, 
dissolved in ddH2O up to 1 L.   

to adding sterile 
glucose)  

20 mg/mL 5-Bromo- 
4-chloro-3-indolyl β- 
D-galactopyranoside 
(X-gal) stocks 

100 mg of X-gal powder (Sigma- 
Aldrich) dissolved to a final 
volume of 5 mL in DMSO 
(Sigma-Aldrich).  

-20 °C in 
120 μL 
aliquots, 
kept in the 
dark 

N/A 

Transfections 

SOLUTION RECIPE STORAGE STERILISATION 

N,N-Bis(2- 
hydroxyethyl)-2- 
aminoethanesulpho 
nic acid (BES)- 
buffered saline 
(BBS) 2 x solution  

50 mM BES (10.66 g, Sigma-
Aldrich), 280 mM NaCl (16.36 g, 
Sigma- Aldrich), 1.5 mM Sodium 
phosphate dibasic (Na2HPO4, 
0.21 g, Sigma- Aldrich), to a final 
volume of 1 L using ddH2O, 
adjusted to pH 6.95 using 5 M 
NaOH stock solution. 

-20 °C, in 
50 mL 
aliquots  

0.22 μm filter 
sterilise  

2.5 M Calcium 
Chloride (CaCl2)  

138.73 g of anhydrous granular 
CaCl2 (Sigma-Aldrich) to a total 
of 500 mL in ddH2O.  

-20 °C, in 

50 mL 

aliquots 

0.22 μm filter 

sterilise 

Western blotting  
SOLUTION RECIPE STORAGE STERILISATION 

10 % Ammonium 
persulphate (APS)  

1 g of APS (Sigma-Aldrich) 
dissolved in a total volume of 10 

-20 °C, in 
160 μL 

N/A 
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mL ddH2O.  aliquots  

Blocking solution  

 

2.5 g (5 %) dried skimmed milk 
powder (Marvel) to a total of 50 
mL in PBS-T.  

4 °C, used 

within 24 

hrs 

N/A 

10 % 
Polyacrylamide Gel  

 

Per gel, a 10 % resolving gel was 
made, consisting of 1.65 mL 
Acrylamide/Bis-acrylamide 30 % 
solution (Sigma-Aldrich), 1.9 mL 
of 1 M Tris/HCl at pH 8.9, 1.4 mL 
of ddH2O and 50 μL of 10 % 
SDS. Immediately prior to 
pouring, 10 μL of 10 % APS 
stock and 2.5 μL N,N,N’,N’- 
Tetramethylethylenediamine 
(TEMED, Sigma-Aldrich) were 
added. Additionally a stacking gel 
was made, consisting of 425 μL of 
Acrylamide/Bis-acrylamide 30 % 
solution (Sigma-Aldrich), 937.5 
μL of 1 M Tris/HCl at pH 6.8, 
1.0875 mL of ddH2O and 25 μL 
of 10 % SDS. Immediately prior 
to pouring, 10 μL of 10 % APS 
and 2.5 μL TEMED were added. 

4 °C, kept 
moist and 
used within 
a week  

 

N/A 

Radioimmunopreci- 
pitation assay 
(RIPA) buffer  

 

0.5 mL of 1 M Tris-Cl (pH 8.0) 
stock (10 mM), 20 mg of EDTA 
(1 mM, Fisher Scientific), 0.5 mL 
of Triton X- 100 (1 %, Sigma-
Aldrich), 50 mg of Sodium 
deoxycholate (0.1 %, Sigma-
Aldrich), 0.5 mL of 10 % SDS 
stock solution (0.1 %) and 0.41 g 
of NaCl (Sigma-Aldrich). 
Supplemented with 5 μL of 0.2 M 
PMFS stock and 10 uL of Halt 
Protease Inhibitor (PI) Cocktail 
(ThermoScientific) per 1 mL of 
RIPA just prior to use.  

4 °C 0.22 μm filter 

sterilise 
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1 x Running Buffer  3 g of Tris base (25 mM, Fisher 
Scientific), 14.45 g of Glycine 
(0.2 M, Fisher Scientific) and 0.5 
g of SDS (0.05 %, Fisher 
Scientific) were dissolved in a 
total volume of 1 L ddH2O.  

RT N/A 

10 % Sodium 
dodecyl sulphate 
(SDS)  

50 g of SDS (Fisher Scientific) 
dissolved in a total volume of 500 
mL ddH2O.  

RT N/A 

Semi-Dry Transfer 
Buffer  

5.63 g Glycine (150 mM, Fisher 
Scientific), 1.22 g Tris base (20 
mM) and 100 ml of Methanol (20 
%, MeOH, Fisher Scientific), 
dissolved in a total volume of 500 
mL ddH2O.  

4 °C, used 
within 1 
month  

N/A 

IP buffer 150 mM NaCl, 1% NP-40, 50mM 
Tris pH8.0, 1 mM DTT 

4 °C  N/A 

1 M Tris  12.114 g of Tris base (Fisher 
Scientific) dissolved to a final 
volume of 100 mL, adjusted to pH 
6.8/8.0/8.9 using 4 M HCl stock 
solution.  

RT Autoclave 

 
  

2.2 Mammalian cell culture  

The mammalian cell lines (ATCC) used in this project were cultured under incubation 

conditions of 37 oC and 5 % Carbon dioxide (CO2), with regular microscopy observations to 

monitor cell confluence and health. Once the cell confluence reached approximately 70–80 %, 

cell passaging was completed. Cell lines together with their associated description and growth 

conditions are listed in Table 2.2. Details on media, additives and ligand used for in vitro work 
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are described in Tables 2.3 and 2.4.  

 

Table 2.2: Mammalian cells used in this thesis. 

CELL LINE DESCRIPTION MEDIA 

COS-1 African Rhesus Monkey (kidney) immortalised 
with SV40 large T. 

DMEM 

MCF-7 Breast cancer cell line isolated from human 
(pleural effusion), primary tumour with invasive 
breast ductal carcinoma. 

DMEM 

HEK 293 Human embryo kidney. DMEM 

PC3 Androgen-independent cell line model that was 
established from a human PCa bone metastasis. 

RPMI-1640 

PC3-GFP PC3 cell that were stably transfected with GFP. RPMI-1640 

LNCaP Human lymph node PCa metastasis from 
Caucasian male. RPMI-1640 

DU145 A model of castration resistant prostate cancer 
derived from a central nervous system metastasis. 

RPMI-1640 

C42 A metastatic cell line derived from LNCaP 
following co-injection with fibroblasts into 
castrated mice. 

RPMI-1640 

C42B Metastatic subline derived from C42B after re-
inoculation into castrated mice. 

RPMI-1640 

22RV1 Androgen-dependent PCa xenograft line derived 
from CWR22R. 

RPMI-1640 
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BPH1 A benign hyperplastic prostatic epithelial cell line. RPMI-1640 

PNTA1 Normal prostatic epithelial cells that were 
immortalised RPMI-1640 with SV40. 

RPMI-1640 

 

 

Table 2.3: Cell culture media used. 

MEDIA DESCRIPTION ADDITIVES 

DMEM  Dulbecco’s Modified Eagle 
Medium  

5% FCS, 1% PSG (100units/mL 
penicillin, 0.1 mg/ml streptomycin, 2 
mM glutamine)  

PHENOL RED 

FREE DMEM  

Dulbecco’s Modified Eagle 
Medium  

5% sFCS (charcoal stripped FCS), 
1% PSG (100units/mL penicillin, 0.1 
mg/ml streptomycin, 2 mM 
glutamine)  

RPMI-1640  Roswell Park Memorial Institute  5% FCS, 1% PSG (100units/mL 
penicillin, 0.1 mg/ml streptomycin, 2 
mM glutamine) 

PHENOL RED 

FREE RPMI- 

1640  

 

Roswell Park Memorial Institute  5% sFCS (charcoal stripped FCS), 

1% PSG (100units/mL penicillin, 0.1 

mg/ml streptomycin, 2 mM 

glutamine) 

Wash Media  Phenol Red Free DMEM  2% sFCS. 1% PSG (100units/mL 
penicillin, 0.1 mg/ml streptomycin, 2 
mM glutamine) 

Freezing Media  90% FCS 10 % DMSO  N/A 
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Table 2.4: Reagents for cell treatment. 

LIGAND STOCK PREPARATION STORAGE 

17β-OESTRADIOL (E2)  10 mM stock in 100% Ethanol (EtOH)  -20 °C 

MIBOLERONE (MIB)  10 mM stock in 100% Ethanol (EtOH) -20 °C 

PROGESTERONE (PR)  10 mM stock in 100% Ethanol (EtOH) -20 °C 

FULVESTRANT (FULV) 10 mM stock in 100% Ethanol (EtOH) -20 °C 

TAMOXIFEN (TAM) 10 mM stock in 100% Ethanol (EtOH) -20 °C 

BICALUTAMIDE (BIC) 10 mM stock in 100% DMSO -20 °C 

ENZALUTAMIDE (ENZA)  10 mM stock in 100% DMSO -20 °C 

Docetaxel (Doc)  10 mM stock in 100% DMSO -20 °C 

thieno[2,3-b]pyridine 

inhibitors (97, 144, 145, 154 

and 160) 

10 mM stock in 100% DMSO -20 °C 

 

 

 

2.3 Freezing and defrosting cells 

To freeze cell, after passaging, cells were pelleted for 3 mins at 1,500 rpm then re-

suspended in pre-warmed freezing mixture (Table 2.3). 1 mL of cells mixture was transferred to 

cryovials tubes then wrapped in insulating material and stored in liquid nitrogen. For defrosting, 

frozen cells were defrosted at 37 °C then transferred into a 10 mL tube with pre-warmed media. 

Cell suspension was then centrifuged for 3 mins 1,500 rpm then the supernatant was transferred 



	

	 72	

and the cells re-suspended in the adequate amount of relevant media (Table 2.1) and returned to 

culture conditions. 

 

2.4 Transient transfection of mammalian cells  

2.4.1 Calcium phosphate   

The Calcium phosphate method was performed as previously described in Chen and 

Okayama (1987). In a 24 well plate, the desired DNA was mixed and diluted to 45 μL using 

ddH2O (Refer: Section 2.8). After that, 5 μL of 2.5 M CaCl2 and 50 μL of 2 x BBS were added 

then gently mixed by bubbling using a Gilson pipette. The transfection mixture was then mixed 

and incubated at RT for 15 mins then were added in a drop-wise manner to the wells.  

 

2.4.2 jetPRIME  

Transfections were performed using the JetPrime® Polyplus Transfection Reagent 

following the manufacturer instructions. Cells were seeded in either 96-, 24- or 6-well plates 

with full media for 24 hrs before transfection. Transfections were performed with the amount of 

DNA recommended by the manufactory guidelines relevant to the plate size. Each μg of DNA 

was mixed with the transfection reagent in a ratio of 1:3. The mixture was then incubated for 10 

min at RT following the transferring onto the cells. Then DNA mixture was added in a drop-wise 

manner to each well after that cells were incubated for 4 hours then media was replaced and 

incubated for further 24 hours until hormone treatment and processing according to the 

experiment to be performed.  
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2.4.3 FuGENE HD 

COS1 cells were plated at 30% confluence on cover slips in 24 well plates. Then cells 

were transfected with desired plasmids using FuGENE HD (Promega) and incubated for 24 hrs 

before treatment with hormones for 2 hrs. Wells were washed 3x with PBS and incubated in 1% 

paraformaldehyde for 10 min, washed 3x in PBS and incubated for a further 10 min in 0.1% 

Triton X-100 in PBS. Wells were again washed 3x with PBS, incubated in blocking solution (5% 

BSA in PBS) for 30 min and a further 1 hr with the desire antibodies. Wells were washed 3x 

with PBS, re-blocked and incubated for 1 hr with the desired secondary antibody. A final 3x PBS 

washes was performed before the coverslips were mounted onto glass slides containing DAPI. 

Images were obtained using a Zeiss Confocal Microscope.  

 

2.4.4 siRNA knockdown  

Cells were seeded in 6 well or 12 well plates with the relevant hormone-depleted media 

for 24 hrs prior to transfection. On-target small interfering RNA (siRNA) targeting AR/ERα or 

control non-target (NT) siRNA (Dharmacon) were transfected using Lipofectamine RNAiMAX 

Reagent, following the manufacturer’s protocol (Invitrogen), to a final concentration of 30 nM 

(12 well) or 50 nM (6 well). Immunoblotting analysis and qPCR were used to confirm successful 

Knockdown. 

 

2.5 Bacterial cultures, transformation and DNA preparation 

2.5.1 Bacterial strains and culture 

For transformation procedures the max efficiency DH5α (Invitrogen) the Escherichia coli 
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(E. coli) strain of competent cells was conducted. All preparations for the bacterial work were 

performed in sterile conditions then the bacterial suspensions were incubated with shaking, this 

was conducted at 225 rpm, 37 °C. 

 

2.5.2 Transformation 

The DH5α cells were transformed following the manufacturer protocol outlined by 

Invitrogen with a few adjustments. Briefly, 50 μL of DH5α cells were thawed on ice then gently 

mixed with 50 ng of plasmid DNA. The mixture was then incubated on ice for 30 mins following 

heat shock for 45 secs using a 42 °C water bath. After that, cells were then incubated on ice for a 

further 2 mins and then incubated in 950 μL of pre-warmed SOC media for 1 hr at 37 °C while 

shaking as a recovery period. The desired amount of cell suspension was spread onto LB Agar 

plates with the required antibiotic selection (ampicillin/kanamycin) (Table 2.1) and then 

incubated overnight (O/N) at 37 oC. 

 

2.5.3 DNA preparation 

A single bacterial colony was selected and transformed from each bacterial plate using a 

sterile pipette tip. This was performed to inoculate 5 mL of LB supplemented with the desired 

antibiotic for 12 hrs at 37 °C while shaking. Initially, a small-scale isolation of plasmid DNA 

was purified using the Plamid Miniprep Kit (Qiagen), using the outlined protocol. Sequencing 

(Source Bioscience) was conducted to verify harvested DNA plasmids if cloning was performed, 

or via fast digestion restriction enzymes for confirmation (Thermo Scientific) following the 

manufacturer’s protocol. Digested products were assessed via 1 % agarose gel electrophoresis 

(Table 2.1). Plasmid were stored using glycerol stocks made by mixing 200 μL of glycerol 
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(Fisher Scientific) with 800 μL of cell suspension from a bacterial culture and kept at -80 oC.  

DNA plasmids were subsequently isolated on a larger scale. First, glycerol stocks were 

spread onto LB Agar plates (with the correct antibiotic selection) and grown O/N. Then a single 

bacterial colony was used to inoculate 5 mL of LB broth supplemented with the required 

antibiotic for 16 hrs at 37 °C with shaking. The suspension was then transferred to 200 mL of LB 

and kept O/N at 37 °C shaking. DNA Plasmids were harvested using the Plasmid Midiprep Kit 

(Qiagen) following the manufacturer’s protocol. After mini and midi DNA preparation, DNA 

concentrations were quantified using the NanoDrop® ND- 1000 UV/VIS Spectrophotometer 

(Nanodrop, LabTech) and assess purity, following to the stander guidelines. 

2.6 Site-directed mutagenesis 

Site directed mutagenesis (QuickChange II, Agilent DE, USA) was performed to 

introduce AR mutations into the ERα expression plasmid (pSG5-ERα) following the 

manufacturer’s instructions.  Mutagenesis primer sequences are listed in Table 2.5. Amplified 

products were transformed into DH5α bacterial transformation and colonies cultured overnight 

prior to plasmid isolation using a mini-prep kit (QIAGEN®). Mutations were confirmed by 

sequencing (Source Biosciences) and chromatograms analysed in 4Peaks (V1.7.1) and EnzymeX 

(V3.1) to confirm successful mutagenesis. 
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Table 2.5: List of mutagenesis primers. Bases in red are the ones being mutated. All sequences 

were provided by G. Brooke. 

PRIMER  SEQUENCE 

C290Y-F CATTGGCCGAATACAAAGGTTCTCTG 

E355K-F GGAGCACTGGACAAGGCAGCTGGCTA 

S568F-F GAGATGAAGCTTTTGGGTGTCACTAT 

L638M-F AAACTTGGTAATATGAAACTACAGG 

S663*-F AGCTGACAGTGTGACACATTGAAGGC 

Q739*-F ATGGCTGTCATTTAGTACTCCTGGAT 

D840N-F ATCAAGGAACTCAATCGTATCATTGC 

D865E-F AAGCTCCTGGAATCCGTGCAGCC 

Q868H-F GACTCCGTGCATCCTATTGCG 

L881Q-F TCACTTTTGACCAGCTAATCAAGTCA 

 
 

2.7 Cloning of AR mutant Q739* using CRISPR/ CAS9 

The ZangLab tools were used to identify PAM sites near the targeted mutation (Q739) 

and the relevant guide strands (Table 2.6). The guide strands were subsequently cloned into the 

PX459 V2 plasmid (provided by Dr Pradeepa M Madapura) and confirmed using sequencing. 

The corresponding repair strands were designed using Benchling online tool  

(https://benchling.com) (Table 2.7). Briefly, guide strands were annealed and phosphorylated 

using T4PNK (37 °C for 30 min; 95 °C for 5 min; ramp down to 25 °C at 5 °C min-1). The guide 
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strands were subsequently ligated into the vector with T7 ligase and incubated for 1 hr using the 

manufacturer’s reagents and protocol (BioLabs, NEW ENGLAND). The mixture was digested 

with PlasmidSafe exonuclease (37 °C for 30 min) followed by 70 °C for a further 30 min.  The 

product was and transformed into DH5α cells following the protocol in Section 2.5.2.   

 MCF-7 cells were seeded at 70% confluence, incubated for 24 hrs and transfected with 

PX459 Q739* and the repair strands using the FuGENE® transfection reagent, following the 

manufactory guidelines. Cells were separated into 4 treatment groups: mock transfected, empty 

plasmid only, PX459 V2_Q739*_1 plus repair strand, PX459 V2_Q739*_2 plus repair strand. 

After 24 hours, transfected cells were treated with puromycin (2 μg/ ml) for 48 hrs and cultures 

were monitored during the following weeks for colony collection. Individual colonies were 

expanded and screened using immunoblotting and sequencing (Source Bioscience). 

 

Table 2.6: List of guide strand primers and their oligos used for CRISPR to construct the 

Q739* mutation in MCF-7 cell line. 

PRIMER  TOP OLIGO BOTTOM OLIGO 

PX459 V2_Q739*_1 CACCGGGCCCACTTACTCAGTTTCC AAACGGAAACTGAGTAAGTGGGC
CC 

PX459 V2_Q739*_2 CACCGGCACTCCCTCCCGCTTTGTAC AAACGTACAAAGCGGGAGGGAGT
GCC 
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Table 2.7: List of repair strand primers used for CRISPR to construct the Q739* mutation 

in MCF-7 cell line. 

PRIMER  SEQUENCE 

PX459 V2_Q739*_1 

GACTTAGCTCAACCCGTCAGTACCCAGACTGACCACTGCCTCTGCCTCTTCT
TCTCCAGGCTTCCGCAATCTACACGTGGACGACCAGATGGCTGTCATTtAGT
ACTCCTGGATGGGGCTCATGGTGTTTGCCATGGGCTGGCGATCCTTCACCA
ATGTCAACTCCAGGATGCTCTACTTCGCCCCTGATCTGGTTTTCA 

PX459 V2_Q739*_2 
GACTTAGCTCAACCCGTCAGTACCCAGACTGACCACTGCCTCTGCCTCTTCT
TCTCCAGGCTTCCGCAACTTACACGTGGACGACCAGATGGCTGTCATTtAGT
ACAGCTGGATGGGGCTCATGGTGTTTGCCATGGGCTGGCGATCCTTCACCA
ATGTCAACTCCAGGATGCTCTACTTCGCCCCTGATCTGGTTTTCA	

 

 

2.8 Reporter assays  

COS-1 and MCF-7 cells were grown in the relevant hormone-depleted media (Table 2.3) 

at approximately 60 % confluence in 24 well plates and incubated for 24 hrs prior to transfection. 

Cells were transfected with 50 ng pSV-AR, pSG5-ERα or Empty Vector (EV); 10 ng β-

galactosidase or Renilla; and 1 μg ARE-/ERE-luciferase reporter (Table 2.8) using either the 

Calcium Phosphate (Section 2.4.1) or jetPRIME (Section 2.2.2). 24 hrs post transfection, then 

cells were washed twice using pre-warmed hormone-depleted media. After that, medium was 

replaced with a fresh hormone-depleted media containing the required concentration of hormone/ 

drug/ vehicle and incubated for 24 hrs. Then cells were washed twice using pre-chilled PBS and 

lysed by adding 60 μL of 1 x Reporter Lysis Buffer (Promega), kept at -80 oC until frozen. 

Luciferase assays (Promega) were performed on 20 μL of defrosted lysate alongside the β-

galactosidase assay Galacto-Light (Life Technologies) on 5 μL for normalisation, following the 



	

	 79	

manufacturer’s guidelines. Luminescence was measured using the FLUOstar Omega plate reader 

(BMG Labtech).  

Table 2.8: List of plasmids used in this thesis. 

PLASMID  SOURCE/ REFERENCE 

pSV-AR (Brinkmann et al., 1989) 

Bos-β-galactosidase C. Bevan 

pGL3-TAT-GRE-LUC (ARE-luciferase) (Jenster et al., 1997) 

3 x ERE TATA LUC (ERE-luciferase) Addgene 

pSG5-ERα M. Parker 

pSV-AR (C290Y, E355K, S568F, L638M, S663*, 
Q739*, D840N, D865E, Q868H and L881Q) M. Alkheilewi 

pSG5-Empty Stratagene 

pSG5- ERα HE257G and pSG5-ERα HE464 S. Ali 

pGL4.18 Promega 

pEGFP-NI-AR G. Brooke 

pRL Renilla Promega 

pcDNA3.1-RFP-ERα R.A. Bryan/ G. Brooke 

 

2.9 Gene expression analysis  

The relevant cells were plated at approximately 70 % confluence in either 6, 12 or 24 

well plates then cultured in hormone-depleted media (Refer: Table 2.3) for the desired time. 

Following this, cells were treated with the required ligand or drug concentration for either an 8 or 

24 hrs.  
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2.9.1 RNA extraction  

After treatment, cells were washed ice cold PBS x2 and then lysed with TRIsure reagent 

(Bioline). RNA extraction was performed following to the manufacturer’s protocol. Glycoblue 

(Ambion) was then added to aid the visualisation of the RNA pellet. After the pellet is formed, 

the RNA was additionally wash with 75 % Ethanol (EtOH), then pellets were air-dried and re-

suspended in 30 μL (6 well) or 20 μL (12 and 24 well) RNase free. Using the NanoDrop® ND-

1000 UV/VIS Spectrophotometer (Nanodrop, LabTech) the RNA concentration was quantified 

assessed for quality assessed following the manufacturer’s protocol.  

 

2.9.2 cDNA synthesis  

To synthesise complementary DNA (cDNA), reverse transcription was performed using 

either the Transcriptor First Strand cDNA Synthesis Kit (Roche) or High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Thermo Fisher Scientific), following the 

manufacturer’s protocol for each kit. 500 ng of RNA was utilised per cDNA synthesis reaction 

and the produced cDNA product was diluted 1:4.  

  

2.9.3 Real-Time quantitative PCR (qPCR)  

Real-Time quantitative PCR (qPCR) was conducted using 2 μL of cDNA with the 

LightCycler® 480 SYBR Green I Master (Roche) or Fast SYBRTM Green Master Mix (Applied 

Biosystems), in the reaction conditions were following the manufacturer’s quidlines for each kit. 
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Melt curves were evaluated for each qPCR test was performed using the LightCycler® 480 

(Roche) for each reaction. Gene expression was normalised using the RPL19 ribosomal protein 

(L19) reference gene and analysed using the delta-delta Ct (∆∆Ct) method. Primers used in this 

thesis were obtained from R. Bryan and G. Brooke or unless otherwise specified (Table 2.9).  

 

Table 2.9: Sequences of gene expression primers for use with qPCR. Sequences are 

displayed in 5’ to 3’ direction.  

GENE FORWARD  REVERSE  SOURCE  

AR  GACGACCAGATGGCTGTCGTCATT GGGCGAAGTAGAGCATCCT G. Brooke 

ERα  GTGTCACCTTGGACA  AGGTTCCTGTGGCCA  R.A. Bryan 

MYC GGCTCCTGGCAAAAGGTCA  CTGCGTAGTTGTGCTGATGT  R.A. Bryan 

GREB1 ATGGGAAATTCTTACGC TGGAC  CACTCGGCTACCACCT TCT  R.A. Bryan 

NDRG1 CTCCTGCAAGAGTTTG ATGTCC  TCATGCCGATGTCATGGTAGG  R.A. Bryan 

TFF1 CTGGATAGTTTGCGGC TGAG  ATGTCAGTGCCAGTAT GGGT  R.A. Bryan 

PLC-β  CGTGGCTTTCCAAGAAGAAG GCTTCCGATCTGCTGAAAAC L. Beliokaite 

PLC-δ CTGAGCAACTGAAGGGGAAG CTCGTCTTCGTCTGACACCA L. Beliokaite 

PLC- ε GCAGCTGCAGTGTGATCATT AAAAGGTCTTGGCAGCTTGA L. Beliokaite 

PLC-γ AGCTGTGGTTCCCATCAAAC CATGCTGATGGAGAAGACGA L. Beliokaite 

PLC- η AGAGATCAAGATGGCGTGCT CAGATACAGGCAGCGACAAA L. Beliokaite 

PLC-∆ GTGAAAGGATGCCGTTGTTT GGCAGTGGAGCAGTGATTTT L. Beliokaite 
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L19 GCGGAAGGGTACAGCC AAT  GCAGCCGGCGCAAA  G. Brooke 

 

2.10 Genomic DNA extraction from breast cancer tumours 

Tumour tissue (≤ 30 mg) was transferred into a pre-chilled sterile mortar and washed 

three times with cold PBS before homogenisation. Sample was mixed with liquid nitrogen to 

keep them frozen, then firmly crushed using a chilled pestle into smaller pieces until a 

pulp/powder was formed. The sample was transferred into a sterile DNase-free 2ml 

microcentrifuge tube containing 375μl AGL buffer provided with the appGENE Genomic DNA 

kit (Appleton Woods). The following steps were applied using the manufacturer’s reagents and 

protocol until final product was eluted with 50 μL elution buffer and the eluted DNA stored at -

20°C. 	

To quantify the DNA concentration, a standard curve was constructed using qPCR 

performed on Roche Human Genomic DNA. Following the manufacturer’s instructions, 8 

dilutions from the genomic DNA were prepared starting from 20 ng/ µl then diluted further (1:2 

dilution series). qPCR was conducted using the LightCycler® 480 (Roche) and a melt curve was 

observed for each reaction. Primers sequence obtained form (Roche) are listed in Table 2.10.    

Table 2.10: List of genomic DNA primers used for the BCa tumours DNA extraction.    

PRIMER SEQUENCE 

Genomic DNA forward GGCTAGCTGGCCCGATTT 

Genomic DNA reverse GGACACAAGAGGACCTCCATAAA 
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2.11 Protein analysis  

2.11.1 Cell collection  

Ice-cold PBS was used to wash cells x2 then were detached via scraping with fresh PBS. 

Cells were subsequently pelleted for 1 min at (13,000 rpm and 4 oC), after that the supernatant 

was discarded and cell pellet was snap frozen and kept at -80 oC. If required, cell pellets were re-

suspended in Radioimmunoprecipitation buffer (RIPA) combined with Halt Protease Inhibitor 

(PI) Cocktail (ThermoScientific) and Phenylmethanesulphonylfluoride (PMSF) to a final 

concentration of 1 μM (Table 2.1) (100 μL of RIPA was utilised per well of a 6 well plate). 

Sonication was conducted on lysates for 3 cycles on ‘high’ of 30 secs on and 30 secs off using a 

Biorupter® Plus (Diagenode). Samples were then pelted for 10 min at (13,000 rpm and 4 oC) 

where the supernatant was transferred to a fresh pre-chilled 1.5 mL tube.  

 

2.11.2 DC protein assay  

To quantify protein concentration, the Detergent Compatible (DC) Protein assay (Bio-

Rad) was conducted using 5 μL of sample against standard concentrations of BSA as a reference 

concentration, following the manufacturer’s guideline. Protein concentrations were measured at 

absorbance λ = 650 nm using the FLUOstar Omega plate reader (BMG Labtech). Samples were 

diluted to an equal volume of protein per set (10–20 μg/10 μL of sample) with 4 x Laemmli 

protein sample buffer (Bio-rad) (2.5 μL/10 μL of sample).  



	

	 84	

 

2.11.3 SDS-PAGE  

Lysates were vortexed and incubated at 95 oC for 5-10 mins before running time. Then 

samples were immediately transferred to ice and vortexed once cool. 15- 20 μL of lysate was 

loaded per well of a 10 % polyacrylamide gel, against 5 μL of the Page Ruler Prestained Protein 

Ladder (Thermo Scientific) unless otherwise specified in results. Sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) was conducted at 120 V with pre-made running 

buffer.  

 

2.11.4 Immunoblotting  

Proteins were transferred onto a Polyvinylidene difluoride (PVDF) membrane 

(Immobilion P, Millipore Inc., hydrated in preparation using 100 % Methanol, MeOH) via semi-

dry transfer. This was conducted at 15 V and 100 mA for 2 hrs, using semi-dry electro blotting 

apparatus (Bio-Rad) and pre-made transfer buffer. After that, membranes were incubated with 

blocking solution for 15 mins, then using the required primary (1o) antibody (Ab) membranes 

were probed (Table 2.11) for 1 hr at (RT or O/N and 4 oC) while gently rocking. Three washes 

were performed with PBS-T for 5 mins before adding the relevant secondary (2o) Ab followed 

by incubation (Table 2.11) for 1 hr at RT, with gentle rocking. Three washes were then applyed 

again using PBS-T for 5 mins followed by an additional wash with PBS for 5 mins, each were 

gently rocking. Proteins were subsequently visualised via chemiluminescence using LuminataTM 
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Forte (Millipore) with the Fusion FX imager (Vilber Lourmat). 

 

Table 2.11: Description of the antibodies and concentrations used for immunoblotting.  

PROTEIN PRIMARY ANTIBODY  SECONDARY ANTIBODY  

Androgen 
Receptor (AR)  

AR (N-20) sc-816 (Santa Cruz, 
diluted 1:100) 

Anti-Rabbit IgG (whole molecule)-
Peroxidase (Sigma-Aldrich, diluted 
1:2,000) 

Oestrogen 
Receptor alpha 
(ERα)  

ERα HC-20 sc-543 (Santa Cruz 
diluted 1:200) 

Anti-Rabbit IgG (whole molecule)-
Peroxidase (Sigma-Aldrich, diluted 
1:2,000) 

Beta-Actin (β-
Actin) 

Beta Actin Ab8226 (Abcam diluted 
1:3,000)  

Anti-Rabbit IgG (whole molecule)-
Peroxidase (Sigma-Aldrich, diluted 
1:2,000) 

Beta-Tubulin (β- 
Tubulin)  

Beta Tubulin T5168 (Sigma- 
Aldrich diluted 1:300) 

Anti-Mouse IgG (whole molecule)-
Peroxidase (Sigma-Aldrich, diluted 
1:2,000)  

Cleaved PARP  Cleaved PARP Ab9541 (Cell 
Signalling diluted 1:500 ) 

Anti-Rabbit IgG (whole molecule)-
Peroxidase (Sigma-Aldrich, diluted 
1:2,000) 

 

2.12 Cell staining and confocal imaging 

Cells were seeded at a low confluence (approximately 30 %) on cover-slips in the 

relevant hormone-depleted media, and incubated for 24 hrs. After that, cells were either 

transfected with the required plasmid (AR, ERα, ER HE-464, ER HE-257G and AR mutants) 

and/or treated with the relevant hormones for 2 hrs followed by washing with PBS x3. Fixing 
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was conducted using 200 μL of 4 % PFA for 15 mins whilst rocking gently at RT. Following 

that, cells were washed with PBS for 5 mins x3 while shaking then fixed with 200 μL of ice cold 

100 % MeOH for 10 mins at -20 oC.  

Cells were initially incubated with 250 μL of 1 % BSA in PBS-T for 30 mins at RT in 

preparation for stainging, whilst gently rocking. 1o Ab incubation was conducted for AR (AR 

N20, Santa-Cruz diluted 1:200)  or ERα (ERα HE20, Santa- Cruz diluted 1:400) in 100 μL 1 % 

BSA PBS-T, for 1 hr at (RT or O/N and 4 oC), whilst gently rocking. Cells were washed x3 for 5 

mins again before 2o Ab incubation was conducted (568- Alexa Fluor conjugated, Invitrogen), in 

100 μL of 1 % BSA PBS-T for 1 hr at RT in the dark, whilst gently rocking. Cells were washed 

an additional x3 for 5 mins then coverslips were fixed onto microscope slides with Fluoroshield 

Mounting Medium with 4',6-diamidino-2-phenylindole (DAPI, Abcam) and sealed using 

Fixogum (Marubu). Confocal microscopy was then used to visualise cells. 

 

2.13 Single cell tracking by widefield microscopy 

 PC3-GFP cells were seeded on 96-well plates (500-1,000 cell/well) for 24 hrs. After that, 

media was replaced with phenol red-free RPMI (5% SFCS) then cells were incubated post 

treatment with desired drug concentrations for 72 hrs. Examination was conducted using 

Widefield microscope with a motorized stage and humidified chamber, 37 oC in 5 % CO2 

conditions, and images acquired using 10X objective. GFP was excited using blue light (470 nm) 

via a CoolLED pE excitation system and two-dimensional (2D) time series frames were captured 

using NIS-Elements AR software (4.13.04 Build 925) every 15 minutes for 24 hrs. Multiple 
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areas were examined for each treatment well (3 fields minimum) and collected image sequences 

were pre-processed and analysed by ImageJ software. 

  

2.14 WST-1 proliferation assays 

Cells were grown in a 96-well plate with the relevant culture media (Table 2.3), then 

treated using the required concentration of hormone for 96 hrs. Cellular proliferation was 

measured using WST-1 Cell Proliferation Reagent (Abcam), following the the manufacturer’s 

guideline. Growth was quantified by measuring the resulting absorbance λ = 440 nm on the 

FLUOstar Omega plate reader (BMG Labtech).  

 

2.15 Crystal Violet proliferation assays  

Cells were seeded in 96 well plates in the required media at confluence of approximately 

10 %) and incubated at 37 °C for 24 hours prior to treatments. Then medium was refreshed and 

cells were treated with desired drug concentrations then incubated for 72 hrs. 100 μl of 4% PFA 

was added to each well and incubated at RT for one hour, plates then were washed x3 using PBS 

and left to dry O/N. Cells then were then incubated for one hour in 50 μl of 0.02 % crystal violet 

stain, followed with x3 washes with distilled H2O and left for drying. Lastly, 100 μl of 10 % 

acetic acid was added to all wells and kept for one hour on a rocker. Plates were read using a 

spectrophotometer microplate reader (FLUOstar Omrega, BMG LABTECH, UK) at 490 nm 

wavelength. 
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2.16 Immunoprecipitation 

HEK293 cells were seeded at 70% confluence in 10 cm plates in hormone-deprived 

medium then transfected with plasmids encoding GFP-AR and RFP-ERα using jetPRIME (as 

described in section 2.4.2). Cells were left for 24 hours then treated for 2 hrs with either vehicle 

(EtOH), 10 nM Mibolerone and/or 10 nM Estradiol and lysed in IP buffer containing freshly 

added protease inhibitors. Lysates were centrifuged at 10,000 g for 15 minutes at 4 °C and 

supernatants transferred to fresh tubes. Protein concentration was obtained using the DC protein 

assay (as described in section 2.11.2). Lysates were pre-cleared with 50 μL of sepharose beads 

(Sigma-Aldrich, MO, USA, 30 minutes of rotation at 4 °C). After that, the supernatant was 

transferred to fresh tubes and incubated with anti-GFP antibody (Abcam, Cambridge, UK) for 

1hr whilst rotating then 50 μL of sepharose beads were added. 1hr post incubation, beads were 

washed x3 with IP buffer, 2X Protein Loading Buffer added to the beads and samples boiled 

before protein separation was performed using SDS-PAGE followed by immunoblotting.  

2.17 Biotin drug pull-down 

PC3-GFP cells were seeded at confluency (approximately 70%) in 10 cm plates in full 

media for 24 hrs and treated with 20 uM of the desired drug for 2 hrs at 37 °C (DMSO, DJ0199, 

DJ0232 and DJ0233) (Table 2.12).  After incubation, plates were washed twice with cold PBS 

and 400 uL RIPA (2.5% HALT protease inhibitor was added) then lysate was scraped and 

transferred to 1.5 mL cold tubes. Cells were broken down using 25G needle (x5 times) and 

centrifuged (13,000 rpm for 10 min at 4 °C) then supernatant was transferred to fresh tubes. 

PD10 desalting columns were prepared following the manufacture instructions (PD Spin TrapTM 

G-25) then 300 uL of lysate was added from each treatment. Columns were attached to fresh 
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tubes and centrifuged (800g for 1 min at 4 °C), then 66 uL TBS, 8 uL (1mM Biotin Azide), 4 uL 

(5mMCuSO4), 2 uL (50mM THPTA) and 20 uL (100mM Sodium Abscorbate) were added to the 

collected products/ tube and rotated in the dark (1 hr at RT). During rotation, PD10 columns 

were washed (x5 times with ddH2O) and beads (Pierce Protein A/G Magnetic Beads- Fisher 

Scientific) 80 uL/ tube were centrifuged for washing (x4 times with ddH2O at 1000g). Prepared 

columns were attached to 1.5 mL tubes following the addition of the samples and 80 uL washed 

beads then kept rotating for 2 hrs at 4 °C. Beads were washed twice with 500 uL TBS (1500 rpm 

for 1 min at 4 °C) then an extra wash with cold PBS. 20 uL of trypsin was added to each tube 

then incubated at 30 °C overnight. To preform Mass Spectrometry, 5 uL of 20% formic acid was 

added then spectra were generated by collision-induced dissociation of tryptic digests in the 

linear ion trap of the LTQ Orbitrap Velos instrument.  

 

Table 2.12: Description of the compounds used for biotin pull- down.         

CODE (MW) COMPOUND SPECIFICATIONS  

DJ0199	(351.47) 

 
Not biotinylated (-ve control) 

DJ0232	(375.49) 

 

Biotinylated 

DJ0233	(375.49) 

 

Biotinylated but inactive (-ve 
control) 
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2.18 Flow Cytometric Measurement of Apoptotic and Necrotic Cells 

PC3-GFP cells were seeded at 70 % confluence in 12 well plates for 48 hrs, treated with 

the PLC inhibitors (1 μM) and cells incubated for a further 24 hrs. The media was collected into 

2 ml tubes, the cells washed with 200 μL of PBS and collected into respective tubes. The cells 

were detached with 200 μL of trypsin EDTA and were collected using 500 μL of media. For 

apoptosis measurement 150 μL of the suspension was moved to new 1.5 ml tubes and spun at 

5000 rpm for 2 mins. The supernatant was aspirated, 200 μL of Nicoletti buffer added. Necrosis 

was determined by measuring the number of PI positive cells.  The harvested cells were stained 

with 20 μg/ml of PI. For both assays, cells were vortexed and kept on ice until measurement 

Accuri C6 flow cytometry (BD Biosciences).  

 

2.19 Flow cytometric analysis of cell cycle  

PC3-GFP cells were seeded at 70% confluence in 12 well plates for 48 hrs, treated with 

the PLC inhibitors (1 uM) and cells incubated for a further 24 hrs. Media was collected in 2 ml 

tubes and cells were washed with 500 μl of PBS, which then was transferred to the same tube. 

100 μl of trypsin was added and the cells were incubated for a few minutes to allow cell 

detachment. 500 μl of the collected media and PBS mixture was added to the cells. The cell 

suspension was transferred back to the 2 ml tube and centrifuged at 5500 rpm for 5 minutes. 

Media was discarded, and pellets re-suspended in 50 μl of PBS. Then cells were fixed with 70% 

EtOH 500 μl added drop-wise and followed with gentle vortex. For analysis, cells were pelleted 

at 5500 rpm for 5 minutes and PBS was aspirated off then re-suspended in 200 μl of PI staining 
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solution containing RNase A. 10,000 cells per sample were analysed and quantified using Accuri 

C6 flow cytometry (BD Biosciences). 

 

2.20 Assessment of caspase 3/7 activity and viability  

PC3-GFP cells were seeded in 96 well plates at <2,000 cells per well following the 

manufacturer instructions. After 24 hrs, cells were treated with the desired drugs in different 

concentrations and 48 hrs post drug treatment Caspase 3/7 activity and viability were assessed 

using the ApoTox-GloTM Triplex assay kit. Plates were read using the spectrophotometer 

microplate reader (FLUOstar Omega, BMG LABTECH, UK) for luminescence and fluorescence 

at 400 nm wavelength.  

 

2.21 Ex vivo culture of human prostate tumours 

This experiment was performed in collaboration with Dr. Damien Leach and Prof. 

Charlotte Bevan (Imperial Collage London). A tissue from human prostate cancer patient was 

dissected into smaller pieces sized 1-mm3 then cultured on a sponge that is pre-soaked with 

gelatin (Johnson and Johnson) in 24-well plate. Sample was incubated at 37°C for 48 hrs with 

500 μL RPMI-1640 with 10% FBS, antibiotic/antimycotic solution, 0.01 mg/mL hydrocortisone 

and 0.01 mg/mL insulin (Sigma). Harvested sample was then analysed unsing qPCR for target 

genes for caspase 3 and PCNA (Centenera et al., 2012). 
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2.22 Statistical analysis  

For each experiment, three independent biological repeats were performed unless 

otherwise stated. To identify significant differences in values one and two-way ANOVA tests 

were performed using Prism version 6 (GraphPad Software, San Diego, CA) and expressed as 

mean value ±SE. Adjusted P values following Bonferroni test, less than 0.01 values were 

considered to be significant.  

 

2.23 Image and software analysis  

Three independent biological repeats were performed for each experiment unless 
otherwise stated. For crystal structures the software PyMol V 2.2 was used to obtain AR protein 
3D structures at: https://pymol.org/2/. The catalogue of somatic mutations in cancer (COSMIC)  
database V 89 was used to obtain AR mutation found in breast cancer at: 
https://cancer.sanger.ac.uk/cosmic. The software 4Peaks V1.7.1 was used to obtain AR mutation 
in BCa comparisons with wild type receptor. To perform heatmap for PCa cell lines, the softwar 
plotly V 4.1.0 was used at: https://plot.ly. The flow cytometry histograms were obtained using 
the Accuri C6 V 1.0 software (BD Biosciences).    
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CHAPTER 3 

RESULTS I: The Role of the Androgen Receptor in Breast Cancer and 

its Cross-Talk with Oestrogen Receptor alpha 

 

3.1 Introduction  

In the UK, breast cancer (BCa) is the cancer with the highest incidence rate amongst 

women (Cancer Research UK, 2014). Endocrine sensitive BCa subtypes contributes to the 

majority of the diagnosed cases of the disease where progression is mostly driven by Oestrogen 

Receptor α (ERα), which is dependent upon oestrogens for activation (Chuffa et al., 2017; Gross 

and Yee, 2002). As previously mentioned, ERα is a member of the ligand-dependent Nuclear 

Receptor (NR) family which translocate into the nucleus upon the binding of their ligands (Sever 

and Glass, 2013). 17- β-Oestradiol (E2) is one of the most potent oestrogens as well as the most 

abundant in circulation (Bean et al., 2014). Another important member of the NR family is the 

Androgen Receptor (AR), which is activated in response to androgens.  Interestingly, androgens 

are secreted in higher quantities than oestrogens in females (Lehmann-Che et al., 2013). 

Androstenedione and testosterone, two types of androgens produced in women, are precursors 

for E2 (Chuffa et al., 2017; Patani and Martin, 2014). The AR appears to have different roles in 

breast cancer, having oncogenic activity in ERα-negative disease and acting as a tumour 

suppressor in ERα-positive disease. Therefore, in recent years a significant amount of research 

has aimed to further our knowledge of the role of AR in BCa (Rahim and O'Regan, 2017). 

In ERα-positive BCa, AR appears to be an indicator of positive prognostic outcome, 

which has been hypothesised to be as a result of AR-ERα cross-talk (Lehmann-Che et al., 2013; 
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Rahim and O'Regan, 2017). It has been demonstrated that AR and ERα suppress each other’s 

activity, and this cross-talk could explain the inhibitory effect displayed by androgen signalling 

in ERα-positive BCa (Panet-Raymond et al., 2000). However, in ERα-negative disease it has 

been suggested that AR can mimic ERα signalling to promote BCa progression in the absence of 

a functioning ERα (Le Romancer et al., 2011).  

A number of mechanisms have been proposed to explain AR-ERα cross-talk.  For 

example, direct interaction between the N-terminus of the AR and the LBD of the ERα blocks 

the activity of both receptors (Hickey et al., 2012; Panet-Raymond et al., 2000). Also, the AR is 

able of bind to oestrogen response elements (EREs) and therefore block ERα binding to DNA. 

This was demonstrated through the transfection of the AR DBD into BC cell lines, which was 

shown to significantly reduce ERα activity (McNamara et al., 2014). Furthermore, competition 

for histone modifying cofactors is also likely to have a bearing on receptor activity. For example, 

Androgen Receptor Associated co-regulator 70 (ARA70) can enhance the activity of both the 

AR and ERα and the AR may sequester this factor, resulting in a decrease in ERα activity 

(Lanzino et al., 2005).  

3.1.1 Chapter Aims 

Investigation of AR signalling in BCa has increased significantly over recent years and 

several clinical trials are assessing the efficacy of anti-androgens as therapeutics for this 

disease. There if therefore a need to better characterise the role of AR signalling in BCa: 

Aim 1-  To characterise the mechanisms of cross-talk between the AR and ERα.   

Aim 2 – To identify AR mutations associated with BCa and to investigate if these 

substitutions affect receptor activity and ligand specificity. 
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Aim 3 – To investigate if mutations in the AR affect receptor cross-talk with the ERα 

pathway. 

 

3.2 Characterisation of AR-ERα Cross-talk 

3.2.1 Androgen signalling inhibits oestrogen induced growth 

It appears that the AR has different roles in BCa development, oncogenic in ERα-

negative disease and tumour suppressor in the ERα-positive disease (Hickey et al., 2012). 

Therefore, an investigation of the AR/ERα cross-talk in the MCF-7 cell line as it provides a 

useful model because it expresses both receptors. To asses the inhibitory effects of androgen 

upon MCF7 cells, proliferation assays were performed. Cells were treated with 0.1 nM E2 and 

increasing concentrations of the synthetic androgen Mibolerone (MIB). E2 significantly 

increased MCF-7 growth and increasing doses of MIB significantly decreased growth (Figure 

3.1a).  

To see if the treatment with E2 or MIB altered receptor expression, cells were treated 

with the ligands for 24 hrs and immunoblotting performed (Figure 3.1b). The immunoblot was 

repeated 3 times and densitometry analysis performed (Figure 3.1c).  The results demonstrated 

that AR expression levels increases with MIB treatment and remained relatively low in the 

presence of E2. In contrast, ERα levels decreased in response to E2 and MIB had no effect upon 

ERα levels.  

 



	

	 96	

 

Figure 3.1: AR signalling inhibits E2-induced proliferation of MCF-7 cells. MCF-7 were treated with the 
ligands E2: 17-β-oestradiol (0.1 nM) and MIB: mibolerone (0.1 nM, 1.0 nM and 10 nM) for 24 hrs. (a) Relative 
proliferation of MCF-7 cells. Proliferation assays were done in triplicate. (b) Cells were treated with ligand for 24 
hrs, proteins separated using SDS-PAGE and AR and ERα expression analysed using immunoblotting. (c) The 
immunoblotting was repeated 3 times and densitometry analsyis performed using Image J. ANOVA. 
****p<0.00001, ***p<0.0001, ***p<0.001, *p<0.01. Mean ± 1SE.  

 
	

	
	

																							  

(a)	

(b)	

(c)	
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3.2.2 The interaction between AR and ERα is ligand-independent 

Direct interaction between AR and ERα as well as competition for cofactors have been proposed 

as mechanisms of inhibitory cross-talk between the two receptors (McNamara et al., 2014; 

Panet-Raymond et al., 2000). To investigate this, plasmids encoding GFP-AR and RFP-ERα 

were transfected into HEK cells and co-immunoprecipitation was performed using anti-GFP 

beads. Proteins were visualised using immunoblotting where ERα was found to 

immunoprecipitate with the AR and this interaction was ligand independent (Figure 3.2).  

   

Figure 3.2: AR-ERα interaction. HEK cells were transfected with plasmids encoding RFP-ERα and GFP-AR for 
48 hrs.  Cells treated with EtOH: ethanol, E2: 17-β-oestradiol (1.0 nM) and M: mibolerone (1.0 nM) for 2hrs then 
harvested following co-immunoprecipitation using anti-GFP beads. Immunoblotting was performed to visualise the 
proteins, using antibodies specific for the AR and ERα. 
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3.2.3 AR and ERα inhibit each others activity in reporter assays 

To further investigate AR-ERα cross-talk, reporter assays were performed (Figure 3.3a). 

COS-1 cells were transfected with the TAT-GRE-E1B-LUC/ ERE-LUC reporter plasmids, a 

renilla expression vector and different concentrations of pSV-AR and/or pSG5-ERα plasmids. 

Cells were left for 24 hrs then treated with 1.0 nM of mibolerone and/or 17-β-oestradiol (Figure 

3.3b). As expected, AR activity was induced by mibolerone, and this activity was significantly 

inhibited in response to increasing concentrations of ERα. A similar trend was evident when 

ERα was constant and AR levels were increased. Immunoblotting analysis was performed to 

confirm successful transfection and expression of the receptors (Figure 3.3c). Expression levels 

for AR and ERα receptors increased with the amount of plasmid transfected.  Interestingly, 

increased expression of AR or ERα increased the levels of the other receptor (i.e. when AR 

expression was increased, ERα levels were also found to increase). 
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Figure 3.3: AR and ERα cross-talk inhibits receptor activity. (a) Schematic representation of the luciferase 
reporter assays. (b) COS-1 cell lines were transfected with expression plasmids for ERα and/or AR, a luciferase 
reporter (ERE-LUC or TAT-GRE-E1B-LUC) and a renilla expression vector.  Cells were incubated for 24 hours 
then treated with EtOH: ethanol, E2: 17-β-oestradiol (1.0 nM) and/or MIB: mibolerone (1.0 nM). (c) COS-1 cells 
were transfected with plasmids encoding ERα and AR for 24 hrs, cells harvested and immunoblotting performed 
with antibodies specific for ERα and AR. ANOVA ****p<0.00001, **p<0.001. Mean ± 1SE. 

 

	
	
	

										 									 	
	
	
	

				 		 	
	
	

 

(b)	

(c)	
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To further investigate the inhibitory effect between the receptors, the effect of the anti-

androgen drug Bicalutamide (Bic) was evaluated to what effect AR antagonists have upon 

receptor crosstalk. AR activity was significantly inhibited in response to 1 and 10 uM Bic 

(Figure 3.4b).  ERα activity was not inhibited by Bic at any of the concentrations tested (Figure 

3.4c).  In agreement with previous experiments, co-transfection of AR and ERα inhibited 

receptor activity. When AR activity was assessed, the receptor was inhibited in response to 

increasing concentration of Bic specially at the 1 and 10 uM treatment. However, this inhibition 

was witnessed with and without all treatment concentrations with Bic as the reduction in activity 

was due to the presence of the ERα (Figure 3.4 b and d).  On the contrary, the ERα activity was 

only inhibited when the AR was added but not due to the anti-androgen effect (Figure 3.4 c and 

e). Bic did not affect receptor cross-talk with ERα activity repressed irrespective of the 

presence/absence of Bic. To confirm this, we repeated these experiments using another anti-

androgen, Enzalutamide (Enza), which has been shown to prevent AR nuclear translocation and 

co-activator recruitment, and has greater affinity than Bicalutamide (McGhan et al., 2014) 

(Figures 3.5b). Similar trends were witnessed, Enza significantly reduced AR activity at the 

concentrations 1 and 10 uM but when the ERα was introduced the inhibition was mainly due to 

the receptors cross-talk and no significant effects were noticed due to Enza treatments (Figure 

3.5 b and d). However, ERα activity was not affected by the drug but the addition of the AR has 

resulted in reducing receptor activity with all treatment concentrations (Figure 3.5 c and e). Enza	

inhibits	AR	activity	and	no	effect	upon	ERα, as with Bicalutamide, enzalutmide did not affect the 

cross-talk between AR and ERα etc. 
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Figure 3.4: Bicalutamide dose not affect AR and ERα cross-talk. (a) Schematics representation of the luciferase 
reporter assays. (b, c, d and e) COS-1 cell lines were transfected with expression plasmids for ERα and/or AR, a 
luciferase reporter (ERE-LUC or TAT-GRE-E1B-LUC) and a renilla expression vector. Cells were incubated for 24 
hours then treated with EtOH: ethanol, Bic: Bicalutamide (0.01 uM, 0.1 uM, 1.0 uM and 10 uM), E2: 17-β-
oestradiol (1.0 nM) and/or MIB: mibolerone (1.0 nM). ANOVA ****p<0.00001, ***p<0.0001, **p<0.001. Mean ± 
1SE. 
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 Figure 3.5: Enzalutamide does not affect AR and ERα cross-talk. (a) Schematics representation of the 
luciferase reporter assays. (b, c, d and e) COS-1 cell lines were transfected with expression plasmids for ERα 
and/or AR, a luciferase reporter (ERE-LUC or TAT-GRE-E1B-LUC) and a renilla expression vector. Cells were 
incubated for 24 hours then treated with EtOH: ethanol, Enza: Enzalutamide (0.01 uM, 0.1 uM, 1.0 uM and 10 uM), 
E2: 17-β-oestradiol (1.0 nM) and/or MIB: mibolerone (1.0 nM). ANOVA ****p<0.00001, ***p<0.0001, 
**p<0.001. Mean ± 1SE. 
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3.2.4 Characterisation of AR-ERα cross-talk using ERα mutants 

The previous experiments have demonstrated that AR and ERα interact and inhibit each 

others activity.  To further investigate how the mechanism of inhibition, we were kindly gifted 2 

ERα variants by Prof. Simak Ali (Imperial College London) (Figure 3.6a): i, ΔNLS (ERα 

HE257G) which has a deletion in the NLS region at amino acids 250-270, and hence is unable to 

translocate into the nucleus; ii, ERα HE464 has a mutation in the DBD and so is unable to bind 

to DNA (Lopez-Garcia et al., 2006; Ylikomi et al., 1992). Due to the nature of the mutations, 

these mutant receptors should be transcriptionally inactive and to confirm this reporter assays 

were performed (Figure 3.6b). COS-1 cells were transfected with plasmids encoding ERα, ERα-

HE464, ERα-HE257G, the ERE- LUC reporter and a renilla expression vector (Figure 3.6c). The 

ligand-dependent activity of ERα wild-type increased as the amount of plasmid transfected 

increased, however, the two mutant ERαs were both inactive. To confirm successful transfection 

and protein expression immunoblotting analysis was performed on the lysates from the 

transfections. The expression of all receptors was found to increase as the concentration of 

plasmid transfected increased (Figure 3.6d).      

To evaluate the effect of the ERα mutants upon receptor localisation, COS-1 cells were 

seeded on coverslips and transfected with plasmids encoding ERα, ERα-HE464 and ERα-

HE257G. ERα wild-type and the DBD mutant (ERα HE464) were found to be predominantly 

nuclear in the presence and absence of E2. In contrast, the NLS mutant ERα HE257G, as 

expected, was found to be nuclear and cytoplasmic and in the presence of E2 appears to form 

aggregates in the cytosol (Figure 3.7) (Table 3.1).   
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Figure 3.6: Mutation of the ERα NLS and DBD inhibits receptor activity. (a) Image shows four functional 
domains of the ERα and the gene structure NTD = N- terminal domain. DBD = DNA binding domain. LBD = 
ligand binding domain highlighting the residues that were mtuated. (b) Schematic representation of the luciferase 
reporter assays. (c) COS-1 cell lines were transfected with expression plasmids for ERα, a luciferase reporter (ERE-
LUC) and a renilla expression vector. Cells were incubated for 24 hours then treated with EtOH: ethanol and E2: 17-
β-oestradiol (1.0 nM). Proliferation assays done in triplicate. (d) COS-1 cells were transfected with plasmids 
encoding ERα for 24 hrs, cells harvested and immunoblotting performed with antibodies specific for ERα. ANOVA 
system. ****p<0.00001. Mean ± 1SE. 
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Figure 3.7: Deletion of the ERα NLS results in cytoplasmic accumulation of the receptor. COS-1 cells were 
transfected with plasmids encoding ERα wild type, ERα HE 464 and ERα HE 257G. Cells were fixed with 4 % 
paraformaldehyde and methanol following 2 hrs of treatment with EtOH (ethanol) or E2 (17-β-oestradiol). Confocal 
microscopy was used to visualise the localisation of the oestrogen receptors (immunoflourescent staining using 
ALEXA 594 (red)). Nuclear staining = 4’,6-diamidino-2-phenylindole (DAPI) in blue. 
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Table 3.1: ERα variants cellular localisation upon oestradiol treatment. Table illustrates if ERα receptors were 
predominantly nuclear (N), cytoplasmic (C) or both (C + N) after 2 hrs treatment with the oestrogen E2: 17-β-
oestradiol in COS-1 cell line. 

RECEPTOR EtOH E2 

ERα wild type C  N 

ERα HE464 N N 

ERα 257G C + N C + N 

 

To investigate if mutations of ERα, that have altered cellular localisation or DNA 

binding, affects cross-talk between the AR and ERα, COS-1 cells were transfected with the 

TAT-GRE-E1B-LUC reporter plasmid, a renilla expression vector, pSVAR and plasmids 

encoding the wild-type and mutant ERα (Figure 3.8a).  As before, wild-type ERα inhibited the 

transcriptional activity of the AR.  Both of the ERα mutants were also found to inhibit AR 

activity, to a lesser extent, although this was not found to be significant. (Figure 3.8b). 

To see if the ERα mutants affected the cellular localisation of the AR, the fluorescent 

imaging was repeated following co-transfection of pSV-AR (Figure 3.9). AR is predominantly in 

the cytoplasm in absence of hormone and completely nuclear when treated with MIB. While 

ERα wild-type and the DBD mutant (ERα HE464) were found to be predominantly nuclear in 

the presence and absence of E2. The NLS mutant ERα HE257G also was found to be nuclear 

and cytoplasmic and in the presence of E2 with aggregates formation in the cytosol. The AR was 

witnessed to not go completely nuclear with the ERα wild type and NLS mutant are treated with 

ligand. But the AR is completely nuclear with with DBD mutant, this suggested that the AR and 

all ERα receptors do compete to co-localise (Table 3.2). 
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Figure 3.8: AR/ ERα variants crosstalk measuring AR activity upon ligand binding. (a) Schematic 
representation of the luciferase reporter assays. (b) COS-1 cell lines were transfected with expression plasmids for 
ERα and/or AR, a luciferase reporter (ERE-LUC or TAT-GRE-E1B-LUC) and a renilla expression vector.  Cells 
were incubated for 24 hours then treated with EtOH: ethanol, E2: 17-β-oestradiol (1.0 nM) and/or MIB: mibolerone 
(1.0 nM). ANOVA system. ****p<0.00001, ***p<0.0001. Mean ± 1SE. 
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Figure 3.9:  ERα reduces AR nuclear translocation. COS-1 cells were transfected with plasmids encoding pSV-
AR-GFP , ERα wild type, ERα HE 464 and ERα HE 257G. Cells were fixed with 4 % paraformaldehyde and 
methanol following 2 hrs of treatment with EtOH (ethanol), E2 (17-β-oestradiol) or MIB (mibolerone). Confocal 
microscopy was used to visualise the localisation of androgen receptor-GFP (green) and oestrogen receptors 
(immunoflourescent staining using ALEXA 594 (red)). Nuclear staining = 4’,6-diamidino-2-phenylindole (DAPI) in 
blue. 
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Table 3.2: AR and ERα variants cellular localisation upon androgen amd oestradiol treatment. Table 
illustrates if AR and ERα receptors were predominantly nuclear (N), cytoplasmic (C) or both (C + N) after 2 hrs 
treatment with the oestrogen E2: 17-β-oestradiol and androgen MIB: mibolerone in COS-1 cell line. 

 

RECEPTOR EtOH E2 

ERα wild type C  N 

ERα HE464 N N 

ERα 257G C + N C + N 
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3.2.5 Investigation of AR-ERα target genes 

To investigate if AR/ERα cross-talk inhibits endogenous target gene expression, MCF-7 

cells were grown to 70% confluence in hormone-depleted media prior to treatment with 1 nM of 

E2 and MIB and incubated for a further 24 hrs. After the RNA was harvested, qPCR was 

performed to investigate the altered expression of ERα target genes Trefoil Factor 1 (TFF1) and 

Myelocytomatosis Oncogene Cellular Homolog (MYC), the AR target gene N-myc Downstream-

Regulated Gene 1 (NDRG1), and Gene Regulated in Breast Cancer 1 (GREB1) which is 

regulated by both receptors (Figure 3.10). The ERα target gene TFF1 was found to be 

significantly increased in response to E2 and androgen had no effect upon this induction in 

expression. The other ERa target gene investigated, MYC, was not found to be significantly 

regulated by any of the treatments tested. The AR and ERα target gene, GREB1, was 

significantly regulated in response to E2 treatment only, whereas the AR target (NDRG1) was 

significantly decreased in response to this ligand. In contrast to the reporter assays, receptor 

cross-talk did not affect the genes investigated here. 
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Figure 3.10: Investigation of the effects of AR-ERα cross-talk on endogenous target genes. MCF-7 cells were 
seeded for 24 hrs then treated with the ligands EtOH: ethanol, E2: 17-β-oestradiol (1.0 nM) and MIB: mibolerone 
(1.0 nM) for further 24 hrs. Harvested RNA was reverse transcribed into cDNA and qPCR analysis performed using 
SYBR green to measure the expression levels of Oestrogen Receptor alpha (ERα) and Androgen Receptor (AR) in 
the target genes TFF1, MYC, NDRG1 and GREB1. ANOVA system. ***p<0.0001, **p<0.001, *p<0.01. Mean ± 
1SE. 
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3.2.6 Investigation of target gene expression following siRNA depletion of AR and 

ERα.  

To further investigate receptor cross-talk, AR and ERα expression was reduced in the 

MCF-7 cell line using siRNA. qPCR was used to assess the expression of AR and ERα as well as 

genes known to be AR and/or ERα targets: Myelocytomatosis Oncogene Cellular Homolog 

(MYC), Transmembrane serine protease 2 TMPRSS2, Gene Regulated in Breast Cancer 1 

(GREB1) and N-myc Downstream-Regulated Gene 1 (NDRG1). AR knock-down affected the 

ERα at the RNA level and at the protein expressions where 31.9 % reduction was witnessed. 

Similar trends were demonstrated in AR levels, as the ERα knock-down has reduced the AR 

RNA expression and protein levels with 62.1 % (Figure 3.11a and b).  

MYC was found to be up-regulated in response of E2, knock-down of ERα reduced MYC 

expression (Figure 3.12a). Knock-down of AR had no significant effect upon MYC expression.  

TMPRSS2 (AR target gene) was not found to be androgen-responsive in MCF-7 cells, however, 

knock-down of ERα resulted in a significant increase in gene expression, independent of 

treatment (Figure 3.12b). GREB1 is weakly induced by androgen and more significantly by E2, 

the androgen induced expression was reversed following knock-down of AR and ERα. The 

knock-down of AR did not affect the E2-induced expression of GREB1, but knock-down of ERα 

completely inhibited the induction of gene expression (Figure 3.12c). Finally, the AR target gene 

NDRG1 was not found to be regulated by the AR or ERα (Figure 3.12d). In summery, the 

reporter assays demonstrated that AR and ERα cross-talk inhibit each others activity, However, 

these effects were not replicated when endogenous genes were analysed in MCF-7 cells. 
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Figure 3.11: AR and ERα knock-down in MCF-7 cell line. siRNA transfection in MCF-7 cells was performed for 
72 hrs to deplete Androgen Receptor (AR) and Oestrogen Receptor alpha (ERα) levels alongside Non-Targeting 
(NTC) siRNA control. (a) After transfection, cells were treated with EtOH: ethanol, 1.0 nM E2 (17-β-oestradiol or 
MIB (mibolerone) for 24 hrs. Harvested RNA was reverse transcribed into cDNA and qPCR analysis performed 
using SYBR green to measure the expression levels of the AR and ERα genes. (b) Immunoblotting analysis to 
investigate the expression levels of the receptors at the protein level. ANOVA. ****p<0.00001, ***p<0.0001, 
**p<0.001, *p<0.01. Mean ± 1SE. 
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Figure 3.12: Relative expressions of AR and ERα target genes upon receptors knock-down in MCF-7 cell line. 
siRNA transfection in MCF-7 cells was performed for 72 hrs to deplete Androgen Receptor (AR) and Oestrogen 
Receptor alpha (ERα) levels alongside Non-Targeting (NT) siRNA control. (a,b,c and d) After transfection, cells 
were treated with EtOH: ethanol, 1.0 nM E2 (17-β-oestradiol or MIB (mibolerone) for 24 hrs. Harvested RNA was 
reverse transcribed into cDNA and qPCR analysis performed using SYBR green to measure the expression levels of 
the MYC, TMPRSS2, GREB and NDRG1 genes. Values blotted using ANOVA system. ***p<0.0001, **p<0.001. 
Mean ± 1SE. 
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3.3 Androgen Receptor (AR) Variants in Breast Cancer 

3.3.1 Identification of AR mutations in BCa 

As previously mentioned, the AR has been found to be highly expressed in breast tissue 

and appears to be a tumour suppressor in the ERα-positive disease and an oncogene in ERα-

negative BCa (Hickey et al., 2012). As a result of selective pressure, therapy resistant BCa 

tumours can develop mutations in their driver receptors, which subsequently affects proliferation 

rate and therapeutic response (Alluri et al., 2014). To investigate if AR mutations exist in BCa, 

the COSMIC cancer mutation database was interrogated and 10 mutations were identified: 

C290Y, E355K, S568F, L638M, S663*, Q739*, D840N, D865E, Q868H and L881Q (Figure 

3.13a). BCa patients who had the mutations, S663*, Q739* and L881Q, where found to express 

ERα-positive and PR-positive receptors in their tumours. For patients with L638M and D865E 

mutations, their tumours have not expressed these two receptors. Further, clinical details for 

mutations C290Y, E355K, S568F, D840N and Q868H were not available in regard to expressed 

receptors (Table 3.3).  

To investigate the localization of these mutations further, the crystal structures of the AR 

DBD and LBD were obtained from the Protein Data Bank (Figure 3.13b). The LBD is a pocket 

formed from 12 α-helices which form a pocket into which the ligand DHT (dihydrotestosterone) 

fits. Ligand binding promotes the re-localisation of helix 12, creating 2 important protein-protein 

interaction sites: the co-activator groove and the BF3 region (Estebanez-Perpina et al., 2007 and 

Brooke et al., 2015). The S568F mutation was found to be on the DBD located on one of the β-

sheets, while the mutations D840N, D865E, Q868H and L881Q are located on different helices 

that form the LBD (Figure 3.13b).  
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To analyse the effect of these mutations upon AR activity, the substitutions were inserted 

into the pSVA-AR plasmid using site directed mutagenesis. Plasmids were subsequently sent for 

sequencing to confirm the successful insertion of the mutant base pair (Figure 3.14).  
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Figure 3.13: Locations of AR mutations identified in Breast Cancer. (a) Image shows mutations identified in 
breast cancer, indicated in red, and their locations on the four functional domains of the AR and the gene structure 
indicated in chromosome X q11-12. NTD = N- terminal domain, DBD = DNA binding domain, LBD = ligand 
binding domain and AF = activation function. A-F indicates the different location of the 6 functional domains with 
amino acids residues numbered. (b) Crystal structures of AR DBD and LBD regions highlighting exact location of 
mutants ARs in BCa (red) and L-DHT (green). AR structures (PDB:10275) were obtained form PyMOL software 
(www.pymol.org). AR mutations in BCa were identified in the COSMIC database. 
(https://cancer.sanger.ac.uk/cosmic) 
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Table 3.3: AR mutants found in BCa and their expressed receptors. Mutations were obtained from the COSMIC 

database.  

AR Mutant ERα PR 

C290Y N/A N/A 

E355K N/A N/A 

S568F N/A N/A 

L638M Negative Negative 

S663* Positive Positive 

Q739* Positive Positive 

D840N N/A N/A 

D865E Negative Negative 

Q868H N/A N/A 

L881Q Positive Positive 
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Figure 3.14: Chromatographs of the wild-type and mutant ARsa. Chromatographs show the AR mutants: 
C290Y, E355K, S568F, L638M, S663*, Q739*, D840N, D865E, Q868H and L881Q. Changes in single base pair 
that results in the desired amino acid changes are highlighted. Chromatograms generated using 4Peaks (V1.7.1). 
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To investigate the protein expression levels of the AR wild-type and mutant receptors, 

immunoblotting analysis was performed (Figure 3.15). The majority of the mutants had similar 

expression to wild-type AR except for the mutants L881Q, Q739* and S663* which have higher 

expression levels compared to the wild-type. Also, the truncation mutants were confirmed to be 

smaller than the wild-type receptor: AR= 110 kDa, S663*= 79 kDa and Q739*= 88 kDa.  

 

Figure 3.15: The mutant ARs are successfully expressed in COS-1 cell line. Immunoblotting analysis of COS-1 
cells transfected with AR mutants (C290Y, E355K, S568F, L638M, S663*, Q739*, D840N, D865E, Q868H and 
L881Q), wild type AR and Empty plasmid (E. plasmid). 
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3.3.2 Some of the mutant ARs are constitutively active 

To assess the transcriptional activity of the cloned ARs, plasmids encoding the wild-type 

and mutant ARs were transfected into COS-1, along with the androgen responsive TAT-LUC 

reporter plasmid and Renilla expression vector. After 24 hrs cells were treated with different 

concentrations of MIB (0.0 nM, 0.01 nM and 1.0 nM) (Figure 3.16b). The truncated mutants 

(S663* and Q739*) were active in the presence and absence of androgen treatment. The S663* 

mutant was found to have significantly higher activity than wild-type receptor in the absence of 

ligand and at 0.1 nM MIB, and had similar activity to the wild-type receptor in the presence of 1 

nM MIB. In the presence of 1 nM Mibolerone there was no significant difference in the activity 

of wild-type and mutant receptors, with the exception of D865E which appears to be 

transcriptionally inactive.  
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Figure 3.16: Transcriptional activity of the mutant ARs. (a) Schematics representation of the reporter assay. (b) 
COS-1 cells were transfected empty plasmid, pSV-AR wild-type or mutants (C290Y, E355K, S568F, L638M, 
S663*, Q739*, D840N, D865E, Q868H and L881Q), TAT-GRE-E1B-LUC reporter and a renilla expression vector.  
Cells were treated with EtOH (ethanol) or MIB (mibolerone) (0.01 nM or 1.0 nM) to evaluate receptor activity. 
ANOVA. ****p<0.00001, ***p<0.0001. Mean ± 1SE. 
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3.3.3 Investigation of the cellular localisation of AR mutants identified in BCa 

In the absence of androgen, the AR is localised in the cytoplasm and held in an inactive 

state, however, upon ligand binding the receptor translocates to the nucleus then binds to the 

DNA to initiates transcription of target genes (Lehmann-Che et al., 2013). To investigate the 

localisation of the wild-type and mutant receptors, confocal microscopy was performed. COS-1 

cells were plated at 30% confluence on cover slips in 24 well plates. Cells were transfected with 

plasmids encoding pSV-AR and the AR mutants (C290Y, E355K, S568F, L638M, S663*, 

Q739*, D840N, D865F, Q868H and L881Q) using FuGENE HD (Promega) and incubated for 

24 hrs before treatment with the ligand MIB for 2 hrs. As expected, in the absence of androgen 

the wild-type AR is predominantly localized in the cytoplasm and androgen treatment promotes 

AR nuclear translocation (Figure 3.17). Mutants C290Y, E355K, S568F, L638M, D840N, 

D865E, Q868H showed similar localisation as wild-type AR with and without androgen 

treatment. Interestingly, the mutants S663* and Q739* were constitutively nuclear in the 

presence and absence of androgen treatment (Figure 3.17 and Table 3.4).  
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Figure 3.17: The cellular localisation of wild-type and mutant AR in response to androgen. COS-1 cells were 
transfected with plasmids encoding wild-type and mutant AR (C290Y, E355K, S568F, L638M, S663*, Q739*, 
D840N, D865E, Q868H and L881Q). Cells were fixed with 4 % paraformaldehyde and methanol following 2 hrs of 
treatment with EtOH (ethanol) and MIB (mibolerone). Confocal microscopy was used to visualise the localisation of 
the ARs (stained using ALEXA 594 (red)). Nuclear staining = 4’,6-diamidino-2-phenylindole (DAPI) in blue. 

 

 

 

Table 3.4: AR variants cellular localisation upon androgen treatment. Table illustrates if ARs were 
predominantly nuclear (N), cytoplasmic (C) or both (C + N) after 2 hrs treatment with the androgen MIB: 
mibolerone in COS-1 cell line. 

AR Mutant EtOH MIB 

C290Y C + N N 

E355K C + N N 

S568F C N 

L638M C N 

S663* N N 

Q739* N N 

D840N N N 

D865E C N 

Q868H C N 

L881Q C N 
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3.3.4 AR mutants are not activated by alternative hormones or anti-oestrogens  

Multiple papers have demonstrated that mutations in the AR reduce receptor’s ligand 

specificity, allowing the receptor to be activated by different hormones and anti-androgens 

(Eisermann et al., 2013). To investigate if the mutant receptors are activated by alternative 

physiologically relevant ligands, the transcription assays were repeated in the presence of 17-β-

oestradiol (E2) and progesterone (P4) hormones. COS-1 cells were transfected for plasmids 

encoding the wild-type and mutant ARs, the androgen responsive TAT-GRE-E1B-LUC reporter 

and a renilla expression vector. After 24 hrs, cells were treated with 1.0 nM E2 or 1.0 nM P4 

(progesterone) for 24 hrs (Figure 3.18a). Again, the truncated mutants were found to have 

constitutive activity.  The wild-type and mutant receptors were insensitive to E2 and P4. To 

expand this experiment, the activity of the mutant receptors was investigated in response to the 

anti-oestrogens Tamoxifen (Tam) and Fulvestrant (Fulv), anti-oestrogens used in the treatment of 

ERα positive BCa. COS-1 cells were transfected as above and treated with 1.0 nM Tam 

(tamoxifen) or Fulv (fulvestrant) for further 24 hrs (Figure 3.18b). The truncation mutants were 

found to have constitutive activity but the anti-oestrogens, E2 and P4 failed to activate any of the 

receptors. Therefore, the investigation of non-androgenic ligands demonstrates that the AR 

mutations identified in BCa remain ligand specific.  
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Figure 3.18: AR variant activity in response to different ligands. COS-1 cells were transfected with expression 
plasmid for AR wild-type and mutants (C290Y, E355K, S568F, L638M, S663*, Q739*, D840N, D865E, Q868H 
and L881Q), a luciferase reporter (TAT-GRE-E1B-LUC) and a renilla expression vector. (a) Cells were treated with 
EtOH (ethanol), E2 (17-β-oestradiol) (1.0 nM) and P4 (progesterone) (1.0 nM) to evaluate receptor activity. (b) 
Cells were treated with EtOH (ethanol), Tam (tamoxifen) (1.0 nM) and Fulv (fulvestrant) (1.0 nM) to evaluate 
receptor activity. ANOVA system. ****p<0.00001, ***p<0.0001. Mean ± 1SE. 

 

	
			

	
	

	
	

 

(b)	

(a)	
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3.3.5 AR/ ERα cross-talk with AR mutants 

To assess if mutations of the AR affect the AR-ERα cross-talk previously investigated, 

COS-1 cells were transfected with plasmids encoding for wild-type and mutant AR (C290Y, 

E355K, S568F, L638M, S663*, Q739*, D840N, D865E, Q868H and L881Q), ERα, an ERE-

LUC reporter and a renilla expression vector (Figure 3.19a). Cells were treated with 1.0 nM E2 

and MIB for a further 24 hrs (Figure 3.19b). ERα activity increased in response to ligand 

treatment.  The wild-type and mutant ARs all inhibited ERα activity to a similar extent.  

 

 Figure 3.19: AR mutations in BCa do not affect AR/ ERα cross-talk. (a) Schematics representation of the 
reporter assay. (b) COS-1 cells were transfected with expression plasmids for ERα, AR and AR mutants (C290Y, 
E355K, S568F, L638M, S663*, Q739*, D840N, D865E, Q868H and L881Q), a luciferase reporter (ERE-LUC) and 
a renilla expression vector. Cells were incubated for 24 hrs then treated with EtOH: ethanol E2: 17-β-oestradiol (1.0 
nM) and MIB: mibolerone (1.0 nM). ANOVA system. ****p<0.00001, ***p<0.0001. Mean ± 1SE. 

 

	
	

 

(b)	

(a)	
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3.3.6 AR editing in MCF-7 cells using CRISPR/ CAS9  

As previously demonstrated, the truncation AR mutants identified in breast cancer were 

found to be constitutively active. To further characterise the role of these mutations in BCa, 

CRISPR/CAS9 was used to introduce the AR mutation Q739* into MCF-7 cells (Figure 3.20a). 

The ZangLab excel tool (P. Madapura) was used to identify PAM sites near the targeted 

mutation (Q739*) and the relevant guide strands were designed (two different target sites). The 

guide strands were subsequently cloned into the PX459 V2 plasmid and confirmed using 

sequencing. The corresponding repair strands (Table 2.6) were designed using Benchling 

(https://benchling.com). MCF-7 cells were transfected with the plasmids and repair strands and 

transfected cells selected for using puromycin.  Individual colonies were expanded and more 

than 40 clones were screened using immunoblotting (example provided in Figure 3.20).  

Unfortunately, no truncated AR was present in the cells suggesting that the mutation was not 

inserted.  However, the AR was found to be silenced in the majority of lines investigated, 

suggesting that CRISPR had knocked-out the AR (Figure 3.20). 
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Figure 3.20: CRISPR/ CAS9 in MCF-7 resulted in AR silencing. (a) Schematic representation of the cloning 
steps to introduce the AR mutant Q739* guide strand into PX459 V2 vector.  The repair strand was designed to 
introduce the Q739* mutation and to mutate the PAM site. (b) MCF-7 cells were transfected with PX459 V2 
739*_1 and PX459 V2 739*_2 for 24 hrs then treated with puromycin (2 ug/ ml) for a further 48 hrs. Lysates were 
separated using SDS-PAGE and AR levels visualised using immunoblotting. 

 

 

	

	
	
	
	

 

(b)	

(a)	
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3.3.7 Genomic DNA was successfully extracted from BCa tissue 

 To investigate the prevalence of AR mutations in breast cancer, a pilot study was 

performed to extract genomic DNA from tumour samples from BCa patients, with the aim of 

sequencing for AR mutations in the future.  Tissue was obtained from patients from Colchester 

General Hospital, genomic DNA extracted and qPCR performed to quantify DNA concentration 

(Table 3.5).  Genomic DNA was successfully isolated from all samples and sufficient quantities 

were isolated for future sequencing studies. 

Table 3.5: The concentration of genomic DNA extracted from BCa patient tissues. Table illustrates samples 
type and genomic DNA concentrations after qPCR performed. N: Normal tissue, T: Tumour tissue (based on the 
pathological reports included with the samples). 

Samples No. Tissue type Concentration ng/ul 

2224 N 429.3500 
T 1000.9000 

2227 N 188.9000 
T 937.7000 

2237 N 110.4500 
T 146.3000 

2240 N 74.3400 
T 178.3500 

2230 N 100.3050 
T 771.0000 

2268 N 260.1500 
T 295.9000 

2335 N 194.3000 
T 248.6500 

2336 N 131.2500 
T 776.5500 

2341 N 64.3100 
T 22.1850 

2361 
N 150.8500 
T 274.1500 
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3.4 Discussion 

3.4.1 AR and ERα cross-talk in Breast Cancer  

It has been demonstrated that the majority of BCa cases are dependent upon ERα for 

growth and overexpression of the receptor has been shown to increase proliferation (Gross and 

Yee 2002). However, the AR also appears to be important in BCa and has been found to be the 

most expressed steroid receptor in normal breast tissue and breast cancer (Robinson et al., 2011). 

In ERα positive disease, the AR has been shown to be inhibitory to growth and multiple 

mechanisms have been proposed to explain this cross-talk (Lehmann-Che et al., 2013).  In BCa, 

activation of the AR could therefore be an approach to inhibit ERα-dependent disease, however, 

in some cases of BCa, such as molecular apocrine, it is proposed that tumour growth is driven by 

the AR and hence inhibition of receptor activity could be a viable option to block the growth of 

this sub-type (Alluri et al., 2014).  

AR and ERα cross-talk suggests that these receptors inhibit each others activity (Hickey 

et al., 2012; Panet-Raymond et al., 2000). In agreement with this, the oestrogen-induced 

proliferation of MCF-7 was inhibited in response to androgen treatment.  Further, reporter assays 

demonstrated that AR and ERα inhibit each-others activity at the transcriptional level. However, 

this repressive activity was not seen when AR and ERα target genes (TFF1, MYC, DRG1, 

GREB1) were studied in the MCF-7 cell line.  To date, the majority of studies have investigated 

AR and ERα cross-talk using reporter assays.  There is therefore little information on which 

target genes are affected by this cross-talk and this study suggests that not all genes will be 

affected.  Instead the cross-talk is likely to be gene specific and therefore a more global analysis 

of gene expression (e.g. RNA-Seq) would be informative.  
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3.4.2 Characterisation of the mechanisms of cross-talk between the AR and ERα 

The mechanisms by which AR and ERα inhibit each others activity includes direct 

interaction between the N-terminus of the AR and the LBD of the ERα (Panet-Raymond et al., 

2000). The fluorescent microscopy demonstrated that the AR and ERα co-localise and the co-

immunoprecipitation results indicated that receptors do physically interact. In agreement with 

Panet-Raymond et al. (2000), this interaction was found to be ligand independent.  The anti-

androgens Bic and Enza did not impact on AR-ERα cross-talk.  The use of an anti-androgens 

therefore does not reduce the inhibitory effect of the AR upon ERα.   

Another mechanism that has been proposed to explain AR-ERα cross-talk is direct 

competition for DNA binding.  For example, the AR is able of bind to estrogen response 

elements (EREs) and therefore block ERα binding to DNA. This was demonstrated through the 

transfection of the AR DBD into BC cell lines, and resulted in a significant inhibition of ERα 

activity (McNamara et al., 2014). To investigate this further ERα mutants, that are 

transcriptionally dead, were utilized in co-expression studies (Figure 3.21). The first, ERα HE 

257G, has a deletion of the ΔNLS and was used to assess whether the receptors interact in the 

cytoplasm and block translocation of the other receptor into the nucleus (Ylikomi et al., 1992). 

The other mutant, ERα HE464, is unable to bind to the DNA and can assess whether the 

receptors compete for DNA binding. Both receptors were confirmed to be transcriptionally 

inactive in reporter assays and confocal microscopy confirmed that the ΔNLS mutant had 

reduced nuclear localisation.  

Immunofluorescence demonstrated that the delta NLS mutant resulted in partial 

cytoplasmic retention of AR.  This therefore suggests that the receptors interact in the cytoplasm 
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and can shuttle into the nucleus together.  When cells were co-transfected with the DBD mutant, 

in contrast, the AR and ERα were found to co-localise in the nucleus. The competition for DNA 

binding and cellular translocation do not appear to be mechanisms by which ERα inhibits AR as 

both receptors retained their repressive activity upon AR signalling. Also expanding the 

experimental scale to include another steroid receptor, Progesterone P, could aid the cross-talk 

mechanism in particular with ERα. This has been demonstrated that P acts on slowing 

proliferation of the ERα due to changes of the DNA binding sites (Pan et al., 2006). However, 

only one luciferase reporter was used and a hence more global analysis of the affects of ERα 

upon AR binding to response elements could be assessed using ChIP-Seq. 

 

3.4.3 Regulation of the AR and ERα expressions 

AR-ERα cross-talk has been proposed as a therapeutic strategy for BCa (i.e. activation of 

AR to inhibit ERα-dependent proliferation) (Yeh et al., 2003). It is therefore essential to 

understand the different mechanisms that underlie this cross-talk.  One finding, that has not been 

described previously was that the AR and ERα appear to regulate each-others expression.  This 

was demonstrated by the transient transfection experiments, whereby increased expression of one 

receptor also led to an increase in the levels of the other receptor.  Further, in the siRNA 

experiments, knock-down of one receptor also resulted in a decrease in the expression of the 

other receptor. How these receptors regulate the expression of the other receptor remains unclear, 

but this also fits with studies that have demonstrated that AR and ERα expression is highly 

correlated in BCa (Peters et al., 2009). In summery, competition for cofactors is a plausible 

mechanism by which ERα represses AR activity and this requires further investigation. 
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Figure 3.21: Possible mechanisms of repression present in AR- ERα cross talk. Schematic representation of 
normal action of the AR upon ligand binding (blue cell, top). Different mechanisms by the ERα variants could block 
AR activity (yellow cells, bottom). 
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3.4.4 The potential role of AR mutations in BCa    

AR expression has been found to be variable among different BCa subtypes, high in 

ERα-positive tumours and low in ERα-negative disease. If the AR is not the only receptor (ERα, 

PR, HER2) expressed, its presence is linked to a better clinical and pathological evaluation 

(Tsang et al., 2014). However, when the AR is the predominant receptor, such as in molecular 

apocrine disease, a correlation with higher tumour stage and metastasis is observed (McGhan et 

al., 2014). Sequencing studies have identified that the AR is mutated in some cases of BCa, these 

mutations are quite rare as they were found in 1.77 % of patient samples investigated (COSMIC: 

https://cancer.sanger.ac.uk/cosmic). This low prevalence could be due to the fact that much of 

the sequencing available via databases such as COSMIC, is from early stage tumours.  Mutations 

of the AR may therefore be rare similar to ERα mutations in BCa and AR mutations in PCa in 

that they are rare in early stages of the disease, but their incidence significantly increase in 

advanced disease (Brooke and Bevan 2009). Interestingly, the AR mutations identified do not 

appear to be in specific subtype of BCa since they were found in ERα-positive and negative 

disease.   

AR mutations, associated with BCa, were identified using the COSMIC database and 

subsequently cloned using site-directed mutagenesis. Some of the mutations were found to affect 

receptor activity, whereas others appeared to have no effect and may therefore be passenger 

mutations (Figure 3.22). Two of the identified mutations were S663* and Q739* generate 

truncated receptors due to the presence of the stop codons TGA and TAG respectively. These 

receptors were found to be nuclear in the presence and absence of androgen and reporter assays 

demonstrated that these two mutants were constitutively active. This affect is expected as the 
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mutations result in loss of the LBD region, which holds the receptor in an inactive state in the 

absence of ligand.   

In contrast to the constitutively active receptors, the D865E mutant was transcriptionally 

dead.  The location of this mutation is in the LBD and the substitution may therefore affect 

ligand binding or co-activator recruitment. Interestingly, this mutation has been associated with 

complete androgen insensitivity syndrome (CAIS) (Ong et al., 2002).  This disease is associated 

with inactive androgen signalling and in agreement with this, the findings present here 

demonstrated that this mutation results in a transcriptionally dead AR. Interestingly, confocal 

microscopy demonstrated that this receptor can translocate to the nucleus and hence it is likely 

that the mutant receptor can bind ligand and that cofactor recruitment is disrupted. In addition to 

the truncation mutants, C290Y, E355K and D840N are nuclear in the absence of androgen but do 

not show enhanced activity. All other mutants, as well as the wild-type receptor, were 

cytoplasmic in the absence of ligand and translocated into the nucleus after androgen treatment.  

In PCa, some AR mutations, especially those in the LBD, lead to loss of ligand 

specificity resulting in receptors that can be activated by alternative ligands and anti-androgens 

(Eisermann et al., 2013). Based on the nature and location of the substitution, LBD mutations 

affect the ligand-induced conformational change of AR, leading to changes in ligand binding 

specificity, N/C-terminal interactions and interactions with chaperones (Bergerat and Ceraline 

2009). Investigation of non-androgenic ligands (e.g. other hormones and anti-oestrogens) 

demonstrates that the AR mutations identified in BCa remain ligand.  

It has been demonstrated, in PCa, that specific AR mutations are selected for in response 

to anti-androgen treatment (Eisermann et al., 2013).  For example, the AR T877A mutation, 

which can be activated by other hormones and anti-androgens such as hydroxyflutamide, is 
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selected for when patients are treated with hydroxyflutamide (Taplin et al., 1999). Therefore, it 

will be interesting to sequence the AR for mutations in more advanced cases of BCa e.g. 

endocrine resistant disease, to see if mutations have been selected for as a result of the treatment 

regime.  Since anti-androgens are being trialled in breast cancer, it will also be useful to 

sequence the AR of these patients to see if AR mutations arise during disease progression.  In 

preparation for such studies, DNA isolation from tumour samples was optimised as part of this 

study. 

 

  

Figure 3.22: Locations of AR mutations in Breast Cancer. Image shows mutations identified in breast cancer, 
indicated in red, and their locations on the four functional domains of the AR and the gene structure indicated in 
chromosome X q11-12. NTD = N- terminal domain, DBD = DNA binding domain, LBD = ligand binding domain 
and AF = activation function. A-F indicates the different location of the 6 functional domains with amino acids 
residues numbers. Mutations S663* and Q739* are truncated. Mutation D865E is transcriptionally dead. 
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3.4.5 Investigation of AR mutations in endogenous protein    

The experiments that aimed to characterise AR mutations in BCa was limited as the 

experiments were transient transfections.  Part of this study therefore aimed to develop a 

CRISPR modified line to allow studying of the effect of the truncated constitutively active 

receptor upon ERα signalling in a more physiologically relevant model. The relevant CRISPR 

tools were designed and generated.  MCF-7 cells were transfected and multiple clones selected.  

However, instead of generating the truncation mutant, the manipulation resulted in AR knock-

out. Although the desired mutation was not inserted, AR knock-out lines have been generated 

and these will be useful for investigating the effect of AR loss in BCa. In summery, further 

investigation is needed to sequence patient’s samples particularly advanced BCa as there are 

many limitations in transient based experiments. This includes the smaller cellular systems found 

in cell lines which are not reflected in real situations within tumour tissues. Also, certain 

alteration represents specific group of patients e. g. MD-MBA453 has mutated PTEN and PI3K 

(Vranic et al., 2011). 

Investigation of AR-ERα cross-talk also contributes to our understanding of how best to 

target the AR in BCa. The data presented in This thesis suggests that ERα does not repress AR 

activity via competition for DNA binding. It is therefore possible that competition for cofactors 

is the mechanism by which ERα represses AR activity. In addition, this study also investigated 

the role of AR mutations in BCa. Assessment of receptor transcriptional activity and cellular 

demonstrated the effect of these substitutions upon receptor function.  AR mutations that resulted 

in a constitutively active and transcriptionally dead receptor were identified. A constitutively 

active receptor could drive molecular apocrine growth, whereas a transcriptionally dead receptor 

may not be able to compete with ERα to block growth facilitating E2 induced growth in ERα 
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positive disease.  This aids more advanced disease for patients who recieved antiandrogen 

treatment to see if they have acquired any of the AR mutations invistigated in this study in 

response to the therapy. 

 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

	 148	

CHAPTER 4 

Results II: The Effect of thieno[2,3-b]pyridine Derivatives on Prostate Cancer 

Cell Lines 
 

4.1 Introduction  

Prostate cancer (PCa) is the most diagnosed malignancy in men in the UK and 2nd most 

cause of cancer deaths with 25% mortality rate (Cancer Research UK, 2014). The therapeutic 

management of PCa has become more complex due to the various stage-specific therapeutic 

options available. Disease management has been complicated further by the lack of randomized 

clinical trials to compare the efficacy of these therapeutics (Bott et al., 2003; Heidenreich et al., 

2010). For non-organ confined disease, hormone therapy is often administered and this is 

effective in the majority of patients.  However, these therapies invariably fail and the tumour 

relapses within 2 to 3 years, and the disease progresses to the more aggressive CRPC stage, 

which is associated with poor prognosis and low survival rates (Brooke et al., 2008; Cookson et 

al., 2013).  

A number of mechanisms have been proposed to explain CRPC and these include AR 

mutations, androgen biosynthesis within the tumour or alterations in co-activators and co-

repressors (Mostaghel et al., 2009). Few treatment options exist for CRPC, such as the 

chemotherapeutic docetaxel, which have been the classical option to treat this stage of the 

disease (Hotte & Saad 2010). Also the taxane chemotherapy (cabazitaxel), a newly approved 

drug used for the metastatic CRPC (de Bono et al., 2011). These therapies have limited efficacy 

and there is therefore a great need for novel therapies for the treatment of CRPC.  In PCa the 

PI3K-Akt-mTOR pathway is often found to be constitutively active due to the loss/inactivation 
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of the tumour suppressor PTEN.  It has therefore been proposed that targeting the PTEN pathway 

may be a novel targeted approach to treat PCa. Pathways downstream of PTEN, such as 

Phospholipase C (PLC), therefore represent novel therapeutic targets (Phin et al., 2013). 

The Phospholipase C (PLC) family are membrane bound proteins which regulate 

multiple cellular functions. They play a crucial role in many transmembrane signal transduction 

pathways, regulating numerous cellular processes (Béziau et al., 2015; Cai et al., 2017). 

Although their exact role in tumourigensis is unclear, these enzymes have been shown to modify 

proliferation, migration and invasion (Lattanzio et al., 2013). In many cancers, an increase in 

PLC activity and/or expression has been associated with increased metastasis and proliferation in 

these tumours (Lattanzio et al., 2013). Bertagnolo et al., (2007) found that, in BCa, a poor 

clinical outcome was linked to increased expression levels of PLC-β2 and it has there been 

proposed to be a molecular marker indicative of disease severity. In PCa, it has been found that 

PLC-γ is essential in tumour invasion as it has a role in regulating cell motility through the 

hydrolysis of P2, which polymerizes actin in response to growth factors (Lattanzio et al., 2013). 

Wang et al. (2015) investigated 37 PCa patient samples and found increased PLC-ε expression 

levels, also they demonstrated that the silencing of this isoform in PC3 and LNCaP cells 

significantly reduced. Therefore, inhibition of PLC could be an effective treatment for PCa 

(Zhang et al., 2012). 

The PLC-δ has been proposed to be a valid target for the treatment of cancer.  To identify 

novel inhibitors of PLC-δ, Reynisson et al. (2009) performed a virtual high-throughput screen.  

This screen identified thieno[2,3-b]pyridines as novel inhibitors for this enzyme (Reynisson et 

al., 2009). These compounds were demonstrated to have potent anticancer activity against a 

variety of breast cancer cell lines, e.g. MDA-MB-231, where they were found to reduce 
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proliferation, increase G
2
/M arrest and to decrease cell motility (Leung et al., 2016). Similar 

effects were noticed when the anticancer agents were investigated with stem/progenitor-like cell 

populations from breast and prostate cancers (Mastelić et al., 2017). Therefore, the thieno[2,3-

b]pyridine inhibitors have been demonstrated to be promising anti-cancer therapeutic agents and 

due to the heterogeneity of the molecular alterations in PCa, it appears that targeting common 

factors downstream of altered signalling pathway could be a more effective strategy in the 

treatment of CRPC. This chapter will investigate the therapeutic potential of thieno[2,3-

b]pyridine inhibitors for the treatment of PCa.  

 

 

 

 

4.1.1 Chapter aims 

This chapter investigates the efficacy of thieno[2,3-b]pyridine inhibitors as a treatment 

option for CRPC.   

Aim 1 – To investigate the effect of thieno[2,3-b]pyridine inhibitors upon the 

proliferation of a panel of prostate cell lines 

Aim 2 – To characterise the effect of thieno[2,3-b]pyridine inhibitors upon the cell cycle 

and mechanism of cell death and to assess the effect of the inhibitors upon cell motility 

Aim 3 – To investigate the mechanism of action of the inhibitors and identify which 

proteins that these inhibitors target  
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4.2 Investigation if the PLC isoforms expression in PCa cell lines 

PLCs have been implicated in the development of multiple cancer types, however, there 

is little information about expression of the different PLC isoforms in PCa. To investigate which 

PLC isoforms (β, δ, ε, γ, η and ∆) are expressed in the prostate lines, qPCR was performed on 

the cell line panel (BPH1, PNT1A, LNCaP, C42, C42B, 22RNV1, DU145 and PC3).  A heat 

map was generated to summarise the expression levels of the different isoforms across the cell 

lines (Figure 4.1). Generally, the different PLC isoforms were expressed in all cell lines except 

for PLC∆, which was low cross all lines. PLC-ε was also low in LNCaP and its derivatives (C42 

and C42B). In contrast, PLC-γ was highly expressed across the cell lines and the highest levels 

were evident in PC3.  
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Figure 4.1: Heat map of PLC isoforms expression levels in PCa cell lines.  RNA was extracted from PNT1A, 
BPH1, LNCaP, C42, C42B, 22RNV1, DU145 and PC3 and reverse transcribed into cDNA. qPCR analysis was 
performed using SYBR green to measure the expression levels of (PLC-β, PLC-δ, PLC-ε, PLC-γ, PLC-η and PLC-
∆). Experiment was in 3 repeats. Heat map created using (plotly software).    

 

 

 

 

 

 

 

		

 



	

	 153	

4.3 Thieno[2,3-b]pyridine inhibit PCa cell lines proliferation and viability 

Five anti-cancer thieno[2,3-b]pyridine derivatives were developed to target the binding 

site of the PLC- δ (Reynisson et al., 2009). These 5 compounds (DJ0097, DJ0144, DJ0145, 

DJ0154 and DJ0160; Table 4.1) have been previously demonstrated to effectively inhibit the 

proliferation of the BCa cell line MDA-MB-231 (Leung et al., 2016). To assess this inhibitory 

effect on PCa, the efficacy of these drugs was assessed in non-cancerous (PNT1A, BPH1) and 

cancerous (LNCaP, C42, C42B, 22RV1, DU145, PC3) cell lines. Cells were seeded in 96 well 

plates for 24hrs prior to treatment with the inhibitors at a range of concentrations (0, 0.01, 0.1, 

1.0 and 10 μM) for 72 hrs and proliferation assessed using crystal violet assays.  

 

Table 4.1: Description of the thieno[2,3-b]pyridine inhibitors used with PCa cell lines. 

 

CODE ABBREVIATION COMPOUND 

DJ0097	 

 

97 

 

DJ0144	 

 

144 

 

DJ0145	 

 

145 

 

O
Cl

O
O

O
Br



	

	 154	

DJ0154	

	

154	

	

DJ0160	

	

160	

	

 

 

All of the drugs successfully inhibited the proliferation of all of the cell lines tested, with 

compounds 160 and 144 the most potent (Figure 4.1). The half maximal inhibitory concentration 

(IC50) was measured for the inhibitors to evaluate the effectiveness of each drug on the cell lines 

(Table 4.2). All of the drugs have a higher IC50 in BPH1 compared to the cancer cell lines 

suggesting that these drugs are more specific for tumour cells. However, PNT1A cells were also 

affected by the dugs as they are more selective when comparing against BPH1, but more normal 

controls need to be investigated to assess the effect on non-tumorigenic lines. 

 Drug 160 was the most potent compound across all of the PCa lines tested with IC50 

values ≤60 nM. To further assess the effect of the inhibitors a viability assay was performed.  

PC3 cells were seeded in 96 well plates for 24hrs prior to treatment with 1.0 μM of the 

compounds, as well as docetaxel (used as a positive control). Viability was assessed using the 

ApoTox-GloTM Triplex assay kit.  In agreement with the proliferation assays, cell viability was 

found to be significantly decreased in response to all treatments (Figure 4.3).  

O

Cl

OH 

Cl 
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Figure 4.2: The thieno[2,3-b]pyridine  compounds inhibit prostate cancer cell lines. The prostate cancer cell 
lines (PNT1A, LNCaP, C42, C42B, 22RV1, DU145, PC3) and non-tumorigenic controls PNT1A and BPH1 were 
seeded 24 hrs prior to treatment with a dose range of the thieno[2,3-b]pyridine  compounds (97, 144, 145, 154 and 
160) (0.01 μM, 0.1 μM, 1.0 μM and 10 μM) for 72 hrs. Cells were fixed with 4% paraformaldehyde, stained with 
0.02% crystal violet and absorbance measured using a spectrophotometer microplate reader (FLUOstar Omrega) at 
490 nm. Mean +/- 1SE of 3 independent repeats (6 repeats for each concentration per experiment).  
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Table 4.2: The IC50 valuess (nM) of the thieno[2,3-b]pyridine compounds demonstrate that 160 is the most 
effective inhibitor. IC50 values were calculated from the sigmoidal range response curves for the cell lines PNT1A, 
BPH, LNCaP, C42, C42B, 22RV1, DU145 and PC3 after treatment with the anti-cancer inhibitors (97, 144, 145, 
154 and 160). Data is shown as means ± 1 SD. 

	
CELL LINE IC50 nM 97 144 145 154 160 

PNT1A  
Mean 324 238.2 708 902 82.6 

SD 44.3 136.5 140.4 748 35.4 

BPH1 
Mean 3551.4 442.8 4361.9 806 151.07 

SD 5340.2 275.8 4913.3 523.2 60.3 

LNCaP 
Mean 481.8 59.4 267.6 451.7 44.9 

SD 123 16.5 177.7 164.3 12.7 

C42 
Mean 334 187 468 246 29 

SD 6.8 36.7 163.2 74 17.8 

C42B 
Mean 333 150 230.3 512 54 

SD 24.6 136.5 182.2 305 44 

22RV1 
Mean 305.5 184.7 499 520.7 100 

SD 54.4 39.6 72.8 125.6 49.3 

DU145 
Mean 1396 271.4 1959.6 660.4 83.9 

SD 640 52.4 755.5 140.3 16.5 

PC3 
Mean 572.8 214.1 672.8 723.3 46.5 

SD 128.9 88.6 41.3 99.8 7.3 
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Figure 4.3: The thieno[2,3-b]pyridine compounds IC 50 and cellular viability. a) IC50 values were calculated 
from the sigmoidal range response curves for the cell lines PNT1A, BPH, LNCaP, C42, C42B, 22RV1, DU145 and 
PC3 after treatment with the anti-cancer inhibitors (97, 144, 145, 154 and 160). b) Cells were seeded at 30% 
confluence for 24 hrs then treated with 1.0 μM of the drugs (97, 144, 145, 154, 160 and Docetaxel) or DMSO for a 
further 48 hrs. Viability was measured using an ApoTox-GloTM Triplex assay kit and fluorescence read using a 
microplate reader (FLUOstar Omega, BMG LABTECH, UK). ANOVA ****p<0.00001. Mean ± 1SE.  
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4.4 Thieno[2,3-b]pyridine inhibitors induce G2/M arrest in PC3 

The previous experiments demonstrated that the thieno[2,3-b]pyridine inhibitors block 

the proliferation of PCa cell lines.  To see if the inhibitors cause cell cycle arrest, PC3 cells were 

seeded at 30% confluency, incubated for 48 hrs and treated with 1 μM of the compounds for 

different time points (24 hrs, 48 hrs and 72 hrs). DNA was PI stained and DNA content was 

analysed (10,000 cells per sample were analysed and quantified) using flow cytometry (Accuri, 

BD Biosciences).  Cell with the DMSO treatment, in the absence of inhibitor, PC3 cells were 

found to be predominantly in G1 phase. Compounds 97, 144, 145, 154 and 160 promoted G2/M 

arrest at all time points, but most notably after 72hrs treatment. There was also an increase in the 

number of cells arresting in S-phase with increasing time (Figure 4.4). It therefore appears that 

the inhibitors block PCa proliferation as a result of cell cycle arrest. 
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Figure 4.4: The thieno[2,3-b]pyridine compounds promote cell cycle arrest in PC3 cells. PC3 cells were seeded 
at 30% confluence for 48 hrs then treated with (1.0 µM) of the drugs (97, 144, 145, 154 and 160) or DMSO for 
different time points (24, 48 and 72 hrs). Cells were PI stained and DNA content measured using flow cytometry. 
Representative histograms generated using the Accuri C6 software (BD Biosciences). Date was performed for 3 
different repeats. 
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4.5 Thieno[2,3-b]pyridine inhibitors promote apoptosis in PC3 

The thieno[2,3-b]pyridine compounds were found to reduce cell proliferation and to 

promote cell cycle arrest.  To see if the inhibitors also promoted cell death, PC3 cells were 

seeded at 30 % confluence, incubated for 48 hrs and treated with 1 μM of the inhibitors (97, 144, 

145, 154 and 160) for different time periods (24 hrs, 48 hrs and 72 hrs). DNA hypodiploidy 

assays were performed to quantify the % of cells undergoing apoptosis and samples were 

analysed using an Accuri C6 flow cytometer (BD Biosciences). Result shows apoptosis increases 

to approximately 5% in the presence of DMSO over the time course. When cells treated with 

drugs, cells starting at 15% increase in undergoing apoptosis, this was significantly increased in 

apoptosis for all treatments over time (Figure 4.5a and b). In agreement with this, Leung et al., 

(2016) indicated that the thieno[2,3-b]pyridine inhibitors cause cell cycle arrest in the G2/M 

phase in the MDA-MB-231 BCa cell line.  

Multiple mechanisms of cell death, in addition to apoptosis, have been described, 

including necrosis and necroptosis.  To see if the drugs induce cell death via such mechanism 

cells were also analysed using PI inclusion assays.  None of the inhibitors were found to promote 

necrosis/necroptosis at any of the time points tested (Figure 4.6a and b).  It therefore appears that 

the compounds promote cell death via apoptosis.  
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Figure 4.5: The thieno[2,3-b]pyridine compounds promote apoptosis in PC3 cells. (a) PC3 cells were seeded at 
30% confluence and incubated for 48 hrs prior to treatment with 1.0 µM of the drugs (97, 144, 145, 154 and 160) or 
DMSO for different time points (24, 48 and 72 hrs). Cells were harvested and DNA hypodiploidy measured using 
flow cytometry. (b) Representative histograms generated using the Accuri C6 software (BD Biosciences). ANOVA 
****p<0.00001, ***p<0.0001, **p<0.001 and *p<0.01. Mean ± 1SE. 
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Figure 4.6: Necrosis analysis of PC3 cells upon the treatment with the thieno[2,3-b]pyridine  compounds. (a) 
PC3 cells were seeded at 30% confluence and incubated for 48 hrs prior to treatment with 1.0 µM of the drugs (97, 
144, 145, 154 and 160)  or DMSO for different time points (24, 48 and 72 hrs). Cells were harvested and PI 
inclusion assay measured using flow cytometry. (b) Representative histograms generated using the Accuri C6 
software (BD Biosciences).  
 

	

	
	
	

 

(a)	

(b)	
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4.6 The thieno[2,3-b]pyridine inhibitors promote caspase dependant cell death 

The DNA hypodiploidy and PI inclusion assays suggest that cell death is as a result of 

apoptosis.  To confirm that cell death is caspase dependant PC3 cells were seeded in 96 well 

plates for 24 hrs prior to treatment with (1.0  µM) of the inhibitors (97, 144, 145, 154 and 160), 

and docetaxel as a positive control, for 48 hrs. Post drug treatment, caspase 3/7 activity was 

assessed using the ApoTox-GloTM Triplex assay kit where luminescence was measured using the 

spectrophotometer microplate reader (FLUOstar Omega, BMG LABTECH, UK). All of the 

thieno[2,3-b]pyridine compounds significantly increased caspase 3/7 activity approximately 2-

fold (Figure 4.7).  Docetaxel increased caspase 3/7 activity to the greatest extent (approximately 

4 fold). 

To further confirm that cell death is a result of apoptosis, cells were treated with the 

caspase inhibitor  ± Z-VAD which binds to the catalytic site of caspase proteases and inhibits 

cascade-dependent apoptosis (Promega). PC3 cells were incubated for 24 hrs, pre- treated with 

the Z-VAD inhibitor for 25 minutes prior to the addition of the 5 compounds. After 48 hrs, cells 

were harvested, re-suspended in Nicoletti buffer and DNA hypodiploidy analysed using an 

Accuri C6 flow cytometer (BD Biosciences). In agreement with the previous experiments, all of 

the thieno[2,3-b]pyridine inhibitors promoted apoptosis.  Importantly, Z-VAD significantly 

reduced the drug induced apoptosis (Figure 4.8a and b) again demonstrating that cell death is as 

a result of caspase-dependent apoptosis.  
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Figure 4.7: The thieno[2,3-b]pyridine  compounds promote caspase dependant cell death in PC3. (a) PC3 cells 
were seeded at 30% confluence and incubated for 24 hrs prior to treatment with 1.0  µM of the drugs (97, 144, 145, 
154, 160 and Docetaxel) or DMSO control for 48 hrs. An ApoTox-GloTM Triplex assay kit was used to assess Capse 
3/7 activity and luminescence measured using a microplate reader (FLUOstar Omega, BMG LABTECH, UK). 
ANOVA ****p<0.00001, **p<0.001, *p<0.01. Mean ± 1SE. 
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Figure 4.8: The capsase inhibitor Z-VAD reduces thieno[2,3-b]pyridine-induced apoptosis. (a) PC3 cells were 
seeded at 30% confluence and incubated for 48 hrs prior to treatment with 1.0 µM of the drugs (97, 144, 145, 154 
and 160) or DMSO for further 48 hrs. Cells were harvested and DNA hypodiploidy measured using flow cytometry. 
(b) Representative histograms generated using the Accuri C6 software (BD Biosciences). ANOVA ****p<0.00001, 
***p<0.0001, **p<0.001, *p<0.01. Mean ± 1SE. 
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4.7 Thieno[2,3-b]pyridine inhibitors increase PC3 cell size and promote multi-
nucleation  
 

The thieno[2,3-b]pyridine inhibitors have been previously demonstrated to alter BCa cell 

morphology and to promote multinucleation, which is likely to explain the anti-proliferative and 

pro-apoptotic effects described above (Reynisson et al., 2016).  To see if this also occurs in PCa 

lines, PC3 were plated at 30% confluence on cover slips and treated with 1.0  µM of the 

inhibitors 97, 144, 145, 154 and 160 for 24 hrs. Cells were fixed and immunofluorescence 

performed using anti-α-tubulin.  Coverslips were mounted with the nuclear stain DAPI and cells 

visualised using confocal microscopy. All thieno[2,3-b]pyridine compounds appeared to affect 

cell morphology, with an increase in cell size and multinucleation, in comparison to the control 

DMSO (Figure 4.9a and b). Furthermore, it also appeared that the inhibitors promoted 

microtubule depolymerisation.  Following treatment with compound 145 for example, tubulin 

appears to be more diffusely localised than vehicle only treated cells.  

To quantify the morphological changes seen (cell size and multinucleation), cover slips 

were visualised at a lower magnification (x10 objective) and 5 images were examined for each 

treatment. All inhibitors were found to increase cell size (Figure 4.10a) and significantly increase 

the percentage of cells with multi-nucleation (Figure 4.10b). Flow-cytometry data demonstrated 

change in the cell population distribution after treatment with the anti-cancer inhibitors. After 

treating with DMSO, histograms illustrated most cells were predominantly in G1 phase, 

however, all inhibitors showed shift in cell population to G2/M phase. Also, another cell dot blot 

was identified at the top of the G2/M phase cells and was due to multinuclear cell formation 

(Figure 4.10 c).  

Drugs were found topromote multinucleation, a similar phenotype was identified by 
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Reynisson et al., (2016) when these inhibitors were tested in BCa cell lines. Furthermore, it has 

been demonstrated that changes in microtubule assembly inhibits cytokinesis, promoting 

multinucleation (Bhattachaeya and Cabral 2004). These findings therefore also fit with the 

earlier results that demonstrated that the thieno[2,3-b]pyridine inhibitors promote G2/M phase 

arrest. The thieno[2,3-b]pyridine derivatives were demonstrated to inhibit PCa proliferation and 

motility, and to promote caspase-dependant apoptosis. The drugs appear to exert these effects via 

regulation of the cytoskeleton, which had a subsequent effect upon cell cycle progression and 

cell morphology. further experiments are required to characterise the inhibitors target(s) and the 

safety of these inhibitors in additional pre-clinical models. 
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Figure 4.9: Confocal microscopy analysis for PC3 cell line investigating thieno[2,3-b]pyridine inhibitors. PC3 
cells were seeded for 24 hrs on cover slips then treated with (1.0 uM) of the drugs (DMSO, 97, 144, 145, 154 and 
160) for further 24 hrs. Cells were fixed with 4 % paraformaldehyde and methanol following 1 hr of treatment with 
primary α-tubulin and secondary α-TRITC antibodies. Confocal microscopy was used to visualise the localisation of 
tubulin (red). Nuclear staining = 4’,6-diamidino-2-phenylindole (DAPI) in blue. (a) Cells visualised at x60 
objective. (b) Cells were visualised at x10 objective. 
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Figure 4.10: Thieno[2,3-b]pyridine inhibitors increase cell size and promote multi-nucleation. PC3 cells were 
seeded on cover slips and treated with (1.0  µM) of the drugs (97, 144, 145, 154 and 160) or DMSO for 24 hrs. Cells 
were fixed with 4 % paraformaldehyde and methanol and immunofluorescence performed using an antibody specific 
for α-tubulin and a secondary α-TRITC antibody. Confocal microscopy was used at x10 objective and 5 images 
were taken for each treatment to quantify (a) cell size and (b) multi-nucleation. (c) Flow cytometry dot blots 
representing highlighting cells in G1 or G2/M and multinuclear cells.  Dot blots generated using Accuri C6, BD 
Biosciences software. ANOVA ****p<0.00001, **p<0.001, *p<0.01. Mean ± 1SE. 
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4.8 Thieno[2,3-b]pyridine inhibitors reduce PC3 motility  

 PLC enzymes have been demonstrated to be important in regulating numerous cell 

processes, including cell migration and invasion (Béziau et al., 2015; Cai et al., 2017; Lattanzio 

et al., 2013). To investigate which of the compounds can inhibit cell motility, PC3-GFP cells 

(cells stable transfected GFP) were seeded at 10% confluence in 96 well-plates for 24 hrs then 

treated with a sub-toxic concentration (0.1  µM) of the inhibitors for 48 hrs. Cell motility was 

quantified using an Nikon Eclipse T7 wide-field microscope for 24 hrs using time-lapse 

photography single cell tracking. The speed of the cells in untreated cells was found to be 

approximately 0.2 µm/min and this was reduced to approximately 0.1µm/min following 

treatment with the inhibitors (Figure 4.11a).  The cell tracking videos were further analysed 

using TrackMate (Image J) (Tinevez et al., 2017).  The images generated provides a summery of 

the cell tracking data and demonstrates that the inhibitors reduced cell motility (Figure 4.11b). 

Inhibitors affect cytoskeleton dynamics and therefore reduce cell motility.  Time-lapse 

photography was performed using sub-lethal concentrations of the compounds. PC3 cell motility 

was significantly decreased in response to all of the compounds.  Investigation of the effect of 

these compounds in in vivo models of PCa metastasis should be used to further characterise the 

effects of these compounds.  
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Figure 4.11: The thieno[2,3-b]pyridine inhibitors reduce cell motility. (a) PC3-GFP cells were incubated for 24 
hrs prior to treatment with 0.1  µM of the drugs (97, 144, 145, 154 and 160) or DMSO for 48 hrs. Images for all 
treatment and control were acquired every 15 min for 24 hrs, mean of cell speed (µm/frame) calculated form time-
laps sequences. (b) Images show tracks of PC3-GFP cells after treatment with the Thieno[2,3-b]pyridine inhibitors, 
images were aquiered using TrackMate (Image J) . ANOVA ****p<0.00001. Mean ± 1SE. 
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4.9 The thieno[2,3-b]pyridine 160 inhibits human prostate tumours 

After characterising the inhibitory effect of the thieno[2,3-b]pyridine derivatives in PCa 

cell lines, the effect of the compounds was investigated in a more physiologically relevant 

model, namely human derived prostate cancer explants (Centenera et al., 2012). This experiment 

was done in collaboration with Dr. Damien Leach and Prof. Charlotte Bevan (Imperial Collage 

London). Compound 160 was selected to be tested in this model system due to its high potency 

in the majority of cell line experiments performed. Prostate tissue from PCa patients was 

dissected and seeded on a collagen sponge in 24 well-plates.  The explants were treated with 

compound 160 (100 nM) or the antiandrogen Enzalutamide (Enza), and incubated at 37°C for 48 

hrs. The tumours were lysed, RNA harvested and qPCR performed to investigate the expression 

of the caspase 3 and PCNA. Results demonstrated inhibition in proliferation in 4 tissues when 

trated with compound 160, while Enza reduced cell growth in 3 samples.    

 



	

	 174	

 

Figure 4.12: The thieno[2,3-b]pyridine 160 anti-cancer inhibit activity in cultured human prostate tumours.  
Tumour dissected into 1-mm3 pieces then treated with the drugs (160 and Enza) and incubated for 48 hrs. Harvested 
RNA was reverse transcribed into cDNA and qPCR analysis performed using SYBR green to measure the 
expression levels of caspase 3 and PCNA. VC: Vehicle control and Enza: Enzalutamide.  
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4.10 Investigation of the thieno[2,3-b]pyridine inhibitors bind to PLC-δ 

The thieno[2,3-b]pyridine derivatives were designed to bind to PLC-δ, however no 

investigations beyond the computational level have been performed to confirm their specificity. 

To investigate this, drug-biotin pull-down experiments were performed. To facilitate this, 

additional compounds were synthesised by Drs Reynisson and van Rensburg and Prof Barker 

(University of Auckland).  These drugs were designed with similar specifications as the 

thieno[2,3-b]pyridine compounds previously used, but were modified specifically for this 

experiment (Table 2.12).  PC3-GFP cells were incubated for 24 hrs then treated with 20 uM of 

the drug (DMSO, DJ0199 (-ve control), DJ0232 (biotinylated) and DJ0233 (inactive)) for 24 hrs. 

Lysed cells were sent for Mass Spectrometry (Dr Metodi Metodiev) (LTQ Orbitrap Velos) and 

obtained data analysed in Table 4.3. Proteins that were only pulled-down by the active 

compound were considered as positive hits. It therefore appears that these compounds do not 

bind to PLCs as expected and instead may mediate their effects via binding to multiple proteins, 

many of which are involved in the cytoskeletal organisation. Proteins identified by quantitative 

mass spectrometry illustrated potential target(s) of the anti-cancer compounds, but surprisingly 

none of these were PLC family members. However, the targets identified do fit with the 

phenotype observed, being important in e.g. regulating apoptosis, the p53/TP53 tumour 

suppressor and DNA damage repair. Furthermore, other proteins were found to be involved in 

cytoskeletal organization, actin dynamics and cell cycle progression all linked to cause similar 

damages to cells when manipulated.  
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Table 4.3: Biotin pull-down analysis of the thieno[2,3-b]pyridine compounds. Data analysis 
for the top hit proteins after Mass Spectrometry performed for thieno[2,3-b]pyridine derivatives. 
PC3-GFP treated with 20 µM of the drugs (DJ0199, DJ0232 and DJ0233) and DMSO for 24 hrs. 
Biotin pull-down was performed, summery of pulled-down proteins and their function obtained 
from UniPort and The Human Protien Atlas.  

No. Protein (Gene) Molecular Function 
Cellular 

Localisation 

1 
Translational 
activator GCN1 
(GCN1L1) 

Mediated reprogramming of amino acid biosynthetic 
gene expression to alleviate nutrient depletion. Ribosomes 

2 
Ras GTPase-
activating-like 
protein (IQGAP1) 

Plays a crucial role in regulating the dynamics and 
assembly of the actin cytoskeleton. 

Nucleus and 
plasma 
membrane 

3 
E3 ubiquitin-protein 
ligase HUWE1 
(HUWE1) 

Regulates apoptosis by catalysing the 
polyubiquitination and degradation of MCL1. Also 
ubiquitinates the p53/TP53 tumour suppressor.  

Cytoplasm  

4 E3 ubiquitin-protein 
ligase UBR4 (UBR4) 

Involved in membrane morphogenesis and cytoskeletal 
organization.  

Membrane 
structures 
involved in 
actin motility 

5 

Eukaryotic 
translation initiation 
factor 5A; Eukaryotic 
translation initiation 
factor 5A-1; 
Eukaryotic 
translation initiation 
factor 5A-2 (EIF5A) 

Involved in actin dynamics and cell cycle progression, 
functions as a regulator of p53/TP53 and p53/TP53-
dependent apoptosis. Also regulates TNF-alpha-
mediated apoptosis. Mediates effects of polyamines on 
neuronal process extension and survival. May play an 
important role in brain development and function, and 
in skeletal muscle stem cell differentiation.  

Nucleus 

6 
26S proteasome non-
ATPase regulatory 
subunit 12 (PSMD1) 

Proteasome participates in numerous cellular 
processes, including cell cycle progression, apoptosis, 
or DNA damage repair. 

Cytosol and 
nucleus 

7 Abl interactor 1 
(ABI1) 

Role in the regulation of EGF-induced Erk pathway 
activation. Involved in cytoskeletal reorganization and 
EGFR signalling. 

Nucleus 

8 RNA-binding protein 
(FUS) 

DNA/RNA-binding protein that plays a role in various 
cellular processes such as transcription regulation, 
RNA splicing, RNA transport, DNA repair and damage 
response. 

Nucleus 
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4.11 Discussion  

PCa can be effectively managed when diagnosed in the early stages of the disease. Once 

the tumour has spread from the prostate capsule, the disease is often treated with hormone 

therapy (Mostaghel et al., 2009).  This therapy is initially successful in the majority of patients, 

however it has been demonstrated that these therapies invariably fail within 2-3 years and the 

tumours progress to the CRPC stage (Cookson et al., 2013). Many mechanisms have been 

proposed to explain CRPC, including AR mutations or overexpression or activation of the AR by 

alternative signalling pathways (Brooke et al., 2008). There are few treatment options for CRPC 

and hence there is a great need for novel therapeutics for this stage of the disease.    

 

4.11.1 Thieno[2,3-b]pyridine derivatives potently inhibit PCa cell line proliferation 

Reynisson et al., (2009) proposed PLCs as potential targets for the treatment of cancer 

due to their essential role in many transduction pathways and regulation of numerous cell 

processes. The thieno[2,3-b]pyridine derivatives were developed following a computational 

screen to identify novel inhibitors of PLC-δ (Reynisson et al., 2009). These compounds have 

been investigated in BCa cell lines and were found to potently reduce proliferation, promote 

G
2
/M cell cycle arrest and to decrease cell motility (Leung et al., 2016). To investigate if these 

inhibitors are effective in PCa, the efficacy of the inhibitors (97, 144, 145, 154 and 160) was 

investigated in a PCa cell line panel and cultured human prostate tumours. Growth assays 

demonstrated that all of the inhibiors inhibit proliferation. Compounds 144 and 160 were found 

to be the most potent inhibitors in reducing cellular proliferation. This result fits with Reynisson 



	

	 178	

et al., (2016) findings, as they investigated these inhibitors against the BCa cell lines (MCF-7, 

T47D, MDA-MB-231 and MDA-MB-468) and drugs 144 and 160 were the most effect in these 

lines.    

The IC50 values suggest that the compounds may show some specificity for cancer cells, 

as this was witnessed in BCa (Reynisson et al., 2016). The drugs appeared to have some 

selectivity for cancer cells, as BPH1 was ihbitied less than the cancer cell lines.   However, 

PNT1A (SV40 immortalised normal prostate) had similar sentivity to the cancer cell lines. The 

selectivty of these compounds therefore needs to be investigated further with other control lines. 

Importantly, these compounds have been tested in mouse models and were found to be well 

tolerated (Leung et al., 2016). Although all of the inhibitors share a similar core structure there 

were differences in potency. For example, compounds 145 and 154 were found to be less potent 

than the other compounds tested. The difference in potency between compounds is not clearly 

understood, however, differences in the side chain bound to the benzene ring could be affecting 

their binding to target sites.  

The testing of the inhibitors in the cell lines models demonstrated that these compounds 

have the potential to be novel therapeutics for the treatment of PCa.  To test these compounds in 

a more physiologically relevant model, the effect of compound 160 was investigated in human 

PCa explants.  In agreement with the cell line data, compound 160 increased the expression of a 

pro-apoptotic marker (caspase 3) and decreased a mitotic marker (PCNA) in the explant model.  

This effect was compared to Enzalutamide, an antiandrogen which is used clinically for the 

treatment of PCa. In the 4 tissues examined, compound 160 was able to reduce the proliferation 

of all samples whereas Enzalutamide inhibited the growth of 3 tissues. Compound 160 therefore 

appears to have similar, if not better, efficacy to Enzalutamide.        
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4.11.2 Thieno[2,3-b]pyridine derivatives promote caspase-dependant apoptosis in 

PC3 

As previously described, the exact mechanism of cell death is dependent upon many 

factors.  Two pathways are of particular relevance in the treatment of cancer, namely programed 

cell death (apoptosis) and necrosis (Ricci and Zong 2006; Ouyang et al., 2012). It was therefore 

of interest to characterise the mechanism of cell death induced by the thieno[2,3-b]pyridine 

inhibitors. The DNA hypoploidy assay indicated that PC3 cells undergo apoptosis in response to 

treatment with the inhibitors and the percentage of cell death increased over the time course. 

Furthermore, PI inclusion assays demonstrated that necrosis/necroptosis was not induced. 

Activation of caspases, as a result of a protease cascade, is an indication of apoptotic pathway 

activation and caspase 3/7 activity is often used as a measure of apoptosis (Degterev et al., 

2003). To confirm that the thieno[2,3-b]pyridine inhibitors promote cell death via activation of 

caspases, caspase 3/7 activity was assessed.  As expected, caspase 3/7 activity was found to be 

enhanced in response to the compounds. The caspase inhibitor Z-VAD was included in the flow 

cytometry analysis to further confirm that the thieno[2,3-b]pyridine inhibitors promote cell death 

via caspase activation. This drug binds to the catalytic site of caspase proteases and inhibits 

cascade-dependent apoptosis.  As expected, the inhibitor reduced the level of apoptosis induced 

by the thieno[2,3-b]pyridine compounds. This result confirms that cell death in PC3 is via 

apoptosis. Leung et al., (2016) indicated that the thieno[2,3-b]pyridine inhibitors cause cell cycle 

arrest in the G2/M phase in the MDA-MB-231 BCa cell line. In agreement with this, analysis of 

the cell cycle demonstrated that PC3 cells also undergo a G2/M phase arrest in response to the 

inhibitors.  
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4.11.3 Anti-cancer drugs affect on cell morphology impact PC3 cell motility  

As previously described, the thieno[2,3-b]pyridine derivatives were developed to target 

PLC- δ (Reynisson et al., 2009), however the phenotype observed suggested that the inhibitors 

could be targeting PLC-γ due to its role in microtubule and spindle fibre formation, and its 

importance in PCa (Castedo et al., 2004; Lattanzio et al., 2013). Little is known about PLC 

expression in PCa and hence the expression of all isoforms was measured using qPCR. The 

majority of the different PLC isoforms were expressed in the PCa cell lines, however the isoform 

with the highest expression in most cell lines was PLC-γ.  This result correlates with a previous 

study, which demonstrated that this isoform is highly expressed in PCa (Lattanzio et al., 2013).  

To confirm what target the inhibitors bind to, the inhibitors were biotinylated and drug-

protein complexes were pulled-down.  The proteins were subsequently identified by quantitative 

mass spectrometry, the pull-down identified potential target(s) of the anti-cancer compounds, but 

surprisingly none of these were PLC family members. However, the targets identified do fit with 

the phenotype observed, being important in e.g. regulating apoptosis, the p53/TP53 tumour 

suppressor and DNA damage repair. Also, other proteins were found to be involved in 

cytoskeletal organization, actin dynamics and cell cycle progression.  

The flow cytometry analysis investigating the effect of the inhibitors upon cell cycle 

suggested that the drugs may promote multinucleation. A similar phenotype was identified by 

Reynisson et al., (2016) when these inhibitors were tested in BCa cell lines. Immunofluorescence 

imaging identified morphological changes, increased cell size and multinucleation, in the PC3 

cell line following treatment with all 5 compounds. Interestingly, it also appeared that the 

compounds may be affecting microtubule dynamics.  Microtubule integrity is crucial in mitotic 
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spindle formation and is important for normal cell division (Kimura et al., 2013). It has been 

demonstrated that changes in microtubule assembly inhibits cytokinesis, promoting 

multinucleation (Bhattachaeya and Cabral 2004). Therefore, disruption of this process is likely to 

result in G2/M arrest and multinucleation. These findings therefore also fit with the earlier results 

that demonstrated that the thieno[2,3-b]pyridine inhibitors promote G2/M phase arrest.  

Metastatic spread is a significant issue in the management of cancer. The identification of 

inhibitors that can block cell motility is therefore of interest.  Since the inhibitors appeared to 

affect cytoskeleton dynamics, these compounds were tested to investigate if they could reduce 

cell motility.  Time-lapse photography was therefore performed using sub-lethal concentrations 

of the compounds. PC3 cell motility was significantly decreased in response to all of the 

compounds.  Investigation of the effect of these compounds in in vivo models of PCa metastasis 

should be used to further investigate the effects of these compounds (Havens et al., 2008).  

In conclusion, the thieno[2,3-b]pyridine derivatives were demonstrated to inhibit PCa 

proliferation and motility, and to promote caspase-dependant apoptosis. The drugs appear to 

exert these effects via regulation of the cytoskeleton, which had a subsequent effect upon cell 

cycle progression and cell morphology. The drugs appear to be potent and are effective at low 

concentrations, in the nanomolar range. The drugs also showed some specificity for cancer cells 

compared to the non-tumorigenic control BPH1 and were demonstrated to be effective in patient 

samples. Despite that the majority of the experiments done on these compounds were 

investigated in a PCa cell line panel and cultured human prostate tumours, the preliminary data is 

encouraging. However, more experiments are needed to encounter variations between cell lines 

and patient’s tissues such as: different origins of cells for certain cell lines and variety in 

metastasis intensity.  Finally, inhibitors target(s) and the safety of these inhibitors must be further 
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investigated in additional pre-clinical models for drug toxicity and effect on macro systems 

environments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

	 183	

CHAPTER 5 

CONCLUSION  

5.1 The role of the Androgen Receptor in Breast Cancer 

The role of the AR in BCa has received increased interest in recent years and a number of 

clinical trials have been completed/ongoing to investigate if AR targeting could be an effective 

treatment option for the disease (Chia et al., 2015). Importantly, the role of the AR in BCa has 

been demonstrated to be subtype dependant (Yeh et al., 2003). In AR and ERα-positive disease, 

androgens were previously trialled as a treatment options. However, this therapeutic strategy fell 

out of favour due to the high risk of oestrogens aromatization and the virilising patterns 

witnessed in patients (Boni et al., 2014; Cops et al., 2008). More recently, AR targeting has 

focused on the inhibition of AR in molecular apocrine disease.  For example, a clinical trial was 

conducted in 26 AR-positive ER/PR-negative BCa patients, targeting AR with the antagonist 

Bicalutamide (BIC). Following 24 weeks of the treatment, the clinical benefit rate (CBR) was 

19% and the median progression free survival (PFS) was 12 weeks. This finding has established 

a potential therapeutic strategy, and supports further development of AR-targetting therapeutic 

strategies for this subtype of the disease.  

Enzalutamide (Enza) is an antiandrogen that has recently been introduced clinically for 

the treatment of advanced PCa and has been shown to have greater survival rates compared to 

the previously used chemotherapies e. g. Docetaxel. Enza binds to the AR LBD leading to an 

inhibition in nuclear translocation and cofactor recruitment (Tran et al., 2009). Enza was 

clinically investigated in advanced AR-positive BCa and was demonstrated to have a greater 

efficacy in tumour inhibition than BIC (Siemens et al., 2018). Enza was also well tolerated in 
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patients and the study reported 29% CBR at 24 weeks with 14.7 median PFS, hence further 

analysis of the drug in AR-positive BCa is on-going (Rampurwala et al., 2016).  

Currently, multiple agents are under investigation for AR-positive BCa.  TAK-700 is 

nonsteroidal drug that acts as a selective inhibitor and it has been found to be effective in CRPC 

(Fizazi et al., 2015). A phase 2 study with this inhibitor is undergoing clinical trails in TNBC 

(NCT01990209). Further, VT-474 is another drug in ongoing trials that is a second-generation 

CYP17 inhibitor (important in androgen synthesis) and is being investigated in multiple subtypes 

of male and female BCa (NCT02580448). Additionally, combinations of AR antagonists with 

other therapeutic agents have been demonstrated to have additive effects. Administration of BIC 

with an inhibitor for PI3K, commonly mutated in AR-positive TNBC, showed convincing results 

in preclinical studies which has led to the initiation of clinical trials to assess this regime 

(Lehmann et al., 2014). The PI3K inhibitor Taselisib in combination with Enza is also currently 

in an ongoing study in advanced TNBC patients (NCT02457910).   

Several selective AR modulators (SARMs), which have tissue and transcriptome 

specificity, also appear to have activity in TNBC. C1-4AS-1, for example, is a SARM that 

inhibits the proliferation of TNBC in preclinical models. This drug binds to the LBD similar to 

DHT, but regulates different genes resulting S phase arrest and cell death (Ahram et al., 2018; 

Moore et al., 2012).  

A number of trials are also investigating AR targetting as treatment options even for ER-

positive disease.  RAD140 is a nonsteroidal SARM that behaves as an AR agonist. This 

compound has been demonstrated to have anti-tumour effects in vivo in AR/ER-positive BCa 

models (Yu et al., 2017). This novel drug was found potent with and without the administration 
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with other agent inhibitors such as palbociclib. Enobosarm is another SARM that is undergoing 

clinical trials in both ER-positive (NCT02463032) and TNBC (NCT02368691) BCa, where 

preliminary data indicated promising effects in stabilising the disease. Further, Cyp17A1 has 

been targeted in clinical trials by abiraterone acetate to inhibit androgen and oestrogen signalling 

in ER-positive BCa (Narayanan and Dalton, 2016). However, no significant clinical activity was 

demonstrated, which was attributed to increased levels of progesterone in the serum of patients.  

 

Characterisation of AR-ERα cross-talk also contributes to our understanding of how best 

to target the AR in BCa (e.g. activate or inhibit). It has been demonstrated that the sequence 

homology of the ARE is less restricted than ERE resulting in the AR being more able than ERα 

to bind to response elements other than AREs (Jia et al., 2008). Peters et al., (2009) 

demonstrated that the AR DBD domain is essential for the inhibition of ERα activity, 

presumably via competition for DNA binding. However, the data presented suggests that ERα 

does not repress AR activity via competition for DNA binding. This was demonstrated via the 

use of an ERα mutant that is unable to bind DNA due to a mutation in one of the zinc fingers.  

This mutant was still able to repress AR activity suggesting that competition for DNA binding is 

not a mechanism of repression. Equally, a mutation in the NLS of ERα, which blocks nuclear 

localisation, was also able to repress AR activity. There is therefore little information on which 

target genes are affected by this cross-talk and this study suggests that not all genes will be 

affected.  Instead the cross-talk is likely to be gene specific and therefore a more global analysis 

of gene expression (e.g. RNA-Seq) would be informative.  

Investigation of AR-ERα cross-talk also contributes to our understanding of how best to 

target the AR in BCa. The data presented in This thesis suggests that ERα does not repress AR 
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activity via competition for DNA binding. It is therefore possible that competition for cofactors 

is the mechanism by which ERα represses AR activity. In addition, this study also investigated 

the role of AR mutations in BCa. Assessment of receptor transcriptional activity and cellular 

inhibition demonstrated the effect of these substitutions upon receptor function.  AR mutations 

that resulted in a constitutively active and transcriptionally dead receptor were identified. A 

constitutively active receptor could drive molecular apocrine growth, whereas a transcriptionally 

dead receptor may not be able to compete with ERα to block growth facilitating E2 induced 

growth in ERα positive disease.  This aids more advanced disease for patients who recieved 

antiandrogen treatment to see if they have acquired any of the AR mutations invistigated in this 

study in response to the therapy. 

 

In addition to receptor cross-talk, this study also investigated the role of AR mutations in 

BCa. Assessment of receptor transcriptional activity and cellular inhibition demonstrated the 

effect of these substitutions upon receptor function.  AR mutations that resulted in a 

constitutively active and transcriptionally dead receptor were identified. A constitutively active 

receptor could drive molecular apocrine growth, whereas a transcriptionally dead receptor may 

not be able to compete with ERα to block growth facilitating E2 induced growth in ERα positive 

disease.  It is therefore important to further chatacterise the importance of AR mutations in BCa. 

Also inistigating more advanced disease and patients that have recieved antiandrogen treatment 

to see if they have acquired AR mutations in response to the therapy. 
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5.2 The development of novel targeted therapies for the treatment of prostate 

cancer 

There are few therapeutic options for therapy resistant PCa. Docetacel and Cabazitaxel are 

chemotherapies which are given to patients with hormone refractory disease and these aim to 

prolong survival rates (Oudard et al., 2017). Administration of the new generation of hormonal 

therapies, Enzalutamide and Abiraterone, has been found to provide improved survival rates in 

metastatic CRPC (Ohlmann et al., 2017). However, resistance to these therapies, de novo and 

acquired, is also associated with these antagonists (Pal et al., 2018; Watson et al., 2015). An 

ongoing clinical trial combining Enza with Metformin aims to target the AR along with a 

mechanisms of therapy resistance (autophagy mechanisms) (NCT02339168). Metformin is a 

clinical drug used for the type 2 diabetes mellitus patients and has been demonstrated to have 

effects against tumour cells such as induction of apoptosis, autophagy and cell cycle arrest (Zi et 

al., 2018). Preliminary efficacy data form the trial reported that the combination is well tolerated 

and recommended continuation of the study.  

In this thesis, thieno[2,3-b]pyridine derivatives were investigated as novel therapeutics 

for PCa.  These were demonstrated to successfully inhibit PCa proliferation and motility and to 

induce apoptosis. These compounds were potent at low concretions and found to effect cell cycle 

progression and cell morphology, possibly as a result of regulation of the cytoskeleton. The anti-

cancer derivatives cause G2 arrest and multinucleation, it is therefore hypothesized that the 

inhibitors promote their effects via deregulation of the cytoskeleton, which subsequently affects 

cell division, resulting in multinucleation, which leads to apoptosis. The specificity of the drugs 

for cancer cells remains to be clarified, as although the drugs had lower IC50 concentrations 

compared to cancer cells, the IC50 concentrations of drugs in PNT1A was similar to the 
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tumorigenic lines.  It is therefore possible that the compounds could have significant side effects 

in vivo and this will need to be assessed using in vivo models prior to progression to clinical 

trials.  

The anti-cancer drugs appear to exert their effects via regulation of the cytoskeleton, 

which had a subsequent effect upon cell cycle progression and cell morphology. The drugs 

appear to be potent and are effective at low concentrations, in the nanomolar range. The drugs 

also showed some specificity for cancer cells compared to the non-tumorigenic control BPH1 

and were demonstrated to be effective in patient samples. Although the compounds were 

originally designed to target PLC, this does not appear to be the case.  The drug pull-down assay 

identified multiple potential targets, and characterisation of these targets will confirm which 

protein is the target.  This is important to allow for further optimisation of the compounds. The 

inhibitors could be novel therapeutics for the treatment of PCa and CRPC, however more 

research is required, in particular to assess its safety and efficacy in vivo 
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5.3 Future work  

In the BCa project, further investigation of AR-ERα cross-talk with other steroid 

receptors would be interesting. For example, the PR has an important role in some BCas 

subtypes and there is little knowledge of the cross-talk between these steroid receptors. Further, 

the development of endogenous systems to evaluate the effect of AR mutations will be useful.  It 

would therefore be good to make fresh attempts to generate the CRISPR modified lines. More 

AR mutations have been idenitified in BCa, since the conclusion of this study.  It will therefore 

be useful to repeat the studies presented here to investigate if these substitutions have a bearing 

upon receptor activity. Additionally, sequencing of BCa patient samples, particularly advanced 

stages of the disease, will be informative in determining the incidence and importance of AR 

mutations in BCa.  

In the PCa project, investigation of the efficacy and safety of the thieno[2,3-b]pyridine 

inhibitors in pre-clinical animal models is essential. Further, the target(s) of these molecules need 

to be validated.  Based on the results obtained from the experiments, the molecules can be further 

refined to increase specificity and potentcy.  These experiments would then provide the 

necessary data to support progression to clinical trials. 
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